Cucurbitacin B (BioDeep_00000000391)

 

Secondary id: BioDeep_00000350955, BioDeep_00001867495

human metabolite PANOMIX_OTCML-2023 Endogenous natural product


代谢物信息卡片


(R,E)-6-((2S,8S,9R,10R,13R,14S,16R,17R)-2,16-dihydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)-6-hydroxy-2-methyl-5-oxohept-3-en-2-yl acetate

化学式: C32H46O8 (558.3193)
中文名称: 葫芦苦素 B, 雪胆甲素, 葫芦素B
谱图信息: 最多检出来源 Homo sapiens(otcml) 28.27%

Reviewed

Last reviewed on 2024-08-12.

Cite this Page

Cucurbitacin B. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/cucurbitacin_b (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000000391). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CC(=O)OC(C)(C)/C=C/C(=O)[C@@](C)([C@H]1[C@@H](C[C@@]2(C)[C@@H]3CC=C4[C@@H](C[C@@H](C(=O)C4(C)C)O)[C@]3(C)C(=O)C[C@]12C)O)O
InChI: InChI=1S/C32H46O8/c1-17(33)40-27(2,3)13-12-23(36)32(9,39)25-21(35)15-29(6)22-11-10-18-19(14-20(34)26(38)28(18,4)5)31(22,8)24(37)16-30(25,29)7/h10,12-13,19-22,25,34-35,39H,11,14-16H2,1-9H3/b13-12+/t19-,20+,21-,22+,25+,29+,30-,31+,32+/m1/s1

描述信息

Together wth other cucurbitacins, is responsible for the bitter taste and toxic props. of spoilt cucumbers. Cucurbitacin B is found in many foods, some of which are muskmelon, bitter gourd, green vegetables, and cucumber.
Cucurbitacin B is found in bitter gourd. Together wth other cucurbitacins, is responsible for the bitter taste and toxic properties of spoilt cucumber
Cucurbitacin B is a cucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at positions 5 and 23; a hydroxy function at C-25 is acetylated. It is a cucurbitacin, a secondary alpha-hydroxy ketone and a tertiary alpha-hydroxy ketone. It derives from a hydride of a lanostane.
Cucurbitacin B is a natural product found in Begonia plebeja, Trichosanthes miyagii, and other organisms with data available.
Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5].
Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5].

(+)-Cucurbitacin B. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=6199-67-3 (retrieved 2024-08-12) (CAS RN: 6199-67-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

同义名列表

41 个代谢物同义名

[(E)-5-(2,16-dihydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl)-5-hydroxy-1,1-dimethyl-4-oxo-hex-2-enyl] acetate; (3E)-6-{4,13-dihydroxy-1,6,6,11,15-pentamethyl-5,17-dioxotetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-14-yl}-6-hydroxy-2-methyl-5-oxohept-3-en-2-yl acetic acid; (3E)-6-{4,13-dihydroxy-1,6,6,11,15-pentamethyl-5,17-dioxotetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-14-yl}-6-hydroxy-2-methyl-5-oxohept-3-en-2-yl acetate; Datiscn Principle B; Datisca principle B; Cucurbitacine (B); Cucurbitacin B; Amarin?; (R,E)-6-((2S,8S,9R,10R,13R,14S,16R,17R)-2,16-dihydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)-6-hydroxy-2-methyl-5-oxohept-3-en-2-yl acetate; [(E,6R)-6-[(2S,8S,9R,10R,13R,14S,16R,17R)-2,16-dihydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-6-hydroxy-2-methyl-5-oxohept-3-en-2-yl] acetate; (3E,6R)-6-[(1R,2R,4S,10S,11S,13R,14R,15R)-4,13-dihydroxy-1,6,6,11,15-pentamethyl-5,17-dioxotetracyclo[8.7.0.0?,?.0??,??]heptadec-7-en-14-yl]-6-hydroxy-2-methyl-5-oxohept-3-en-2-yl acetate; 19-Norlanosta-5,23-diene-3,11,22-trione, 25-(acetyloxy)-2,16,20-trihydroxy-9-methyl-, (2.beta.,9.beta.,10.alpha.,16.alpha.,23E)-; (2.BETA.,9.BETA.,10.ALPHA.,16.ALPHA.,23E)-25-(ACETYLOXY)-2,16,20-TRIHYDROXY-9-METHYL-19-NORLANOSTA-5,23-DIENE-3,11,22-TRIONE; (2S,4R,23E)-2,16beta,20-trihydroxy-9beta,10,14-trimethyl-1,11,22-trioxo-4,9-cyclo-9,10-secocholesta-5,23-dien-25-yl acetate; 19-Norlanosta-5,23-diene-3,11,22-trione, 25-(acetyloxy)-2,16,20-trihydroxy-9-methyl-, (2beta,9beta,10alpha,16alpha,23E)-; 19-Norlanosta-5,11,22-trione, 25-(acetyloxy)-2,16,20-trihydroxy-9-methyl-, [2.beta.,.gamma.,.beta.,10.alpha.,16.alpha.]-; 19-Norlanosta-5,11,22-trione, 25-(acetyloxy)-2,16,20-trihydroxy-9-methyl-, (2.beta.,9.beta.,10.alpha.,16.alpha.,23E)-; (2beta,9beta,10alpha,16alpha,23E)-25-(acetyloxy)-2,16,20-trihydroxy-9-methyl-19-Norlanosta-5,23-diene-3,11,22-trione; 19-Nor-9-beta,10-alpha-lanosta-5,23-diene-3,11,22-trione, 2-beta,16-alpha,20,25-tetrahydroxy-9-methyl-, 25-acetate; 19-Nor-9beta,10alpha-lanosta-5,23-diene-3,11,22-trione, 2beta,16alpha,20,25-tetrahydroxy-9-methyl-, 25-acetate; 2beta,16alpha,20,25-tetrahydroxy-9-methyl-3,11,22-trioxo-19-nor-9beta,10alpha-lanosta-5,23-dien-25-yl acetate; 2beta,16alpha,20,25-tetrahydroxy-9-methyl-19-nor-9beta,10alpha-lanosta-5,23-diene-3,11,22-trione, 25-acetate; 19-nor-9.beta.,23-diene-3,11,22-trione, 9-methyl-2.beta.,16.alpha.,20,25-tetrahydroxy-, 25-acetate; 25-(Acetyloxy)-2,16,20-trihydroxy-9-methyl-19-norlanosta-5,23-diene-3,11,22-trione; Cucurbitacin B hydrate, >=97\\% (HPLC); CUCURBITACIN R - DATISCA PRINCIPLE B; 1,2-DIHYDRO-.ALPHA.-ELATERIN; 1,2-Dihydro-alpha-elaterin; cucurbitacin B 2-sulfate; Cucurbitacin B hydrate; CUCURBITACIN B [INCI]; CUCURBITACIN B [MI]; (+)-Cucurbitacin B; Cucurbitacine B; Cucurbitacin-B; Cucurbitacin; ST 32:6;O8; DATISCACIN; Amarine; Cuc B; Cucurbitacin B



数据库引用编号

26 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

171 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 19 AKT1, ANXA5, BCL2, BCL2L1, BIRC5, CASP3, CCNB1, CCND1, CDKN1A, CIP2A, EGFR, JAK2, MTOR, MYC, PIK3CA, PTGS2, PTK2, STAT3, VEGFA
Peripheral membrane protein 5 ANXA5, JAK2, MTOR, PTGS2, PTK2
Endosome membrane 1 EGFR
Endoplasmic reticulum membrane 4 BCL2, EGFR, MTOR, PTGS2
Mitochondrion membrane 1 BCL2L1
Nucleus 14 AKT1, BCL2, BIRC5, CASP3, CCNB1, CCND1, CDKN1A, EGFR, JAK2, MTOR, MYC, PTK2, STAT3, VEGFA
cytosol 15 AKT1, ANXA5, BCL2, BCL2L1, BIRC5, CASP3, CCNB1, CCND1, CDKN1A, CIP2A, JAK2, MTOR, PIK3CA, PTK2, STAT3
dendrite 1 MTOR
nuclear body 1 CDKN1A
phagocytic vesicle 1 MTOR
centrosome 4 BCL2L1, CCNB1, CCND1, PTK2
nucleoplasm 10 AKT1, BIRC5, CASP3, CCNB1, CCND1, CDKN1A, JAK2, MTOR, MYC, STAT3
RNA polymerase II transcription regulator complex 1 STAT3
Cell membrane 4 AKT1, EGFR, ITGAM, PTK2
Cytoplasmic side 3 BCL2L1, MTOR, PTK2
lamellipodium 2 AKT1, PIK3CA
ruffle membrane 1 EGFR
Early endosome membrane 1 EGFR
Golgi apparatus membrane 1 MTOR
cell cortex 2 AKT1, PTK2
cell junction 1 EGFR
cell surface 3 EGFR, ITGAM, VEGFA
glutamatergic synapse 4 AKT1, CASP3, EGFR, JAK2
Golgi apparatus 1 VEGFA
Golgi membrane 2 EGFR, MTOR
lysosomal membrane 1 MTOR
mitochondrial inner membrane 1 BCL2L1
neuronal cell body 1 CASP3
postsynapse 2 AKT1, JAK2
sarcolemma 1 ANXA5
Cytoplasm, cytosol 1 BCL2L1
Lysosome 1 MTOR
endosome 1 EGFR
plasma membrane 8 AKT1, CIP2A, EGFR, ITGAM, JAK2, PIK3CA, PTK2, STAT3
synaptic vesicle membrane 1 BCL2L1
Membrane 10 AKT1, ANXA5, BCL2, CCNB1, EGFR, ITGAM, JAK2, MTOR, MYC, VEGFA
apical plasma membrane 1 EGFR
basolateral plasma membrane 1 EGFR
caveola 2 JAK2, PTGS2
extracellular exosome 2 ANXA5, ITGAM
Lysosome membrane 1 MTOR
endoplasmic reticulum 4 BCL2, BCL2L1, PTGS2, VEGFA
extracellular space 3 EGFR, ITGAM, VEGFA
perinuclear region of cytoplasm 4 CDKN1A, EGFR, PIK3CA, PTK2
adherens junction 1 VEGFA
bicellular tight junction 1 CCND1
intercalated disc 1 PIK3CA
mitochondrion 2 BCL2, BCL2L1
protein-containing complex 7 AKT1, BCL2, BIRC5, CDKN1A, EGFR, MYC, PTGS2
intracellular membrane-bounded organelle 1 PTK2
Microsome membrane 2 MTOR, PTGS2
postsynaptic density 1 CASP3
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 2 EGFR, ITGAM
Secreted 1 VEGFA
extracellular region 2 ANXA5, VEGFA
cytoplasmic side of plasma membrane 1 JAK2
Mitochondrion outer membrane 3 BCL2, BCL2L1, MTOR
Single-pass membrane protein 2 BCL2, BCL2L1
mitochondrial outer membrane 3 BCL2, BCL2L1, MTOR
Mitochondrion matrix 1 BCL2L1
mitochondrial matrix 2 BCL2L1, CCNB1
anchoring junction 1 PTK2
transcription regulator complex 1 STAT3
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 2 BCL2L1, PTK2
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 BCL2L1
Nucleus membrane 3 BCL2, BCL2L1, CCND1
Bcl-2 family protein complex 2 BCL2, BCL2L1
nuclear membrane 4 BCL2, BCL2L1, CCND1, EGFR
external side of plasma membrane 2 ANXA5, ITGAM
Secreted, extracellular space, extracellular matrix 1 VEGFA
dendritic spine 1 PTK2
microtubule cytoskeleton 2 AKT1, BIRC5
nucleolus 2 CDKN1A, MYC
midbody 1 BIRC5
cell-cell junction 1 AKT1
vesicle 1 AKT1
Cytoplasm, perinuclear region 1 PTK2
Membrane raft 3 EGFR, ITGAM, JAK2
pore complex 1 BCL2
Cell junction, focal adhesion 1 PTK2
Cytoplasm, cytoskeleton 1 PTK2
Cytoplasm, cytoskeleton, spindle 1 BIRC5
focal adhesion 4 ANXA5, EGFR, JAK2, PTK2
microtubule 1 BIRC5
spindle 2 AKT1, BIRC5
extracellular matrix 1 VEGFA
intracellular vesicle 1 EGFR
Nucleus, PML body 1 MTOR
PML body 1 MTOR
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
collagen-containing extracellular matrix 1 ANXA5
secretory granule 1 VEGFA
interphase microtubule organizing center 1 BIRC5
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
receptor complex 1 EGFR
Zymogen granule membrane 1 ANXA5
neuron projection 1 PTGS2
ciliary basal body 2 AKT1, PTK2
chromatin 2 MYC, STAT3
cell projection 1 PTK2
Chromosome 2 BIRC5, CIP2A
cytoskeleton 2 JAK2, PTK2
Cytoplasm, cytoskeleton, cilium basal body 1 PTK2
centriole 1 BIRC5
Nucleus, nucleolus 1 MYC
spindle pole 1 CCNB1
nuclear chromosome 1 BIRC5
Cytoplasm, cell cortex 1 PTK2
nuclear envelope 2 MTOR, MYC
Endomembrane system 2 JAK2, MTOR
endosome lumen 1 JAK2
Chromosome, centromere 1 BIRC5
Chromosome, centromere, kinetochore 1 BIRC5
Nucleus, nucleoplasm 1 MYC
specific granule membrane 1 ITGAM
tertiary granule membrane 1 ITGAM
euchromatin 1 JAK2
myelin sheath 1 BCL2
stress fiber 1 PTK2
basal plasma membrane 1 EGFR
synaptic membrane 1 EGFR
plasma membrane raft 1 ITGAM
endoplasmic reticulum lumen 1 PTGS2
transcription repressor complex 1 CCND1
platelet alpha granule lumen 1 VEGFA
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
kinetochore 1 BIRC5
RNA polymerase II transcription repressor complex 1 MYC
chromosome, centromeric region 1 BIRC5
outer kinetochore 1 CCNB1
vesicle membrane 1 ANXA5
clathrin-coated endocytic vesicle membrane 1 EGFR
chromosome passenger complex 1 BIRC5
extrinsic component of cytoplasmic side of plasma membrane 1 JAK2
cytoplasmic microtubule 1 BIRC5
spindle microtubule 1 BIRC5
survivin complex 1 BIRC5
death-inducing signaling complex 1 CASP3
Rough endoplasmic reticulum 1 MYC
Cytoplasmic vesicle, phagosome 1 MTOR
extrinsic component of plasma membrane 1 JAK2
granulocyte macrophage colony-stimulating factor receptor complex 1 JAK2
interleukin-12 receptor complex 1 JAK2
interleukin-23 receptor complex 1 JAK2
integrin complex 1 ITGAM
cyclin-dependent protein kinase holoenzyme complex 2 CCND1, CDKN1A
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
Myc-Max complex 1 MYC
integrin alphaM-beta2 complex 1 ITGAM
cyclin B1-CDK1 complex 1 CCNB1
endothelial microparticle 1 ANXA5
BAD-BCL-2 complex 1 BCL2
cyclin D1-CDK4 complex 1 CCND1
PCNA-p21 complex 1 CDKN1A
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
cyclin D1-CDK6 complex 1 CCND1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[Isoform Bcl-X(L)]: Mitochondrion inner membrane 1 BCL2L1
nucleoplasmic reticulum 1 MYC


文献列表

  • Carina Stein, Johanna Voigts, Lisa Niederreiter, Stefanie Kowarschik, Roman Huber, Volker M Lüth. Antiproliferative and immunomodulative potential of Citrullus colocynthis and its bioactive compounds in human lymphocytes and lung cells. Journal of ethnopharmacology. 2024 Jun; 328(?):118053. doi: 10.1016/j.jep.2024.118053. [PMID: 38499257]
  • Hong Wu, Tianjun Ma, Mei He, Wenkai Xie, Xueyan Wang, Liuping Lu, Hui Wang, Ying Cui. Cucurbitacin B modulates M2 macrophage differentiation and attenuates osteosarcoma progression via PI3K/AKT pathway. Phytotherapy research : PTR. 2024 May; 38(5):2215-2233. doi: 10.1002/ptr.8146. [PMID: 38411031]
  • Qi-Zhang Li, Yu-Ying Chen, Qiu-Ping Liu, Zhi-Hui Feng, Lei Zhang, Hong Zhang. Cucurbitacin B suppresses hepatocellular carcinoma progression through inducing DNA damage-dependent cell cycle arrest. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2024 Apr; 126(?):155177. doi: 10.1016/j.phymed.2023.155177. [PMID: 38412667]
  • Shu Dai, Rui Wu, Ke Fu, Yanzhi Li, Chenghao Yao, Yanfang Liu, Fang Zhang, Shenglin Zhang, Yiling Guo, Yuxin Yao, Yunxia Li. Exploring the effect and mechanism of cucurbitacin B on cholestatic liver injury based on network pharmacology and experimental verification. Journal of ethnopharmacology. 2024 Mar; 322(?):117584. doi: 10.1016/j.jep.2023.117584. [PMID: 38104874]
  • Filiz Bakar-Ates, Erva Ozkan. Cucurbitacin B and erastin co-treatment synergistically induced ferroptosis in breast cancer cells via altered iron-regulating proteins and lipid peroxidation. Toxicology in vitro : an international journal published in association with BIBRA. 2023 Nov; ?(?):105732. doi: 10.1016/j.tiv.2023.105732. [PMID: 37956772]
  • Sandipan Jana, Srijon Gayen, Barun Dasgupta, Seha Singha, Jayashree Mondal, Amit Kar, Abhimanyu Nepal, Suparna Ghosh, Rajan Rajabalaya, Sheba R David, Ashok Kumar Balaraman, Asis Bala, Pulok K Mukerjee, Pallab Kanti Haldar. Investigation on anti-diabetic efficacy of a Cucurbitaceae food plant from the North-East region of India: Exploring the molecular mechanism through modulation of oxidative stress and glycosylated hemoglobin (HbA1c). Endocrine, metabolic & immune disorders drug targets. 2023 Sep; ?(?):. doi: 10.2174/1871530323666230907115818. [PMID: 37691221]
  • Ahmed A Ishola, Kayode E Adewole, Joseph O Adebayo, Elizabeth A Balogun. Potentials of Terpenoids as Inhibitors of Multiple Plasmodium falciparum Protein Drug Targets. Acta parasitologica. 2023 Aug; ?(?):. doi: 10.1007/s11686-023-00711-z. [PMID: 37603126]
  • Guizhou Hu, Wenya Liu, Liyan Li. Identification and quantification of cucurbitacin in watermelon frost using molecular networking integrated with ultra-high-performance liquid chromatography-tandem mass spectrometry. Journal of separation science. 2023 Jun; ?(?):e2300019. doi: 10.1002/jssc.202300019. [PMID: 37269211]
  • Qi Wang, Xiaohui Li, Chen Zhang, Ning Yue, Simeng Li, Xueying Chen, Fen Jin, Hua Shao, Jing Wang. Discovery and Identification of the Key Contributor to the Bitter Taste in Oriental Melon after Forchlorfenuron Application. Journal of agricultural and food chemistry. 2023 Apr; 71(16):6415-6423. doi: 10.1021/acs.jafc.3c00380. [PMID: 37039537]
  • Shu Dai, Cheng Wang, XingTao Zhao, Cheng Ma, Ke Fu, Yanfang Liu, Cheng Peng, Yunxia Li. Cucurbitacin B: A review of its pharmacology, toxicity, and pharmacokinetics. Pharmacological research. 2023 01; 187(?):106587. doi: 10.1016/j.phrs.2022.106587. [PMID: 36460279]
  • Haoyue Zhang, Bei Zhao, HuiZhen Wei, Hairong Zeng, Dongya Sheng, Yang Zhang. Cucurbitacin B controls M2 macrophage polarization to suppresses metastasis via targeting JAK-2/STAT3 signalling pathway in colorectal cancer. Journal of ethnopharmacology. 2022 Apr; 287(?):114915. doi: 10.1016/j.jep.2021.114915. [PMID: 34954267]
  • Zhiyong Liu, Manish Kumar, Atul Kabra. Cucurbitacin B exerts neuroprotection in a murine Alzheimer's disease model by modulating oxidative stress, inflammation, and neurotransmitter levels. Frontiers in bioscience (Landmark edition). 2022 02; 27(2):71. doi: 10.31083/j.fbl2702071. [PMID: 35227014]
  • Tingting Chen, Bingxiang Ma, Shi Lu, Lupeng Zeng, Huaying Wang, Wanhua Shi, Linying Zhou, Yaokun Xia, Xi Zhang, Jing Zhang, Jinghua Chen. Cucumber-Derived Nanovesicles Containing Cucurbitacin B for Non-Small Cell Lung Cancer Therapy. International journal of nanomedicine. 2022; 17(?):3583-3599. doi: 10.2147/ijn.s362244. [PMID: 35974872]
  • Pornpatsorn Lertphadungkit, Xue Qiao, Supaart Sirikantaramas, Veena Satitpatipan, Min Ye, Somnuk Bunsupa. De novo transcriptome analysis and identification of candidate genes associated with triterpenoid biosynthesis in Trichosanthes cucumerina L. Plant cell reports. 2021 Oct; 40(10):1845-1858. doi: 10.1007/s00299-021-02748-8. [PMID: 34228189]
  • Miwako Toyofuku, Daiki Fujinaga, Kazue Inaba, Tomoki Funahashi, Yuuta Fujikawa, Hideshi Inoue, Hiroshi Kataoka, Ryusuke Niwa, Hajime Ono. The plant-derived triterpenoid, cucurbitacin B, but not cucurbitacin E, inhibits the developmental transition associated with ecdysone biosynthesis in Drosophila melanogaster. Journal of insect physiology. 2021 10; 134(?):104294. doi: 10.1016/j.jinsphys.2021.104294. [PMID: 34389412]
  • Renyikun Yuan, Wentong Zhao, Qin-Qin Wang, Jia He, Shan Han, Hongwei Gao, Yulin Feng, Shilin Yang. Cucurbitacin B inhibits non-small cell lung cancer in vivo and in vitro by triggering TLR4/NLRP3/GSDMD-dependent pyroptosis. Pharmacological research. 2021 08; 170(?):105748. doi: 10.1016/j.phrs.2021.105748. [PMID: 34217831]
  • Xiaoli Wang, Yudi Bai, Xue Yan, Jin Li, Bingxue Lin, Linzhi Dai, Cheng Xu, Hua Li, Dong Li, Tai Yang, Tao Zhang. Cucurbitacin B exhibits antitumor effects on CD133+ HepG2 liver cancer stem cells by inhibiting JAK2/STAT3 signaling pathway. Anti-cancer drugs. 2021 06; 32(5):548-557. doi: 10.1097/cad.0000000000001062. [PMID: 33675610]
  • Shuai Huang, Bihui Cao, Jinling Zhang, Yunfei Feng, Lu Wang, Xiaopei Chen, Hang Su, Shengrong Liao, Jinggong Liu, Jun Yan, Baoxia Liang. Induction of ferroptosis in human nasopharyngeal cancer cells by cucurbitacin B: molecular mechanism and therapeutic potential. Cell death & disease. 2021 03; 12(3):237. doi: 10.1038/s41419-021-03516-y. [PMID: 33664249]
  • Xiaoli Wang, Hua Li, Dong Li, Yudi Bai, Yao Zhang, Xue Yan, Jin Li, Ri Zhao, Jiahui Liu, Wei Liu, Maolin Shi, Cheng Xu, Tai Yang, Tao Zhang. Sorafenib and CuB exert synergistic antitumor effects against hepatocellular carcinoma cells via inhibition of STAT3 phosphorylation. FEBS open bio. 2021 01; 11(1):133-145. doi: 10.1002/2211-5463.13035. [PMID: 33176070]
  • Xianjing Zhang, Huihui Li, Wenqiong Wang, Tong Chen, Lijiang Xuan. Lipid-Lowering Activities of Cucurbitacins Isolated from Trichosanthes cucumeroides and Their Synthetic Derivatives. Journal of natural products. 2020 12; 83(12):3536-3544. doi: 10.1021/acs.jnatprod.0c00364. [PMID: 33269591]
  • Li Yang, Qinfang Ao, Qingmei Zhong, Wen Li, Wenhong Li. SIRT1/IGFBPrP1/TGF β1 axis involved in cucurbitacin B ameliorating concanavalin A-induced mice liver fibrosis. Basic & clinical pharmacology & toxicology. 2020 Nov; 127(5):371-379. doi: 10.1111/bcpt.13446. [PMID: 32452080]
  • Qi Tian, Jianbo Guo, Qi Zhang, Liang Fang, Chao Liu, Hui Xu. Development and Evaluation of Cucurbitacin B Microemulsion: the Effect of Oil Phase and Aqueous Phase on Drug Percutaneous Absorption Based on ATR-FTIR Spectroscopy and Molecular Modeling. AAPS PharmSciTech. 2020 Sep; 21(7):258. doi: 10.1208/s12249-020-01797-8. [PMID: 32895882]
  • Fei Luo, Qi Li, Lei Yu, Chengyang Wang, Hongyan Qi. High concentrations of CPPU promotes cucurbitacin B accumulation in melon (Cucumis melo var. makuwa Makino) fruit by inducing transcription factor CmBt. Plant physiology and biochemistry : PPB. 2020 Sep; 154(?):770-781. doi: 10.1016/j.plaphy.2020.05.033. [PMID: 32827970]
  • Filiz Bakar-Ates, Erva Ozkan, Ceyda Tuba Sengel-Turk. Encapsulation of cucurbitacin B into lipid polymer hybrid nanocarriers induced apoptosis of MDAMB231 cells through PARP cleavage. International journal of pharmaceutics. 2020 Aug; 586(?):119565. doi: 10.1016/j.ijpharm.2020.119565. [PMID: 32592898]
  • Xiaoyi Zhang, Xiuyao Zhang, Xinxin Cai, Ruifen Li. [Simultaneous determination of cucurbitacin B, E and I in plasma, urine, and melon and fruit vegetables by ultra performance liquid chromatography-triple quadrupole mass spectrometry using atmospheric pressure chemical ionization]. Se pu = Chinese journal of chromatography. 2020 May; 38(5):564-571. doi: 10.3724/sp.j.1123.2019.09018. [PMID: 34213241]
  • Md Shahiduzzaman, Refaat Ras, Giovanni Widmer. Effect of Ginsenoside-Rh2 and Curcurbitacin-B on Cryptosporidium parvum in vitro. Experimental parasitology. 2020 May; 212(?):107873. doi: 10.1016/j.exppara.2020.107873. [PMID: 32165146]
  • Phatu W Mashela, Ebrahim Shokoohi, Kgabo M Pofu. Morphological adjustment in free-living Steinernema feltiae infective juveniles to increasing concentration of Nemafric-BL phytonematicide. PloS one. 2020; 15(1):e0227448. doi: 10.1371/journal.pone.0227448. [PMID: 31899763]
  • Sirinapha Klungsaeng, Veerapol Kukongviriyapan, Auemduan Prawan, Sarinya Kongpetch, Laddawan Senggunprai. Targeted Modulation of FAK/PI3K/PDK1/AKT and FAK/p53 Pathways by Cucurbitacin B for the Antiproliferation Effect Against Human Cholangiocarcinoma Cells. The American journal of Chinese medicine. 2020; 48(6):1475-1489. doi: 10.1142/s0192415x2050072x. [PMID: 32907364]
  • Parichat Suebsakwong, Jie Wang, Phorntip Khetkam, Natthida Weerapreeyakul, Jing Wu, Yun Du, Zhu-Jun Yao, Jian-Xin Li, Apichart Suksamrarn. A Bioreductive Prodrug of Cucurbitacin B Significantly Inhibits Tumor Growth in the 4T1 Xenograft Mice Model. ACS medicinal chemistry letters. 2019 Oct; 10(10):1400-1406. doi: 10.1021/acsmedchemlett.9b00161. [PMID: 31620225]
  • Natthaphon Hunsakunachai, Nitra Nuengchamnong, Weena Jiratchariyakul, Tanawan Kummalue, Phisit Khemawoot. Pharmacokinetics of cucurbitacin B from Trichosanthes cucumerina L. in rats. BMC complementary and alternative medicine. 2019 Jul; 19(1):157. doi: 10.1186/s12906-019-2568-7. [PMID: 31272429]
  • Hidayat Hussain, Ivan R Green, Muhammad Saleem, Khanzadi F Khattak, Muhammad Irshad, Maroof Ali. Cucurbitacins as Anticancer Agents: A Patent Review. Recent patents on anti-cancer drug discovery. 2019; 14(2):133-143. doi: 10.2174/1574892813666181119123035. [PMID: 30451116]
  • Hafiz Kamran Yousaf, Tisheng Shan, Xuewei Chen, Kangsheng Ma, Xueyan Shi, Nicolas Desneux, Antonio Biondi, Xiwu Gao. Impact of the secondary plant metabolite Cucurbitacin B on the demographical traits of the melon aphid, Aphis gossypii. Scientific reports. 2018 11; 8(1):16473. doi: 10.1038/s41598-018-34821-w. [PMID: 30405179]
  • Yushuang Liu, Guangying Chen, Xiaoyu Chen, Shi-Xin Chen, Li-She Gan, Tao Yuan. Colocynthenins A-D, Ring-A seco-Cucurbitane Triterpenoids from the Fruits of Citrullus colocynthis. Journal of natural products. 2018 09; 81(9):2115-2119. doi: 10.1021/acs.jnatprod.8b00461. [PMID: 30183289]
  • Carlotta Granchi. ATP citrate lyase (ACLY) inhibitors: An anti-cancer strategy at the crossroads of glucose and lipid metabolism. European journal of medicinal chemistry. 2018 Sep; 157(?):1276-1291. doi: 10.1016/j.ejmech.2018.09.001. [PMID: 30195238]
  • Xian-Mei Piao, Feng Gao, Jiu-Xin Zhu, Li-Juan Wang, Xin Zhao, Xin Li, Miao-Miao Sheng, Yan Zhang. Cucurbitacin B inhibits tumor angiogenesis by triggering the mitochondrial signaling pathway in endothelial cells. International journal of molecular medicine. 2018 Aug; 42(2):1018-1025. doi: 10.3892/ijmm.2018.3647. [PMID: 29717773]
  • Chuanshan Zou, Guifen Liu, Suning Liu, Shumin Liu, Qisheng Song, Jian Wang, Qili Feng, Yunlin Su, Sheng Li. Cucurbitacin B acts a potential insect growth regulator by antagonizing 20-hydroxyecdysone activity. Pest management science. 2018 Jun; 74(6):1394-1403. doi: 10.1002/ps.4817. [PMID: 29205800]
  • Yang Xiao, Zheng Yang, Qing-Qing Wu, Xiao-Han Jiang, Yuan Yuan, Wei Chang, Zhou Yan Bian, Jin Xiu Zhu, Qi-Zhu Tang. Cucurbitacin B Protects Against Pressure Overload Induced Cardiac Hypertrophy. Journal of cellular biochemistry. 2017 11; 118(11):3899-3910. doi: 10.1002/jcb.26041. [PMID: 28390176]
  • Zhibin Wang, Wenbo Zhu, Mingjie Gao, Chengcui Wu, Chunjuan Yang, Jing Yang, Gaosong Wu, Bingyou Yang, Haixue Kuang. Simultaneous determination of cucurbitacin B and cucurbitacin E in rat plasma by UHPLC-MS/MS: A pharmacokinetics study after oral administration of cucurbitacin tablets. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2017 Oct; 1065-1066(?):63-69. doi: 10.1016/j.jchromb.2017.09.024. [PMID: 28946127]
  • Lucas Lourenço Marostica, André Luís Branco de Barros, Juliana Oliveira, Breno Souza Salgado, Geovanni Dantas Cassali, Elaine Amaral Leite, Valbert Nascimento Cardoso, Karen Luise Lang, Miguel Soriano Balparda Caro, Fernando Javier Durán, Eloir Paulo Schenkel, Mônica Cristina de Oliveira, Cláudia Maria Oliveira Simões. Antitumor effectiveness of a combined therapy with a new cucurbitacin B derivative and paclitaxel on a human lung cancer xenograft model. Toxicology and applied pharmacology. 2017 08; 329(?):272-281. doi: 10.1016/j.taap.2017.06.007. [PMID: 28610991]
  • Nicole Bajcsik, Rudolf Pfab, Jörg Pietsch. Simultaneous determination of cucurbitacin B, E, I and E-glucoside in plant material and body fluids by HPLC-MS. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2017 May; 1052(?):128-134. doi: 10.1016/j.jchromb.2017.03.030. [PMID: 28376351]
  • Shu Hua, Xing Liu, Shuguang Lv, Zhifang Wang. Protective Effects of Cucurbitacin B on Acute Lung Injury Induced by Sepsis in Rats. Medical science monitor : international medical journal of experimental and clinical research. 2017 Mar; 23(?):1355-1362. doi: 10.12659/msm.900523. [PMID: 28315572]
  • Sonam Sinha, Sajid Khan, Samriddhi Shukla, Amar Deep Lakra, Sudhir Kumar, Gunjan Das, Rakesh Maurya, Syed Musthapa Meeran. Cucurbitacin B inhibits breast cancer metastasis and angiogenesis through VEGF-mediated suppression of FAK/MMP-9 signaling axis. The international journal of biochemistry & cell biology. 2016 08; 77(Pt A):41-56. doi: 10.1016/j.biocel.2016.05.014. [PMID: 27210504]
  • Waiou Zhao, Dahai Xu, Weiwei Yan, Yushi Wang, Nan Zhang. Development and validation of a UPLC-MS/MS method for the determination of cucurbitacin B in rat plasma and application to a pharmacokinetic study. Biomedical chromatography : BMC. 2016 Apr; 30(4):503-7. doi: 10.1002/bmc.3571. [PMID: 26207321]
  • Samriddhi Shukla, Sonam Sinha, Sajid Khan, Sudhir Kumar, Kavita Singh, Kalyan Mitra, Rakesh Maurya, Syed Musthapa Meeran. Cucurbitacin B inhibits the stemness and metastatic abilities of NSCLC via downregulation of canonical Wnt/β-catenin signaling axis. Scientific reports. 2016 Feb; 6(?):21860. doi: 10.1038/srep21860. [PMID: 26905250]
  • Yanan Niu, Wen Sun, Jin-Jian Lu, Dik-Lung Ma, Chung-Hang Leung, Lixia Pei, Xiuping Chen. PTEN Activation by DNA Damage Induces Protective Autophagy in Response to Cucurbitacin B in Hepatocellular Carcinoma Cells. Oxidative medicine and cellular longevity. 2016; 2016(?):4313204. doi: 10.1155/2016/4313204. [PMID: 28042385]
  • Filiz Bakar. Cucurbitacin B Enhances the Anticancer Effect of Imatinib Mesylate Through Inhibition of MMP-2 Expression in MCF-7 and SW480 Tumor Cell Lines. Anti-cancer agents in medicinal chemistry. 2016; 16(6):747-54. doi: 10.2174/1871520616666160211124038. [PMID: 26863882]
  • Yuqi Sun, Jie Zhang, Jiaying Zhou, Ziyuan Huang, Haiyang Hu, Mingxi Qiao, Xiuli Zhao, Dawei Chen. Synergistic effect of cucurbitacin B in combination with curcumin via enhancing apoptosis induction and reversing multidrug resistance in human hepatoma cells. European journal of pharmacology. 2015 Dec; 768(?):28-40. doi: 10.1016/j.ejphar.2015.10.003. [PMID: 26452516]
  • Ling Cheng, Ping-hua Xu, Bao-de Shen, Gang Shen, Juan-juan Li, Ling Qiu, Chao-yong Liu, Hai-long Yuan, Jin Han. Improve bile duct-targeted drug delivery and therapeutic efficacy for cholangiocarcinoma by cucurbitacin B loaded phospholipid complex modified with berberine hydrochloride. International journal of pharmaceutics. 2015 Jul; 489(1-2):148-57. doi: 10.1016/j.ijpharm.2015.04.024. [PMID: 25882012]
  • Minju Kim, Sun Young Park, Mei Ling Jin, Geuntae Park, Hong-Joo Son. Cucurbitacin B inhibits immunomodulatory function and the inflammatory response in macrophages. Immunopharmacology and immunotoxicology. 2015; 37(5):473-80. doi: 10.3109/08923973.2015.1085065. [PMID: 26466646]
  • Yajuan Gao, Mohammad Shyful Islam, Jiang Tian, Vivian Wai Yan Lui, Dong Xiao. Inactivation of ATP citrate lyase by Cucurbitacin B: A bioactive compound from cucumber, inhibits prostate cancer growth. Cancer letters. 2014 Jul; 349(1):15-25. doi: 10.1016/j.canlet.2014.03.015. [PMID: 24690568]
  • Azamal Husen, Khwaja Salahuddin Siddiqi. Carbon and fullerene nanomaterials in plant system. Journal of nanobiotechnology. 2014 Apr; 12(?):16. doi: 10.1186/1477-3155-12-16. [PMID: 24766786]
  • Cho-Rong Seo, Dong Kwon Yang, No-Joon Song, Ui Jeong Yun, A-Ryeong Gwon, Dong-Gyu Jo, Jae Youl Cho, Keejung Yoon, Jee-Yin Ahn, Chu Won Nho, Woo Jin Park, Seung Yul Yang, Kye Won Park. Cucurbitacin B and cucurbitacin I suppress adipocyte differentiation through inhibition of STAT3 signaling. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2014 Feb; 64(?):217-24. doi: 10.1016/j.fct.2013.11.040. [PMID: 24316209]
  • Jiajie Guo, Guosheng Wu, Jiaolin Bao, Wenhui Hao, Jinjian Lu, Xiuping Chen. Cucurbitacin B induced ATM-mediated DNA damage causes G2/M cell cycle arrest in a ROS-dependent manner. PloS one. 2014; 9(2):e88140. doi: 10.1371/journal.pone.0088140. [PMID: 24505404]
  • Qingyuan Lv, Xianyi Li, Baode Shen, He Xu, Chengying Shen, Ling Dai, Jinxia Bai, Hailong Yuan, Jin Han. Application of spray granulation for conversion of mixed phospholipid-bile salt micelles to dry powder form: influence of drug hydrophobicity on nanoparticle reagglomeration. International journal of nanomedicine. 2014; 9(?):505-15. doi: 10.2147/ijn.s56215. [PMID: 24531119]
  • Guo Jianbo, Li Xue, Yu Hongdan, Tang Zhaohui, Tang Xing, Cai Chenchen, Xu Jinghua, Xu Hui. The anti-melanoma efficiency of the intratumoral injection of cucurbitacin-loaded sustained-release carriers: a PLGA particle system. Journal of pharmaceutical sciences. 2013 Aug; 102(8):2550-63. doi: 10.1002/jps.23604. [PMID: 23729371]
  • Haiyang Hu, Dan Liu, Xiuli Zhao, Mingxi Qiao, Dawei Chen. Preparation, characterization, cellular uptake and evaluation in vivo of solid lipid nanoparticles loaded with cucurbitacin B. Drug development and industrial pharmacy. 2013 May; 39(5):770-9. doi: 10.3109/03639045.2012.702348. [PMID: 22794139]
  • Chittaranjan Kole, Phullara Kole, K Manoj Randunu, Poonam Choudhary, Ramakrishna Podila, Pu Chun Ke, Apparao M Rao, Richard K Marcus. Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC biotechnology. 2013 Apr; 13(?):37. doi: 10.1186/1472-6750-13-37. [PMID: 23622112]
  • Suwit Duangmano, Phorntip Sae-Lim, Apichart Suksamrarn, Frederick E Domann, Pimpicha Patmasiriwat. Cucurbitacin B inhibits human breast cancer cell proliferation through disruption of microtubule polymerization and nucleophosmin/B23 translocation. BMC complementary and alternative medicine. 2012 Oct; 12(?):185. doi: 10.1186/1472-6882-12-185. [PMID: 23062075]
  • Karen Luise Lang, Izabella Thaís Silva, Lara Almida Zimmermann, Vanessa Rocha Machado, Marina Rodrigues Teixeira, María Ivana Lapuh, Mariana Alejandra Galetti, Jorge Alejandro Palermo, Gabriela Myriam Cabrera, Lílian Sibelle Campos Bernardes, Cláudia Maria Oliveira Simões, Eloir Paulo Schenkel, Miguel Soriano Balparda Caro, Fernando Javier Durán. Synthesis and cytotoxic activity evaluation of dihydrocucurbitacin B and cucurbitacin B derivatives. Bioorganic & medicinal chemistry. 2012 May; 20(9):3016-30. doi: 10.1016/j.bmc.2012.03.001. [PMID: 22472043]
  • Sumana Dakeng, Suwit Duangmano, Weena Jiratchariyakul, Yaowalak U-Pratya, Oliver Bögler, Pimpicha Patmasiriwat. Inhibition of Wnt signaling by cucurbitacin B in breast cancer cells: reduction of Wnt-associated proteins and reduced translocation of galectin-3-mediated β-catenin to the nucleus. Journal of cellular biochemistry. 2012 Jan; 113(1):49-60. doi: 10.1002/jcb.23326. [PMID: 21866566]
  • Dhong Hyun Lee, Nils H Thoennissen, Catherine Goff, Gabriela B Iwanski, Charles Forscher, Ngan B Doan, Jonathan W Said, H Phillip Koeffler. Synergistic effect of low-dose cucurbitacin B and low-dose methotrexate for treatment of human osteosarcoma. Cancer letters. 2011 Jul; 306(2):161-170. doi: 10.1016/j.canlet.2011.03.001. [PMID: 21440986]
  • Yingrou Wei, Guocai Wang, Xiaoqi Zhang, Ying Wang, Wencai Ye. [Studies on chemical constituents in roots of Helicteres angustifolia]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2011 May; 36(9):1193-7. doi: . [PMID: 21842648]
  • Wenyu Wang, Xiuli Zhao, Haiyang Hu, Dawei Chen, Jianchun Gu, Yihui Deng, Jin Sun. Galactosylated solid lipid nanoparticles with cucurbitacin B improves the liver targetability. Drug delivery. 2010 Apr; 17(3):114-22. doi: 10.3109/10717540903580176. [PMID: 20148709]
  • Rony Abou-Khalil, Alia Jraij, Jacques Magdalou, Naïm Ouaini, Daniel Tome, Hélène Greige-Gerges. Interaction of cucurbitacins with human serum albumin: Thermodynamic characteristics and influence on the binding of site specific ligands. Journal of photochemistry and photobiology. B, Biology. 2009 Jun; 95(3):189-95. doi: 10.1016/j.jphotobiol.2009.03.005. [PMID: 19380237]
  • Sumonthip Kongtun, Weena Jiratchariyakul, Tanawan Kummalue, Peerapan Tan-ariya, Somyos Kunnachak, August Wilhelm Frahm. Cytotoxic properties of root extract and fruit juice of Trichosanthes cucumerina. Planta medica. 2009 Jun; 75(8):839-42. doi: 10.1055/s-0029-1185455. [PMID: 19288406]
  • Chuan Chen, Shigao Qiang, Liguang Lou, Weimin Zhao. Cucurbitane-type triterpenoids from the stems of Cucumis melo. Journal of natural products. 2009 May; 72(5):824-9. doi: 10.1021/np800692t. [PMID: 19348465]
  • Jean Théophile Banzouzi, Patrice Njomnang Soh, Bernard Mbatchi, Adrien Cavé, Suzanne Ramos, Pascal Retailleau, Olga Rakotonandrasana, Antoine Berry, Françoise Benoit-Vical. Cogniauxia podolaena: bioassay-guided fractionation of defoliated stems, isolation of active compounds, antiplasmodial activity and cytotoxicity. Planta medica. 2008 Oct; 74(12):1453-6. doi: 10.1055/s-2008-1081341. [PMID: 18704883]
  • Tingyan Liu, Meixia Zhang, Hongliang Zhang, Chunyan Sun, Yihui Deng. Inhibitory effects of cucurbitacin B on laryngeal squamous cell carcinoma. European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery. 2008 Oct; 265(10):1225-32. doi: 10.1007/s00405-008-0625-9. [PMID: 18309509]
  • Dong Yin, Naoki Wakimoto, Hongtao Xing, Daning Lu, Thien Huynh, Xiao Wang, Keith L Black, H Phillip Koeffler. Cucurbitacin B markedly inhibits growth and rapidly affects the cytoskeleton in glioblastoma multiforme. International journal of cancer. 2008 Sep; 123(6):1364-75. doi: 10.1002/ijc.23648. [PMID: 18561312]
  • Naoki Wakimoto, Dong Yin, James O'Kelly, Talin Haritunians, Beth Karlan, Jonathan Said, Hongtao Xing, H Phillip Koeffler. Cucurbitacin B has a potent antiproliferative effect on breast cancer cells in vitro and in vivo. Cancer science. 2008 Sep; 99(9):1793-7. doi: 10.1111/j.1349-7006.2008.00899.x. [PMID: 18627377]
  • Zong-Tsi Chen, Shwu-Woan Lee, Chiu-Ming Chen. Cucurbitacin B 2-sulfate and cucurbitacin glucosides from the root bark of Helicteres angustifolia. Chemical & pharmaceutical bulletin. 2006 Nov; 54(11):1605-7. doi: 10.1248/cpb.54.1605. [PMID: 17077563]
  • Jian Chao Chen, Ming Hua Chiu, Rui Lin Nie, Geoffrey A Cordell, Samuel X Qiu. Cucurbitacins and cucurbitane glycosides: structures and biological activities. Natural product reports. 2005 Jun; 22(3):386-99. doi: 10.1039/b418841c. [PMID: 16010347]
  • Wen-yong Liu, Wei-guang Chen, Wei-dong Zhang, Hai-sheng Chen, Zheng-bing Gu, Ting-zhao Li. [Studies on chemical constituents in bulbs of Bolbostemma paniculatum]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2004 Oct; 29(10):953-6. doi: . [PMID: 15631080]
  • G Toker, M Memişoğlu, M C Toker, E Yeşilada. Callus formation and cucurbitacin B accumulation in Ecballium elaterium callus cultures. Fitoterapia. 2003 Dec; 74(7-8):618-23. doi: 10.1016/s0367-326x(03)00165-5. [PMID: 14630164]
  • Marc Litaudon, Christianne Gaspard, Thierry Sévenet. Morierinin: a new cytotoxic cucurbitacin from the leaves of Morierina montana Vieill. Natural product research. 2003 Aug; 17(4):229-33. doi: 10.1080/1057563021000042329. [PMID: 12822899]
  • N H Oberlies, J P Burgess, H A Navarro, R E Pinos, D D Soejarto, N R Farnsworth, A D Kinghorn, M C Wani, M E Wall. Bioactive constituents of the roots of Licania intrapetiolaris. Journal of natural products. 2001 Apr; 64(4):497-501. doi: 10.1021/np0005006. [PMID: 11325234]
  • B Raikhlin-Eisenkraft, Y Bentur. Ecbalium elaterium (squirting cucumber)--remedy or poison?. Journal of toxicology. Clinical toxicology. 2000; 38(3):305-8. doi: 10.1081/clt-100100936. [PMID: 10866331]
  • A Agil, M Miró, J Jimenez, J Aneiros, M D Caracuel, A García-Granados, M C Navarro. Isolation of ani-hepatotoxic principle form the juice of Ecballium elaterium. Planta medica. 1999 Oct; 65(7):673-5. doi: 10.1055/s-2006-960847. [PMID: 15609462]
  • R R Peters, T F Saleh, M Lora, C Patry, A J de Brum-Fernandes, M R Farias, R M Ribeiro-do-Valle. Anti-inflammatory effects of the products from Wilbrandia ebracteata on carrageenan-induced pleurisy in mice. Life sciences. 1999; 64(26):2429-37. doi: 10.1016/s0024-3205(99)00200-3. [PMID: 10403502]
  • L Dinan, P Whiting, J P Girault, R Lafont, T S Dhadialla, D E Cress, B Mugat, C Antoniewski, J A Lepesant. Cucurbitacins are insect steroid hormone antagonists acting at the ecdysteroid receptor. The Biochemical journal. 1997 Nov; 327 ( Pt 3)(?):643-50. doi: 10.1042/bj3270643. [PMID: 9581538]
  • L Q Huang, S T Yao. [Studies on the chemical constituents of Trichosanthes hupehensis C.Y. Cheng et Yueh]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 1993 Aug; 18(8):491-2, 510. doi: ". [PMID: 8011097]
  • E Yesilada, S Tanaka, E Sezik, M Tabata. Isolation of an anti-inflammatory principle from the fruit juice of Ecballium elaterium. Journal of natural products. 1988 May; 51(3):504-8. doi: 10.1021/np50057a008. [PMID: 3404148]
  • M Arisawa, J M Pezzuto, A D Kinghorn, G A Cordell, N R Farnsworth. Plant anticancer agents. XXX: Cucurbitacins from Ipomopsis aggregata (Polemoniaceae). Journal of pharmaceutical sciences. 1984 Mar; 73(3):411-3. doi: 10.1002/jps.2600730335. [PMID: 6546946]