Syringic acid (BioDeep_00000001643)

 

Secondary id: BioDeep_00000405508, BioDeep_00000860881

natural product human metabolite PANOMIX_OTCML-2023 blood metabolite BioNovoGene_Lab2019


代谢物信息卡片


InChI=1/C9H10O5/c1-13-6-3-5(9(11)12)4-7(14-2)8(6)10/h3-4,10H,1-2H3,(H,11,12

化学式: C9H10O5 (198.0528)
中文名称: 丁香酸
谱图信息: 最多检出来源 Homo sapiens(plant) 20.46%

分子结构信息

SMILES: c1(cc(cc(c1O)OC)C(=O)O)OC
InChI: InChI=1S/C9H10O5/c1-13-6-3-5(9(11)12)4-7(14-2)8(6)10/h3-4,10H,1-2H3,(H,11,12)

描述信息

Syringic acid, also known as syringate or cedar acid, belongs to the class of organic compounds known as gallic acid and derivatives. Gallic acid and derivatives are compounds containing a 3,4,5-trihydroxybenzoic acid moiety. Outside of the human body, Syringic acid is found, on average, in the highest concentration within a few different foods, such as common walnuts, swiss chards, and olives and in a lower concentration in apples, tarragons, and peanuts. Syringic acid has also been detected, but not quantified in several different foods, such as sweet marjorams, silver lindens, bulgurs, annual wild rices, and barley. This could make syringic acid a potential biomarker for the consumption of these foods. Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation. Research suggests that phenolics from wine may play a positive role against oxidation of low-density lipoprotein (LDL), which is a key step in the development of atherosclerosis. Syringic acid is a phenol present in some distilled alcohol beverages. It is also a product of microbial (gut) metabolism of anthocyanins and other polyphenols that have been consumed (in fruits and alcoholic beverages - PMID:18767860). Syringic acid is also a microbial metabolite that can be found in Bifidobacterium (PMID:24958563).
Syringic acid is a dimethoxybenzene that is 3,5-dimethyl ether derivative of gallic acid. It has a role as a plant metabolite. It is a member of benzoic acids, a dimethoxybenzene and a member of phenols. It is functionally related to a gallic acid. It is a conjugate acid of a syringate.
Syringic acid is a natural product found in Visnea mocanera, Pittosporum illicioides, and other organisms with data available.
Syringic acid is a metabolite found in or produced by Saccharomyces cerevisiae.
Present in various plants free and combined, e.g. principal phenolic constituent of soyabean meal (Glycine max)
A dimethoxybenzene that is 3,5-dimethyl ether derivative of gallic acid.
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents
KEIO_ID S018
Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation.
Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation.

同义名列表

43 个代谢物同义名

InChI=1/C9H10O5/c1-13-6-3-5(9(11)12)4-7(14-2)8(6)10/h3-4,10H,1-2H3,(H,11,12; 3,5-Dimethoxy-4-hydroxybenzoic acid, 4-Hydroxy-3,5-dimethoxy-benzoic acid; 4-10-00-01995 (Beilstein Handbook Reference); 3 pound not5-DIMETHOXY-4-HYDROXYBENZOICACID; Benzoic acid, 4-hydroxy-3,5-dimethoxy-; 3,5-dimethoxy-4-oxidanyl-benzoic acid; 4-Hydroxy-3,5-dimethoxy-benzoic acid; 3,5-dimethoxy-4-hydroxy benzoic acid; 3,5-Dimethoxy-4-hydroxybenzoic acid; 4-Hydroxy-3,5-dimethoxybenzoic acid; 3,5-Dimethoxy-4-hydroxybenzyl acid; 4-Hydroxy-3,5-dimethoxybenzoicacid; 4-Hydroxy-3,5-dimethylbenzoic acid; 3,5-Dimethyl-4-hydroxybenzoic acid; Syringic acid, analytical standard; syringic acid Cu (+2) salt (1:1); 3,5-Dimethoxy-4-hydroxybenzoate; 4-Hydroxy-3,5-dimethoxybenzoate; 3,5-Dimethyl-4-hydroxybenzoate; 3,5-dimethyl ether Gallic Acid; Gallic acid 3,5-dimethyl ether; 4-Hydroxy-3,5-dimethylbenzoate; 3,5-Dimethoxybenzoyl hydrazine; 2,6-DIMETHOXY-4-CARBOXYPHENOL; Gallate 3,5-dimethyl ether; 3,5-O-dimethylgallic acid; 3,5-dimethoxygallic acid; Syringic acid, >=95\\%; SYRINGIC ACID [INCI]; Spectrum5_000963; Spectrum3_001866; Syringic acid; DivK1c_006581; Syringlicacid; KBio1_001525; KBio3_002814; Cedar acid; Syringate; AI3-24376; SYRA; IJP; Syringic acid; Syringic acid



数据库引用编号

30 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

822 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 14 AKR1B1, ANG, BCL2, CASP3, CASP8, CASP9, CAT, CCND1, MAPK14, NFE2L2, NOS2, PIK3CA, PTGS2, VEGFA
Peripheral membrane protein 2 ACHE, PTGS2
Endoplasmic reticulum membrane 3 BCL2, NRF1, PTGS2
Nucleus 12 ACHE, ANG, BCL2, CASP3, CASP8, CASP9, CCND1, MAPK14, NFE2L2, NOS2, NRF1, VEGFA
cytosol 14 AKR1B1, ANG, BCL2, CASP3, CASP8, CASP9, CAT, CCND1, GPT, MAPK14, NFE2L2, NOS2, NRF1, PIK3CA
centrosome 2 CCND1, NFE2L2
nucleoplasm 8 AKR1B1, CASP3, CASP8, CCND1, MAPK14, NFE2L2, NOS2, NRF1
RNA polymerase II transcription regulator complex 1 NFE2L2
Cell membrane 2 ACHE, TNF
lamellipodium 2 CASP8, PIK3CA
Synapse 1 ACHE
cell surface 3 ACHE, TNF, VEGFA
glutamatergic synapse 2 CASP3, MAPK14
Golgi apparatus 3 ACHE, NFE2L2, VEGFA
Golgi membrane 1 INS
growth cone 1 ANG
neuromuscular junction 1 ACHE
neuronal cell body 3 ANG, CASP3, TNF
Cytoplasm, cytosol 2 NFE2L2, NOS2
plasma membrane 5 ACHE, NFE2L2, NOS2, PIK3CA, TNF
Membrane 4 ACHE, BCL2, CAT, VEGFA
caveola 1 PTGS2
extracellular exosome 4 AKR1B1, CAT, GPT, NRF1
endoplasmic reticulum 3 BCL2, PTGS2, VEGFA
extracellular space 7 ACHE, AKR1B1, ANG, IL6, INS, TNF, VEGFA
perinuclear region of cytoplasm 3 ACHE, NOS2, PIK3CA
adherens junction 1 VEGFA
bicellular tight junction 1 CCND1
intercalated disc 1 PIK3CA
mitochondrion 6 AKR1B1, BCL2, CASP8, CASP9, CAT, MAPK14
protein-containing complex 5 BCL2, CASP8, CASP9, CAT, PTGS2
intracellular membrane-bounded organelle 1 CAT
Microsome membrane 1 PTGS2
postsynaptic density 1 CASP3
Secreted 5 ACHE, ANG, IL6, INS, VEGFA
extracellular region 8 ACHE, ANG, CAT, IL6, INS, MAPK14, TNF, VEGFA
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 2 BCL2, CASP8
mitochondrial matrix 1 CAT
Extracellular side 1 ACHE
Nucleus membrane 2 BCL2, CCND1
Bcl-2 family protein complex 1 BCL2
nuclear membrane 2 BCL2, CCND1
external side of plasma membrane 1 TNF
Secreted, extracellular space, extracellular matrix 1 VEGFA
actin cytoskeleton 1 ANG
nucleolus 1 ANG
Cytoplasm, P-body 1 NOS2
P-body 1 NOS2
recycling endosome 1 TNF
Single-pass type II membrane protein 2 NRF1, TNF
Cell projection, lamellipodium 1 CASP8
Cytoplasm, perinuclear region 1 NOS2
Membrane raft 1 TNF
pore complex 1 BCL2
focal adhesion 1 CAT
extracellular matrix 1 VEGFA
Peroxisome 2 CAT, NOS2
basement membrane 2 ACHE, ANG
Peroxisome matrix 1 CAT
peroxisomal matrix 2 CAT, NOS2
peroxisomal membrane 1 CAT
secretory granule 1 VEGFA
nuclear speck 1 MAPK14
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
neuron projection 1 PTGS2
chromatin 2 NFE2L2, NRF1
mediator complex 1 NFE2L2
phagocytic cup 1 TNF
Chromosome 1 ANG
cytoskeleton 1 CASP8
Nucleus, nucleolus 1 ANG
spindle pole 1 MAPK14
Lipid-anchor, GPI-anchor 1 ACHE
endosome lumen 1 INS
Cytoplasm, Stress granule 1 ANG
cytoplasmic stress granule 1 ANG
cell body 1 CASP8
side of membrane 1 ACHE
myelin sheath 1 BCL2
ficolin-1-rich granule lumen 2 CAT, MAPK14
secretory granule lumen 3 CAT, INS, MAPK14
Golgi lumen 1 INS
endoplasmic reticulum lumen 3 IL6, INS, PTGS2
transcription repressor complex 1 CCND1
platelet alpha granule lumen 1 VEGFA
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
endocytic vesicle 1 ANG
transport vesicle 1 INS
Single-pass type III membrane protein 1 NRF1
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
apoptosome 1 CASP9
synaptic cleft 1 ACHE
protein-DNA complex 1 NFE2L2
CD95 death-inducing signaling complex 1 CASP8
death-inducing signaling complex 2 CASP3, CASP8
ripoptosome 1 CASP8
cyclin-dependent protein kinase holoenzyme complex 1 CCND1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
cortical cytoskeleton 1 NOS2
angiogenin-PRI complex 1 ANG
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
BAD-BCL-2 complex 1 BCL2
cyclin D1-CDK4 complex 1 CCND1
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
[Isoform H]: Cell membrane 1 ACHE
cyclin D1-CDK6 complex 1 CCND1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
caspase complex 1 CASP9
[Endoplasmic reticulum membrane sensor NFE2L1]: Endoplasmic reticulum membrane 1 NRF1
[Transcription factor NRF1]: Nucleus 1 NRF1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Wei-Ting Wang, Yan-Yu Zhang, Zi-Rui Li, Juan-Min Li, Hai-Shan Deng, Yuan-Yuan Li, Hua-Yi Yang, Chi Chou Lau, Yi-Jing Yao, Hu-Dan Pan, Liang Liu, Ying Xie, Hua Zhou. Syringic acid attenuates acute lung injury by modulating macrophage polarization in LPS-induced mice. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2024 Jul; 129(?):155591. doi: 10.1016/j.phymed.2024.155591. [PMID: 38692075]
  • Siyin Yang, Yiran Zheng, Yuting Guo, Zixuan Cen, Yan Dong. Allelopathic effect of phenolic acids in various extracts of wheat against Fusarium wilt in faba bean. Functional plant biology : FPB. 2023 Oct; ?(?):. doi: 10.1071/fp23052. [PMID: 37852089]
  • Fengdan Wang, Yanqing Qi, Yakun Gao, Zhifang Wang, Xiaowei Shen, Hongyu Wu. Syringic acid suppresses ferroptosis of skeletal muscle cells to alleviate lower limb ischemia/reperfusion injury in mice via the HMGB1 pathway. Chemical biology & drug design. 2023 Aug; ?(?):. doi: 10.1111/cbdd.14326. [PMID: 37604776]
  • Fatih Avdatek, Muhammed Enes İnanç, Mehmet Fuat Gülhan, Şükrü Güngör, Deniz Yeni, Kemal Tuna Olğaç, Barış Denk, Umut Taşdemir. Investigation of the effects of syringic acid supplemented to Tris semen diluent on ram semen freezability. Reproduction in domestic animals = Zuchthygiene. 2023 Jul; 58(7):997-1004. doi: 10.1111/rda.14393. [PMID: 37212662]
  • Małgorzata Stryjecka, Barbara Krochmal-Marczak, Tomasz Cebulak, Anna Kiełtyka-Dadasiewicz. Assessment of Phenolic Acid Content and Antioxidant Properties of the Pulp of Five Pumpkin Species Cultivated in Southeastern Poland. International journal of molecular sciences. 2023 May; 24(10):. doi: 10.3390/ijms24108621. [PMID: 37239966]
  • Visessakseth So, Philip Poul, Sokunvary Oeung, Pich Srey, Kimchhay Mao, Huykhim Ung, Poliny Eng, Mengkhim Heim, Marnick Srun, Chantha Chheng, Sin Chea, Tarapong Srisongkram, Natthida Weerapreeyakul. Bioactive Compounds, Antioxidant Activities, and HPLC Analysis of Nine Edible Sprouts in Cambodia. Molecules (Basel, Switzerland). 2023 Mar; 28(6):. doi: 10.3390/molecules28062874. [PMID: 36985845]
  • Amina Khatun, Titli Panchali, Sukhamoy Gorai, Ananya Dutta, Tridip Kumar Das, Kuntal Ghosh, Shrabani Pradhan, Keshab Chandra Mondal, Sudipta Chakrabarti. Impaired brain equanimity and neurogenesis in the diet-induced overweight mouse: a preventive role by syringic acid treatment. Nutritional neuroscience. 2023 Mar; ?(?):1-18. doi: 10.1080/1028415x.2023.2187510. [PMID: 36947578]
  • Naghmeh Haddadi, Mehrzad Mirzania, Hadi Ansarihadipour. Syringic acid Attenuates Oxidative Stress in Plasma and Peripheral Blood Mononuclear Cells of Patients with Acute Myeloid Leukemia. Nutrition and cancer. 2023 Jan; ?(?):1-12. doi: 10.1080/01635581.2023.2170432. [PMID: 36697381]
  • Srinivasulu Cheemanapalli, Chandrasekaran Palaniappan, Yeshwanth Mahesh, Yuvaraj Iyyappan, Suresh Yarrappagaari, Sekar Kanagaraj. In vitro and in silico perspectives to explain anticancer activity of a novel syringic acid analog ((4-(1H-1, 3-benzodiazol-2-yl)-2, 6-dimethoxy phenol)) through apoptosis activation and NFkB inhibition in K562 leukemia cells. Computers in biology and medicine. 2023 01; 152(?):106349. doi: 10.1016/j.compbiomed.2022.106349. [PMID: 36470147]
  • Jia Sun, Li-Qin Liu, Jian Gou, Si-Ying Chen, Zi-Peng Gong, Ting Liu, Yong-Jun Li, Yuan Lu. [Differences in intestinal absorption characteristics of Cynanchum auriculatum extract based on in situ intestinal circulation perfusion model in two states]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2022 Dec; 47(23):6340-6347. doi: 10.19540/j.cnki.cjcmm.20220621.203. [PMID: 36604878]
  • Linyan Zhao, Wumei Xu, Huilin Guan, Kunyan Wang, Ping Xiang, Fugang Wei, Shaozhou Yang, Cuiping Miao, Lena Q Ma. Biochar increases Panax notoginseng's survival under continuous cropping by improving soil properties and microbial diversity. The Science of the total environment. 2022 Dec; 850(?):157990. doi: 10.1016/j.scitotenv.2022.157990. [PMID: 35963414]
  • Saduddin Talukder, Khondoker Shahin Ahmed, Hemayet Hossain, Tarek Hasan, Israt Jahan Liya, Muhammed Amanat, Nurun Nahar, Md Sadikur Rahman Shuvo, A F M Shahid Ud Daula. Fimbristylis aestivalis Vahl: a potential source of cyclooxygenase-2 (COX-2) inhibitors. Inflammopharmacology. 2022 Dec; 30(6):2301-2315. doi: 10.1007/s10787-022-01057-0. [PMID: 36056995]
  • Augustin Ntemafack, Arem Qayum, Shakti Kumar Dhiman, Michel-Gael Fofack Guefack, Sonia Thapa, Brice Elvis Nougan Wamba, Victor Kuete, Shashank K Singh, Sandip B Bharate, Qazi Parvaiz Hassan, Sumit G Gandhi. Antimicrobial and Cytotoxic Potential of Helminthosporin from Rumex abyssiniscus Jacq. Discovered as a Novel Source of Syringic Acid and Bis(2-ethyloctyl) Phthalate. Current microbiology. 2022 Nov; 80(1):7. doi: 10.1007/s00284-022-03101-2. [PMID: 36445554]
  • Sompong Sansenya, Apirak Payaka. Inhibitory potential of phenolic compounds of Thai colored rice (Oryza sativa L.) against α-glucosidase and α-amylase through in vitro and in silico studies. Journal of the science of food and agriculture. 2022 Nov; 102(14):6718-6726. doi: 10.1002/jsfa.12039. [PMID: 35620810]
  • Limpho M Ramorobi, Godfrey R Matowane, Samson S Mashele, Shasank S Swain, Tshepiso J Makhafola, Polo-Ma-Abiele H Mfengwana, Chika I Chukwuma. Zinc(II) - Syringic acid complexation synergistically exerts antioxidant action and modulates glucose uptake and utilization in L-6 myotubes and rat muscle tissue. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 Oct; 154(?):113600. doi: 10.1016/j.biopha.2022.113600. [PMID: 36037784]
  • Andrej Minich, Zdenko Levarski, Mária Mikulášová, Marek Straka, Adriána Liptáková, Stanislav Stuchlík. Complex Analysis of Vanillin and Syringic Acid as Natural Antimicrobial Agents against Staphylococcus epidermidis Biofilms. International journal of molecular sciences. 2022 Feb; 23(3):. doi: 10.3390/ijms23031816. [PMID: 35163738]
  • Elżbieta Mierzejewska, Wojciech Tołoczko, Magdalena Urbaniak. The effects of syringic acid on the properties of MCPA-contaminated soil and the growth of two cucurbit species. International journal of phytoremediation. 2022; 24(2):205-214. doi: 10.1080/15226514.2021.1932727. [PMID: 34126809]
  • Xidong Li, Xuejie Zhang, Ruixian Xing, Fengjiao Qi, Jing Dong, Dan Li, Xue Tian, Bo Yu, Meiyi Huang, Lei Zhang, Xueling Yuan, Yang Yang, Huiru Wu, Lie Zang, Xin Mao, Rubo Sui. Syringic acid demonstrates promising protective effect against tau fibrillization and cytotoxicity through regulation of endoplasmic reticulum stress-mediated pathway as a prelude to Alzheimer's disease. International journal of biological macromolecules. 2021 Dec; 192(?):491-497. doi: 10.1016/j.ijbiomac.2021.09.173. [PMID: 34599991]
  • Yunke Huang, Min Xu, Junfeng Li, Ken Chen, Liang Xia, Wei Wang, Ping Ren, Xi Huang. Ex vivo to in vivo extrapolation of syringic acid and ferulic acid as grape juice proxies for endothelium-dependent vasodilation: Redefining vasoprotective resveratrol of the French paradox. Food chemistry. 2021 Nov; 363(?):130323. doi: 10.1016/j.foodchem.2021.130323. [PMID: 34247035]
  • James K Pru. Lipid equilibrating actions of syringic acid following lost ovarian function. Menopause (New York, N.Y.). 2021 11; 28(12):1328-1329. doi: 10.1097/gme.0000000000001892. [PMID: 34854836]
  • Teruyoshi Tanaka, Kazuko Iwamoto, Maki Wada, Erika Yano, Toshiyuki Suzuki, Nobuhisa Kawaguchi, Norifumi Shirasaka, Tatsuya Moriyama, Yoshimi Homma. Dietary syringic acid reduces fat mass in an ovariectomy-induced mouse model of obesity. Menopause (New York, N.Y.). 2021 10; 28(12):1340-1350. doi: 10.1097/gme.0000000000001853. [PMID: 34610616]
  • Minho Won, Sunkyung Choi, Seonghye Cheon, Eun-Mi Kim, Taeg Kyu Kwon, Jaewhan Kim, Yong-Eun Kim, Kyung-Cheol Sohn, Gang Min Hur, Kee K Kim. Octyl syringate is preferentially cytotoxic to cancer cells via lysosomal membrane permeabilization and autophagic flux inhibition. Cell biology and toxicology. 2021 Sep; ?(?):. doi: 10.1007/s10565-021-09653-6. [PMID: 34523043]
  • Pradeep Singh, Muhammad Arif, Abdul Qadir, Pushpendra Kannojia. Simultaneous Analytical Efficiency Evaluation Using an HPTLC Method for the Analysis of Syringic Acid and Vanillic Acid and Their Anti-Oxidant Capacity from Methanol Extract of Ricinus communis L. and Euphorbia hirta L. Journal of AOAC International. 2021 Aug; 104(4):1188-1195. doi: 10.1093/jaoacint/qsaa171. [PMID: 33351060]
  • Sunanda Panda, Anand Kar, Meenakshi Singh, Ram Kumar Singh, Ankit Ganeshpurkar. Syringic acid, a novel thyroid hormone receptor-β agonist, ameliorates propylthiouracil-induced thyroid toxicity in rats. Journal of biochemical and molecular toxicology. 2021 Aug; 35(8):e22814. doi: 10.1002/jbt.22814. [PMID: 34047416]
  • Joel B Johnson, Daniel J Skylas, Janice S Mani, Jinle Xiang, Kerry B Walsh, Mani Naiker. Phenolic Profiles of Ten Australian Faba Bean Varieties. Molecules (Basel, Switzerland). 2021 Jul; 26(15):. doi: 10.3390/molecules26154642. [PMID: 34361795]
  • Y Wang, W Zhang, Z Zhang, W Wang, S Xu, X He. Isolation, identification and characterization of phenolic acid-degrading bacteria from soil. Journal of applied microbiology. 2021 Jul; 131(1):208-220. doi: 10.1111/jam.14956. [PMID: 33270328]
  • Cordelia Mano John, Sumathy Arockiasamy. 3,5-Dimethoxy-4-benzoic acid (syringic acid) a natural phenolic acid reduces reactive oxygen species in differentiated 3T3-L1 adipocytes. In vitro cellular & developmental biology. Animal. 2021 Apr; 57(4):386-394. doi: 10.1007/s11626-021-00549-7. [PMID: 33772407]
  • Youssef Elamine, Badiaa Lyoussi, Maria G Miguel, Ofélia Anjos, Letícia Estevinho, Manuel Alaiz, Julio Girón-Calle, Jesús Martín, Javier Vioque. Physicochemical characteristics and antiproliferative and antioxidant activities of Moroccan Zantaz honey rich in methyl syringate. Food chemistry. 2021 Mar; 339(?):128098. doi: 10.1016/j.foodchem.2020.128098. [PMID: 33152883]
  • Congyong Sun, Wenjing Li, Huiyun Zhang, Michael Adu-Frimpong, Ping Ma, Yuan Zhu, Wenwen Deng, Jiangnan Yu, Ximing Xu. Improved Oral Bioavailability and Hypolipidemic Effect of Syringic Acid via a Self-microemulsifying Drug Delivery System. AAPS PharmSciTech. 2021 Jan; 22(1):45. doi: 10.1208/s12249-020-01901-y. [PMID: 33439366]
  • Marzieh Rashedinia, Mohammad Javad Khoshnoud, Bahman Khalvati Fahlyan, Seyedeh-Sara Hashemi, Mahshid Alimohammadi, Zahra Sabahi. Syringic Acid: A Potential Natural Compound for the Management of Renal Oxidative Stress and Mitochondrial Biogenesis in Diabetic Rats. Current drug discovery technologies. 2021; 18(3):405-413. doi: 10.2174/1570163817666200211101228. [PMID: 32072913]
  • Jin Liu, Weiming Wang, Limin Chen, Yachai Li, Shuimiao Zhao, Yijuan Liang. Chemoprotective Effect of Syringic Acid on Cyclophosphamide Induced Ovarian Damage via Inflammatory Pathway. Journal of oleo science. 2021; 70(5):675-683. doi: 10.5650/jos.ess21023. [PMID: 33952792]
  • Quan V Vo, Mai Van Bay, Pham Cam Nam, Duong Tuan Quang, Matthew Flavel, Nguyen Thi Hoa, Adam Mechler. Theoretical and Experimental Studies of the Antioxidant and Antinitrosant Activity of Syringic Acid. The Journal of organic chemistry. 2020 12; 85(23):15514-15520. doi: 10.1021/acs.joc.0c02258. [PMID: 33150788]
  • Cordelia Mano John, Sumathy Arockiasamy. Syringic acid (4-hydroxy-3,5-dimethoxybenzoic acid) inhibits adipogenesis and promotes lipolysis in 3T3-L1 adipocytes. Natural product research. 2020 Dec; 34(23):3432-3436. doi: 10.1080/14786419.2019.1573820. [PMID: 30777451]
  • Eri Adams, Takae Miyazaki, Ju Yeon Moon, Yuji Sawada, Muneo Sato, Kiminori Toyooka, Masami Yokota Hirai, Ryoung Shin. Syringic Acid Alleviates Cesium-Induced Growth Defect in Arabidopsis. International journal of molecular sciences. 2020 Nov; 21(23):. doi: 10.3390/ijms21239116. [PMID: 33266116]
  • Anna Ziolkowska, Bozena Debska, Magdalena Banach-Szott. Content of Phenolic Compounds in Meadow Vegetation and Soil Depending on the Isolation Method. Molecules (Basel, Switzerland). 2020 Nov; 25(22):. doi: 10.3390/molecules25225462. [PMID: 33266357]
  • Jakob K Reinhardt, Amy M Zimmermann-Klemd, Ombeline Danton, Martin Smieško, Carsten Gründemann, Matthias Hamburger. Compounds from Toddalia asiatica: Immunosuppressant Activity and Absolute Configurations. Journal of natural products. 2020 10; 83(10):3012-3020. doi: 10.1021/acs.jnatprod.0c00564. [PMID: 33001647]
  • Gen Liu, Bo-Fang Zhang, Qi Hu, Xiao-Pei Liu, Jing Chen. Syringic acid mitigates myocardial ischemia reperfusion injury by activating the PI3K/Akt/GSK-3β signaling pathway. Biochemical and biophysical research communications. 2020 10; 531(2):242-249. doi: 10.1016/j.bbrc.2020.07.047. [PMID: 32798018]
  • Fatma Bendimerad-Mouttas, Mohamed Choukri Beghdad, Imad Abdelhamid El Haci, Zoubida Soualem, Meriem Belarbi, Fawzia Atik Bekkara. Bioactive compounds and antioxidant activity of Rhaponticum acaule (L.) DC. Natural product research. 2020 Jun; 34(11):1553-1557. doi: 10.1080/14786419.2018.1516664. [PMID: 30580609]
  • Ana Paula Dalmagro, Anderson Camargo, Natália B Pedron, Suliana A M Garcia, Ana Lúcia B Zeni. Morus nigra leaves extract revokes the depressive-like behavior, oxidative stress, and hippocampal damage induced by corticosterone: a pivotal role of the phenolic syringic acid. Behavioural pharmacology. 2020 06; 31(4):397-406. doi: 10.1097/fbp.0000000000000549. [PMID: 32040015]
  • Sumayya Shahzad, Somaiya Mateen, Tasneem Kausar, Syed Shariq Naeem, Asif Hasan, Minhal Abidi, Shahid M Nayeem, Abul Faiz Faizy, Shagufta Moin. Effect of syringic acid and syringaldehyde on oxidative stress and inflammatory status in peripheral blood mononuclear cells from patients of myocardial infarction. Naunyn-Schmiedeberg's archives of pharmacology. 2020 04; 393(4):691-704. doi: 10.1007/s00210-019-01768-2. [PMID: 31822939]
  • Cristian López-Palacios, Cecilia B Peña-Valdivia. Screening of secondary metabolites in cladodes to further decode the domestication process in the genus Opuntia (Cactaceae). Planta. 2020 Mar; 251(4):74. doi: 10.1007/s00425-020-03371-9. [PMID: 32144512]
  • Manjunatha S, Althaf Hussain Shaik, Maruthi Prasad E, Suliman Yousef Al Omar, Altaf Mohammad, Lakshmi Devi Kodidhela. Combined cardio-protective ability of syringic acid and resveratrol against isoproterenol induced cardio-toxicity in rats via attenuating NF-kB and TNF-α pathways. Scientific reports. 2020 02; 10(1):3426. doi: 10.1038/s41598-020-59925-0. [PMID: 32099011]
  • Mariam Abotaleb, Alena Liskova, Peter Kubatka, Dietrich Büsselberg. Therapeutic Potential of Plant Phenolic Acids in the Treatment of Cancer. Biomolecules. 2020 02; 10(2):. doi: 10.3390/biom10020221. [PMID: 32028623]
  • J Zachary Oshlag, Yanjun Ma, Kaitlin Morse, Brian T Burger, Rachelle A Lemke, Steven D Karlen, Kevin S Myers, Timothy J Donohue, Daniel R Noguera. Anaerobic Degradation of Syringic Acid by an Adapted Strain of Rhodopseudomonas palustris. Applied and environmental microbiology. 2020 01; 86(3):. doi: 10.1128/aem.01888-19. [PMID: 31732577]
  • Ning Yang, Feng Qiu, Feng Zhu, Lei Qi. Therapeutic Potential of Zinc Oxide-Loaded Syringic Acid Against in vitro and in vivo Model of Lung Cancer. International journal of nanomedicine. 2020; 15(?):8249-8260. doi: 10.2147/ijn.s272997. [PMID: 33149573]
  • Peng Lu, Weinan Wang, Guangxi Zhang, Wen Li, Anjie Jiang, Mengjiao Cao, Xiaoyan Zhang, Ke Xing, Xue Peng, Bo Yuan, Zhaozhong Feng. Isolation and characterization marine bacteria capable of degrading lignin-derived compounds. PloS one. 2020; 15(10):e0240187. doi: 10.1371/journal.pone.0240187. [PMID: 33027312]
  • Marzieh Rashedinia, Mahshid Alimohammadi, Nazgol Shalfroushan, Mohammad Javad Khoshnoud, Mitra Mansourian, Negar Azarpira, Zahra Sabahi. Neuroprotective Effect of Syringic Acid by Modulation of Oxidative Stress and Mitochondrial Mass in Diabetic Rats. BioMed research international. 2020; 2020(?):8297984. doi: 10.1155/2020/8297984. [PMID: 33457416]
  • Ana Paula Dalmagro, Anderson Camargo, Ana Lúcia Severo Rodrigues, Ana Lúcia Bertarello Zeni. Involvement of PI3K/Akt/GSK-3β signaling pathway in the antidepressant-like and neuroprotective effects of Morus nigra and its major phenolic, syringic acid. Chemico-biological interactions. 2019 Dec; 314(?):108843. doi: 10.1016/j.cbi.2019.108843. [PMID: 31586550]
  • Eren Ogut, Rahime Sekerci, Guven Akcay, Fatos Belgin Yildirim, Narin Derin, Mutay Aslan, Leyla Sati. Protective effects of syringic acid on neurobehavioral deficits and hippocampal tissue damages induced by sub-chronic deltamethrin exposure. Neurotoxicology and teratology. 2019 Nov; 76(?):106839. doi: 10.1016/j.ntt.2019.106839. [PMID: 31644947]
  • Yoji Kato, Masaki Kawai, Shota Kawai, Yayako Okano, Natsumi Rokkaku, Akari Ishisaka, Kaeko Murota, Toshiyuki Nakamura, Yoshimasa Nakamura, Shinichi Ikushiro. Dynamics of the Cellular Metabolism of Leptosperin Found in Manuka Honey. Journal of agricultural and food chemistry. 2019 Oct; 67(39):10853-10862. doi: 10.1021/acs.jafc.9b03894. [PMID: 31496237]
  • Jeffry S Tang, Stephanie M Bozonet, Judith L McKenzie, Robert F Anderson, Laurence D Melton, Margreet C M Vissers. Physiological Concentrations of Blueberry-Derived Phenolic Acids Reduce Monocyte Adhesion to Human Endothelial Cells. Molecular nutrition & food research. 2019 09; 63(18):e1900478. doi: 10.1002/mnfr.201900478. [PMID: 31216087]
  • Wenhui Fang, Shihong Zhu, Zhongbao Niu, Yuti Yin. The protective effect of syringic acid on dextran sulfate sodium-induced experimental colitis in BALB/c mice. Drug development research. 2019 09; 80(6):731-740. doi: 10.1002/ddr.21524. [PMID: 31313354]
  • Daniela Klisurova, Ivalina Petrova, Manol Ognyanov, Yordan Georgiev, Maria Kratchanova, Petko Denev. Co-pigmentation of black chokeberry (Aronia melanocarpa) anthocyanins with phenolic co-pigments and herbal extracts. Food chemistry. 2019 May; 279(?):162-170. doi: 10.1016/j.foodchem.2018.11.125. [PMID: 30611475]
  • Sumayya Shahzad, Somaiya Mateen, Syed Shariq Naeem, Kafil Akhtar, Waseem Rizvi, Shagufta Moin. Syringic acid protects from isoproterenol induced cardiotoxicity in rats. European journal of pharmacology. 2019 Apr; 849(?):135-145. doi: 10.1016/j.ejphar.2019.01.056. [PMID: 30731086]
  • Xiaoyuan Wang, Shuangshuang Wang, Shasha Huang, Lihua Zhang, Zhenzhen Ge, Liping Sun, Wei Zong. Purification of Polyphenols from Distiller's Grains by Macroporous Resin and Analysis of the Polyphenolic Components. Molecules (Basel, Switzerland). 2019 Apr; 24(7):. doi: 10.3390/molecules24071284. [PMID: 30986967]
  • Kyari Yates, Franziska Pohl, Maike Busch, Annika Mozer, Louis Watters, Andrey Shiryaev, Paul Kong Thoo Lin. Determination of sinapine in rapeseed pomace extract: Its antioxidant and acetylcholinesterase inhibition properties. Food chemistry. 2019 Mar; 276(?):768-775. doi: 10.1016/j.foodchem.2018.10.045. [PMID: 30409660]
  • Xianli Zhou, Sixin Huang, Pengcheng Wang, Qin Luo, Xiao Huang, Qin Xu, Jiangke Qin, Chengqin Liang, Xu Chen. A syringic acid derivative and two iridoid glycosides from the roots of Stachys geobombycis and their antioxidant properties. Natural product research. 2019 Mar; 33(5):681-686. doi: 10.1080/14786419.2017.1405413. [PMID: 29166774]
  • Yingkun Liu, Congyong Sun, Wenjing Li, Michael Adu-Frimpong, Qilong Wang, Jiangnan Yu, Ximing Xu. Preparation and Characterization of Syringic Acid-Loaded TPGS Liposome with Enhanced Oral Bioavailability and In Vivo Antioxidant Efficiency. AAPS PharmSciTech. 2019 Feb; 20(3):98. doi: 10.1208/s12249-019-1290-6. [PMID: 30719694]
  • K Rasheeda, H Bharathy, N Nishad Fathima. Vanillic acid and syringic acid: Exceptionally robust aromatic moieties for inhibiting in vitro self-assembly of type I collagen. International journal of biological macromolecules. 2018 Jul; 113(?):952-960. doi: 10.1016/j.ijbiomac.2018.03.015. [PMID: 29522822]
  • Arti Pandey, Pradeep Singh Negi. Phytochemical composition, in vitro antioxidant activity and antibacterial mechanisms of Neolamarckia cadamba fruits extracts. Natural product research. 2018 May; 32(10):1189-1192. doi: 10.1080/14786419.2017.1323209. [PMID: 28475362]
  • Jamshed Haneef, Renu Chadha. Antioxidant-Based Eutectics of Irbesartan: Viable Multicomponent Forms for the Management of Hypertension. AAPS PharmSciTech. 2018 Apr; 19(3):1191-1204. doi: 10.1208/s12249-017-0930-y. [PMID: 29247285]
  • Bensaid Ilhem, Atik Bekkara Fawzia, El Haci Imad Abdelhamid, Belarbi Karima, Beddou Fawzia, Bekhechi Chahrazed. Identification and in vitro antioxidant activities of phenolic compounds isolated from Cynoglossum cheirifolium L. Natural product research. 2018 Feb; 32(4):481-485. doi: 10.1080/14786419.2017.1314286. [PMID: 28391725]
  • Jiwon Baek, Dahae Lee, Tae Kyoung Lee, Ji Hoon Song, Ju Sung Lee, Seong Lee, Sang-Woo Yoo, Ki Sung Kang, Eunjung Moon, Sanghyun Lee, Ki Hyun Kim. (-)-9'-O-(α-l-Rhamnopyranosyl)lyoniresinol from Lespedeza cuneata suppresses ovarian cancer cell proliferation through induction of apoptosis. Bioorganic & medicinal chemistry letters. 2018 01; 28(2):122-128. doi: 10.1016/j.bmcl.2017.11.045. [PMID: 29223588]
  • Reza Farhoosh. A Kinetic Approach to Evaluate the Structure-Based Performance of Antioxidants During Lipid Oxidation. Journal of food science. 2018 Jan; 83(1):101-107. doi: 10.1111/1750-3841.13993. [PMID: 29210460]
  • Zhilin Wang, Jianhui Zhang, Fengzhi Wu, Xingang Zhou. Changes in rhizosphere microbial communities in potted cucumber seedlings treated with syringic acid. PloS one. 2018; 13(6):e0200007. doi: 10.1371/journal.pone.0200007. [PMID: 29953531]
  • Gavirangappa Hithamani, Dhanya Kizhakayil, Krishnapura Srinivasan. Uptake of phenolic compounds from plant foods in human intestinal Caco-2 cells. Journal of biosciences. 2017 Dec; 42(4):603-611. doi: 10.1007/s12038-017-9705-6. [PMID: 29229878]
  • Ana Paula Dalmagro, Anderson Camargo, Ana Lúcia Bertarello Zeni. Morus nigra and its major phenolic, syringic acid, have antidepressant-like and neuroprotective effects in mice. Metabolic brain disease. 2017 12; 32(6):1963-1973. doi: 10.1007/s11011-017-0089-y. [PMID: 28822021]
  • Yuan Gao, Shuai Ma, Meng Wang, Xiao-Yuan Feng. Characterization of Free, Conjugated, and Bound Phenolic Acids in Seven Commonly Consumed Vegetables. Molecules (Basel, Switzerland). 2017 Nov; 22(11):. doi: 10.3390/molecules22111878. [PMID: 29104269]
  • Teruyoshi Tanaka, Nobuhisa Kawaguchi, Nobuhiro Zaima, Tatsuya Moriyama, Yasuhisa Fukuta, Norifumi Shirasaka. Antiosteoporotic activity of a syringic acid diet in ovariectomized mice. Journal of natural medicines. 2017 Oct; 71(4):632-641. doi: 10.1007/s11418-017-1105-6. [PMID: 28681119]
  • Periyannan Velu, Veerasamy Vinothkumar, Sukumar Babukumar, Duraisamy Ramachandhiran. Chemopreventive effect of syringic acid on 7,12-dimethylbenz(a)anthracene induced hamster buccal pouch carcinogenesis. Toxicology mechanisms and methods. 2017 Oct; 27(8):631-640. doi: 10.1080/15376516.2017.1349227. [PMID: 28671029]
  • Sonia Losada-Barreiro, Carlos Bravo-Díaz. Free radicals and polyphenols: The redox chemistry of neurodegenerative diseases. European journal of medicinal chemistry. 2017 Jun; 133(?):379-402. doi: 10.1016/j.ejmech.2017.03.061. [PMID: 28415050]
  • Vijaya Movva, Usha Rani Pathipati. Feeding-induced phenol production in Capsicum annuum L. influences Spodoptera litura F. larval growth and physiology. Archives of insect biochemistry and physiology. 2017 May; 95(1):. doi: 10.1002/arch.21387. [PMID: 28449398]
  • Agnieszka Viapiana, Marek Wesolowski. The Phenolic Contents and Antioxidant Activities of Infusions of Sambucus nigra L. Plant foods for human nutrition (Dordrecht, Netherlands). 2017 Mar; 72(1):82-87. doi: 10.1007/s11130-016-0594-x. [PMID: 28084608]
  • Chung Sub Kim, Lalita Subedi, Oh Wook Kwon, Hyun Bong Park, Sun Yeou Kim, Sang Un Choi, Kang Ro Lee. Wasabisides A-E, Lignan Glycosides from the Roots of Wasabia japonica. Journal of natural products. 2016 10; 79(10):2652-2657. doi: 10.1021/acs.jnatprod.6b00582. [PMID: 27700070]
  • Angela Sorice, Francesco Siano, Francesca Capone, Eliana Guerriero, Gianluca Picariello, Alfredo Budillon, Gennaro Ciliberto, Marina Paolucci, Susan Costantini, Maria Grazia Volpe. Potential Anticancer Effects of Polyphenols from Chestnut Shell Extracts: Modulation of Cell Growth, and Cytokinomic and Metabolomic Profiles. Molecules (Basel, Switzerland). 2016 Oct; 21(10):. doi: 10.3390/molecules21101411. [PMID: 27775667]
  • Yoji Kato, Rie Fujinaka, Maki Juri, Yui Yoshiki, Akari Ishisaka, Noritoshi Kitamoto, Yoko Nitta, Hirohito Ishikawa. Characterization of a Monoclonal Antibody against Syringate Derivatives: Application of Immunochemical Detection of Methyl Syringate in Honey. Journal of agricultural and food chemistry. 2016 Aug; 64(33):6495-501. doi: 10.1021/acs.jafc.6b01328. [PMID: 27477590]
  • M Song, Z Du, G Lu, P Li, L Wang. Syringic acid protects retinal ganglion cells against H2O2-induced apoptosis through the activation of PI3K/Akt signaling pathway. Cellular and molecular biology (Noisy-le-Grand, France). 2016 May; 62(6):50-4. doi: . [PMID: 27262802]
  • Patrick Y Ango, Deccaux W F G Kapche, Ghislain W Fotso, Christian D Fozing, Elizabeth M O Yeboah, Renameditswe Mapitse, Ibrahim Demirtas, Bonaventure T Ngadjui, Samuel O Yeboah. Thonningiiflavanonol A and thonningiiflavanonol B, two novel flavonoids, and other constituents of Ficus thonningii Blume (Moraceae). Zeitschrift fur Naturforschung. C, Journal of biosciences. 2016 Mar; 71(3-4):65-71. doi: 10.1515/znc-2015-0147. [PMID: 26959540]
  • Nishi Srivastava, Amit Srivastava, Sharad Srivastava, Ajay Kumar Singh Rawat, Abdul Rahman Khan. Simultaneous Quantification of Syringic Acid and Kaempferol in Extracts of Bergenia Species Using Validated High-Performance Thin-Layer Chromatographic-Densitometric Method. Journal of chromatographic science. 2016 Mar; 54(3):460-5. doi: 10.1093/chromsci/bmv154. [PMID: 26543088]
  • Shao-jun Wang, Chuang Wu, Gan Zhao. [Study on Chemical Constituents of Stalk from Pottsia laxifora]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2016 Feb; 39(2):326-8. doi: ". [PMID: 30080368]
  • Cristian Del Bo', Yi Cao, Martin Roursgaard, Patrizia Riso, Marisa Porrini, Steffen Loft, Peter Møller. Anthocyanins and phenolic acids from a wild blueberry (Vaccinium angustifolium) powder counteract lipid accumulation in THP-1-derived macrophages. European journal of nutrition. 2016 Feb; 55(1):171-82. doi: 10.1007/s00394-015-0835-z. [PMID: 25595100]
  • Ju Ri Ham, Hae-In Lee, Ra-Yeong Choi, Mi-Ok Sim, Kwon-Il Seo, Mi-Kyung Lee. Anti-steatotic and anti-inflammatory roles of syringic acid in high-fat diet-induced obese mice. Food & function. 2016 Feb; 7(2):689-97. doi: 10.1039/c5fo01329a. [PMID: 26838182]
  • Eyup Burak Sancak, Alpaslan Akbas, Coskun Silan, Dilek Ulker Cakir, Hakan Turkon, Sidika Seyma Ozkanli. Protective effect of syringic acid on kidney ischemia-reperfusion injury. Renal failure. 2016; 38(4):629-35. doi: 10.3109/0886022x.2016.1149868. [PMID: 26915396]
  • Srinivasulu Cheemanapalli, C M Anuradha, P Madhusudhana, M Mahesh, Pongali B Raghavendra, Chitta S Kumar. Exploring the Binding Affinity of Novel Syringic Acid Analogues and Critical Determinants of Selectivity as Potent Proteasome Inhibitors. Anti-cancer agents in medicinal chemistry. 2016; 16(11):1496-1510. doi: 10.2174/1871520616666160513131928. [PMID: 27173965]
  • Yingzhan Tang, Junhong Ling, Peng Zhang, Xiangrong Zhang, Na Zhang, Wenli Wang, Jiayuan Li, Ning Li. Potential therapeutic agents for circulatory diseases from Bauhinia glauca Benth.subsp. pernervosa. (Da Ye Guan Men). Bioorganic & medicinal chemistry letters. 2015 Aug; 25(16):3217-20. doi: 10.1016/j.bmcl.2015.05.089. [PMID: 26096681]
  • Oztekin Cikman, Omer Soylemez, Omer Faruk Ozkan, Hasan Ali Kiraz, Ilyas Sayar, Serkan Ademoglu, Seyithan Taysi, Muammer Karaayvaz. Antioxidant Activity of Syringic Acid Prevents Oxidative Stress in l-arginine-Induced Acute Pancreatitis: An Experimental Study on Rats. International surgery. 2015 May; 100(5):891-6. doi: 10.9738/intsurg-d-14-00170.1. [PMID: 26011211]
  • Wen-fang Yi, Jia-bing Peng, Gang Ren, Wei Jiang, Jian Liang, Wen-jun Yuan. [Chemical Constitutes from Root of Artocarpus styracifolius]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2015 May; 38(5):972-4. doi: . [PMID: 26767289]
  • Bao Zhang, Xuan-zhen Li, Fa-jie Feng, Li Gu, Jun-yi Zhang, Liu-ji Zhang, Zhong-yi Zhang. [Correlation of Allelopathy of Rehmannia glutinosa Root Exudates and Their Phenolic Acids Contents]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2015 Apr; 38(4):659-63. doi: ". [PMID: 26672327]
  • Rukaiyya Sirajuddin Khan, Mahibalan Senthi, Poorna Chandra Rao, Ameer Basha, Mallika Alvala, Dinesh Tummuri, Hironori Masubuti, Yoshinori Fujimoto, Ahil Sajeli Begum. Cytotoxic constituents of Abutilon indicum leaves against U87MG human glioblastoma cells. Natural product research. 2015; 29(11):1069-73. doi: 10.1080/14786419.2014.976643. [PMID: 25422029]
  • Daniel M Webber, Navam S Hettiarachchy, Ruiqi Li, Ronny Horax, Sivarooban Theivendran. Phenolic profile and antioxidant activity of extracts prepared from fermented heat-stabilized defatted rice bran. Journal of food science. 2014 Nov; 79(11):H2383-91. doi: 10.1111/1750-3841.12658. [PMID: 25307751]
  • Hui Lei, Yong-bing Wang, Gong-sheng Xiao, Wei-ying Zong, Tao Wang. [Study on chemical constituents from active fraction of Cynanchum versicolor]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2014 Oct; 37(10):1798-800. doi: . [PMID: 25895387]
  • Juan Li, Qing-ru Liu, Jian-ping Zhao, Jie-ying Gao, Yu-yan Chen, Shun-xiang Li. [Chemical constituents of Acori Calami Rhizoma from Hunan Province]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2014 Sep; 37(9):1587-90. doi: ". [PMID: 25857157]
  • Gang-qiang Xue, Jing Du, Xin-yan Pan, Hui Gao, Zhi-yong Sun, Yang Zhang, Shu-li Gao. [Chemical constituents of Scrophularia ningpoensis root]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2014 Sep; 37(9):1597-9. doi: ". [PMID: 25857160]
  • Rui-Xiu Yang, Zeng-Gui Gao, Yuan Yao, Xian Liu, Shu-Qing Sun, Ying Wang. [Allelopathic effects of phenolic compounds of melon root exudates on Fusarium oxysporum f. sp. melonis]. Ying yong sheng tai xue bao = The journal of applied ecology. 2014 Aug; 25(8):2355-60. doi: . [PMID: 25509089]
  • María Boto-Ordóñez, Mireia Urpi-Sarda, María Isabel Queipo-Ortuño, Sara Tulipani, Francisco J Tinahones, Cristina Andres-Lacueva. High levels of Bifidobacteria are associated with increased levels of anthocyanin microbial metabolites: a randomized clinical trial. Food & function. 2014 Aug; 5(8):1932-8. doi: 10.1039/c4fo00029c. [PMID: 24958563]
  • Thi Van Anh Tran, Clemens Malainer, Stefan Schwaiger, Atanas G Atanasov, Elke H Heiss, Verena M Dirsch, Hermann Stuppner. NF-κB inhibitors from Eurycoma longifolia. Journal of natural products. 2014 Mar; 77(3):483-8. doi: 10.1021/np400701k. [PMID: 24467387]
  • Abhishek Bhattacherjee, Tanushree Ghosh, Rajarshi Sil, Abhijit Datta. Isolation and characterisation of methanol-soluble fraction of Alternanthera philoxeroides (Mart.) - evaluation of their antioxidant, α-glucosidase inhibitory and antimicrobial activity in in vitro systems. Natural product research. 2014; 28(23):2199-202. doi: 10.1080/14786419.2014.930857. [PMID: 24956019]
  • Yi-ping Jiang, Hua Li, Xue-zhi Pan, Xue-gang Sun, Qing-fa Tang, Meng Shao. [Chemical constituents from the roots of Ilex pubescens]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2013 Nov; 36(11):1774-8. doi: ". [PMID: 24956816]
  • Martin Zabka, Roman Pavela. Antifungal efficacy of some natural phenolic compounds against significant pathogenic and toxinogenic filamentous fungi. Chemosphere. 2013 Oct; 93(6):1051-6. doi: 10.1016/j.chemosphere.2013.05.076. [PMID: 23800587]