NCBI Taxonomy: 381646
Actinostemma (ncbi_taxid: 381646)
found 149 associated metabolites at genus taxonomy rank level.
Ancestor: Actinostemmateae
Child Taxonomies: Actinostemma lobatum, Actinostemma tenerum
Cucurbitacin B
Together wth other cucurbitacins, is responsible for the bitter taste and toxic props. of spoilt cucumbers. Cucurbitacin B is found in many foods, some of which are muskmelon, bitter gourd, green vegetables, and cucumber. Cucurbitacin B is found in bitter gourd. Together wth other cucurbitacins, is responsible for the bitter taste and toxic properties of spoilt cucumber Cucurbitacin B is a cucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at positions 5 and 23; a hydroxy function at C-25 is acetylated. It is a cucurbitacin, a secondary alpha-hydroxy ketone and a tertiary alpha-hydroxy ketone. It derives from a hydride of a lanostane. Cucurbitacin B is a natural product found in Begonia plebeja, Trichosanthes miyagii, and other organisms with data available. Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5]. Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5]. (+)-Cucurbitacin B. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=6199-67-3 (retrieved 2024-08-12) (CAS RN: 6199-67-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Lobatoside H
Tubeimoside I(Lobatoside-H) is an extract from Chinese herbal medicine Bolbostemma paniculatum (MAXIM.) FRANQUET (Cucurbitaceae) has been shown as a potent anti-tumor agent for a variety of human cancers. IC50 value: Target: Anticancer natural compound in vitro: TBMS I inhibited the proliferation of both HepG2 and L-02 cells in a dose- and time-dependent manner, but HepG2 cells appeared more sensitive to the agent. When exposed to TBMS I for 24, 48 and 72 h, IC50 for HepG2 cells versus L-02 cells were 15.5 vs. 23.1, 11.7 vs. 16.2, 9.2 vs. 13.1 (μM, p<0.01), respectively. TBMS I induced cell shrinkage, nuclear condensation and fragmentation, cell cycle arrest at the G2/M phase, mitochondrial membrane disruption, release of cytochrome c from the mitochondria, activation of caspase 3 and 9, and shifting Bax/Bcl-2 ratio from being anti-apoptotic to pro-apoptotic, all indicative of initiation and progression of apoptosis involving mitochondrial dysfunction [1]. TBMS1-induced molecular events were related to mitochondria-induced intrinsic apoptosis and P21-cyclin B1/cdc2 complex-related G2/M cell cycle arrest [2]. TBMS1 combined with CDDP promoted cell apoptosis, decreased proliferation activity and increased cytosolic Ca2+ levels. Bcl-2 protein expression was down-regulated but Bax was up-regulated. Moreover, GST-π mRNA and protein expression were decreased. TBMS1 reduced the resistance of the cells to CDDP-induced cytotoxicity [4]. Treatment with TBMS1 resulted in dose- and time-dependent inhibition of proliferation, led to arrest in phase G2/M of the cell cycle and increased the levels of intracellular Ca2 . Furthermore, TBMS1 up-regulated the levels of the glucose-regulated protein 78/immunoglobuin heavy chain binding protein (GRP78/Bip), C/EBP homologous protein (CHOP), Bax, and cleaved caspase-3 and down-regulated the levels of Bcl-2 [5]. in vivo: TBMS1 significantly inhibited the production of the pro-inflammatory cytokines, TNF-α, IL-6 and IL-1β in vitro and in vivo. Pretreatment with TBMS1 markedly attenuated the development of pulmonary edema, histological severities and inflammatory cells infiltration in mice with ALI [3]. Tubeimoside I(Lobatoside-H) is an extract from Chinese herbal medicine Bolbostemma paniculatum (MAXIM.) FRANQUET (Cucurbitaceae) has been shown as a potent anti-tumor agent for a variety of human cancers. IC50 value: Target: Anticancer natural compound in vitro: TBMS I inhibited the proliferation of both HepG2 and L-02 cells in a dose- and time-dependent manner, but HepG2 cells appeared more sensitive to the agent. When exposed to TBMS I for 24, 48 and 72 h, IC50 for HepG2 cells versus L-02 cells were 15.5 vs. 23.1, 11.7 vs. 16.2, 9.2 vs. 13.1 (μM, p<0.01), respectively. TBMS I induced cell shrinkage, nuclear condensation and fragmentation, cell cycle arrest at the G2/M phase, mitochondrial membrane disruption, release of cytochrome c from the mitochondria, activation of caspase 3 and 9, and shifting Bax/Bcl-2 ratio from being anti-apoptotic to pro-apoptotic, all indicative of initiation and progression of apoptosis involving mitochondrial dysfunction [1]. TBMS1-induced molecular events were related to mitochondria-induced intrinsic apoptosis and P21-cyclin B1/cdc2 complex-related G2/M cell cycle arrest [2]. TBMS1 combined with CDDP promoted cell apoptosis, decreased proliferation activity and increased cytosolic Ca2+ levels. Bcl-2 protein expression was down-regulated but Bax was up-regulated. Moreover, GST-π mRNA and protein expression were decreased. TBMS1 reduced the resistance of the cells to CDDP-induced cytotoxicity [4]. Treatment with TBMS1 resulted in dose- and time-dependent inhibition of proliferation, led to arrest in phase G2/M of the cell cycle and increased the levels of intracellular Ca2 . Furthermore, TBMS1 up-regulated the levels of the glucose-regulated protein 78/immunoglobuin heavy chain binding protein (GRP78/Bip), C/EBP homologous protein (CHOP), Bax, and cleaved caspase-3 and down-regulated the levels of Bcl-2 [5]. in vivo: TBMS1 significantly inhibited the production of the pro-inflammatory cytokines, TNF-α, IL-6 and IL-1β in vitro and in vivo. Pretreatment with TBMS1 markedly attenuated the development of pulmonary edema, histological severities and inflammatory cells infiltration in mice with ALI [3].
D-Glucose, 4-O-beta-D-galactopyranosyl-
C12H22O11 (342.11620619999997)
The most abundant organic material found in plants forming the principal constituent of their cell walls giving them structural strength. Anticaking agent, binding agent and other uses in food. D-(+)-Cellobiose is an endogenous metabolite. D-(+)-Cellobiose is an endogenous metabolite. Maltose is a disaccharide formed from two units of glucose joined with an α(1→4) bond, a reducing sugar. Maltose monohydrate can be used as a energy source for bacteria. Maltose is a disaccharide formed from two units of glucose joined with an α(1→4) bond, a reducing sugar. Maltose monohydrate can be used as a energy source for bacteria.
Cucurbitacin B
Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5]. Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5].
Tubeimoside I
Origin: Plant; SubCategory_DNP: Triterpenoids Tubeimoside I(Lobatoside-H) is an extract from Chinese herbal medicine Bolbostemma paniculatum (MAXIM.) FRANQUET (Cucurbitaceae) has been shown as a potent anti-tumor agent for a variety of human cancers. IC50 value: Target: Anticancer natural compound in vitro: TBMS I inhibited the proliferation of both HepG2 and L-02 cells in a dose- and time-dependent manner, but HepG2 cells appeared more sensitive to the agent. When exposed to TBMS I for 24, 48 and 72 h, IC50 for HepG2 cells versus L-02 cells were 15.5 vs. 23.1, 11.7 vs. 16.2, 9.2 vs. 13.1 (μM, p<0.01), respectively. TBMS I induced cell shrinkage, nuclear condensation and fragmentation, cell cycle arrest at the G2/M phase, mitochondrial membrane disruption, release of cytochrome c from the mitochondria, activation of caspase 3 and 9, and shifting Bax/Bcl-2 ratio from being anti-apoptotic to pro-apoptotic, all indicative of initiation and progression of apoptosis involving mitochondrial dysfunction [1]. TBMS1-induced molecular events were related to mitochondria-induced intrinsic apoptosis and P21-cyclin B1/cdc2 complex-related G2/M cell cycle arrest [2]. TBMS1 combined with CDDP promoted cell apoptosis, decreased proliferation activity and increased cytosolic Ca2+ levels. Bcl-2 protein expression was down-regulated but Bax was up-regulated. Moreover, GST-π mRNA and protein expression were decreased. TBMS1 reduced the resistance of the cells to CDDP-induced cytotoxicity [4]. Treatment with TBMS1 resulted in dose- and time-dependent inhibition of proliferation, led to arrest in phase G2/M of the cell cycle and increased the levels of intracellular Ca2 . Furthermore, TBMS1 up-regulated the levels of the glucose-regulated protein 78/immunoglobuin heavy chain binding protein (GRP78/Bip), C/EBP homologous protein (CHOP), Bax, and cleaved caspase-3 and down-regulated the levels of Bcl-2 [5]. in vivo: TBMS1 significantly inhibited the production of the pro-inflammatory cytokines, TNF-α, IL-6 and IL-1β in vitro and in vivo. Pretreatment with TBMS1 markedly attenuated the development of pulmonary edema, histological severities and inflammatory cells infiltration in mice with ALI [3]. Tubeimoside I(Lobatoside-H) is an extract from Chinese herbal medicine Bolbostemma paniculatum (MAXIM.) FRANQUET (Cucurbitaceae) has been shown as a potent anti-tumor agent for a variety of human cancers. IC50 value: Target: Anticancer natural compound in vitro: TBMS I inhibited the proliferation of both HepG2 and L-02 cells in a dose- and time-dependent manner, but HepG2 cells appeared more sensitive to the agent. When exposed to TBMS I for 24, 48 and 72 h, IC50 for HepG2 cells versus L-02 cells were 15.5 vs. 23.1, 11.7 vs. 16.2, 9.2 vs. 13.1 (μM, p<0.01), respectively. TBMS I induced cell shrinkage, nuclear condensation and fragmentation, cell cycle arrest at the G2/M phase, mitochondrial membrane disruption, release of cytochrome c from the mitochondria, activation of caspase 3 and 9, and shifting Bax/Bcl-2 ratio from being anti-apoptotic to pro-apoptotic, all indicative of initiation and progression of apoptosis involving mitochondrial dysfunction [1]. TBMS1-induced molecular events were related to mitochondria-induced intrinsic apoptosis and P21-cyclin B1/cdc2 complex-related G2/M cell cycle arrest [2]. TBMS1 combined with CDDP promoted cell apoptosis, decreased proliferation activity and increased cytosolic Ca2+ levels. Bcl-2 protein expression was down-regulated but Bax was up-regulated. Moreover, GST-π mRNA and protein expression were decreased. TBMS1 reduced the resistance of the cells to CDDP-induced cytotoxicity [4]. Treatment with TBMS1 resulted in dose- and time-dependent inhibition of proliferation, led to arrest in phase G2/M of the cell cycle and increased the levels of intracellular Ca2 . Furthermore, TBMS1 up-regulated the levels of the glucose-regulated protein 78/immunoglobuin heavy chain binding protein (GRP78/Bip), C/EBP homologous protein (CHOP), Bax, and cleaved caspase-3 and down-regulated the levels of Bcl-2 [5]. in vivo: TBMS1 significantly inhibited the production of the pro-inflammatory cytokines, TNF-α, IL-6 and IL-1β in vitro and in vivo. Pretreatment with TBMS1 markedly attenuated the development of pulmonary edema, histological severities and inflammatory cells infiltration in mice with ALI [3].
(4as,6as,6br,8ar,9r,10r,11s,12ar,12br,14bs)-10-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-11-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5s,6r)-2-{[(2r,5z)-2-[(1s,3ar,3br,5s,5as,7s,9ar,9br,11ar)-5,7-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-7-hydroxy-6-methylhept-5-en-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol
2-[(4,5-dihydroxy-2-{[7-hydroxy-8-(5-hydroxy-4-methylpent-3-en-1-yl)-8-(hydroxymethyl)-1,1,4a,10a,10b-pentamethyl-dodecahydro-2h-chrysen-2-yl]oxy}-6-(hydroxymethyl)oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol
(1s,4s,7s,8s,9r,11s,13s,14s,18r,23r,24r,25s,26r,27s,29r,30s,31s,32r,34r,36r,37s,39r,40r,43r,44r,48s,55s,58s,59r)-7,8,18,24,25,26,30,31,37,59-decahydroxy-32-(hydroxymethyl)-13,18,39,43,50,50,55,56,56-nonamethyl-58-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,5,10,12,15,21,28,33,35,57-decaoxadecacyclo[41.9.3.2¹¹,¹⁴.1²³,²⁷.1³⁶,⁴⁰.0¹,⁴⁸.0⁴,⁹.0²⁹,³⁴.0³⁹,⁴⁴.0⁴⁷,⁵⁵]nonapentacont-46-ene-2,16,20-trione
7,8,18,28,29,35,55,56,58-nonahydroxy-30,54-bis(hydroxymethyl)-13,18,37,41,48,48,53,54-octamethyl-57-[(3,4,5-trihydroxyoxan-2-yl)oxy]-3,5,10,12,15,21,24,26,31,33-decaoxadecacyclo[39.9.3.2¹¹,¹⁴.2²²,²⁵.1³⁴,³⁸.0¹,⁴⁶.0⁴,⁹.0²⁷,³².0³⁷,⁴².0⁴⁵,⁵³]octapentacont-44-ene-2,16,20-trione
(2s,3r,4s,5s,6r)-2-{[(2s,5z)-2-[(1s,3ar,3br,4s,5ar,7s,9as,9br,11ar)-4,7-dihydroxy-3b-(hydroxymethyl)-3a,6,6,9a-tetramethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methyl-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hept-5-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(2s,3r,4s,5s,6r)-2-{[(2s,5z)-2-[(1s,3ar,3br,4r,5r,5ar,7s,9ar,9br,11ar)-4,5,7-trihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-7-hydroxy-6-methylhept-5-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(2s,3r,4s,5s,6r)-2-{[(2s,5z)-2-[(1s,3ar,3br,4s,5ar,7s,9as,9br,11ar)-4,7-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-7-hydroxy-6-methylhept-5-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
7,8,18,28,29,35,55,56,57,58-decahydroxy-30,54-bis(hydroxymethyl)-13,18,37,41,48,48,53,54-octamethyl-3,5,10,12,15,21,24,26,31,33-decaoxadecacyclo[39.9.3.2¹¹,¹⁴.2²²,²⁵.1³⁴,³⁸.0¹,⁴⁶.0⁴,⁹.0²⁷,³².0³⁷,⁴².0⁴⁵,⁵³]octapentacont-44-ene-2,16,20-trione
(2s,3r,4s,5r,6r)-2-{[(2r,3r,4s,5s,6r)-2-{[(2s,4ar,4br,6as,7r,8r,10ar,10br,12ar)-7-hydroxy-8-[(3z)-5-hydroxy-4-methylpent-3-en-1-yl]-8-(hydroxymethyl)-1,1,4a,10a,10b-pentamethyl-dodecahydro-2h-chrysen-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(1s,4s,7s,8s,9r,11s,13s,14s,18r,22s,25s,27r,28s,29s,30r,32r,34r,35s,37r,38r,41r,42r,46s,53s,54r,55r,56r,57s,58r)-7,8,18,28,29,35,55,56,58-nonahydroxy-30,54-bis(hydroxymethyl)-13,18,37,41,48,48,53,54-octamethyl-57-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,5,10,12,15,21,24,26,31,33-decaoxadecacyclo[39.9.3.2¹¹,¹⁴.2²²,²⁵.1³⁴,³⁸.0¹,⁴⁶.0⁴,⁹.0²⁷,³².0³⁷,⁴².0⁴⁵,⁵³]octapentacont-44-ene-2,16,20-trione
7,8,18,28,29,35,55,56,58-nonahydroxy-30-(hydroxymethyl)-13,18,37,41,48,48,53,54,54-nonamethyl-57-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,5,10,12,15,21,24,26,31,33-decaoxadecacyclo[39.9.3.2¹¹,¹⁴.2²²,²⁵.1³⁴,³⁸.0¹,⁴⁶.0⁴,⁹.0²⁷,³².0³⁷,⁴².0⁴⁵,⁵³]octapentacont-44-ene-2,16,20-trione
C64H100O29 (1332.6349950000001)
(1s,4s,7s,8s,9r,11s,13s,14r,18s,23r,24s,25s,26r,27s,29r,30s,31s,32r,34r,36r,37s,39r,40r,43r,44r,48s,55s,58s,59r)-7,8,18,24,25,26,30,31,37,58,59-undecahydroxy-32-(hydroxymethyl)-13,18,39,43,50,50,55,56,56-nonamethyl-3,5,10,12,15,21,28,33,35,57-decaoxadecacyclo[41.9.3.2¹¹,¹⁴.1²³,²⁷.1³⁶,⁴⁰.0¹,⁴⁸.0⁴,⁹.0²⁹,³⁴.0³⁹,⁴⁴.0⁴⁷,⁵⁵]nonapentacont-46-ene-2,16,20-trione
2-({2-[4,7-dihydroxy-3b-(hydroxymethyl)-3a,6,6,9a-tetramethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-7-hydroxy-6-methylhept-5-en-2-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol
2-[(7-hydroxy-6-methyl-2-{4,5,7-trihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl}hept-5-en-2-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol
(2s,3r,4s,5s,6r)-2-{[(2s,5z)-2-[(1s,3ar,3br,5s,5as,7s,9ar,9br,11ar)-5,7-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-7-hydroxy-6-methylhept-5-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(1r,4s,7s,8s,9r,11s,13s,14s,18s,23r,24s,25s,26r,27s,29r,30s,31s,32r,34r,36r,37s,39r,40r,43r,44r,48s,53r,55s,58s,59r)-7,8,18,24,25,26,30,31,37,53,59-undecahydroxy-32,56-bis(hydroxymethyl)-13,18,39,43,50,50,55,56-octamethyl-58-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-3,5,10,12,15,21,28,33,35,57-decaoxadecacyclo[41.9.3.2¹¹,¹⁴.1²³,²⁷.1³⁶,⁴⁰.0¹,⁴⁸.0⁴,⁹.0²⁹,³⁴.0³⁹,⁴⁴.0⁴⁷,⁵⁵]nonapentacont-46-ene-2,16,20-trione
(1s,4s,7s,8s,9r,11s,13s,14s,18s,22s,25s,27r,28s,29s,30r,32r,34r,35s,37r,38r,41r,42r,46s,53s,55r,56r,57s,58r)-7,8,18,28,29,35,55,56,58-nonahydroxy-30-(hydroxymethyl)-13,18,37,41,48,48,53,54,54-nonamethyl-57-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,5,10,12,15,21,24,26,31,33-decaoxadecacyclo[39.9.3.2¹¹,¹⁴.2²²,²⁵.1³⁴,³⁸.0¹,⁴⁶.0⁴,⁹.0²⁷,³².0³⁷,⁴².0⁴⁵,⁵³]octapentacont-44-ene-2,16,20-trione
C64H100O29 (1332.6349950000001)
(2s,3r,4s,5r,6r)-2-{[(2r,3s,4s,5s)-2-{[(2s,4ar,4br,6as,7r,8r,10as,10br,12ar)-7-hydroxy-8-[(3z)-5-hydroxy-4-methylpent-3-en-1-yl]-8,10a-bis(hydroxymethyl)-1,1,4a,10b-tetramethyl-dodecahydro-2h-chrysen-2-yl]oxy}-4,5-dihydroxyoxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
7,8,18,24,25,26,30,31,37,59-decahydroxy-32-(hydroxymethyl)-13,18,39,43,50,50,55,56,56-nonamethyl-58-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,5,10,12,15,21,28,33,35,57-decaoxadecacyclo[41.9.3.2¹¹,¹⁴.1²³,²⁷.1³⁶,⁴⁰.0¹,⁴⁸.0⁴,⁹.0²⁹,³⁴.0³⁹,⁴⁴.0⁴⁷,⁵⁵]nonapentacont-46-ene-2,16,20-trione
(1s,4s,7s,8s,9s,11s,13s,14s,23r,24r,25s,26r,27s,29s,30s,31s,32r,34r,36r,37s,39r,40r,43r,44r,48s,55s,56r,58s,59r)-7,8,18,24,25,26,30,31,37,59-decahydroxy-32,56-bis(hydroxymethyl)-13,18,39,43,50,50,55,56-octamethyl-58-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,5,10,12,15,21,28,33,35,57-decaoxadecacyclo[41.9.3.2¹¹,¹⁴.1²³,²⁷.1³⁶,⁴⁰.0¹,⁴⁸.0⁴,⁹.0²⁹,³⁴.0³⁹,⁴⁴.0⁴⁷,⁵⁵]nonapentacont-46-ene-2,16,20-trione
(2r,3r,4r,5s,6s)-6-(hydroxymethyl)-5-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2,3,4-triol
C12H22O11 (342.11620619999997)
(2s,3r,4s,5s,6r)-2-{[(2s,5z)-2-[(1s,3ar,3br,4s,5ar,7s,9as,9br,11ar)-4,7-dihydroxy-3b-(hydroxymethyl)-3a,6,6,9a-tetramethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-7-hydroxy-6-methylhept-5-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
2-[(2-{4,7-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl}-7-hydroxy-6-methylhept-5-en-2-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol
7,8,18,28,29,35,51,55,56,58-decahydroxy-30,54-bis(hydroxymethyl)-13,18,37,41,48,48,53,54-octamethyl-57-[(3,4,5-trihydroxyoxan-2-yl)oxy]-3,5,10,12,15,21,24,26,31,33-decaoxadecacyclo[39.9.3.2¹¹,¹⁴.2²²,²⁵.1³⁴,³⁸.0¹,⁴⁶.0⁴,⁹.0²⁷,³².0³⁷,⁴².0⁴⁵,⁵³]octapentacont-44-ene-2,16,20-trione
7,8,18,28,29,35,55,56,58-nonahydroxy-30,54-bis(hydroxymethyl)-13,18,37,41,48,48,53,54-octamethyl-57-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,5,10,12,15,21,24,26,31,33-decaoxadecacyclo[39.9.3.2¹¹,¹⁴.2²²,²⁵.1³⁴,³⁸.0¹,⁴⁶.0⁴,⁹.0²⁷,³².0³⁷,⁴².0⁴⁵,⁵³]octapentacont-44-ene-2,16,20-trione
6-({8a-[({4,5-dihydroxy-3-[(3-hydroxy-6-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl)oxy]-6-methyloxan-2-yl}oxy)carbonyl]-4-formyl-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl}oxy)-3,4-dihydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid
10-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-11-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8as,12as,14ar,14br)-8a-({[(2s,3r,4s,5r,6r)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6s)-3-hydroxy-6-methyl-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}carbonyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid
7,8,18,24,25,26,30,31,37,53,59-undecahydroxy-32,56-bis(hydroxymethyl)-13,18,39,43,50,50,55,56-octamethyl-58-[(3,4,5-trihydroxyoxan-2-yl)oxy]-3,5,10,12,15,21,28,33,35,57-decaoxadecacyclo[41.9.3.2¹¹,¹⁴.1²³,²⁷.1³⁶,⁴⁰.0¹,⁴⁸.0⁴,⁹.0²⁹,³⁴.0³⁹,⁴⁴.0⁴⁷,⁵⁵]nonapentacont-46-ene-2,16,20-trione
(2s,3r,4s,5s,6r)-2-{[(2s,5z)-2-[(1s,3ar,3br,4s,5as,7s,9as,9br,11ar)-4,7-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-7-hydroxy-6-methylhept-5-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
2-({2-[4,7-dihydroxy-3b-(hydroxymethyl)-3a,6,6,9a-tetramethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methyl-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hept-5-en-2-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol
7,8,18,28,29,35,55,56,57,58-decahydroxy-30-(hydroxymethyl)-13,18,37,41,48,48,53,54,54-nonamethyl-3,5,10,12,15,21,24,26,31,33-decaoxadecacyclo[39.9.3.2¹¹,¹⁴.2²²,²⁵.1³⁴,³⁸.0¹,⁴⁶.0⁴,⁹.0²⁷,³².0³⁷,⁴².0⁴⁵,⁵³]octapentacont-44-ene-2,16,20-trione
C58H90O24 (1170.5821740000001)
2-({2-[(2-{5,7-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl}-7-hydroxy-6-methylhept-5-en-2-yl)oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl}oxy)-6-methyloxane-3,4,5-triol
2-[(2-{5,7-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl}-7-hydroxy-6-methylhept-5-en-2-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol
(2s,3s,4s,5r,6r)-6-{[(3s,4s,4ar,6ar,6bs,8as,12as,14ar,14br)-8a-({[(2s,3r,4s,5r,6r)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6s)-3-hydroxy-6-methyl-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}carbonyl)-4-formyl-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid
(1s,4s,7s,8s,9r,11s,13s,14r,18r,22s,25s,27r,28s,29s,30r,32r,34r,35s,37r,38r,41r,42r,46s,53s,55r,56r,57s,58r)-7,8,18,28,29,35,55,56,57,58-decahydroxy-30-(hydroxymethyl)-13,18,37,41,48,48,53,54,54-nonamethyl-3,5,10,12,15,21,24,26,31,33-decaoxadecacyclo[39.9.3.2¹¹,¹⁴.2²²,²⁵.1³⁴,³⁸.0¹,⁴⁶.0⁴,⁹.0²⁷,³².0³⁷,⁴².0⁴⁵,⁵³]octapentacont-44-ene-2,16,20-trione
C58H90O24 (1170.5821740000001)