NCBI Taxonomy: 195120

Picrorhiza kurrooa (ncbi_taxid: 195120)

found 24 associated metabolites at species taxonomy rank level.

Ancestor: Picrorhiza

Child Taxonomies: none taxonomy data.

Cucurbitacin B

(R,E)-6-((2S,8S,9R,10R,13R,14S,16R,17R)-2,16-dihydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)-6-hydroxy-2-methyl-5-oxohept-3-en-2-yl acetate

C32H46O8 (558.3192516)


Together wth other cucurbitacins, is responsible for the bitter taste and toxic props. of spoilt cucumbers. Cucurbitacin B is found in many foods, some of which are muskmelon, bitter gourd, green vegetables, and cucumber. Cucurbitacin B is found in bitter gourd. Together wth other cucurbitacins, is responsible for the bitter taste and toxic properties of spoilt cucumber Cucurbitacin B is a cucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at positions 5 and 23; a hydroxy function at C-25 is acetylated. It is a cucurbitacin, a secondary alpha-hydroxy ketone and a tertiary alpha-hydroxy ketone. It derives from a hydride of a lanostane. Cucurbitacin B is a natural product found in Begonia plebeja, Trichosanthes miyagii, and other organisms with data available. Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5]. Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5]. (+)-Cucurbitacin B. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=6199-67-3 (retrieved 2024-08-12) (CAS RN: 6199-67-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Acetovanillone

1-(4-hydroxy-3-methoxyphenyl)ethan-1-one

C9H10O3 (166.062991)


Acetovanillone, also known as 4-hydroxy-3-methoxyacetophenone or acetoguaiacon, is a member of the class of compounds known as alkyl-phenylketones. Alkyl-phenylketones are aromatic compounds containing a ketone substituted by one alkyl group, and a phenyl group. Acetovanillone is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Acetovanillone is a faint, sweet, and vanillin tasting compound found in corn and garden onion, which makes acetovanillone a potential biomarker for the consumption of these food products. Acetovanillone may be a unique S.cerevisiae (yeast) metabolite. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents D004791 - Enzyme Inhibitors Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5]. Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5]. Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5].

   

Picein

1-(4-(((2S,3R,4S,5S,6R)-3,4,5-Trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)phenyl)ethanone

C14H18O7 (298.10524780000003)


Picein is a glycoside. Picein is a natural product found in Salix candida, Halocarpus biformis, and other organisms with data available. Picein, isolated from Picrorhiza kurroa, is a naturally occurring antioxidant[1]. Picein, isolated from Picrorhiza kurroa, is a naturally occurring antioxidant[1].

   

Catalpol

(2S,3R,4S,5S,6R)-2-(((1aS,1bS,2S,5aR,6S,6aS)-6-hydroxy-1a-(hydroxymethyl)-1a,1b,2,5a,6,6a-hexahydrooxireno[2,3:4,5]cyclopenta[1,2-c]pyran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C15H22O10 (362.1212912)


Catalpol is an organic molecular entity. It has a role as a metabolite. Catalpol is a natural product found in Verbascum lychnitis, Plantago atrata, and other organisms with data available. See also: Rehmannia glutinosa Root (part of). Catalpol (Catalpinoside), an iridoid glycoside found in Rehmannia glutinosa. Catalpol has neuroprotective, hypoglycemic, anti-inflammatory, anti-cancer, anti-spasmodic, anti-oxidant effects and anti-HBV effects[1][2][3]. Catalpol (Catalpinoside), an iridoid glycoside found in Rehmannia glutinosa. Catalpol has neuroprotective, hypoglycemic, anti-inflammatory, anti-cancer, anti-spasmodic, anti-oxidant effects and anti-HBV effects[1][2][3].

   

Apocynin

InChI=1/C9H10O3/c1-6(10)7-3-4-8(11)9(5-7)12-2/h3-5,11H,1-2H

C9H10O3 (166.062991)


Apocynin is an aromatic ketone that is 1-phenylethanone substituted by a hydroxy group at position 4 and a methoxy group at position 3. It has a role as a non-narcotic analgesic, a non-steroidal anti-inflammatory drug, an antirheumatic drug, a peripheral nervous system drug, an EC 1.6.3.1. [NAD(P)H oxidase (H2O2-forming)] inhibitor and a plant metabolite. It is a member of acetophenones, a methyl ketone and an aromatic ketone. Acetovanillone has been used in trials studying the treatment of Bronchial Asthma and Chronic Obstructive Pulmonary Disease. Acetovanillone is a natural product found in Iris tectorum, Apocynum cannabinum, and other organisms with data available. Acetovanillone is a metabolite found in or produced by Saccharomyces cerevisiae. An aromatic ketone that is 1-phenylethanone substituted by a hydroxy group at position 4 and a methoxy group at position 3. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents D004791 - Enzyme Inhibitors Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5]. Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5]. Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5].

   

Ampicoside

(1AS,1bS,2S,5aR,6S,6aS)-1a-(hydroxymethyl)-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-1a,1b,2,5a,6,6a-hexahydrooxireno[2,3:4,5]cyclopenta[1,2-c]pyran-6-yl 4-hydroxy-3-methoxybenzoate

C23H28O13 (512.1529838)


Picroside II is a natural product found in Veronica pulvinaris, Veronica thomsonii, and other organisms with data available. Picroside II, an iridoid compound extracted from Picrorhiza, exhibits anti-inflammatory and anti-apoptotic activities. picroside II alleviates the inflammatory response in sepsis and enhances immune function by inhibiting the activation of NLRP3 inflammasome and NF-κB pathways[1]. Picroside II is an antioxidant, exhibits a significant neuroprotective effect through reducing ROS production and protects the blood-brain barrier (BBB) after cerebral ischemia-reperfusion (CI/R) injury. Picroside II has antioxidant, anti-inflammatory, immune regulatory, anti-virus and other pharmacological activities[2]. Picroside II, an iridoid compound extracted from Picrorhiza, exhibits anti-inflammatory and anti-apoptotic activities. picroside II alleviates the inflammatory response in sepsis and enhances immune function by inhibiting the activation of NLRP3 inflammasome and NF-κB pathways[1]. Picroside II is an antioxidant, exhibits a significant neuroprotective effect through reducing ROS production and protects the blood-brain barrier (BBB) after cerebral ischemia-reperfusion (CI/R) injury. Picroside II has antioxidant, anti-inflammatory, immune regulatory, anti-virus and other pharmacological activities[2].

   

Picroside

(1AS,1bS,2S,5aR,6S,6aS)-1a-(hydroxymethyl)-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-1a,1b,2,5a,6,6a-hexahydrooxireno[2,3:4,5]cyclopenta[1,2-c]pyran-6-yl 4-hydroxy-3-methoxybenzoate

C23H28O13 (512.1529838)


Picroside II is a natural product found in Veronica pulvinaris, Veronica thomsonii, and other organisms with data available. Picroside II, an iridoid compound extracted from Picrorhiza, exhibits anti-inflammatory and anti-apoptotic activities. picroside II alleviates the inflammatory response in sepsis and enhances immune function by inhibiting the activation of NLRP3 inflammasome and NF-κB pathways[1]. Picroside II is an antioxidant, exhibits a significant neuroprotective effect through reducing ROS production and protects the blood-brain barrier (BBB) after cerebral ischemia-reperfusion (CI/R) injury. Picroside II has antioxidant, anti-inflammatory, immune regulatory, anti-virus and other pharmacological activities[2]. Picroside II, an iridoid compound extracted from Picrorhiza, exhibits anti-inflammatory and anti-apoptotic activities. picroside II alleviates the inflammatory response in sepsis and enhances immune function by inhibiting the activation of NLRP3 inflammasome and NF-κB pathways[1]. Picroside II is an antioxidant, exhibits a significant neuroprotective effect through reducing ROS production and protects the blood-brain barrier (BBB) after cerebral ischemia-reperfusion (CI/R) injury. Picroside II has antioxidant, anti-inflammatory, immune regulatory, anti-virus and other pharmacological activities[2].

   

Minecoside

Minecoside

C25H30O13 (538.168633)


A natural product found in Veronica lavaudiana.

   

SCHEMBL19590975

SCHEMBL19590975

C15H20O8 (328.115812)


   

Arvenin II

23,24-dihydrocucurbitacin B 2-O-beta-D-glucoside

C38H58O13 (722.3877218)


Arvenin II is a natural product found in Picrorhiza kurrooa, Citrullus colocynthis, and Cucumis melo with data available.

   

Cucurbitacin B

acetic acid [(E,5R)-5-[(2S,8S,9R,10R,13R,14S,16R,17R)-2,16-dihydroxy-3,11-diketo-4,4,9,13,14-pentamethyl-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-5-hydroxy-4-keto-1,1-dimethyl-hex-2-enyl] ester

C32H46O8 (558.3192516)


Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5]. Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5].

   

Terminolic acid

(4aS,6aR,6aS,6bR,8R,8aR,9R,10R,11R,12aR,14bS)-8,10,11-trihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid

C30H48O6 (504.3450708)


Terminolic acid is a natural product found in Terminalia alata, Picrorhiza kurrooa, and other organisms with data available. See also: Centella asiatica flowering top (part of). Terminolic acid is a pentacyclic triterpenoid glucoside isolated from Combretum racemosum. Terminolic acid can inhibit the pro-inflammatory cytokines by binding to receptor active site of IL-1β and IL-6, and enhance anti-inflammatory cytokines by binding to IL-4 receptor binding sites. Terminolic acid also exhibits moderate antibacterial activity[1][1].

   

apocynin

InChI=1\C9H10O3\c1-6(10)7-3-4-8(11)9(5-7)12-2\h3-5,11H,1-2H

C9H10O3 (166.062991)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents D004791 - Enzyme Inhibitors Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5]. Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5]. Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5].

   

Cuc B

(R,E)-6-((2S,8S,9R,10R,13R,14S,16R,17R)-2,16-dihydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)-6-hydroxy-2-methyl-5-oxohept-3-en-2-yl acetate

C32H46O8 (558.3192516)


Cucurbitacin B is a cucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at positions 5 and 23; a hydroxy function at C-25 is acetylated. It is a cucurbitacin, a secondary alpha-hydroxy ketone and a tertiary alpha-hydroxy ketone. It derives from a hydride of a lanostane. Cucurbitacin B is a natural product found in Begonia plebeja, Trichosanthes miyagii, and other organisms with data available. A cucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at positions 5 and 23; a hydroxy function at C-25 is acetylated. Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5]. Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5].