NCBI Taxonomy: 181998

Leucopaxillus gentianeus (ncbi_taxid: 181998)

found 69 associated metabolites at species taxonomy rank level.

Ancestor: Leucopaxillus

Child Taxonomies: none taxonomy data.

Cucurbitacin B

(R,E)-6-((2S,8S,9R,10R,13R,14S,16R,17R)-2,16-dihydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)-6-hydroxy-2-methyl-5-oxohept-3-en-2-yl acetate

C32H46O8 (558.3192516)


Together wth other cucurbitacins, is responsible for the bitter taste and toxic props. of spoilt cucumbers. Cucurbitacin B is found in many foods, some of which are muskmelon, bitter gourd, green vegetables, and cucumber. Cucurbitacin B is found in bitter gourd. Together wth other cucurbitacins, is responsible for the bitter taste and toxic properties of spoilt cucumber Cucurbitacin B is a cucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at positions 5 and 23; a hydroxy function at C-25 is acetylated. It is a cucurbitacin, a secondary alpha-hydroxy ketone and a tertiary alpha-hydroxy ketone. It derives from a hydride of a lanostane. Cucurbitacin B is a natural product found in Begonia plebeja, Trichosanthes miyagii, and other organisms with data available. Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5]. Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5]. (+)-Cucurbitacin B. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=6199-67-3 (retrieved 2024-08-12) (CAS RN: 6199-67-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Cucurbitacin D

17-[(E)-2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl]-2,16-dihydroxy-4,4,9,13,14-pentamethyl-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthrene-3,11-dione

C30H44O7 (516.3086874)


Cucurbitacin D is a cucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at positions 5 and 23. It is a cucurbitacin, a secondary alpha-hydroxy ketone and a tertiary alpha-hydroxy ketone. It derives from a hydride of a lanostane. Cucurbitacin D is a natural product found in Elaeocarpus chinensis, Elaeocarpus hainanensis, and other organisms with data available. Cucurbitacin D is found in calabash. Cucurbitacin D is isolated from plants of the Cucurbitacea Cucurbitacin D is an active component in Trichosanthes kirilowii, disrupts interactions between Hsp90 and two co-chaperones, Cdc37 and p23. Cucurbitacin D prevents Hsp90 client (Her2, Raf, Cdk6, pAkt) maturation without induction of the heat shock response. Anti-cancer activity[1]. Cucurbitacin D is an active component in Trichosanthes kirilowii, disrupts interactions between Hsp90 and two co-chaperones, Cdc37 and p23. Cucurbitacin D prevents Hsp90 client (Her2, Raf, Cdk6, pAkt) maturation without induction of the heat shock response. Anti-cancer activity[1].

   

Linoleic acid

C18:2 9C, 12C Omega6 todos cis-9,12-octadienoico

C18H32O2 (280.2402172)


Linoleic acid is a doubly unsaturated fatty acid, also known as an omega-6 fatty acid, occurring widely in plant glycosides. In this particular polyunsaturated fatty acid (PUFA), the first double bond is located between the sixth and seventh carbon atom from the methyl end of the fatty acid (n-6). Linoleic acid is an essential fatty acid in human nutrition because it cannot be synthesized by humans. It is used in the biosynthesis of prostaglandins (via arachidonic acid) and cell membranes (From Stedman, 26th ed). Linoleic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. Linoleic acid (LA) is an organic compound with the formula HOOC(CH2)7CH=CHCH2CH=CH(CH2)4CH3. Both alkene groups (−CH=CH−) are cis. It is a fatty acid sometimes denoted 18:2 (n-6) or 18:2 cis-9,12. A linoleate is a salt or ester of this acid.[5] Linoleic acid is a polyunsaturated, omega-6 fatty acid. It is a colorless liquid that is virtually insoluble in water but soluble in many organic solvents.[2] It typically occurs in nature as a triglyceride (ester of glycerin) rather than as a free fatty acid.[6] It is one of two essential fatty acids for humans, who must obtain it through their diet,[7] and the most essential, because the body uses it as a base to make the others. The word "linoleic" derives from Latin linum 'flax', and oleum 'oil', reflecting the fact that it was first isolated from linseed oil.

   

Linoleate

cis-9, cis-12-octadecadienoic acid

C18H32O2 (280.2402172)


COVID info from PDB, Protein Data Bank, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Cucurbitacin B

acetic acid [(E,5R)-5-[(2S,8S,9R,10R,13R,14S,16R,17R)-2,16-dihydroxy-3,11-diketo-4,4,9,13,14-pentamethyl-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-5-hydroxy-4-keto-1,1-dimethyl-hex-2-enyl] ester

C32H46O8 (558.3192516)


Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5]. Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5].

   

Cucurbitacin D

NCGC00385253-01_C30H44O7_(2S,4R,9beta,16alpha,23E)-2,16,20,25-Tetrahydroxy-9,10,14-trimethyl-4,9-cyclo-9,10-secocholesta-5,23-diene-1,11,22-trione

C30H44O7 (516.3086874)


Glycoside from leaves and fruit of Cucumis sativus (cucumber). Cucurbitacide E is found in cucumber and green vegetables. Cucurbitacin D is an active component in Trichosanthes kirilowii, disrupts interactions between Hsp90 and two co-chaperones, Cdc37 and p23. Cucurbitacin D prevents Hsp90 client (Her2, Raf, Cdk6, pAkt) maturation without induction of the heat shock response. Anti-cancer activity[1]. Cucurbitacin D is an active component in Trichosanthes kirilowii, disrupts interactions between Hsp90 and two co-chaperones, Cdc37 and p23. Cucurbitacin D prevents Hsp90 client (Her2, Raf, Cdk6, pAkt) maturation without induction of the heat shock response. Anti-cancer activity[1].

   

Cognac oil

9,12-Octadecadienoic acid, (Z,Z)-, labeled with carbon-14

C18H32O2 (280.2402172)


An octadecadienoic acid in which the two double bonds are at positions 9 and 12 and have Z (cis) stereochemistry. COVID info from PDB, Protein Data Bank, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

linoleic

9,12-Octadecadienoic acid, (9E,12E)-

C18H32O2 (280.2402172)


Linolelaidic acid (Linoelaidic acid), an omega-6 trans fatty acid, acts as a source of energy. Linolelaidic acid is an essential nutrient, adding in enteral, parenteral, and infant formulas. Linolelaidic acid can be used for heart diseases research[1]. Linolelaidic acid (Linoelaidic acid), an omega-6 trans fatty acid, acts as a source of energy. Linolelaidic acid is an essential nutrient, adding in enteral, parenteral, and infant formulas. Linolelaidic acid can be used for heart diseases research[1].

   

elatericin A

(2S,8S,9R,10R,13R,14S,16R,17R)-17-[(E,1R)-1,5-dihydroxy-2-keto-1,5-dimethyl-hex-3-enyl]-2,16-dihydroxy-4,4,9,13,14-pentamethyl-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthrene-3,11-quinone

C30H44O7 (516.3086874)


Cucurbitacin D is an active component in Trichosanthes kirilowii, disrupts interactions between Hsp90 and two co-chaperones, Cdc37 and p23. Cucurbitacin D prevents Hsp90 client (Her2, Raf, Cdk6, pAkt) maturation without induction of the heat shock response. Anti-cancer activity[1]. Cucurbitacin D is an active component in Trichosanthes kirilowii, disrupts interactions between Hsp90 and two co-chaperones, Cdc37 and p23. Cucurbitacin D prevents Hsp90 client (Her2, Raf, Cdk6, pAkt) maturation without induction of the heat shock response. Anti-cancer activity[1].

   

Cuc B

(R,E)-6-((2S,8S,9R,10R,13R,14S,16R,17R)-2,16-dihydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)-6-hydroxy-2-methyl-5-oxohept-3-en-2-yl acetate

C32H46O8 (558.3192516)


Cucurbitacin B is a cucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at positions 5 and 23; a hydroxy function at C-25 is acetylated. It is a cucurbitacin, a secondary alpha-hydroxy ketone and a tertiary alpha-hydroxy ketone. It derives from a hydride of a lanostane. Cucurbitacin B is a natural product found in Begonia plebeja, Trichosanthes miyagii, and other organisms with data available. A cucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at positions 5 and 23; a hydroxy function at C-25 is acetylated. Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5]. Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5].

   

Cucurbitacin_D

(2S,4R,23E)-2,16,20,25-tetrahydroxy-9beta,10,14-trimethyl-4,9-cyclo-9,10-seco-16alpha-cholesta-5,23-diene-1,11,22-trione

C30H44O7 (516.3086874)


Cucurbitacin D is a cucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at positions 5 and 23. It is a cucurbitacin, a secondary alpha-hydroxy ketone and a tertiary alpha-hydroxy ketone. It derives from a hydride of a lanostane. Cucurbitacin D is a natural product found in Elaeocarpus chinensis, Elaeocarpus hainanensis, and other organisms with data available. A cucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at positions 5 and 23. Cucurbitacin D is an active component in Trichosanthes kirilowii, disrupts interactions between Hsp90 and two co-chaperones, Cdc37 and p23. Cucurbitacin D prevents Hsp90 client (Her2, Raf, Cdk6, pAkt) maturation without induction of the heat shock response. Anti-cancer activity[1]. Cucurbitacin D is an active component in Trichosanthes kirilowii, disrupts interactions between Hsp90 and two co-chaperones, Cdc37 and p23. Cucurbitacin D prevents Hsp90 client (Her2, Raf, Cdk6, pAkt) maturation without induction of the heat shock response. Anti-cancer activity[1].

   

(3r,5r,6s)-5-(acetyloxy)-2-hydroxy-6-[(1s,2r,5s,6s,14r,15r,16s)-16-hydroxy-5,10,10,15-tetramethyl-11-oxo-17-oxapentacyclo[14.2.1.0¹,⁵.0⁶,¹⁵.0⁹,¹⁴]nonadec-8-en-2-yl]-2-methylheptan-3-yl acetate

(3r,5r,6s)-5-(acetyloxy)-2-hydroxy-6-[(1s,2r,5s,6s,14r,15r,16s)-16-hydroxy-5,10,10,15-tetramethyl-11-oxo-17-oxapentacyclo[14.2.1.0¹,⁵.0⁶,¹⁵.0⁹,¹⁴]nonadec-8-en-2-yl]-2-methylheptan-3-yl acetate

C34H52O8 (588.3661992)


   

5-(acetyloxy)-2-hydroxy-6-{16-hydroxy-5,10,10,15-tetramethyl-11-oxo-17-oxapentacyclo[14.2.1.0¹,⁵.0⁶,¹⁵.0⁹,¹⁴]nonadec-8-en-2-yl}-2-methylheptan-3-yl acetate

5-(acetyloxy)-2-hydroxy-6-{16-hydroxy-5,10,10,15-tetramethyl-11-oxo-17-oxapentacyclo[14.2.1.0¹,⁵.0⁶,¹⁵.0⁹,¹⁴]nonadec-8-en-2-yl}-2-methylheptan-3-yl acetate

C34H52O8 (588.3661992)


   

6-[11a-(hydroxymethyl)-3a,6,6,9b-tetramethyl-7-oxo-1h,2h,3h,3bh,4h,8h,9h,9ah,10h,11h-cyclopenta[a]phenanthren-1-yl]-5-(acetyloxy)-2-hydroxy-2-methylheptan-3-yl acetate

6-[11a-(hydroxymethyl)-3a,6,6,9b-tetramethyl-7-oxo-1h,2h,3h,3bh,4h,8h,9h,9ah,10h,11h-cyclopenta[a]phenanthren-1-yl]-5-(acetyloxy)-2-hydroxy-2-methylheptan-3-yl acetate

C34H54O7 (574.3869334)


   

6-{2,8-dihydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-1-yl}-6-hydroxy-2-methyl-5-oxohept-3-en-2-yl acetate

6-{2,8-dihydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-1-yl}-6-hydroxy-2-methyl-5-oxohept-3-en-2-yl acetate

C32H46O8 (558.3192516)


   

6-hydroxy-6-{8-hydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-1-yl}-2-methyl-5-oxohept-3-en-2-yl acetate

6-hydroxy-6-{8-hydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-1-yl}-2-methyl-5-oxohept-3-en-2-yl acetate

C32H46O7 (542.3243365999999)


   

(2r,3as,3bs,8s,9ar,9br,11ar)-1-[(4e)-6-(acetyloxy)-2-hydroxy-6-methyl-3-oxohept-4-en-2-yl]-8-hydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-2-yl (9z,12z)-octadeca-9,12-dienoate

(2r,3as,3bs,8s,9ar,9br,11ar)-1-[(4e)-6-(acetyloxy)-2-hydroxy-6-methyl-3-oxohept-4-en-2-yl]-8-hydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-2-yl (9z,12z)-octadeca-9,12-dienoate

C50H76O9 (820.5489046)


   

(3r,5r,6s)-6-[(3as,3br,9as,9br,11as)-11a-(hydroxymethyl)-3a,6,6,9b-tetramethyl-7-oxo-1h,2h,3h,3bh,4h,8h,9h,9ah,10h,11h-cyclopenta[a]phenanthren-1-yl]-5-(acetyloxy)-2-hydroxy-2-methylheptan-3-yl acetate

(3r,5r,6s)-6-[(3as,3br,9as,9br,11as)-11a-(hydroxymethyl)-3a,6,6,9b-tetramethyl-7-oxo-1h,2h,3h,3bh,4h,8h,9h,9ah,10h,11h-cyclopenta[a]phenanthren-1-yl]-5-(acetyloxy)-2-hydroxy-2-methylheptan-3-yl acetate

C34H54O7 (574.3869334)


   

(3r,5r,6s)-6-[(1r,3as,3br,9as,9br,11as)-11a-(hydroxymethyl)-3a,6,6,9b-tetramethyl-7-oxo-1h,2h,3h,3bh,4h,8h,9h,9ah,10h,11h-cyclopenta[a]phenanthren-1-yl]-5-(acetyloxy)-2-hydroxy-2-methylheptan-3-yl acetate

(3r,5r,6s)-6-[(1r,3as,3br,9as,9br,11as)-11a-(hydroxymethyl)-3a,6,6,9b-tetramethyl-7-oxo-1h,2h,3h,3bh,4h,8h,9h,9ah,10h,11h-cyclopenta[a]phenanthren-1-yl]-5-(acetyloxy)-2-hydroxy-2-methylheptan-3-yl acetate

C34H54O7 (574.3869334)


   

(3e,6r)-6-[(1s,3as,3bs,8s,9ar,9br,11ar)-8-hydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-1-yl]-6-hydroxy-2-methyl-5-oxohept-3-en-2-yl acetate

(3e,6r)-6-[(1s,3as,3bs,8s,9ar,9br,11ar)-8-hydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-1-yl]-6-hydroxy-2-methyl-5-oxohept-3-en-2-yl acetate

C32H46O7 (542.3243365999999)


   

1-[6-(acetyloxy)-2-hydroxy-6-methyl-3-oxohept-4-en-2-yl]-8-hydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-2-yl octadeca-9,12-dienoate

1-[6-(acetyloxy)-2-hydroxy-6-methyl-3-oxohept-4-en-2-yl]-8-hydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-2-yl octadeca-9,12-dienoate

C50H76O9 (820.5489046)


   

(3r,5r,6s)-5-(acetyloxy)-2-hydroxy-6-[(1s,5s,6s,14r,15r,16s)-16-hydroxy-5,10,10,15-tetramethyl-11-oxo-17-oxapentacyclo[14.2.1.0¹,⁵.0⁶,¹⁵.0⁹,¹⁴]nonadec-8-en-2-yl]-2-methylheptan-3-yl acetate

(3r,5r,6s)-5-(acetyloxy)-2-hydroxy-6-[(1s,5s,6s,14r,15r,16s)-16-hydroxy-5,10,10,15-tetramethyl-11-oxo-17-oxapentacyclo[14.2.1.0¹,⁵.0⁶,¹⁵.0⁹,¹⁴]nonadec-8-en-2-yl]-2-methylheptan-3-yl acetate

C34H52O8 (588.3661992)


   

1-(2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl)-2,8-dihydroxy-3a,6,6,9b,11a-pentamethyl-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthrene-7,10-dione

1-(2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl)-2,8-dihydroxy-3a,6,6,9b,11a-pentamethyl-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthrene-7,10-dione

C30H44O7 (516.3086874)


   

1-[6-(acetyloxy)-2-hydroxy-6-methyl-3-oxohept-4-en-2-yl]-8-hydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-2-yl octadec-9-enoate

1-[6-(acetyloxy)-2-hydroxy-6-methyl-3-oxohept-4-en-2-yl]-8-hydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-2-yl octadec-9-enoate

C50H78O9 (822.5645538)


   

6-{3a,6,6,9b,11a-pentamethyl-7-oxo-1h,2h,3h,3bh,4h,8h,9h,9ah,10h,11h-cyclopenta[a]phenanthren-1-yl}-5-(acetyloxy)-2-hydroxy-2-methylheptan-3-yl acetate

6-{3a,6,6,9b,11a-pentamethyl-7-oxo-1h,2h,3h,3bh,4h,8h,9h,9ah,10h,11h-cyclopenta[a]phenanthren-1-yl}-5-(acetyloxy)-2-hydroxy-2-methylheptan-3-yl acetate

C34H54O6 (558.3920184)


   

(2r,3as,3bs,8s,9ar,9br,11ar)-1-[(4e)-6-(acetyloxy)-2-hydroxy-6-methyl-3-oxohept-4-en-2-yl]-8-hydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-2-yl (9z)-octadec-9-enoate

(2r,3as,3bs,8s,9ar,9br,11ar)-1-[(4e)-6-(acetyloxy)-2-hydroxy-6-methyl-3-oxohept-4-en-2-yl]-8-hydroxy-3a,6,6,9b,11a-pentamethyl-7,10-dioxo-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-2-yl (9z)-octadec-9-enoate

C50H78O9 (822.5645538)


   

(3r,5r,6s)-6-[(1r,3as,3br,9as,9br,11ar)-3a,6,6,9b,11a-pentamethyl-7-oxo-1h,2h,3h,3bh,4h,8h,9h,9ah,10h,11h-cyclopenta[a]phenanthren-1-yl]-5-(acetyloxy)-2-hydroxy-2-methylheptan-3-yl acetate

(3r,5r,6s)-6-[(1r,3as,3br,9as,9br,11ar)-3a,6,6,9b,11a-pentamethyl-7-oxo-1h,2h,3h,3bh,4h,8h,9h,9ah,10h,11h-cyclopenta[a]phenanthren-1-yl]-5-(acetyloxy)-2-hydroxy-2-methylheptan-3-yl acetate

C34H54O6 (558.3920184)