Squalene (BioDeep_00000306012)
Main id: BioDeep_00000000829
PANOMIX_OTCML-2023 BioNovoGene_Lab2019 natural product
代谢物信息卡片
化学式: C30H50 (410.3912)
中文名称: 角鲨烯, (10E,14E,18E)-2,6,10,15,19,23-六甲基四环素-2,6,10,14,18,22-己烯
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: C/C(C)=C\CC/C(C)=C/CC/C(C)=C/CC/C=C(C)/CC/C=C(C)/CC/C=C(C)\C
InChI: InChI=1S/C30H50/c1-25(2)15-11-19-29(7)23-13-21-27(5)17-9-10-18-28(6)22-14-24-30(8)20-12-16-26(3)4/h15-18,23-24H,9-14,19-22H2,1-8H3/b27-17+,28-18+,29-23+,30-24+
描述信息
Squalene, also known as (e,e,e,e)-squalene or all-trans-squalene, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Squalene can be found in a number of food items such as apricot, savoy cabbage, peach (variety), and bitter gourd, which makes squalene a potential biomarker for the consumption of these food products. Squalene can be found primarily in blood, feces, and sweat, as well as throughout most human tissues. In humans, squalene is involved in several metabolic pathways, some of which include risedronate action pathway, steroid biosynthesis, alendronate action pathway, and fluvastatin action pathway. Squalene is also involved in several metabolic disorders, some of which include cholesteryl ester storage disease, CHILD syndrome, hyper-igd syndrome, and wolman disease. Squalene is a natural 30-carbon organic compound originally obtained for commercial purposes primarily from shark liver oil (hence its name, as Squalus is a genus of sharks), although plant sources (primarily vegetable oils) are now used as well, including amaranth seed, rice bran, wheat germ, and olives. Yeast cells have been genetically engineered to produce commercially useful quantities of "synthetic" squalene .
COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE was 20 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan.
Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2].
Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2].
同义名列表
36 个代谢物同义名
Squalene; (6Z,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene; InChI=1\C30H50\c1-25(2)15-11-19-29(7)23-13-21-27(5)17-9-10-18-28(6)22-14-24-30(8)20-12-16-26(3)4\h15-18,23-24H,9-14,19-22H2,1-8H3\b27-17+,28-18+,29-23+,30-24; 2,6,10,15,19,23-Hexamethyltetracosa-(2E,6E,10E,14E,18E,22E)-2,6,10,14,18,22-hexaene; 2,6,10,14,18,22-tetracosahexaene, 2,6,10,15,19,23-hexamethyl-, (6E,10E,14E,18E)-; (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene; 2,6,10,14,18,22-Tetracosahexaene, 2,6,10,15,19,23-hexamethyl-, (all-E)-; (All-E)-2,6,10,15,19,23-hexamethyl-2,6,10,14,18,22-tetracosahexaene; (14E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene; 2,6,10,14,18,22-Tetracosahexaene, 2,6,10,15,19,23-hexamethyl-,; 2,6,10,14,18,22-Tetracosahexaene, 2,6,10,15,19,23-hexamethyl-; 2,6,10,15,19,23-Hexamethyltetracosa-2,6,10,14,18,22-hexaene; 2,6,10,15,19,23-Hexamethyl-2,6,10,14,18,22-tetracosahexaene; Squalene, Spinacene, Supraene; All-trans-Squalene; (E,E,E,E)-Squalene; EINECS 203-826-1; 442785_SUPELCO; trans-Squalene; LMPR01060008; S3626_SIGMA; CHEBI:15440; AIDS-017396; AIDS017396; 94016-35-0; Spinacene; CCRIS 711; 7683-64-9; 111-02-4; NSC93748; Supraene; C00751; Super Squalene; AddaVax; Squalene; (10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene
数据库引用编号
29 个数据库交叉引用编号
- ChEBI: CHEBI:15440
- KEGG: C00751
- PubChem: 11975273
- PubChem: 638072
- DrugBank: DB11460
- ChEMBL: CHEMBL458402
- MeSH: Squalene
- foodb: FDB015780
- CAS: 7683-64-9
- CAS: 11051-27-7
- CAS: 111-02-4
- MoNA: MSJ00148
- MoNA: HMDB0000256_ms_ms_443
- MoNA: HMDB0000256_ms_ms_442
- MoNA: HMDB0000256_ms_ms_444
- PMhub: MS000073050
- PubChem: 4013
- LipidMAPS: LMPR0106010002
- KNApSAcK: C00003755
- PDB-CCD: SQL
- 3DMET: B00166
- NIKKAJI: J5.103I
- RefMet: Squalene
- medchemexpress: HY-N1214
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-560
- KNApSAcK: 15440
- LOTUS: LTS0074169
- wikidata: Q105368603
- LOTUS: LTS0217821
分类词条
相关代谢途径
BioCyc(10)
- plant sterol biosynthesis
- superpathway of sterol biosynthesis
- superpathway of ergosterol biosynthesis I
- superpathway of ergosterol biosynthesis
- hopanoid biosynthesis (bacteria)
- diploterol and cycloartenol biosynthesis
- cholesterol biosynthesis I
- cholesterol biosynthesis III (via desmosterol)
- superpathway of cholesterol biosynthesis
- cholesterol biosynthesis II (via 24,25-dihydrolanosterol)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
833 个相关的物种来源信息
- 3815 - Abrus: LTS0217821
- 3816 - Abrus precatorius: 10.1002/JPS.2600570840
- 3816 - Abrus precatorius: LTS0217821
- 3808 - Acacia: LTS0217821
- 767867 - Acacia × cedilloi: 10.1515/ZNC-2002-9-1002
- 746490 - Achyrocline: LTS0217821
- 746491 - Achyrocline alata: 10.1016/S0031-9422(00)91058-6
- 746491 - Achyrocline alata: LTS0217821
- 1744984 - Acritopappus: LTS0217821
- 186623 - Actinopteri: LTS0217821
- 7898 - Actinopterygii: LTS0217821
- 39509 - Agave: LTS0217821
- 2695036 - Agave decipiens: 10.1016/S0367-326X(99)00057-X
- 2695036 - Agave decipiens: LTS0217821
- 102749 - Ageratina: LTS0217821
- 377223 - Aleuritopteris: LTS0217821
- 414589 - Aleuritopteris farinosa: 10.1248/CPB.44.690
- 414589 - Aleuritopteris farinosa: 10.1248/CPB.44.695
- 414589 - Aleuritopteris farinosa: LTS0217821
- 1294636 - Alligatoridae: LTS0217821
- 4678 - Allium: 10.1016/J.PHYTOCHEM.2015.02.003
- 86337 - Alsophila: LTS0217821
- 204585 - Alsophila podophylla:
- 204585 - Alsophila podophylla: 10.1002/CHIN.200416160
- 204585 - Alsophila podophylla: 10.1248/CPB.51.1311
- 204585 - Alsophila podophylla: LTS0217821
- 3563 - Amaranthaceae: LTS0217821
- 3564 - Amaranthus: LTS0217821
- 3567 - Amaranthus caudatus: 10.1007/BF02249626
- 3567 - Amaranthus caudatus: LTS0217821
- 117272 - Amaranthus cruentus:
- 117272 - Amaranthus cruentus: LTS0217821
- 3565 - Amaranthus hybridus: 10.1021/JF010918P
- 28502 - Amaranthus hypochondriacus: 10.1021/JF010918P
- 29722 - Amaranthus tricolor: 10.1021/JF010918P
- 4211 - Ambrosia: LTS0217821
- 4214 - Ambrosia trifida: 10.1016/0031-9422(93)85405-G
- 4214 - Ambrosia trifida: LTS0217821
- 283104 - Antidesma: LTS0217821
- 1340045 - Antidesma montanum: LTS0217821
- 344423 - Antidesma pentandrum: LTS0217821
- 2306982 - Antidesma pentandrum var. barbatum: 10.1002/JCCS.200700187
- 2306982 - Antidesma pentandrum var. barbatum: LTS0217821
- 59522 - Antidorcas: LTS0217821
- 59523 - Antidorcas marsupialis: 10.1016/S0040-4039(01)85855-X
- 59523 - Antidorcas marsupialis: LTS0217821
- 4037 - Apiaceae: LTS0217821
- 4044 - Apium: LTS0217821
- 4045 - Apium graveolens: 10.1016/0031-9422(92)83445-5
- 4045 - Apium graveolens: LTS0217821
- 4056 - Apocynaceae: LTS0217821
- 4050 - Araliaceae: LTS0217821
- 4710 - Arecaceae: LTS0217821
- 4219 - Artemisia: LTS0217821
- 669138 - Artemisia schmidtiana: 10.1016/S0031-9422(00)81231-5
- 669138 - Artemisia schmidtiana: LTS0217821
- 4220 - Artemisia vulgaris: 10.1007/S11418-008-0253-0
- 4220 - Artemisia vulgaris: LTS0217821
- 6656 - Arthropoda: LTS0217821
- 3488 - Artocarpus: LTS0217821
- 3489 - Artocarpus heterophyllus: 10.1007/S10600-010-9698-Y
- 3489 - Artocarpus heterophyllus: LTS0217821
- 21199 - Asclepias: LTS0217821
- 528299 - Asclepias speciosa: 10.1016/0305-1978(87)90052-4
- 528299 - Asclepias speciosa: LTS0217821
- 48545 - Asclepias syriaca: 10.1016/0305-1978(87)90052-4
- 48545 - Asclepias syriaca: LTS0217821
- 4890 - Ascomycota: LTS0217821
- 40552 - Asparagaceae: LTS0217821
- 1131492 - Aspergillaceae: LTS0217821
- 5052 - Aspergillus: LTS0217821
- 5060 - Aspergillus giganteus: 10.1016/S0031-9422(00)83869-8
- 5060 - Aspergillus giganteus: LTS0217821
- 41479 - Aster: LTS0217821
- 947972 - Aster koraiensis: 10.1248/CPB.53.1194
- 947972 - Aster koraiensis: LTS0217821
- 385370 - Aster scaber: 10.1016/S0031-9422(00)91384-0
- 385370 - Aster scaber: LTS0217821
- 4210 - Asteraceae: LTS0217821
- 112340 - Athrixia: LTS0217821
- 988334 - Athrixia elata: 10.1016/S0031-9422(82)85073-5
- 988334 - Athrixia elata: LTS0217821
- 103743 - Austroeupatorium: LTS0217821
- 4496 - Avena: LTS0217821
- 146531 - Avena byzantina: 10.1016/S0031-9422(00)00062-5
- 4498 - Avena sativa: 10.1016/S0031-9422(00)00062-5
- 4498 - Avena sativa: LTS0217821
- 39630 - Azolla: LTS0217821
- 336974 - Azolla nilotica: 10.1016/S0031-9422(97)01126-6
- 336974 - Azolla nilotica: LTS0217821
- 41487 - Baccharis: LTS0217821
- 3015673 - Baccharis heterophylla: LTS0217821
- 186817 - Bacillaceae: LTS0217821
- 33849 - Bacillariophyceae: LTS0217821
- 2836 - Bacillariophyta: LTS0217821
- 91061 - Bacilli: LTS0217821
- 55086 - Bacillidae: LTS0217821
- 1386 - Bacillus: LTS0217821
- 55087 - Bacillus: 10.1271/BBB1961.55.2643
- 2 - Bacteria: LTS0217821
- 25673 - Balanophoraceae: LTS0217821
- 79556 - Barringtonia: LTS0217821
- 79557 - Barringtonia asiatica: 10.1248/CPB.59.778
- 79557 - Barringtonia asiatica: LTS0217821
- 3805 - Bauhinia: LTS0217821
- 3806 - Bauhinia purpurea: 10.1002/JCCS.200200042
- 3806 - Bauhinia purpurea: LTS0217821
- 88849 - Beilschmiedia: LTS0217821
- 1603694 - Beilschmiedia tsangii: 10.1055/S-2007-967195
- 1603694 - Beilschmiedia tsangii: LTS0217821
- 28216 - Betaproteobacteria: LTS0217821
- 191885 - Biancaea decapetala:
- 42336 - Bidens: LTS0217821
- 42337 - Bidens pilosa:
- 42337 - Bidens pilosa: 10.1002/JCCS.200000152
- 42337 - Bidens pilosa: 10.1016/0031-9422(94)00793-S
- 42337 - Bidens pilosa: LTS0217821
- 2712134 - Bidens rubifolia: 10.1016/0031-9422(83)80242-8
- 2712134 - Bidens rubifolia: LTS0217821
- 545239 - Bidens subalternans: 10.1016/S0031-9422(00)81431-4
- 545239 - Bidens subalternans: LTS0217821
- 41493 - Blepharispermum: LTS0217821
- 41494 - Blepharispermum zanguebaricum: 10.1016/0031-9422(91)83197-S
- 41494 - Blepharispermum zanguebaricum: LTS0217821
- 72901 - Blumea: LTS0217821
- 157407 - Blyttia: LTS0217821
- 122399 - Boerhavia: LTS0217821
- 427792 - Boerhavia repens: 10.1016/0031-9422(90)80156-B
- 427792 - Boerhavia repens: LTS0217821
- 38879 - Botryococcaceae: LTS0217821
- 38880 - Botryococcus: LTS0217821
- 38881 - Botryococcus braunii: LTS0217821
- 9895 - Bovidae: LTS0217821
- 3700 - Brassicaceae: LTS0217821
- 66379 - Broussonetia: LTS0217821
- 172644 - Broussonetia papyrifera: 10.1016/0031-9422(94)00594-J
- 172644 - Broussonetia papyrifera: LTS0217821
- 3208 - Bryophyta: LTS0217821
- 46366 - Bupleurum: LTS0217821
- 199332 - Bupleurum acutifolium: 10.1021/NP980445P
- 199332 - Bupleurum acutifolium: LTS0217821
- 53845 - Caesalpinia: LTS0217821
- 8497 - Caiman: LTS0217821
- 8499 - Caiman crocodilus: 10.1016/S0305-1978(98)00054-4
- 8499 - Caiman crocodilus: LTS0217821
- 183008 - Calea: LTS0217821
- 1125166 - Calea jamaicensis: 10.1021/NP50035A008
- 21922 - Callicarpa: LTS0217821
- 2813830 - Callicarpa pilosissima:
- 2813830 - Callicarpa pilosissima: LTS0217821
- 703253 - Calophyllaceae: LTS0217821
- 73121 - Calophyllum: LTS0217821
- 667327 - Calophyllum gracilipes: 10.1016/S0040-4039(97)01032-0
- 667327 - Calophyllum gracilipes: LTS0217821
- 112816 - Casearia: LTS0217821
- 1609857 - Casearia membranacea: 10.1055/S-2003-41120
- 1609857 - Casearia membranacea: LTS0217821
- 125672 - Cassinia: LTS0217821
- 1284881 - Cassinia subtropica: 10.1016/0031-9422(88)83027-9
- 1284881 - Cassinia subtropica: LTS0217821
- 1284885 - Cassinia uncata: 10.1016/0031-9422(88)83027-9
- 1284885 - Cassinia uncata: LTS0217821
- 4305 - Celastraceae: LTS0217821
- 41503 - Centaurea: LTS0217821
- 41511 - Centaurea calcitrapa: 10.1055/S-2007-969197
- 41511 - Centaurea calcitrapa: LTS0217821
- 61134 - Ceriops: LTS0217821
- 61143 - Ceriops tagal: 10.1021/NP030477Z
- 61143 - Ceriops tagal: LTS0217821
- 13414 - Chamaecyparis: LTS0217821
- 13415 - Chamaecyparis obtusa: 10.1271/BBB1961.48.2523
- 13415 - Chamaecyparis obtusa: LTS0217821
- 99808 - Chamaecyparis pisifera: 10.1271/BBB1961.48.2523
- 99808 - Chamaecyparis pisifera: LTS0217821
- 29633 - Cheiropleuria: LTS0217821
- 29634 - Cheiropleuria bicuspis: 10.1248/CPB.38.2130
- 29634 - Cheiropleuria bicuspis: LTS0217821
- 3166 - Chlorophyceae: LTS0217821
- 3041 - Chlorophyta: LTS0217821
- 7777 - Chondrichthyes: LTS0217821
- 7711 - Chordata: LTS0217821
- 13420 - Chromolaena: LTS0217821
- 1745036 - Chromolaena laevigata: 10.1016/S0040-4020(01)96789-4
- 1745036 - Chromolaena laevigata: LTS0217821
- 82361 - Cineraria: LTS0217821
- 317272 - Cineraria parvifolia: 10.1016/0031-9422(82)85251-5
- 317272 - Cineraria parvifolia: LTS0217821
- 13428 - Cinnamomum: LTS0217821
- 1132458 - Cinnamomum kotoense: 10.1021/NP0580210
- 1132458 - Cinnamomum kotoense: LTS0217821
- 337469 - Cinnamomum philippinense: 10.1007/S10600-011-9788-5
- 337469 - Cinnamomum philippinense: LTS0217821
- 977953 - Cinnamomum subavenium: 10.1248/CPB.56.97
- 977953 - Cinnamomum subavenium: LTS0217821
- 69450 - Cistaceae: LTS0217821
- 283089 - Cleistanthus: LTS0217821
- 183010 - Clibadium: LTS0217821
- 55961 - Clusiaceae: LTS0217821
- 1237198 - Cnestis: LTS0217821
- 2807180 - Cnestis ferruginea: 10.1016/0378-8741(82)90058-7
- 2807180 - Cnestis ferruginea: LTS0217821
- 41138 - Coccinella: LTS0217821
- 41139 - Coccinella septempunctata: 10.1007/BF00574376
- 41139 - Coccinella septempunctata: LTS0217821
- 7080 - Coccinellidae: LTS0217821
- 3954 - Combretaceae: LTS0217821
- 25889 - Connaraceae: LTS0217821
- 41552 - Conyza: LTS0217821
- 741633 - Conyza aegyptiaca: 10.1515/ZNB-1989-1219
- 741633 - Conyza aegyptiaca: LTS0217821
- 87658 - Corymbia: LTS0217821
- 34329 - Corymbia citriodora: 10.1002/JCCS.200000074
- 34329 - Corymbia citriodora: LTS0217821
- 282214 - Cota: LTS0217821
- 158232 - Cota triumfettii: 10.1007/S10600-007-0179-X
- 158232 - Cota triumfettii: LTS0217821
- 1003243 - Coulaceae: LTS0217821
- 510735 - Crataegus pinnatifida Bge.: -
- 510735 - Crataegus pinnatifida Bge. var.major N.E.Br.: -
- 506627 - Critonia: LTS0217821
- 1475404 - Critonia quadrangularis: 10.1016/S0031-9422(00)81431-4
- 1475404 - Critonia quadrangularis: LTS0217821
- 100370 - Croton: LTS0217821
- 1475389 - Croton cortesianus: 10.1016/0031-9422(92)80479-X
- 1475389 - Croton cortesianus: LTS0217821
- 22027 - Cryptocarya: LTS0217821
- 128609 - Cryptocarya chinensis: 10.1021/NP100014J
- 128609 - Cryptocarya chinensis: LTS0217821
- 3367 - Cupressaceae: LTS0217821
- 3028117 - Cyanophyceae: LTS0217821
- 13470 - Cyathea: LTS0217821
- 29635 - Cyatheaceae: LTS0217821
- 86614 - Dactylanthus: LTS0217821
- 328070 - Dactylanthus taylorii: 10.1016/0031-9422(95)00403-T
- 328070 - Dactylanthus taylorii: LTS0217821
- 170816 - Dalatias: LTS0217821
- 170817 - Dalatias licha: 10.1042/BJ0220077
- 170817 - Dalatias licha: LTS0217821
- 117914 - Dalatiidae: LTS0217821
- 66679 - Daphne: LTS0217821
- 329675 - Daphne odora: 10.1271/BBB1961.47.483
- 329675 - Daphne odora: LTS0217821
- 2715869 - Daphne papyracea: 10.1271/BBB1961.47.483
- 2715869 - Daphne papyracea: LTS0217821
- 422322 - Dendrophorbium: LTS0217821
- 1179 - Desmonostoc muscorum: 10.1111/J.1432-1033.1985.TB08982.X
- 2875 - Dictyota: LTS0217821
- 2876 - Dictyota dichotoma: 10.1071/CH08343
- 2876 - Dictyota dichotoma: LTS0217821
- 2874 - Dictyotaceae: LTS0217821
- 13492 - Diospyros: LTS0217821
- 1932074 - Diospyros blancoi: 10.1080/14786410902951054
- 1932074 - Diospyros blancoi: LTS0217821
- 268838 - Diospyros discolor: 10.1080/14786410902951054
- 268838 - Diospyros discolor: LTS0217821
- 413758 - Diospyros maritima: 10.3390/MOLECULES14125281
- 413758 - Diospyros maritima: LTS0217821
- 3731 - Diplotaxis: LTS0217821
- 308281 - Diplotaxis harra: 10.1002/(SICI)1099-1573(199906)13:4<329::AID-PTR458>3.0.CO;2-U
- 308281 - Diplotaxis harra: LTS0217821
- 32106 - Dipteridaceae: LTS0217821
- 1745048 - Disynaphia: LTS0217821
- 1745051 - Disynaphia multicrenulata: 10.1016/S0031-9422(00)80481-1
- 1745051 - Disynaphia multicrenulata: LTS0217821
- 72926 - Doellingeria: LTS0217821
- 29607 - Dryopteridaceae: LTS0217821
- 3287 - Dryopteris: LTS0217821
- 239547 - Dryopteris affinis: 10.1055/S-2007-969987
- 1091245 - Dryopteris assimilis: 10.1055/S-2007-969987
- 1091245 - Dryopteris assimilis: LTS0217821
- 239555 - Dryopteris carthusiana: 10.1055/S-2007-969987
- 239555 - Dryopteris carthusiana: LTS0217821
- 239563 - Dryopteris expansa: 10.1055/S-2007-969987
- 239563 - Dryopteris expansa: LTS0217821
- 3289 - Dryopteris filix-mas: 10.1055/S-2007-969987
- 3289 - Dryopteris filix-mas: LTS0217821
- 1663599 - Dryopteris spinulosa: 10.1055/S-2007-969987
- 1663599 - Dryopteris spinulosa: LTS0217821
- 20145 - Drypetes: LTS0217821
- 1679348 - Drypetes indica: 10.3724/SP.J.1145.2011.00350
- 1679348 - Drypetes indica: LTS0217821
- 313930 - Duhaldea: LTS0217821
- 313931 - Duhaldea cappa: 10.1016/0031-9422(82)83188-9
- 313931 - Duhaldea cappa: LTS0217821
- 19955 - Ebenaceae: LTS0217821
- 124948 - Ekebergia: LTS0217821
- 124949 - Ekebergia capensis: 10.1016/0031-9422(96)00004-0
- 124949 - Ekebergia capensis: LTS0217821
- 7778 - Elasmobranchii: LTS0217821
- 434654 - Eremanthus: LTS0217821
- 4345 - Ericaceae: LTS0217821
- 41574 - Erigeron: LTS0217821
- 72930 - Erigeron philadelphicus: 10.1016/S0031-9422(00)81585-X
- 72930 - Erigeron philadelphicus: LTS0217821
- 99049 - Eriocephalus: LTS0217821
- 308316 - Erucaria: LTS0217821
- 1078594 - Erucaria microcarpa: 10.1002/(SICI)1099-1573(199906)13:4<329::AID-PTR458>3.0.CO;2-U
- 1078594 - Erucaria microcarpa: LTS0217821
- 53876 - Erythrophleum: LTS0217821
- 568080 - Erythrophleum fordii: 10.1016/J.BMC.2008.09.021
- 568080 - Erythrophleum fordii: LTS0217821
- 188487 - Etlingera: LTS0217821
- 2759 - Eukaryota: LTS0217821
- 3990 - Euphorbia: LTS0217821
- 142860 - Euphorbia tirucalli: 10.1021/NP50006A011
- 142860 - Euphorbia tirucalli: LTS0217821
- 3977 - Euphorbiaceae: LTS0217821
- 147545 - Eurotiomycetes: LTS0217821
- 3803 - Fabaceae: LTS0217821
- 3493 - Ficus: LTS0217821
- 100573 - Ficus septica:
- 100573 - Ficus septica: 10.1016/J.JEP.2008.06.025
- 100573 - Ficus septica: 10.3987/COM-02-9615
- 100573 - Ficus septica: LTS0217821
- 4751 - Fungi: LTS0217821
- 5506 - Fusarium: LTS0217821
- 5127 - Fusarium fujikuroi:
- 5127 - Fusarium fujikuroi: LTS0217821
- 457137 - Galeopsis: LTS0217821
- 572113 - Galeopsis bifida: 10.1007/BF00568505
- 572113 - Galeopsis bifida: LTS0217821
- 1236 - Gammaproteobacteria: LTS0217821
- 58227 - Garcinia: LTS0217821
- 1009474 - Garcinia multiflora:
- 1009474 - Garcinia multiflora: 10.1021/NP8006364
- 1009474 - Garcinia multiflora: 10.1055/S-0029-1234987
- 1009474 - Garcinia multiflora: LTS0217821
- 56527 - Geigeria: LTS0217821
- 1548571 - Geigeria brevifolia: 10.1016/S0031-9422(82)85040-1
- 1548571 - Geigeria brevifolia: LTS0217821
- 1548572 - Geigeria burkei: 10.1016/S0031-9422(82)85040-1
- 1548572 - Geigeria burkei: LTS0217821
- 56528 - Geigeria ornativa: 10.1016/0031-9422(89)80289-4
- 56528 - Geigeria ornativa: LTS0217821
- 21496 - Gentiana: LTS0217821
- 38851 - Gentiana lutea: 10.1248/CPB.51.885
- 38851 - Gentiana lutea: LTS0217821
- 21472 - Gentianaceae: LTS0217821
- 13546 - Gerbera: LTS0217821
- 1898444 - Gerbera ambigua: 10.1016/S0031-9422(00)81146-2
- 1898444 - Gerbera ambigua: LTS0217821
- 16472 - Goodeniaceae: LTS0217821
- 57113 - Goupia: LTS0217821
- 39314 - Goupia glabra: 10.1002/EJOC.200300284
- 39314 - Goupia glabra: LTS0217821
- 216853 - Goupiaceae: LTS0217821
- 183031 - Greenmaniella: LTS0217821
- 183032 - Greenmaniella resinosa: 10.1016/S0031-9422(00)81746-X
- 183032 - Greenmaniella resinosa: LTS0217821
- 79572 - Gustavia: LTS0217821
- 372739 - Gustavia longifolia: 10.1021/NP0497548
- 372739 - Gustavia longifolia: LTS0217821
- 71047 - Gutierrezia: LTS0217821
- 259855 - Gymnanthemum: LTS0217821
- 1224798 - Gymnanthemum corymbosum: 10.1016/0031-9422(83)80212-X
- 1224798 - Gymnanthemum corymbosum: LTS0217821
- 335160 - Halimium: LTS0217821
- 335161 - Halimium umbellatum: LTS0217821
- 42216 - Hamamelidaceae: LTS0217821
- 4395 - Hamamelis: LTS0217821
- 4397 - Hamamelis virginiana: 10.1055/S-2006-957420
- 4397 - Hamamelis virginiana: LTS0217821
- 2666035 - Hedlundia: LTS0217821
- 1775740 - Hedlundia hybrida: LTS0217821
- 59430 - Helichrysum: LTS0217821
- 379243 - Helichrysum cymosum: 10.1016/S0031-9422(00)91472-9
- 630321 - Helichrysum mimetes: 10.1016/S0031-9422(00)81569-1
- 630321 - Helichrysum mimetes: LTS0217821
- 630325 - Helichrysum nudifolium: 10.1016/S0031-9422(00)81569-1
- 630325 - Helichrysum nudifolium: LTS0217821
- 261798 - Helichrysum reflexum: 10.1016/S0031-9422(00)80783-9
- 261798 - Helichrysum reflexum: LTS0217821
- 53722 - Heliopsis: LTS0217821
- 185653 - Heliopsis longipes: 10.1016/J.PHYTOL.2011.04.014
- 185653 - Heliopsis longipes: LTS0217821
- 9604 - Hominidae: LTS0217821
- 9605 - Homo: LTS0217821
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: 10.1038/NBT.2488
- 9606 - Homo sapiens: LTS0217821
- 52831 - Hoya: LTS0217821
- 1167163 - Hoya naumannii: 10.1016/0031-9422(91)84221-D
- 1167163 - Hoya naumannii: LTS0217821
- 23109 - Hydrangea: LTS0217821
- 498914 - Hydrangea chinensis: 10.1021/NP0302394
- 498914 - Hydrangea chinensis: LTS0217821
- 23097 - Hydrangeaceae: LTS0217821
- 204122 - Hyptis: LTS0217821
- 204124 - Hyptis capitata: 10.1016/0031-9422(91)85137-O
- 204124 - Hyptis capitata: LTS0217821
- 50557 - Insecta: LTS0217821
- 41589 - Inula: LTS0217821
- 557660 - Inula salsoloides: 10.1016/0031-9422(95)00807-1
- 557660 - Inula salsoloides: LTS0217821
- 71058 - Isocoma: LTS0217821
- 186771 - Jungermanniopsida: LTS0217821
- 130261 - Jungia: LTS0217821
- 189218 - Kleinia: LTS0217821
- 317279 - Kleinia galpinii: 10.1016/0031-9422(82)85252-7
- 317279 - Kleinia galpinii: LTS0217821
- 506629 - Koanophyllon: LTS0217821
- 1127049 - Koanophyllon albicaule: 10.1016/0031-9422(92)83462-8
- 4136 - Lamiaceae: LTS0217821
- 3325 - Larix: LTS0217821
- 123599 - Larix gmelinii: 10.1007/BF00574580
- 123599 - Larix gmelinii: LTS0217821
- 1745092 - Lasiolaena: LTS0217821
- 1745096 - Lasiolaena morii: 10.1016/0031-9422(82)80035-6
- 1745096 - Lasiolaena morii: LTS0217821
- 3433 - Lauraceae: LTS0217821
- 3642 - Lecythidaceae: LTS0217821
- 911336 - Leucoblepharis: LTS0217821
- 2052884 - Leucoblepharis subsessilis: 10.1016/S0031-9422(00)84573-2
- 2052884 - Leucoblepharis subsessilis: LTS0217821
- 41597 - Liabum: LTS0217821
- 1227319 - Liabum floribundum: 10.1016/0031-9422(88)80441-2
- 1227319 - Liabum floribundum: LTS0217821
- 55740 - Liabum solidagineum: 10.1016/S0031-9422(00)83499-8
- 55740 - Liabum solidagineum: LTS0217821
- 4239 - Ligularia: LTS0217821
- 186954 - Ligularia fischeri: 10.1016/S0031-9422(00)91056-2
- 186954 - Ligularia fischeri: LTS0217821
- 4447 - Liliopsida: LTS0217821
- 55957 - Lindera: LTS0217821
- 332435 - Lindera glauca:
- 332435 - Lindera glauca: 10.1002/JCCS.200000050
- 332435 - Lindera glauca: 10.1016/0031-9422(73)80048-2
- 332435 - Lindera glauca: LTS0217821
- 22042 - Litsea: LTS0217821
- 344083 - Litsea acutivena: 10.1002/JCCS.200700071
- 344083 - Litsea acutivena: LTS0217821
- 41601 - Lychnophora: LTS0217821
- 37500 - Maackia: LTS0217821
- 37501 - Maackia amurensis: 10.1007/BF00576208
- 37501 - Maackia amurensis: LTS0217821
- 3398 - Magnoliopsida: LTS0217821
- 40674 - Mammalia: LTS0217821
- 24647 - Mandragora: LTS0217821
- 389206 - Mandragora autumnalis: 10.1016/J.PHYTOCHEM.2005.07.016
- 389206 - Mandragora autumnalis: LTS0217821
- 33117 - Mandragora officinarum: 10.1016/J.PHYTOCHEM.2005.07.016
- 33117 - Mandragora officinarum: LTS0217821
- 3195 - Marchantiophyta: LTS0217821
- 164925 - Melaleuca: LTS0217821
- 164936 - Melaleuca leucadendra:
- 164936 - Melaleuca leucadendra: 10.1002/JCCS.199800048
- 164936 - Melaleuca leucadendra: 10.1021/NP9606052
- 164936 - Melaleuca leucadendra: LTS0217821
- 43707 - Meliaceae: LTS0217821
- 77014 - Melicope: 10.1080/14786410310001622068
- 77014 - Melicope: LTS0217821
- 1487112 - Melicope lunu-ankenda: 10.1080/14786410310001622068
- 1487112 - Melicope lunu-ankenda: LTS0217821
- 21819 - Mentha: LTS0217821
- 29719 - Mentha spicata: 10.1080/00021369.1980.10864214
- 29719 - Mentha spicata: LTS0217821
- 33208 - Metazoa: LTS0217821
- 56240 - Methylomonas methanolica: 10.1128/JB.135.2.717-720.1978
- 32011 - Methylophilaceae: LTS0217821
- 1486721 - Methylothermaceae: LTS0217821
- 102786 - Mikania: LTS0217821
- 183051 - Milleria: LTS0217821
- 183052 - Milleria quinqueflora: 10.1016/S0031-9422(00)81748-3
- 183052 - Milleria quinqueflora: LTS0217821
- 50145 - Minquartia: LTS0217821
- 50146 - Minquartia guianensis: 10.1016/S0031-9422(00)94841-6
- 50146 - Minquartia guianensis: LTS0217821
- 141494 - Mondia: LTS0217821
- 244352 - Mondia whitei: 10.1016/J.PHYTOCHEM.2004.11.012
- 244352 - Mondia whitei: LTS0217821
- 2364055 - Monteverdia: LTS0217821
- 1081520 - Monteverdia ilicifolia:
- 1081520 - Monteverdia ilicifolia: 10.1016/J.FITOTE.2003.12.006
- 1081520 - Monteverdia ilicifolia: 10.1590/S0103-50531999000600017
- 1081520 - Monteverdia ilicifolia: LTS0217821
- 1825850 - Monteverdia truncata:
- 3487 - Moraceae: LTS0217821
- 460331 - Moscharia: LTS0217821
- 460332 - Moscharia pinnatifida:
- 460332 - Moscharia pinnatifida: 10.1016/0031-9422(90)85369-Q
- 460332 - Moscharia pinnatifida: 10.1016/S0031-9422(00)81059-6
- 460332 - Moscharia pinnatifida: LTS0217821
- 2212703 - Mucoromycetes: LTS0217821
- 1913637 - Mucoromycota: LTS0217821
- 10066 - Muridae: LTS0217821
- 10088 - Mus: LTS0217821
- 10090 - Mus musculus: LTS0217821
- 10090 - Mus musculus: NA
- 3931 - Myrtaceae: LTS0217821
- 1732448 - Mystropetalaceae: LTS0217821
- 43525 - Nauclea: LTS0217821
- 110618 - Nectriaceae: LTS0217821
- 316724 - Neoboutonia: LTS0217821
- 316725 - Neoboutonia mannii:
- 316725 - Neoboutonia mannii: 10.1002/CHIN.200402179
- 316725 - Neoboutonia mannii: 10.1016/S0031-9422(03)00158-4
- 316725 - Neoboutonia mannii: LTS0217821
- 78811 - Neofinetia: LTS0217821
- 78812 - Neofinetia falcata: 10.1080/10412905.2000.9699496
- 1136773 - Neomirandea: LTS0217821
- 1136774 - Neomirandea angularis: 10.1016/0031-9422(89)80149-9
- 1136774 - Neomirandea angularis: LTS0217821
- 4085 - Nicotiana: LTS0217821
- 4097 - Nicotiana tabacum: 10.1016/0031-9422(82)83143-9
- 4097 - Nicotiana tabacum: LTS0217821
- 72956 - Nidorella: LTS0217821
- 1932738 - Nidorella auriculata: 10.1016/S0031-9422(00)88691-4
- 1932738 - Nidorella auriculata: LTS0217821
- 1177 - Nostoc: LTS0217821
- 1162 - Nostocaceae: LTS0217821
- 3536 - Nyctaginaceae: LTS0217821
- 2696291 - Ochrophyta: LTS0217821
- 112378 - Oedera: LTS0217821
- 112379 - Oedera squarrosa: 10.1016/0031-9422(90)80181-F
- 112379 - Oedera squarrosa: LTS0217821
- 4145 - Olea: LTS0217821
- 4146 - Olea europaea: 10.1111/J.1749-6632.1999.TB08735.X
- 4146 - Olea europaea: LTS0217821
- 4144 - Oleaceae: LTS0217821
- 72958 - Olearia: LTS0217821
- 199271 - Olearia pimeleoides: 10.1021/NP50057A010
- 199271 - Olearia pimeleoides: LTS0217821
- 41615 - Onoseris: LTS0217821
- 4747 - Orchidaceae: LTS0217821
- 4527 - Oryza: LTS0217821
- 4530 - Oryza sativa: 10.1007/BF02024677
- 4530 - Oryza sativa: LTS0217821
- 41617 - Osteospermum: LTS0217821
- 41618 - Osteospermum muricatum: 10.1016/0031-9422(83)80102-2
- 41618 - Osteospermum muricatum: LTS0217821
- 38657 - Paleosuchus: LTS0217821
- 84099 - Paleosuchus palpebrosus: 10.1021/NP0600797
- 84099 - Paleosuchus palpebrosus: LTS0217821
- 38658 - Paleosuchus trigonatus: 10.1021/NP0600797
- 38658 - Paleosuchus trigonatus: LTS0217821
- 4053 - Panax: LTS0217821
- 4054 - Panax ginseng: 10.1007/BF02645749
- 4054 - Panax ginseng: LTS0217821
- 44588 - Panax quinquefolius: 10.1007/BF02645749
- 44588 - Panax quinquefolius: LTS0217821
- 4724 - Pandanaceae: LTS0217821
- 4725 - Pandanus: LTS0217821
- 4726 - Pandanus tectorius: 10.1007/S11418-007-0218-8
- 4726 - Pandanus tectorius: LTS0217821
- 3683 - Passifloraceae: LTS0217821
- 157430 - Pentatropis: LTS0217821
- 1718196 - Pentatropis spiralis: 10.1016/S0031-9422(00)95230-0
- 1718196 - Pentatropis spiralis: LTS0217821
- 48386 - Perilla Frutescens: -
- 183066 - Perymenium: LTS0217821
- 2870 - Phaeophyceae: LTS0217821
- 3967 - Phoradendron: LTS0217821
- 136774 - Phoradendron reichenbachianum: 10.1055/S-2001-15823
- 136774 - Phoradendron reichenbachianum: LTS0217821
- 4836 - Phycomyces: LTS0217821
- 4837 - Phycomyces blakesleeanus: 10.1016/0031-9422(91)85105-9
- 4837 - Phycomyces blakesleeanus: LTS0217821
- 1344966 - Phycomycetaceae: LTS0217821
- 233880 - Phyllanthaceae: LTS0217821
- 3318 - Pinaceae: LTS0217821
- 58019 - Pinopsida: LTS0217821
- 1548365 - Piptolepis: LTS0217821
- 3887 - Pisum: LTS0217821
- 3888 - Pisum sativum: 10.1016/S0031-9422(00)90761-1
- 3888 - Pisum sativum: LTS0217821
- 208194 - Pisum sativum subsp. sativum: 10.1016/S0031-9422(00)90761-1
- 208194 - Pisum sativum subsp. sativum: LTS0217821
- 53018 - Plagiochila: LTS0217821
- 280551 - Plagiochila trabeculata: 10.1016/0031-9422(88)80117-1
- 280551 - Plagiochila trabeculata: LTS0217821
- 53016 - Plagiochilaceae: LTS0217821
- 13637 - Platycladus: LTS0217821
- 58046 - Platycladus orientalis: 10.1271/BBB1961.48.2523
- 58046 - Platycladus orientalis: LTS0217821
- 38349 - Pleopeltis: LTS0217821
- 104284 - Pleopeltis polypodioides: LTS0217821
- 548179 - Pleopeltis polypodioides var. polypodioides: 10.1021/NP50068A009
- 548179 - Pleopeltis polypodioides var. polypodioides: LTS0217821
- 197752 - Pleurosigma: LTS0217821
- 1514139 - Pleurosigma strigosum: 10.1016/J.PHYTOCHEM.2004.09.002
- 1514139 - Pleurosigma strigosum: LTS0217821
- 197751 - Pleurosigmataceae: LTS0217821
- 4479 - Poaceae: LTS0217821
- 104325 - Podolepis: LTS0217821
- 104961 - Podolepis hieracioides: 10.1016/S0031-9422(00)81508-3
- 104961 - Podolepis hieracioides: LTS0217821
- 90467 - Polemannia: LTS0217821
- 90468 - Polemannia montana: 10.1016/S0031-9422(00)84743-3
- 90468 - Polemannia montana: LTS0217821
- 46600 - Polydora: LTS0217821
- 82751 - Polydora poskeana: 10.1016/0031-9422(83)80212-X
- 82751 - Polydora poskeana: LTS0217821
- 3275 - Polypodiaceae: LTS0217821
- 241806 - Polypodiopsida: LTS0217821
- 3689 - Populus: LTS0217821
- 113636 - Populus tremula: 10.1111/NPH.16799
- 113636 - Populus tremula: LTS0217821
- 56942 - Porella: LTS0217821
- 184931 - Porella cordaeana: 10.1016/0031-9422(89)80352-8
- 184931 - Porella cordaeana: LTS0217821
- 56912 - Porellaceae: LTS0217821
- 169597 - Porophyllum: LTS0217821
- 1477715 - Porophyllum angustissimum: 10.1016/0031-9422(83)85053-5
- 1477715 - Porophyllum angustissimum: LTS0217821
- 49079 - Pseudognaphalium: LTS0217821
- 1754171 - Pseudognaphalium gaudichaudianum: 10.1016/S0031-9422(02)00611-8
- 1754171 - Pseudognaphalium gaudichaudianum: LTS0217821
- 135621 - Pseudomonadaceae: LTS0217821
- 286 - Pseudomonas: 10.1128/JB.135.2.717-720.1978
- 286 - Pseudomonas: LTS0217821
- 72968 - Psiadia: LTS0217821
- 120289 - Psidium: LTS0217821
- 120290 - Psidium guajava: 10.1002/(SICI)1099-1573(199611)10:7<600::AID-PTR918>3.0.CO;2-7
- 120290 - Psidium guajava: LTS0217821
- 13819 - Pteridaceae: LTS0217821
- 13820 - Pteris: LTS0217821
- 2906642 - Pteris pulchra: LTS0217821
- 72970 - Pteronia: LTS0217821
- 382043 - Pteronia camphorata: 10.1016/0031-9422(90)85434-H
- 382043 - Pteronia camphorata: LTS0217821
- 233879 - Putranjivaceae: LTS0217821
- 27228 - Qualea: LTS0217821
- 178107 - Qualea grandiflora: 10.1590/S0100-40422008000600038
- 178107 - Qualea grandiflora: LTS0217821
- 139836 - Radula: LTS0217821
- 280841 - Radula perrottetii: 10.1016/0031-9422(91)84130-K
- 280841 - Radula perrottetii: LTS0217821
- 139835 - Radulaceae: LTS0217821
- 40029 - Rhizophoraceae: LTS0217821
- 1344955 - Rhizopodaceae: LTS0217821
- 4842 - Rhizopus: LTS0217821
- 64495 - Rhizopus arrhizus: 10.1016/S0031-9422(00)89331-0
- 64495 - Rhizopus arrhizus: LTS0217821
- 4346 - Rhododendron: LTS0217821
- 141212 - Rhododendron formosanum: 10.1002/MRC.1844
- 141212 - Rhododendron formosanum: LTS0217821
- 3764 - Rosa: LTS0217821
- 1608497 - Rosa transmorrisonensis: 10.1002/JCCS.199300096
- 1608497 - Rosa transmorrisonensis: LTS0217821
- 3745 - Rosaceae: LTS0217821
- 25473 - Rubia: LTS0217821
- 1650721 - Rubia yunnanensis: 10.1021/NP2002918
- 1650721 - Rubia yunnanensis: LTS0217821
- 24966 - Rubiaceae: LTS0217821
- 48209 - Rudbeckia: LTS0217821
- 52304 - Rudbeckia mollis: 10.1016/0031-9422(92)80361-H
- 52304 - Rudbeckia mollis: LTS0217821
- 23513 - Rutaceae: LTS0217821
- 125764 - Rutidosis: LTS0217821
- 3049606 - Rutidosis murchisonii: LTS0217821
- 13253 - Sabal: LTS0217821
- 54447 - Sabal palmetto:
- 54447 - Sabal palmetto: 10.1016/J.PHYTOCHEM.2004.02.026
- 54447 - Sabal palmetto: LTS0217821
- 4319 - Salacia: LTS0217821
- 1009589 - Salacia chinensis:
- 1009589 - Salacia chinensis: 10.1002/CHIN.200407160
- 1009589 - Salacia chinensis: 10.1021/NP0301543
- 1009589 - Salacia chinensis: 10.1248/CPB.51.1051
- 1009589 - Salacia chinensis: LTS0217821
- 3688 - Salicaceae: LTS0217821
- 53731 - Salmea: LTS0217821
- 518836 - Salmea scandens: 10.1016/S0031-9422(00)80774-8
- 518836 - Salmea scandens: LTS0217821
- 21880 - Salvia: LTS0217821
- 268906 - Salvia fruticosa: 10.1016/S0367-326X(01)00327-6
- 268906 - Salvia fruticosa: LTS0217821
- 32186 - Salviniaceae: LTS0217821
- 3958 - Santalaceae: LTS0217821
- 41642 - Santolina: LTS0217821
- 41644 - Santolina chamaecyparissus: 10.1016/0031-9422(90)80181-F
- 41644 - Santolina chamaecyparissus: LTS0217821
- 43572 - Sarcocephalus: LTS0217821
- 43573 - Sarcocephalus latifolius: 10.4314/BCSE.V17I2.61669
- 43573 - Sarcocephalus latifolius: LTS0217821
- 16480 - Scaevola: LTS0217821
- 197987 - Scaevola spinescens: 10.1055/S-2006-957961
- 197987 - Scaevola spinescens: LTS0217821
- 99099 - Schistostephium: LTS0217821
- 457732 - Schistostephium crataegifolium: 10.1016/0031-9422(83)80100-9
- 457732 - Schistostephium crataegifolium: LTS0217821
- 4139 - Scutellaria: LTS0217821
- 1383557 - Scutellaria discolor: 10.1248/CPB.44.1540
- 1383557 - Scutellaria discolor: LTS0217821
- 18794 - Senecio: LTS0217821
- 155231 - Sideritis: LTS0217821
- 155235 - Sideritis canariensis: 10.1016/0031-9422(91)83210-C
- 155235 - Sideritis canariensis: LTS0217821
- 155236 - Sideritis candicans:
- 155236 - Sideritis candicans: 10.1016/0305-1978(95)00067-4
- 155236 - Sideritis candicans: 10.1016/J.PHYTOCHEM.2009.05.011
- 155236 - Sideritis candicans: LTS0217821
- 403014 - Sideritis cretica: LTS0217821
- 403015 - Sideritis cretica subsp. cretica: 10.1016/J.PHYTOCHEM.2009.05.011
- 403015 - Sideritis cretica subsp. cretica: LTS0217821
- 403018 - Sideritis dendro-chahorra: 10.1016/S0031-9422(00)84784-6
- 403018 - Sideritis dendro-chahorra: LTS0217821
- 403019 - Sideritis discolor: 10.1016/J.PHYTOCHEM.2009.05.011
- 403019 - Sideritis discolor: LTS0217821
- 403024 - Sideritis lotsyi: 10.1016/J.PHYTOCHEM.2009.05.011
- 403024 - Sideritis lotsyi: LTS0217821
- 155263 - Sideritis soluta: 10.1016/J.PHYTOCHEM.2009.05.011
- 155263 - Sideritis soluta: LTS0217821
- 155264 - Sideritis soluta subsp. soluta: 10.1016/J.PHYTOCHEM.2009.05.011
- 155264 - Sideritis soluta subsp. soluta: LTS0217821
- 155265 - Sideritis syriaca: 10.1016/S0378-8741(02)00172-1
- 155266 - Sideritis taurica: 10.1016/S0378-8741(02)00172-1
- 155266 - Sideritis taurica: LTS0217821
- 176612 - Smallanthus: LTS0217821
- 176613 - Smallanthus uvedalia: 10.1016/0031-9422(88)80463-1
- 176613 - Smallanthus uvedalia: LTS0217821
- 4070 - Solanaceae: LTS0217821
- 4107 - Solanum: LTS0217821
- 4114 - Solanum aviculare: 10.1021/NP50032A024
- 4114 - Solanum aviculare: LTS0217821
- 59293 - Solidago: LTS0217821
- 471149 - Solidago nemoralis: 10.1016/S0031-9422(00)83939-4
- 471149 - Solidago nemoralis: LTS0217821
- 147550 - Sordariomycetes: LTS0217821
- 81519 - Sphaeranthus: LTS0217821
- 1548657 - Sphaeranthus bullatus: 10.1016/0031-9422(90)85431-E
- 1548657 - Sphaeranthus bullatus: LTS0217821
- 2067365 - Stilpnopappus: LTS0217821
- 2067377 - Stilpnopappus glomeratus: 10.1016/S0031-9422(00)82414-0
- 2067377 - Stilpnopappus glomeratus: LTS0217821
- 1883 - Streptomyces: 10.1007/S10295-015-1685-7
- 1883 - Streptomyces: 10.1021/ACSSYNBIO.7B00249
- 1883 - Streptomyces: 10.1021/JO015751D
- 1883 - Streptomyces: LTS0217821
- 42684 - Streptomyces collinus:
- 42684 - Streptomyces collinus: LTS0217821
- 1928 - Streptomyces rochei: 10.1007/S10295-015-1685-7
- 1928 - Streptomyces rochei: 10.1021/ACSSYNBIO.7B00249
- 1928 - Streptomyces rochei: LTS0217821
- 265730 - Streptomyces sundarbansensis: 10.1007/S10295-015-1685-7
- 265730 - Streptomyces sundarbansensis: 10.1021/ACSSYNBIO.7B00249
- 265730 - Streptomyces sundarbansensis: LTS0217821
- 2062 - Streptomycetaceae: LTS0217821
- 35493 - Streptophyta: LTS0217821
- 547782 - Symphyotrichum undulatum: 10.1016/S0031-9422(00)91384-0
- 72045 - Syngnathidae: LTS0217821
- 41395 - Tectona: LTS0217821
- 41396 - Tectona grandis: 10.1016/S0031-9422(98)00478-6
- 41396 - Tectona grandis: LTS0217821
- 32443 - Teleostei: LTS0217821
- 39992 - Terminalia: LTS0217821
- 39993 - Terminalia catappa: 10.1021/JF0203500
- 39993 - Terminalia catappa: LTS0217821
- 155022 - Terminalia chebula: 10.4103/0974-8490.112421
- 155022 - Terminalia chebula: LTS0217821
- 1924228 - Terminalia glabrescens: 10.1590/S0103-50532003000300021
- 1924228 - Terminalia glabrescens: LTS0217821
- 313941 - Tessaria: LTS0217821
- 313942 - Tessaria integrifolia: 10.1016/S0031-9422(00)80635-4
- 313942 - Tessaria integrifolia: LTS0217821
- 354519 - Tetradium: LTS0217821
- 354522 - Tetradium glabrifolium: 10.1002/JCCS.199500128
- 354522 - Tetradium glabrifolium: LTS0217821
- 21896 - Teucrium: LTS0217821
- 1209860 - Teucrium heterophyllum: 10.1016/S0031-9422(00)90719-2
- 1209860 - Teucrium heterophyllum: LTS0217821
- 13726 - Thujopsis: LTS0217821
- 13727 - Thujopsis dolabrata: 10.1271/BBB1961.48.2523
- 13727 - Thujopsis dolabrata: LTS0217821
- 39987 - Thymelaeaceae: LTS0217821
- 58023 - Tracheophyta: LTS0217821
- 161593 - Trachyrhamphus: LTS0217821
- 161594 - Trachyrhamphus serratus: 10.1007/S10600-011-9966-5
- 161594 - Trachyrhamphus serratus: LTS0217821
- 75966 - Trebouxiophyceae: LTS0217821
- 43894 - Trichilia: LTS0217821
- 1640458 - Trichilia claussenii: 10.1016/0031-9422(95)00969-8
- 1640458 - Trichilia claussenii: LTS0217821
- 28568 - Trichocomaceae: LTS0217821
- 123484 - Tripterygium: LTS0217821
- 458696 - Tripterygium wilfordii: 10.1002/RECL.19961150115
- 458696 - Tripterygium wilfordii: LTS0217821
- 45183 - Turnera: LTS0217821
- 329212 - Turnera diffusa: 10.1021/NP060253R
- 329212 - Turnera diffusa: LTS0217821
- 45182 - Turneraceae: LTS0217821
- 468162 - Vachellia: LTS0217821
- 138038 - Vachellia pennatula: 10.1007/S10600-005-0133-8
- 138038 - Vachellia pennatula: LTS0217821
- 78812 - Vanda falcata: 10.1080/10412905.2000.9699496
- 41660 - Verbesina: LTS0217821
- 2926268 - Verbesina macrophylla: LTS0217821
- 33090 - Viridiplantae: LTS0217821
- 1003255 - Viscaceae: LTS0217821
- 27223 - Vochysiaceae: LTS0217821
- 183097 - Wedelia: LTS0217821
- 36590 - Xanthium: LTS0217821
- 1053410 - Xanthium spinosum: 10.1016/0031-9422(91)83230-I
- 1053410 - Xanthium spinosum: LTS0217821
- 67937 - Zanthoxylum: LTS0217821
- 159071 - Zanthoxylum ailanthoides:
- 159071 - Zanthoxylum ailanthoides: 10.1002/JCCS.200300178
- 159071 - Zanthoxylum ailanthoides: 10.1016/J.BMC.2005.07.050
- 159071 - Zanthoxylum ailanthoides: LTS0217821
- 2099548 - Zanthoxylum zanthoxyloides: 10.1021/NP50046A035
- 2099548 - Zanthoxylum zanthoxyloides: LTS0217821
- 4642 - Zingiberaceae: LTS0217821
- 380129 - 佛手: -
- 33090 - 南瓜子: -
- 33090 - 太子参: -
- 33090 - 威灵仙: -
- 33090 - 巴戟天: -
- 33090 - 栀子: -
- 3498 - 桑叶: -
- 33090 - 桑椹: -
- 33090 - 槟榔: -
- 33090 - 海金沙: -
- 33090 - 牛大力: -
- 4217 - 牛蒡子: -
- 33090 - 番泻叶: -
- 33090 - 白芷: -
- 33090 - 相思子: -
- 33090 - 紫苏: -
- 33090 - 紫草: -
- 33090 - 红参: -
- 33090 - 罗汉果: -
- 33090 - 芫花: -
- 33090 - 苦杏仁: -
- 33090 - 荆芥: -
- 33090 - 荆芥穗: -
- 13422 - 菊花: -
- 33090 - 薏苡仁: -
- 33090 - 虎耳草: -
- 33090 - 韭菜子: -
- 33090 - 麻黄: -
- 33090 - 黄芩: -
- 33090 - 鼠曲草: -
- 33090 - 龙脷叶: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Jiin Felgner, Elizabeth Clarke, Jenny E Hernandez-Davies, Sharon Jan, Ariel S Wirchnianski, Aarti Jain, Rie Nakajima, Algimantas Jasinskas, Erwin Strahsburger, Kartik Chandran, Steven Bradfute, D Huw Davies. Broad antibody and T cell responses to Ebola, Sudan, and Bundibugyo ebolaviruses using mono- and multi-valent adjuvanted glycoprotein vaccines.
Antiviral research.
2024 May; 225(?):105851. doi:
10.1016/j.antiviral.2024.105851
. [PMID: 38458540] - Man Xu, Nan Yang, Jiang Pan, Qiang Hua, Chun-Xiu Li, Jian-He Xu. Remodeling the Homologous Recombination Mechanism of Yarrowia lipolytica for High-Level Biosynthesis of Squalene.
Journal of agricultural and food chemistry.
2024 May; 72(17):9984-9993. doi:
10.1021/acs.jafc.4c01779
. [PMID: 38635942] - Xiao-Bo Li, Chun-Li Huang, Ying Zhang, Jing-Yang Ding, Gui-Sheng Xiang, Guang-Hui Zhang, Sheng-Chao Yang, Bing Hao. Promiscuous Oxidosqualene Cyclases from Neoalsomitra integrifoliola Catalyzing the Formation of Tetracyclic, Pentacyclic, and Heterocyclic Triterpenes.
Organic letters.
2024 Apr; 26(15):3119-3123. doi:
10.1021/acs.orglett.4c00730
. [PMID: 38588021] - Lilit Grigoryan, Yupeng Feng, Lorenza Bellusci, Lilin Lai, Bushra Wali, Madison Ellis, Meng Yuan, Prabhu S Arunachalam, Mengyun Hu, Sangeeta Kowli, Sheena Gupta, Sofia Maysel-Auslender, Holden T Maecker, Hady Samaha, Nadine Rouphael, Ian A Wilson, Alberto C Moreno, Mehul S Suthar, Surender Khurana, Stéphane Pillet, Nathalie Charland, Brian J Ward, Bali Pulendran. AS03 adjuvant enhances the magnitude, persistence, and clonal breadth of memory B cell responses to a plant-based COVID-19 vaccine in humans.
Science immunology.
2024 Apr; 9(94):eadi8039. doi:
10.1126/sciimmunol.adi8039
. [PMID: 38579013] - Jamila Gagour, Otmane Hallouch, Abderrahim Asbbane, Laila Bijla, Abdellatif Laknifli, Learn-Han Lee, Gokhan Zengin, Abdelhakim Bouyahya, El Hassan Sakar, Said Gharby. A Review of Recent Progresses on Olive Oil Chemical Profiling, Extraction Technology, Shelf-life, and Quality Control.
Chemistry & biodiversity.
2024 Apr; 21(4):e202301697. doi:
10.1002/cbdv.202301697
. [PMID: 38345352] - Yue Zhang, Zuchen Song, Zhimin Zhang, Tao Zhang, Pengfei Gu, Zian Feng, Shuwen Xu, Yang Yang, Deyun Wang, Zhenguang Liu. Preparation and characterization of pickering emulsion stabilized by lovastatin nanoparticles for vaccine adjuvants.
International journal of pharmaceutics.
2024 Mar; 653(?):123901. doi:
10.1016/j.ijpharm.2024.123901
. [PMID: 38368969] - Bhawana Mishra, Shilpi Bansal, Sandhya Tripathi, Smrati Mishra, Ritesh K Yadav, Neelam S Sangwan. Differential regulation of key triterpene synthase gene under abiotic stress in Withania somnifera L. Dunal and its co-relation to sterols and withanolides.
Plant physiology and biochemistry : PPB.
2024 Mar; 208(?):108419. doi:
10.1016/j.plaphy.2024.108419
. [PMID: 38377888] - Yang Ning, Mengsu Liu, Ziyun Ru, Weizhu Zeng, Song Liu, Jingwen Zhou. Efficient synthesis of squalene by cytoplasmic-peroxisomal engineering and regulating lipid metabolism in Yarrowia lipolytica.
Bioresource technology.
2024 Mar; 395(?):130379. doi:
10.1016/j.biortech.2024.130379
. [PMID: 38281547] - Chikara Kato, Ibuki Kusumoto, Shunji Kato, Yurika Otoki, Junya Ito, Hirono Totsuka, Arun Rajgopal, Jina Hong, Kiyotaka Nakagawa. Induction of ferroptosis in human keratinocyte HaCaT cells by squalene hydroperoxide: Possible prevention of skin ferroptosis by botanical extracts.
Biochemical and biophysical research communications.
2024 Feb; 698(?):149553. doi:
10.1016/j.bbrc.2024.149553
. [PMID: 38271833] - Sung Chul Park, Breanne N Steffan, Fang Yun Lim, Raveena Gupta, Fatma Ayaloglu Butun, Hongyu Chen, Rosa Ye, Timothy Decker, Chengcang C Wu, Neil L Kelleher, Jin Woo Bok, Nancy P Keller. Terpenoid balance in Aspergillus nidulans unveiled by heterologous squalene synthase expression.
Science advances.
2024 Feb; 10(8):eadk7416. doi:
10.1126/sciadv.adk7416
. [PMID: 38381828] - Yongshuo Ma, Yi Shang, Gregory Stephanopoulos. Engineering peroxisomal biosynthetic pathways for maximization of triterpene production in Yarrowia lipolytica.
Proceedings of the National Academy of Sciences of the United States of America.
2024 Jan; 121(5):e2314798121. doi:
10.1073/pnas.2314798121
. [PMID: 38261612] - Shuang-Yan Zhang, Yu-Qing Peng, Gui-Sheng Xiang, Wan-Ling Song, Lei Feng, Xin-Yue Jiang, Xue-Jiao Li, Si-Mei He, Sheng-Chao Yang, Yan Zhao, Guang-Hui Zhang. Functional characterization of genes related to triterpene and flavonoid biosynthesis in Cyclocarya paliurus.
Planta.
2024 Jan; 259(2):50. doi:
10.1007/s00425-023-04282-1
. [PMID: 38285114] - Xiao-Liu Liu, Jing Xie, Zhen-Ni Xie, Can Zhong, Hao Liu, Shui-Han Zhang, Jian Jin. Identification of squalene epoxidase in triterpenes biosynthesis in Poria cocos by molecular docking and CRISPR-Cas9 gene editing.
Microbial cell factories.
2024 Jan; 23(1):34. doi:
10.1186/s12934-024-02306-3
. [PMID: 38273342] - Paweł Paśko, Agnieszka Galanty, Emilia Ramos-Zambrano, Alma Leticia Martinez Ayala, Efren Delgado, Joanna Gdula- Argasińska, Paweł Zagrodzki, Robert Podsiadły, Joseph Deutsch, Shela Gorinstein. Pseudocereal Oils, Authenticated by Fourier Transform Infrared Spectroscopy, and their Chemopreventive Properties.
Plant foods for human nutrition (Dordrecht, Netherlands).
2024 Jan; ?(?):. doi:
10.1007/s11130-024-01139-0
. [PMID: 38231454] - Jing-Jing Zhang, Yan Gao, Xiao Xu, Mei-Ling Zhao, Bo-Nan Xi, Yu Shu, Cong Li, Yehua Shen. In Situ Rapid Analysis of Squalene, Tocopherols, and Sterols in Walnut Oils Based on Supercritical Fluid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry.
Journal of agricultural and food chemistry.
2023 Nov; 71(43):16371-16380. doi:
10.1021/acs.jafc.3c05857
. [PMID: 37867462] - Javier Sánchez-Marco, Seyed Hesamoddin Bidooki, Roubi Abuobeid, Cristina Barranquero, Tania Herrero-Continente, Carmen Arnal, Roberto Martínez-Beamonte, Roberto Lasheras, Joaquín C Surra, María A Navarro, María J Rodríguez-Yoldi, Manuel Arruebo, Victor Sebastian, Jesús Osada. Thioredoxin domain containing 5 is involved in the hepatic storage of squalene into lipid droplets in a sex-specific way.
The Journal of nutritional biochemistry.
2023 Oct; ?(?):109503. doi:
10.1016/j.jnutbio.2023.109503
. [PMID: 37898391] - M Luisa Hernández, Cristina Muñoz-Ocaña, Pilar Posada, M Dolores Sicardo, Dámaso Hornero-Méndez, Raquel B Gómez-Coca, Angjelina Belaj, Wenceslao Moreda, José M Martínez-Rivas. Functional Characterization of Four Olive Squalene Synthases with Respect to the Squalene Content of the Virgin Olive Oil.
Journal of agricultural and food chemistry.
2023 Oct; 71(42):15701-15712. doi:
10.1021/acs.jafc.3c05322
. [PMID: 37815987] - Maria Breygina, Dmitry Kochkin, Alexander Voronkov, Tatiana Ivanova, Ksenia Babushkina, Ekaterina Klimenko. Plant Hormone and Fatty Acid Screening of Nicotiana tabacum and Lilium longiflorum Stigma Exudates.
Biomolecules.
2023 08; 13(9):. doi:
10.3390/biom13091313
. [PMID: 37759713] - Josephine G LoRicco, Ingo Hoffmann, Antonino Caliò, Judith Peters. The membrane regulator squalane increases membrane rigidity under high hydrostatic pressure in archaeal membrane mimics.
Soft matter.
2023 Aug; 19(33):6280-6286. doi:
10.1039/d3sm00352c
. [PMID: 37553974] - Jinling Li, Shuai Wang, Yinan Miao, Ya Wan, Chun Li, Ying Wang. Mining and modification of Oryza sativa-derived squalene epoxidase for improved β-amyrin production in Saccharomyces cerevisiae.
Journal of biotechnology.
2023 Aug; 375(?):1-11. doi:
10.1016/j.jbiotec.2023.08.004
. [PMID: 37597655] - Roubi Abuobeid, Luis V Herrera-Marcos, Carmen Arnal, Seyed Hesamoddin Bidooki, Javier Sánchez-Marco, Roberto Lasheras, Joaquín C Surra, María Jesús Rodríguez-Yoldi, Roberto Martínez-Beamonte, Jesús Osada. Differentially Expressed Genes in Response to a Squalene-Supplemented Diet Are Accurate Discriminants of Porcine Non-Alcoholic Steatohepatitis.
International journal of molecular sciences.
2023 Aug; 24(16):. doi:
10.3390/ijms241612552
. [PMID: 37628732] - Carl Recsei, Robert A Russell, Marina Cagnes, Tamim Darwish. Deuterated squalene and sterols from modified Saccharomyces cerevisiae.
Organic & biomolecular chemistry.
2023 Jul; ?(?):. doi:
10.1039/d3ob00754e
. [PMID: 37523212] - Ana Guadalupe Fracchia-Durán, Emilia Ramos-Zambrano, Facundo Joaquín Márquez-Rocha, Alma Leticia Martínez-Ayala. Bioprocess conditions and regulation factors to optimize squalene production in thraustochytrids.
World journal of microbiology & biotechnology.
2023 Jul; 39(9):251. doi:
10.1007/s11274-023-03689-y
. [PMID: 37442840] - Fan Zhang, Yunpeng Wang, Jingyang Yue, Rongrong Zhang, Yong-Er Hu, Ruoshi Huang, Ai-Jia Ji, B Andes Hess, Zhongqiu Liu, Lixin Duan, Ruibo Wu. Discovering a uniform functional trade-off of the CBC-type 2,3-oxidosqualene cyclases and deciphering its chemical logic.
Science advances.
2023 06; 9(23):eadh1418. doi:
10.1126/sciadv.adh1418
. [PMID: 37285431] - Anna Grygier, Suryakant Chakradhari, Katarzyna Ratusz, Magdalena Rudzińska, Khageshwar Singh Patel, Danija Lazdiņa, Dalija Segliņa, Paweł Górnaś. Evaluation of Selected Medicinal, Timber and Ornamental Legume Species' Seed Oils as Sources of Bioactive Lipophilic Compounds.
Molecules (Basel, Switzerland).
2023 May; 28(10):. doi:
10.3390/molecules28103994
. [PMID: 37241735] - Tri Widyawati, Rony Abdi Syahputra, Siti Syarifah, Imam Bagus Sumantri. Analysis of Antidiabetic Activity of Squalene via In Silico and In Vivo Assay.
Molecules (Basel, Switzerland).
2023 Apr; 28(9):. doi:
10.3390/molecules28093783
. [PMID: 37175192] - Ana Belen Moraleda Merlo, Claude Roux, Andy Bécue, Céline Weyermann. A comparison of the natural and groomed fingermark lipid composition of different donors using GC/MS.
Forensic science international.
2023 Apr; ?(?):111709. doi:
10.1016/j.forsciint.2023.111709
. [PMID: 37149490] - Yunliang Zhang, Weigao Wang, Wenqian Wei, Lu Xia, Song Gao, Weizhu Zeng, Song Liu, Jingwen Zhou. Regulation of Ethanol Assimilation for Efficient Accumulation of Squalene in Saccharomyces cerevisiae.
Journal of agricultural and food chemistry.
2023 Apr; 71(16):6389-6397. doi:
10.1021/acs.jafc.3c00515
. [PMID: 37052370] - Yangmiao Jiao, Xu Li, Xueshuang Huang, Fan Liu, Zaiqi Zhang, Liang Cao. The Identification of SQS/SQE/OSC Gene Families in Regulating the Biosynthesis of Triterpenes in Potentilla anserina.
Molecules (Basel, Switzerland).
2023 Mar; 28(6):. doi:
10.3390/molecules28062782
. [PMID: 36985754] - Shuai Wang, Yumei Feng, Yin Lou, Jingping Niu, Congcong Yin, Jinzhong Zhao, Weijun Du, Aiqin Yue. 3-Hydroxy-3-methylglutaryl coenzyme A reductase genes from Glycine max regulate plant growth and isoprenoid biosynthesis.
Scientific reports.
2023 03; 13(1):3902. doi:
10.1038/s41598-023-30797-4
. [PMID: 36890158] - Hidayat Hussain, Jianbo Xiao, Akbar Ali, Ivan R Green, Bernhard Westermann. Unusually cyclized triterpenoids: occurrence, biosynthesis and chemical synthesis.
Natural product reports.
2023 Feb; 40(2):412-451. doi:
10.1039/d2np00033d
. [PMID: 36458822] - Thomas R Henson, Katherine A Richards, Siva K Gandhapudi, Jerold G Woodward, Andrea J Sant. R-DOTAP Cationic Lipid Nanoparticles Outperform Squalene-Based Adjuvant Systems in Elicitation of CD4 T Cells after Recombinant Influenza Hemagglutinin Vaccination.
Viruses.
2023 Feb; 15(2):. doi:
10.3390/v15020538
. [PMID: 36851752] - Frédéric Lirussi, Kyrylo Pyrshev, Semen Yesylevskyy, Timothée Rivel, Tatiana Lopez, Eleonore Coppens, Simona Mura, Patrick Couvreur, Christophe Ramseyer. Plasma membrane lipid bilayer is druggable: Selective delivery of gemcitabine-squalene nano-medicine to cancer cells.
Biochimica et biophysica acta. Molecular basis of disease.
2023 02; 1869(2):166614. doi:
10.1016/j.bbadis.2022.166614
. [PMID: 36494037] - Luis V Herrera-Marcos, Roberto Martínez-Beamonte, Carmen Arnal, Cristina Barranquero, Juan J Puente-Lanzarote, Tania Herrero-Continente, José M Lou-Bonafonte, Gonzalo Gonzalo-Romeo, Gabriele Mocciaro, Benjamin Jenkins, Joaquín C Surra, María J Rodríguez-Yoldi, Juan Carlos Burillo, Roberto Lasheras, Agustín García-Gil, Antonio Güemes, Albert Koulman, Jesús Osada. Dietary squalene supplementation decreases triglyceride species and modifies phospholipid lipidomic profile in the liver of a porcine model of non-alcoholic steatohepatitis.
The Journal of nutritional biochemistry.
2023 02; 112(?):109207. doi:
10.1016/j.jnutbio.2022.109207
. [PMID: 36402249] - Zexiao Fan, Yue Zhang, Lina Jiao, Tianyu Zhu, Zian Feng, Zhenguang Liu, Yang Yang, Deyun Wang. Lycium barbarum polysaccharides-loaded Particulate Alum via Pickering emulsion as an adjuvant to enhance immune responses.
International journal of pharmaceutics.
2023 Jan; 630(?):122418. doi:
10.1016/j.ijpharm.2022.122418
. [PMID: 36423709] - Yuya Yoshioka, Kouji Kobiyama, Tomoya Hayashi, Motoyasu Onishi, Yosuke Yanagida, Takayuki Nakagawa, Masayuki Hashimoto, Anri Nishinaka, Jun Hirose, Yoshiji Asaoka, Minako Tajiri, Atsushi Hayata, Satoru Ishida, Shinya Omoto, Morio Nagira, Ken J Ishii. A-910823, a squalene-based emulsion adjuvant, induces T follicular helper cells and humoral immune responses via α-tocopherol component.
Frontiers in immunology.
2023; 14(?):1116238. doi:
10.3389/fimmu.2023.1116238
. [PMID: 36891311] - Ying-Shuang Xu, Wang Ma, Jin Li, Peng-Wei Huang, Xiao-Man Sun, He Huang. Metal cofactor regulation combined with rational genetic engineering of Schizochytrium sp. for high-yield production of squalene.
Biotechnology and bioengineering.
2022 Dec; ?(?):. doi:
10.1002/bit.28311
. [PMID: 36522292] - Mariachiara Spennato, Ottavia Maria Roggero, Simona Varriale, Fioretta Asaro, Angelo Cortesi, Jan Kašpar, Enrico Tongiorgi, Cinzia Pezzella, Lucia Gardossi. Neuroprotective Properties of Cardoon Leaves Extracts against Neurodevelopmental Deficits in an In Vitro Model of Rett Syndrome Depend on the Extraction Method and Harvest Time.
Molecules (Basel, Switzerland).
2022 Dec; 27(24):. doi:
10.3390/molecules27248772
. [PMID: 36557905] - Huaying Song, Zhufeng Cong, Changlin Wang, Mengyuan He, Congying Liu, Peng Gao. Research progress on Walnut oil: Bioactive compounds, health benefits, extraction methods, and medicinal uses.
Journal of food biochemistry.
2022 12; 46(12):e14504. doi:
10.1111/jfbc.14504
. [PMID: 36369998] - Tri Widyawati, Nor Adlin Yusoff, Idris Bello, Mohd Zaini Asmawi, Mariam Ahmad. Bioactivity-Guided Fractionation and Identification of Antidiabetic Compound of Syzygium polyanthum (Wight.)'s Leaf Extract in Streptozotocin-Induced Diabetic Rat Model.
Molecules (Basel, Switzerland).
2022 Oct; 27(20):. doi:
10.3390/molecules27206814
. [PMID: 36296407] - Jiabao Chen, Dan Zhang, Qian Wang, Aitong Yang, Yuguang Zheng, Lei Wang. Comprehensive Comparison of Two Color Varieties of Perillae Folium by GC-MS-Based Metabolomic Approach.
Molecules (Basel, Switzerland).
2022 Oct; 27(20):. doi:
10.3390/molecules27206792
. [PMID: 36296382] - Aleksandra Purkiewicz, Sylwester Czaplicki, Renata Pietrzak-Fiećko. The Occurrence of Squalene in Human Milk and Infant Formula.
International journal of environmental research and public health.
2022 10; 19(19):. doi:
10.3390/ijerph191912928
. [PMID: 36232224] - Eva Sánchez-Hernández, Joaquín Balduque-Gil, Juan J Barriuso-Vargas, José Casanova-Gascón, Vicente González-García, José Antonio Cuchí-Oterino, Belén Lorenzo-Vidal, Jesús Martín-Gil, Pablo Martín-Ramos. Holm Oak (Quercus ilex subsp. ballota (Desf.) Samp.) Bark Aqueous Ammonia Extract for the Control of Invasive Forest Pathogens.
International journal of molecular sciences.
2022 Oct; 23(19):. doi:
10.3390/ijms231911882
. [PMID: 36233184] - Li Long, Chao Gao, Jie Qiu, Lu Yang, Hongli Wei, Yunchao Zhou. Fatty acids and nutritional components of the seed oil from Wangmo red ball Camellia oleifera grown in the low-heat valley of Guizhou, China.
Scientific reports.
2022 10; 12(1):16554. doi:
10.1038/s41598-022-20576-y
. [PMID: 36192507] - Alok Patel, Maurizio Bettiga, Ulrika Rova, Paul Christakopoulos, Leonidas Matsakas. Microbial genetic engineering approach to replace shark livering for squalene.
Trends in biotechnology.
2022 10; 40(10):1261-1273. doi:
10.1016/j.tibtech.2022.03.008
. [PMID: 35450778] - Jon Inglefield, Jason Catania, Andrea Harris, Thomas Hickey, Zhidong Ma, Jacob Minang, Katalin Baranji, Tarl Spangler, Jee Look, Christian Ruiz, Hang Lu, David Alleva, Joshua J Reece, Michael J Lacy. Use of protective antigen of Bacillus anthracis as a model recombinant antigen to evaluate toll-like receptors 2, 3, 4, 7 and 9 agonists in mice using established functional antibody assays, antigen-specific antibody assays and cellular assays.
Vaccine.
2022 09; 40(38):5544-5555. doi:
10.1016/j.vaccine.2022.06.017
. [PMID: 35773119] - Zhengjun Chen, Xinyan Hao, Hairui Wang, Xiaofang Zhong, Xiaoyan Chen, Yuanhao Zhao, Yuandong Zhang, Guangsheng Du, Xun Sun. Smart combination of aluminum hydroxide and MF59 to induce strong cellular immune responses.
Journal of controlled release : official journal of the Controlled Release Society.
2022 09; 349(?):699-711. doi:
10.1016/j.jconrel.2022.07.032
. [PMID: 35907590] - Xiao-Chao Chen, Yun Lu, Yuan Liu, Jia-Wei Zhou, Yi-Feng Zhang, Hai-Yun Gao, Dan Li, Wei Gao. Identification of a cytochrome P450 from Tripterygium hypoglaucum (Levl.) Hutch that catalyzes polpunonic acid formation in celastrol biosynthesis.
Chinese journal of natural medicines.
2022 Sep; 20(9):691-700. doi:
10.1016/s1875-5364(22)60205-x
. [PMID: 36162954] - Dunja Šamec, Monica Rosa Loizzo, Olga Gortzi, İrem Tatlı Çankaya, Rosa Tundis, İpek Suntar, Samira Shirooie, Gokhan Zengin, Hari Prasad Devkota, Patricia Reboredo-Rodríguez, Sherif T S Hassan, Azadeh Manayi, Hamid Reza Khayat Kashani, Seyed Mohammad Nabavi. The potential of pumpkin seed oil as a functional food-A comprehensive review of chemical composition, health benefits, and safety.
Comprehensive reviews in food science and food safety.
2022 09; 21(5):4422-4446. doi:
10.1111/1541-4337.13013
. [PMID: 35904246] - Pornpatsorn Lertphadungkit, Xue Qiao, Min Ye, Somnuk Bunsupa. Characterization of oxidosqualene cyclases from Trichosanthes cucumerina L. reveals key amino acids responsible for substrate specificity of isomultiflorenol synthase.
Planta.
2022 Aug; 256(3):58. doi:
10.1007/s00425-022-03972-6
. [PMID: 35980476] - Tran H Do, Feiyang Ma, Priscila R Andrade, Rosane Teles, Bruno J de Andrade Silva, Chanyue Hu, Alejandro Espinoza, Jer-En Hsu, Chun-Seok Cho, Myungjin Kim, Jingyue Xi, Xianying Xing, Olesya Plazyo, Lam C Tsoi, Carol Cheng, Jenny Kim, Bryan D Bryson, Alan M O'Neill, Marco Colonna, Johann E Gudjonsson, Eynav Klechevsky, Jun Hee Lee, Richard L Gallo, Barry R Bloom, Matteo Pellegrini, Robert L Modlin. TREM2 macrophages induced by human lipids drive inflammation in acne lesions.
Science immunology.
2022 07; 7(73):eabo2787. doi:
10.1126/sciimmunol.abo2787
. [PMID: 35867799] - Liufang Huang, Yonger Hu, Ruoshi Huang, Jiabo Chen, Xiande Zhang, Jingyang Yue, Laibao Feng, Yaru She, Aijia Ji, Ying Zheng, Zhongqiu Liu, Rongrong Zhang, Lixin Duan. Oxidosqualene Cyclases Involved in the Biosynthesis of Diverse Triterpenes in Camellia sasanqua.
Journal of agricultural and food chemistry.
2022 Jul; 70(26):8075-8084. doi:
10.1021/acs.jafc.2c03011
. [PMID: 35729682] - Lin Chen, Lingchen Tan, Young Jun Im. Structural basis of ligand recognition and transport by Sfh2, a yeast phosphatidylinositol transfer protein of the Sec14 superfamily.
Acta crystallographica. Section D, Structural biology.
2022 Jul; 78(Pt 7):853-864. doi:
10.1107/s2059798322005666
. [PMID: 35775985] - So-Hee Son, Gyuri Park, Junho Lim, Chang Yun Son, Seung Soo Oh, Ju Young Lee. Chain flexibility of medicinal lipids determines their selective partitioning into lipid droplets.
Nature communications.
2022 06; 13(1):3612. doi:
10.1038/s41467-022-31400-6
. [PMID: 35750680] - Jacob D Bibik, Sarathi M Weraduwage, Aparajita Banerjee, Ka'shawn Robertson, Roberto Espinoza-Corral, Thomas D Sharkey, Peter K Lundquist, Björn R Hamberger. Pathway Engineering, Re-targeting, and Synthetic Scaffolding Improve the Production of Squalene in Plants.
ACS synthetic biology.
2022 06; 11(6):2121-2133. doi:
10.1021/acssynbio.2c00051
. [PMID: 35549088] - Jiani Dai, Wei Zheng, Jing Yu, Heqin Yan, Yong Wang, Yougen Wu, Xinwen Hu, Hanggui Lai. cDNA cloning, prokaryotic expression, and functional analysis of squalene synthase (SQS) in Camellia vietnamensis Huang.
Protein expression and purification.
2022 06; 194(?):106078. doi:
10.1016/j.pep.2022.106078
. [PMID: 35272013] - Xiao-Li Zhang, Er-Kun Chao, Meng-Chu Sun, Hong-Fei Zhao, Cai-Xia Wang, Bo-Lin Zhang. [Effects of tHMGR from three different plant sources on mevalonate (MVA) pathway flux in Saccharomyces cerevisiae].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2022 May; 47(10):2614-2622. doi:
10.19540/j.cnki.cjcmm.20220116.102
. [PMID: 35718479] - Roubi Abuobeid, Javier Sánchez-Marco, María J Felices, Carmen Arnal, Juan Carlos Burillo, Roberto Lasheras, Rebeca Busto, Miguel A Lasunción, María Jesús Rodríguez-Yoldi, Roberto Martínez-Beamonte, Jesús Osada. Squalene through Its Post-Squalene Metabolites Is a Modulator of Hepatic Transcriptome in Rabbits.
International journal of molecular sciences.
2022 Apr; 23(8):. doi:
10.3390/ijms23084172
. [PMID: 35456988] - Yusuke Otani, Takashi Maoka, Shigeko Kawai-Noma, Kyoichi Saito, Daisuke Umeno. A novel carotenoid biosynthetic route via oxidosqualene.
Biochemical and biophysical research communications.
2022 04; 599(?):75-80. doi:
10.1016/j.bbrc.2022.01.105
. [PMID: 35176628] - Babatope Oluseun Odusina, Patricia Akpomedaye Onocha. A new squalene derivative from Physalis angulata L. (Solanaceae).
Natural product research.
2022 Apr; 36(8):2154-2157. doi:
10.1080/14786419.2020.1844691
. [PMID: 33222550] - Jing Wang, Yanhong Guo, Xue Yin, Xiaoning Wang, Xiaoquan Qi, Zheyong Xue. Diverse triterpene skeletons are derived from the expansion and divergent evolution of 2,3-oxidosqualene cyclases in plants.
Critical reviews in biochemistry and molecular biology.
2022 04; 57(2):113-132. doi:
10.1080/10409238.2021.1979458
. [PMID: 34601979] - Qinghua Yang, Zhenyu Xie, Xin Zheng, Keyan Li, Tao Lu, Yinghua Lu, Cuixue Chen, Xueping Ling. Genetic regulation and fermentation strategy for squalene production in Schizochytrium sp.
Applied microbiology and biotechnology.
2022 Apr; 106(7):2415-2431. doi:
10.1007/s00253-022-11887-1
. [PMID: 35352151] - Katherine Gutiérrez-Luna, Diana Ansorena, Iciar Astiasarán. Fatty acid profile, sterols, and squalene content comparison between two conventional (olive oil and linseed oil) and three non-conventional vegetable oils (echium oil, hempseed oil, and moringa oil).
Journal of food science.
2022 Apr; 87(4):1489-1499. doi:
10.1111/1750-3841.16111
. [PMID: 35279846] - Wenhui Zhang, Mingshun Chen, Chengmei Liu, Ruihong Liang, Xixiang Shuai, Jun Chen. Characterization of a novel squalene-rich oil: Pachira macrocarpa seed oil.
Journal of food science.
2022 Apr; 87(4):1696-1707. doi:
10.1111/1750-3841.16109
. [PMID: 35289405] - Trinh-Don Nguyen. Plant triterpenoid scaffolding: A tale of two cyclases.
Plant physiology.
2022 03; 188(3):1408-1409. doi:
10.1093/plphys/kiab598
. [PMID: 35245383] - Samyra Imad Boeno, Ivo José Curcino Vieira, Raimundo Braz-Filho, Michel de Souza Passos, Milena Gonçalves Curcino Vieira, Maria Fernanda Alves do Nascimento, Douglas Costa Gontijo, Alaíde Braga de Oliveira. Antiplasmodial and cytotoxic effects of the methanol extract, canthinone alkaloids, squalene- and protolimonoid-type triterpenes from Homalolepis suffruticosa roots.
Journal of ethnopharmacology.
2022 Mar; 285(?):114890. doi:
10.1016/j.jep.2021.114890
. [PMID: 34864128] - Cuiyu Chen, Yaru Pang, Quanbing Chen, Chun Li, Bo Lü. [Oxidosqualene cyclases in triterpenoids biosynthesis: a review].
Sheng wu gong cheng xue bao = Chinese journal of biotechnology.
2022 Feb; 38(2):443-459. doi:
10.13345/j.cjb.210169
. [PMID: 35234375] - Stéphane Pillet, Prabhu S Arunachalam, Guadalupe Andreani, Nadia Golden, Jane Fontenot, Pyone Pyone Aye, Katharina Röltgen, Gabrielle Lehmicke, Philipe Gobeil, Charlotte Dubé, Sonia Trépanier, Nathalie Charland, Marc-André D'Aoust, Kasi Russell-Lodrigue, Christopher Monjure, Robert V Blair, Scott D Boyd, Rudolf P Bohm, Jay Rappaport, François Villinger, Nathalie Landry, Bali Pulendran, Brian J Ward. Safety, immunogenicity, and protection provided by unadjuvanted and adjuvanted formulations of a recombinant plant-derived virus-like particle vaccine candidate for COVID-19 in nonhuman primates.
Cellular & molecular immunology.
2022 02; 19(2):222-233. doi:
10.1038/s41423-021-00809-2
. [PMID: 34983950] - Yuanyuan Hu, Jinwei Suo, Guoxiang Jiang, Jiayi Shen, Hao Cheng, Heqiang Lou, Weiwu Yu, Jiasheng Wu, Lili Song. The effect of ethylene on squalene and β-sitosterol biosynthesis and its key gene network analysis in Torreya grandis nuts during post-ripening process.
Food chemistry.
2022 Jan; 368(?):130819. doi:
10.1016/j.foodchem.2021.130819
. [PMID: 34411865] - Zhi-Zhao Li, Qiong Huang, Xiao-Li Yang, Jieqiong Zeng, Qi-Hui Wang, Hai-Ming Tang, Zhen-Qiu Yu, Yu-Qing Song, Yang Liu. Cholesterol Metabolic Markers for Differential Evaluation of Patients with Hyperlipidemia and Familial Hypercholesterolemia.
Disease markers.
2022; 2022(?):2008556. doi:
10.1155/2022/2008556
. [PMID: 35493299] - Teerasit Techawiwattanaboon, Thomas Courant, Livia Brunner, Suwitra Sathean-Anan-Kun, Pratomporn Krangvichian, Nutta Iadsee, Yaowarin Nakornpakdee, Noppadon Sangjun, Pat Komanee, Nicolas Collin, Kiat Ruxrungtham, Kanitha Patarakul. Designing Adjuvant Formulations to Promote Immunogenicity and Protective Efficacy of Leptospira Immunoglobulin-Like Protein A Subunit Vaccine.
Frontiers in cellular and infection microbiology.
2022; 12(?):918629. doi:
10.3389/fcimb.2022.918629
. [PMID: 35782116] - Charlotte Dubé, Sarah Paris-Robidas, Iryna Primakova, Eric Destexhe, Brian J Ward, Nathalie Landry, Sonia Trépanier. Lack of effects on female fertility or pre- and postnatal development of offspring in rats after exposure to AS03-adjuvanted recombinant plant-derived virus-like particle vaccine candidate for COVID-19.
Reproductive toxicology (Elmsford, N.Y.).
2022 01; 107(?):69-80. doi:
10.1016/j.reprotox.2021.11.006
. [PMID: 34838689] - Mahmoud Ebrahimi, Nafiseh Farhadian, Ali Reza Amiri, Fatemeh Hataminia, Sara Saffar Soflaei, Mohammad Karimi. Evaluating the efficacy of extracted squalene from seed oil in the form of microemulsion for the treatment of COVID-19: A clinical study.
Journal of medical virology.
2022 01; 94(1):119-130. doi:
10.1002/jmv.27273
. [PMID: 34403141] - Yi-Tzu Cho, Hung Su, Ching-Ying Wu, Tiao-Lai Huang, Jingyueh Jeng, Min-Zong Huang, Deng-Chyang Wu, Jentaie Shiea. Molecular Mapping of Sebaceous Squalene by Ambient Mass Spectrometry.
Analytical chemistry.
2021 12; 93(49):16608-16617. doi:
10.1021/acs.analchem.1c03983
. [PMID: 34860507] - Junxian Wu, Rui Xu, Jimei Lu, Weiwei Liu, Hanwen Yu, Mengli Liu, Jing Li, Minzhen Yin, Huasheng Peng, Liangping Zha. Molecular cloning and functional characterization of two squalene synthase genes in Atractylodes lancea.
Planta.
2021 Nov; 255(1):8. doi:
10.1007/s00425-021-03797-9
. [PMID: 34845523] - Marie Caillaud, Frédéric Gobeaux, Miryana Hémadi, Suzan Boutary, Patrick Guenoun, Didier Desmaële, Patrick Couvreur, Frank Wien, Fabienne Testard, Liliane Massaad-Massade. Supramolecular organization and biological interaction of squalenoyl siRNA nanoparticles.
International journal of pharmaceutics.
2021 Nov; 609(?):121117. doi:
10.1016/j.ijpharm.2021.121117
. [PMID: 34562556] - Showkat Ahmad Dar, Sajal Kole, Su-Mi Shin, Hyeon-Jong Jeong, Sung-Ju Jung. Comparative study on antigen persistence and immunoprotective efficacy of intramuscular and intraperitoneal injections of squalene - aluminium hydroxide (Sq + Al) adjuvanted viral hemorrhagic septicaemia virus vaccine in olive flounder (Paralichthys olivaceus).
Vaccine.
2021 11; 39(47):6866-6875. doi:
10.1016/j.vaccine.2021.10.026
. [PMID: 34696933] - Xuanxuan Nian, Jiayou Zhang, Tao Deng, Jing Liu, Zheng Gong, Chuanshuo Lv, Luyao Yao, Junying Li, Shihe Huang, Xiaoming Yang. AddaVax Formulated with PolyI:C as a Potential Adjuvant of MDCK-based Influenza Vaccine Enhances Local, Cellular, and Antibody Protective Immune Response in Mice.
AAPS PharmSciTech.
2021 Nov; 22(8):270. doi:
10.1208/s12249-021-02145-0
. [PMID: 34766215] - Beibei Zhao, Shijian Fu, Hua Li, Zhicheng Chen. Chemical Characterization of Chinese Perilla Seed Oil.
Journal of oleo science.
2021 Nov; 70(11):1575-1583. doi:
10.5650/jos.ess21076
. [PMID: 34645745] - B Sangeetha, A S Krishnamoorthy, D Jeya Sundara Sharmila, P Renukadevi, V G Malathi, D Amirtham. Molecular modelling of coat protein of the Groundnut bud necrosis tospovirus and its binding with Squalene as an antiviral agent: In vitro and in silico docking investigations.
International journal of biological macromolecules.
2021 Oct; 189(?):618-634. doi:
10.1016/j.ijbiomac.2021.08.143
. [PMID: 34437921] - Natalja Kulagina, Jennifer Perrin, Sébastien Besseau, Vincent Courdavault. Efficient Terpene Production by Marine Thraustochytrids: Shedding Light on the Thermodynamic Driving Force.
mBio.
2021 10; 12(5):e0197621. doi:
10.1128/mbio.01976-21
. [PMID: 34579577] - Dayane S Alvares, Matias Crosio, Natalia Wilke. Hopanoid Hopene Locates in the Interior of Membranes and Affects Their Properties.
Langmuir : the ACS journal of surfaces and colloids.
2021 10; 37(40):11900-11908. doi:
10.1021/acs.langmuir.1c02030
. [PMID: 34585578] - Keith J Chappell, Francesca L Mordant, Zheyi Li, Danushka K Wijesundara, Paula Ellenberg, Julia A Lackenby, Stacey T M Cheung, Naphak Modhiran, Michael S Avumegah, Christina L Henderson, Kym Hoger, Paul Griffin, Jillian Bennet, Luca Hensen, Wuji Zhang, Thi H O Nguyen, Sara Marrero-Hernandez, Kevin J Selva, Amy W Chung, Mai H Tran, Peter Tapley, James Barnes, Patrick C Reading, Suellen Nicholson, Stavroula Corby, Thomas Holgate, Bruce D Wines, P Mark Hogarth, Katherine Kedzierska, Damian F J Purcell, Charani Ranasinghe, Kanta Subbarao, Daniel Watterson, Paul R Young, Trent P Munro. Safety and immunogenicity of an MF59-adjuvanted spike glycoprotein-clamp vaccine for SARS-CoV-2: a randomised, double-blind, placebo-controlled, phase 1 trial.
The Lancet. Infectious diseases.
2021 10; 21(10):1383-1394. doi:
10.1016/s1473-3099(21)00200-0
. [PMID: 33887208] - Sandra Rizk, Petra Henke, Carlos Santana-Molina, Gesa Martens, Marén Gnädig, Ngoc Anh Nguyen, Damien P Devos, Meina Neumann-Schaal, James P Saenz. Functional diversity of isoprenoid lipids in Methylobacterium extorquens PA1.
Molecular microbiology.
2021 10; 116(4):1064-1078. doi:
10.1111/mmi.14794
. [PMID: 34387371] - Xiuge Gao, Jiahao Gong, Ying Cai, Jiacai Wang, Jia Wen, Lin Peng, Hui Ji, Shanxiang Jiang, Dawei Guo. Chitosan modified squalene nanostructured lipid carriers as a promising adjuvant for freeze-dried ovalbumin vaccine.
International journal of biological macromolecules.
2021 Oct; 188(?):855-862. doi:
10.1016/j.ijbiomac.2021.08.074
. [PMID: 34411614] - Hui-Min Ho, Chiung-Yi Huang, Yu-Jhen Cheng, Kuan-Yin Shen, Tsai-Teng Tzeng, Shih-Jen Liu, Hsin-Wei Chen, Chung-Hsiung Huang, Ming-Hsi Huang. Assessment of adjuvantation strategy of lipid squalene nanoparticles for enhancing the immunogenicity of a SARS-CoV-2 spike subunit protein against COVID-19.
International journal of pharmaceutics.
2021 Sep; 607(?):121024. doi:
10.1016/j.ijpharm.2021.121024
. [PMID: 34416331] - Epole Ntungwe, Eva María Domínguez-Martín, Gabrielle Bangay, Catarina Garcia, Iris Guerreiro, Eleonora Colombo, Lucilia Saraiva, Ana María Díaz-Lanza, Andreia Rosatella, Marta M Alves, Catarina Pinto Reis, Daniele Passarella, Patricia Rijo. Self-Assembly Nanoparticles of Natural Bioactive Abietane Diterpenes.
International journal of molecular sciences.
2021 Sep; 22(19):. doi:
10.3390/ijms221910210
. [PMID: 34638551] - Jennifer Hage-Hülsmann, Oliver Klaus, Karl Linke, Katrin Troost, Lukas Gora, Fabienne Hilgers, Astrid Wirtz, Beatrix Santiago-Schübel, Anita Loeschcke, Karl-Erich Jaeger, Thomas Drepper. Production of C20, C30 and C40 terpenes in the engineered phototrophic bacterium Rhodobacter capsulatus.
Journal of biotechnology.
2021 Sep; 338(?):20-30. doi:
10.1016/j.jbiotec.2021.07.002
. [PMID: 34237394] - Roberto Martínez-Beamonte, Javier Sánchez-Marco, María J Felices, Cristina Barranquero, Sonia Gascón, Carmen Arnal, Juan C Burillo, Roberto Lasheras, Rebeca Busto, Miguel A Lasunción, María Jesús Rodríguez-Yoldi, Jesús Osada. Dietary squalene modifies plasma lipoproteins and hepatic cholesterol metabolism in rabbits.
Food & function.
2021 Sep; 12(17):8141-8153. doi:
10.1039/d0fo01836h
. [PMID: 34291245] - Ayano Ishikawa, Junya Ito, Naoki Shimizu, Shunji Kato, Eri Kobayashi, Hiroki Ohnari, Osamu Sakata, Eiji Naru, Kiyotaka Nakagawa. Linoleic acid and squalene are oxidized by discrete oxidation mechanisms in human sebum.
Annals of the New York Academy of Sciences.
2021 09; 1500(1):112-121. doi:
10.1111/nyas.14615
. [PMID: 34060095] - Liu-Jing Wei, Xuan Cao, Jing-Jing Liu, Suryang Kwak, Yong-Su Jin, Wei Wang, Qiang Hua. Increased Accumulation of Squalene in Engineered Yarrowia lipolytica through Deletion of PEX10 and URE2.
Applied and environmental microbiology.
2021 08; 87(17):e0048121. doi:
10.1128/aem.00481-21
. [PMID: 34132586] - Karthikeyan Rajamani, Somasundaram S Thirugnanasambandan, Chidambaram Natesan, Sethupathy Subramaniam, Balasubramanian Thangavel, Natarajan Aravindan. Squalene deters drivers of RCC disease progression beyond VHL status.
Cell biology and toxicology.
2021 08; 37(4):611-631. doi:
10.1007/s10565-020-09566-w
. [PMID: 33219891] - Svetlana Lyashenko, María José González-Fernández, Sargilana Borisova, El-Hassan Belarbi, José Luis Guil-Guerrero. Mertensia (Boraginaceae) seeds are new sources of γ-linolenic acid and minor functional compounds.
Food chemistry.
2021 Jul; 350(?):128635. doi:
10.1016/j.foodchem.2020.128635
. [PMID: 33317855] - Kalaivani Paramasivan, Aneesha A, Nabarupa Gupta, Sarma Mutturi. Adaptive evolution of engineered yeast for squalene production improvement and its genome-wide analysis.
Yeast (Chichester, England).
2021 07; 38(7):424-437. doi:
10.1002/yea.3559
. [PMID: 33648022] - Wenge Zhang, Xiuxiang Lu, Luqiong Huo, Sha Zhang, Yan Chen, Zhenxing Zou, Haibo Tan. Sesquiterpenes and Steroids from an Endophytic Eutypella scoparia.
Journal of natural products.
2021 06; 84(6):1715-1724. doi:
10.1021/acs.jnatprod.0c01167
. [PMID: 34033486] - Marta Salvador-Castell, Nicholas J Brooks, Roland Winter, Judith Peters, Philippe M Oger. Non-Polar Lipids as Regulators of Membrane Properties in Archaeal Lipid Bilayer Mimics.
International journal of molecular sciences.
2021 Jun; 22(11):. doi:
10.3390/ijms22116087
. [PMID: 34200063] - Marta Salvador-Castell, Maksym Golub, Nelli Erwin, Bruno Demé, Nicholas J Brooks, Roland Winter, Judith Peters, Philippe M Oger. Characterisation of a synthetic Archeal membrane reveals a possible new adaptation route to extreme conditions.
Communications biology.
2021 06; 4(1):653. doi:
10.1038/s42003-021-02178-y
. [PMID: 34079059] - Prabhu S Arunachalam, Alexandra C Walls, Nadia Golden, Caroline Atyeo, Stephanie Fischinger, Chunfeng Li, Pyone Aye, Mary Jane Navarro, Lilin Lai, Venkata Viswanadh Edara, Katharina Röltgen, Kenneth Rogers, Lisa Shirreff, Douglas E Ferrell, Samuel Wrenn, Deleah Pettie, John C Kraft, Marcos C Miranda, Elizabeth Kepl, Claire Sydeman, Natalie Brunette, Michael Murphy, Brooke Fiala, Lauren Carter, Alexander G White, Meera Trisal, Ching-Lin Hsieh, Kasi Russell-Lodrigue, Christopher Monjure, Jason Dufour, Skye Spencer, Lara Doyle-Meyers, Rudolph P Bohm, Nicholas J Maness, Chad Roy, Jessica A Plante, Kenneth S Plante, Alex Zhu, Matthew J Gorman, Sally Shin, Xiaoying Shen, Jane Fontenot, Shakti Gupta, Derek T O'Hagan, Robbert Van Der Most, Rino Rappuoli, Robert L Coffman, David Novack, Jason S McLellan, Shankar Subramaniam, David Montefiori, Scott D Boyd, JoAnne L Flynn, Galit Alter, Francois Villinger, Harry Kleanthous, Jay Rappaport, Mehul S Suthar, Neil P King, David Veesler, Bali Pulendran. Adjuvanting a subunit COVID-19 vaccine to induce protective immunity.
Nature.
2021 06; 594(7862):253-258. doi:
10.1038/s41586-021-03530-2
. [PMID: 33873199] - Elise Sipeniece, Inga Mišina, Ying Qian, Anna Grygier, Natalia Sobieszczańska, Pravin Kumar Sahu, Magdalena Rudzińska, Khageshwar Singh Patel, Paweł Górnaś. Fatty Acid Profile and Squalene, Tocopherol, Carotenoid, Sterol Content of Seven Selected Consumed Legumes.
Plant foods for human nutrition (Dordrecht, Netherlands).
2021 Mar; 76(1):53-59. doi:
10.1007/s11130-020-00875-3
. [PMID: 33404889]