NCBI Taxonomy: 76580

Pratia (ncbi_taxid: 76580)

found 42 associated metabolites at genus taxonomy rank level.

Ancestor: Campanulaceae

Child Taxonomies: Pratia gelida, Pratia angulata, Pratia arenaria, Pratia borneensis, Pratia nummularia, Pratia perpusilla, Pratia pedunculata, Pratia purpurascens, unclassified Pratia, Pratia angulata x Pratia perpusilla

L-Tryptophan

L-Tryptophan, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 99.0-101.0\\%

C11H12N2O2 (204.0898732)


Tryptophan (Trp) or L-tryptophan is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-tryptophan is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Tryptophan is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aromatic amino acid. Tryptophan is an essential amino acid, meaning the body cannot synthesize it, and it must be obtained from the diet. The requirement for tryptophan and protein decreases with age. The minimum daily requirement for adults is 3 mg/kg/day or about 200 mg a day. There is 400 mg of tryptophan in a cup of wheat germ. A cup of low-fat cottage cheese contains 300 mg of tryptophan and chicken and turkey contain up to 600 mg of tryptophan per pound (http://www.dcnutrition.com). Tryptophan is particularly plentiful in chocolate, oats, dried dates, milk, yogurt, cottage cheese, red meat, eggs, fish, poultry, sesame, chickpeas, almonds, sunflower seeds, pumpkin seeds, buckwheat, spirulina, and peanuts. Tryptophan is the precursor of both serotonin and melatonin. Melatonin is a hormone that is produced by the pineal gland in animals, which regulates sleep and wakefulness. Serotonin is a brain neurotransmitter, platelet clotting factor, and neurohormone found in organs throughout the body. Metabolism of tryptophan into serotonin requires nutrients such as vitamin B6, niacin, and glutathione. Niacin (also known as vitamin B3) is an important metabolite of tryptophan. It is synthesized via kynurenine and quinolinic acids, which are products of tryptophan degradation. There are a number of conditions or diseases that are characterized by tryptophan deficiencies. For instance, fructose malabsorption causes improper absorption of tryptophan in the intestine, which reduces levels of tryptophan in the blood and leads to depression. High corn diets or other tryptophan-deficient diets can cause pellagra, which is a niacin-tryptophan deficiency disease with symptoms of dermatitis, diarrhea, and dementia. Hartnups disease is a disorder in which tryptophan and other amino acids are not absorbed properly. Symptoms of Hartnups disease include skin rashes, difficulty coordinating movements (cerebellar ataxia), and psychiatric symptoms such as depression or psychosis. Tryptophan supplements may be useful for treating Hartnups disease. Assessment of tryptophan deficiency is done through studying excretion of tryptophan metabolites in the urine or blood. Blood may be the most sensitive test because the amino acid tryptophan is transported in a unique way. Increased urination of tryptophan breakdown products (such as kynurenine) correlates with increased tryptophan degradation, which occurs with oral contraception, depression, mental retardation, hypertension, and anxiety states. Tryptophan plays a role in "feast-induced" drowsiness. Ingestion of a meal rich in carbohydrates triggers the release of insulin. Insulin, in turn, stimulates the uptake of large neutral branched-chain amino acids (BCAAs) into muscle, increasing the ratio of tryptophan to BCAA in the bloodstream. The increased tryptophan ratio reduces competition at the large neutral amino acid transporter (which transports both BCAAs and tryptophan), resulting in greater uptake of tryptophan across the blood-brain barrier into the cerebrospinal fluid (CSF). Once in the CSF, tryptophan is converted into serotonin and the resulting serotonin is further metabolized into melatonin by the pineal gland, which promotes sleep. Because tryptophan is converted into 5-hydroxytryptophan (5-HTP) which is then converted into the neurotransmitter serotonin, it has been proposed th... L-tryptophan is a white powder with a flat taste. An essential amino acid; occurs in isomeric forms. (NTP, 1992) L-tryptophan is the L-enantiomer of tryptophan. It has a role as an antidepressant, a nutraceutical, a micronutrient, a plant metabolite, a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is an erythrose 4-phosphate/phosphoenolpyruvate family amino acid, a proteinogenic amino acid, a tryptophan and a L-alpha-amino acid. It is a conjugate base of a L-tryptophanium. It is a conjugate acid of a L-tryptophanate. It is an enantiomer of a D-tryptophan. It is a tautomer of a L-tryptophan zwitterion. An essential amino acid that is necessary for normal growth in infants and for nitrogen balance in adults. It is a precursor of indole alkaloids in plants. It is a precursor of serotonin (hence its use as an antidepressant and sleep aid). It can be a precursor to niacin, albeit inefficiently, in mammals. L-Tryptophan is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Tryptophan is the least plentiful of all 22 amino acids and an essential amino acid in humans (provided by food), Tryptophan is found in most proteins and a precursor of serotonin. Tryptophan is converted to 5-hydroxy-tryptophan (5-HTP), converted in turn to serotonin, a neurotransmitter essential in regulating appetite, sleep, mood, and pain. Tryptophan is a natural sedative and present in dairy products, meats, brown rice, fish, and soybeans. (NCI04) Tryptophan is an essential amino acid which is the precursor of serotonin. Serotonin is a brain neurotransmitter, platelet clotting factor and neurohormone found in organs throughout the body. Metabolism of tryptophan to serotonin requires nutrients such as vitamin B6, niacin and glutathione. Niacin is an important metabolite of tryptophan. High corn or other tryptophan-deficient diets can cause pellagra, which is a niacin-tryptophan deficiency disease with symptoms of dermatitis, diarrhea and dementia. Inborn errors of tryptophan metabolism exist where a tumor (carcinoid) makes excess serotonin. Hartnups disease is a disease where tryptophan and other amino acids are not absorbed properly. Tryptophan supplements may be useful in each condition, in carcinoid replacing the over-metabolized nutrient and in Hartnups supplementing a malabsorbed nutrient. Some disorders of excess tryptophan in the blood may contribute to mental retardation. Assessment of tryptophan deficiency is done through studying excretion of tryptophan metabolites in the urine or blood. Blood may be the most sensitive test because the amino acid tryptophan is transported in a unique way. Increased urination of tryptophan fragments correlates with increased tryptophan degradation, which occurs with oral contraception, depression, mental retardation, hypertension and anxiety states. The requirement for tryptophan and protein decreases with age. Adults minimum daily requirement is 3 mg/kg/day or about 200 mg a day. This may be an underestimation, for there are 400 mg of tryptophan in just a cup of wheat germ. A cup of low fat cottage cheese contains 300 mg of tryptophan and chicken and turkey contain up to 600 mg per pound. An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals. See also: Serotonin; tryptophan (component of); Chamomile; ginger; melatonin; thiamine; tryptophan (component of) ... View More ... Constituent of many plants. Enzymatic hydrolysis production of most plant and animal proteins. Dietary supplement, nutrient D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants COVID info from PDB, Protein Data Bank The L-enantiomer of tryptophan. Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA09_Tryptophan_pos_30eV_1-1_01_662.txt [Raw Data] CBA09_Tryptophan_pos_20eV_1-1_01_661.txt [Raw Data] CBA09_Tryptophan_neg_30eV_1-1_01_716.txt [Raw Data] CBA09_Tryptophan_pos_10eV_1-1_01_660.txt [Raw Data] CBA09_Tryptophan_neg_10eV_1-1_01_714.txt [Raw Data] CBA09_Tryptophan_neg_40eV_1-1_01_717.txt [Raw Data] CBA09_Tryptophan_neg_20eV_1-1_01_715.txt [Raw Data] CBA09_Tryptophan_pos_50eV_1-1_01_664.txt [Raw Data] CBA09_Tryptophan_neg_50eV_1-1_01_718.txt [Raw Data] CBA09_Tryptophan_pos_40eV_1-1_01_663.txt IPB_RECORD: 253; CONFIDENCE confident structure KEIO_ID T003 DL-Tryptophan is an endogenous metabolite. L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1]. L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1].

   

Diosmin

5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C28H32O15 (608.1741122)


Isolated from parsley. Diosmetin 7-rutinoside is found in many foods, some of which are sweet orange, spearmint, rosemary, and peppermint. C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids Diosmin is found in green vegetables. Diosmin is isolated from parsle C26170 - Protective Agent > C275 - Antioxidant > C306 - Bioflavonoid Diosmin is a disaccharide derivative that consists of diosmetin substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an antioxidant and an anti-inflammatory agent. It is a glycosyloxyflavone, a rutinoside, a disaccharide derivative, a monomethoxyflavone and a dihydroxyflavanone. It is functionally related to a diosmetin. Chronic venous insufficiency is a common condition the western population. Compression and pharmacotherapy are frequently used to manage chronic venous insufficiency, improving circulation and symptoms of venous disease. Diosmin is a bioflavonoid isolated from various plants or synthesized from [hesperidin]. It is used for the improvement of capillary fragility or venous insufficiency, including chronic venous insufficiency (CVI) and hemorrhoids. Diosmin is widely available over-the-counter and demonstrates a favourable a favorable safety profile. Diosmin is a natural product found in Asyneuma argutum, Citrus hystrix, and other organisms with data available. A bioflavonoid that strengthens vascular walls. See also: Agathosma betulina leaf (part of). [Raw Data] CBA89_Diosmin_neg_50eV.txt [Raw Data] CBA89_Diosmin_pos_10eV.txt [Raw Data] CBA89_Diosmin_neg_20eV.txt [Raw Data] CBA89_Diosmin_pos_50eV.txt [Raw Data] CBA89_Diosmin_neg_30eV.txt [Raw Data] CBA89_Diosmin_neg_40eV.txt [Raw Data] CBA89_Diosmin_pos_30eV.txt [Raw Data] CBA89_Diosmin_neg_10eV.txt [Raw Data] CBA89_Diosmin_pos_20eV.txt [Raw Data] CBA89_Diosmin_pos_40eV.txt Diosmin is a flavonoid found in a variety of citrus fruits and also an agonist of the aryl hydrocarbon receptor (AhR). Diosmin is a flavonoid found in a variety of citrus fruits and also an agonist of the aryl hydrocarbon receptor (AhR).

   

Scolymoside

7-(((2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2-yl)oxy)-2-(3,4-dihydroxyphenyl)-5-hydroxy-4H-chromen-4-one

C27H30O15 (594.158463)


Scolymoside is a minor flavonoid found in the leaves and leaf extracts of artichoke (Cynara scolymus L.). Artichoke and artichoke leaf extracts (ALE) have a long history as a traditional part of the Mediterranean diet as well as in folk medicine for the treatment of dyspeptic disorders. Although several biol. mechanisms of action have been suggested, e.g. increased biliary secretion leading to an increased cholesterol elimination and/or inhibition of 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase activity resulting in a decreased cholesterol biosynthesis, convincing and conclusive human studies investigating the blood cholesterol lowering properties of artichoke or ALE are currently limited. (European Food Research and Technology (2002), 215(2), 149-157.). Luteolin 7-O-neohesperidoside is a disaccharide derivative that is luteolin substituted by a 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an antibacterial agent and a metabolite. It is a neohesperidoside, a disaccharide derivative, a glycosyloxyflavone and a trihydroxyflavone. It is functionally related to a luteolin. Lonicerin is a natural product found in Carex fraseriana, Lonicera japonica, and other organisms with data available. See also: Cynara scolymus leaf (part of). A disaccharide derivative that is luteolin substituted by a 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. Isolated from Capsella bursa-pastoris (shepherds purse) Cynara scolymus (globe artichoke) Lonicerin is an anti-algE (alginate secretion protein) flavonoid with inhibitory activity for P. aeruginosa. Lonicerin prevents inflammation and apoptosis in LPS-induced acute lung injury[1][2]. Lonicerin is an anti-algE (alginate secretion protein) flavonoid with inhibitory activity for P. aeruginosa. Lonicerin prevents inflammation and apoptosis in LPS-induced acute lung injury[1][2].

   

Isorhoifolin

5-Hydroxy-2-(4-hydroxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C27H30O14 (578.163548)


Isorhoifolin is a natural product found in Astragalus onobrychis, Phillyrea latifolia, and other organisms with data available. Isorhoifolin is found in citrus. Isorhoifolin is isolated from leaves of Citrus paradisi (grapefruit) and other plant species. Isorhoifolin is a flavonoid glycoside from Hemistepta lyrata. Isorhoifolin displays an anti-leakage effect[1][2]. Isorhoifolin is a flavonoid glycoside from Hemistepta lyrata. Isorhoifolin displays an anti-leakage effect[1][2].

   

Linarin

5-hydroxy-2-(4-methoxyphenyl)-7-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-4H-chromen-4-one

C28H32O14 (592.1791972)


Acacetin 7-rutinoside is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Acacetin 7-rutinoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Acacetin 7-rutinoside can be found in linden, orange mint, and spearmint, which makes acacetin 7-rutinoside a potential biomarker for the consumption of these food products. Linarin (Buddleoside), isolated from the flower extract of Mentha arvensis, shows selective dose dependent inhibitory effect on acetylcholinesterase (AChE)[1]. Linarin (Buddleoside), isolated from the flower extract of Mentha arvensis, shows selective dose dependent inhibitory effect on acetylcholinesterase (AChE)[1].

   

Lobetyolin

2-[(1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C20H28O8 (396.1784088)


   

Linarin

5-Hydroxy-2-(4-methoxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C28H32O14 (592.1791972)


Acquisition and generation of the data is financially supported in part by CREST/JST. Linarin is a natural product found in Silene firma, Scoparia dulcis, and other organisms with data available. Linarin (Buddleoside), isolated from the flower extract of Mentha arvensis, shows selective dose dependent inhibitory effect on acetylcholinesterase (AChE)[1]. Linarin (Buddleoside), isolated from the flower extract of Mentha arvensis, shows selective dose dependent inhibitory effect on acetylcholinesterase (AChE)[1].

   

Luteolin 7-rutinoside

Luteolin-7-O-beta-D-rutinoside

C27H30O15 (594.158463)


Luteolin-7-rutinoside has both anti-arthritic and antifungal activities, can result in a combination therapy for the treatment of fungal arthritis due to C. albicans infection.

   

Apigenin 7-rutinoside

7- [ [ 6-O- (6-Deoxy-alpha-L-mannopyranosyl) -beta-D-glucopyranosyl ] oxy ] -4,5-dihydroxyflavone

C27H30O14 (578.163548)


Isorhoifolin is a flavonoid glycoside from Hemistepta lyrata. Isorhoifolin displays an anti-leakage effect[1][2]. Isorhoifolin is a flavonoid glycoside from Hemistepta lyrata. Isorhoifolin displays an anti-leakage effect[1][2].

   

Lonicerin

7-[[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxy]-2-tetrahydropyranyl]oxy]-2-(3,4-dihydroxyphenyl)-5-hydroxy-4-chromenone

C27H30O15 (594.158463)


Lonicerin is an anti-algE (alginate secretion protein) flavonoid with inhibitory activity for P. aeruginosa. Lonicerin prevents inflammation and apoptosis in LPS-induced acute lung injury[1][2]. Lonicerin is an anti-algE (alginate secretion protein) flavonoid with inhibitory activity for P. aeruginosa. Lonicerin prevents inflammation and apoptosis in LPS-induced acute lung injury[1][2].

   

Diosmin

5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C28H32O15 (608.1741122)


Diosmin is a disaccharide derivative that consists of diosmetin substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an antioxidant and an anti-inflammatory agent. It is a glycosyloxyflavone, a rutinoside, a disaccharide derivative, a monomethoxyflavone and a dihydroxyflavanone. It is functionally related to a diosmetin. Chronic venous insufficiency is a common condition the western population. Compression and pharmacotherapy are frequently used to manage chronic venous insufficiency, improving circulation and symptoms of venous disease. Diosmin is a bioflavonoid isolated from various plants or synthesized from [hesperidin]. It is used for the improvement of capillary fragility or venous insufficiency, including chronic venous insufficiency (CVI) and hemorrhoids. Diosmin is widely available over-the-counter and demonstrates a favourable a favorable safety profile. Diosmin is a natural product found in Asyneuma argutum, Citrus hystrix, and other organisms with data available. A bioflavonoid that strengthens vascular walls. See also: Agathosma betulina leaf (part of). C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids C26170 - Protective Agent > C275 - Antioxidant > C306 - Bioflavonoid Diosmin is a flavonoid found in a variety of citrus fruits and also an agonist of the aryl hydrocarbon receptor (AhR). Diosmin is a flavonoid found in a variety of citrus fruits and also an agonist of the aryl hydrocarbon receptor (AhR).

   

L-Tryptophan

L-Tryptophane

C11H12N2O2 (204.0898732)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; QIVBCDIJIAJPQS-VIFPVBQESA-N_STSL_0010_L-Tryptophan_8000fmol_180410_S2_LC02_MS02_83; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. CONFIDENCE standard compound; INTERNAL_ID 5 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.178 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.176 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.170 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.171 L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1]. L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1].

   

Isorhoifolin

5-hydroxy-2-(4-hydroxyphenyl)-7-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-4H-chromen-4-one

C27H30O14 (578.163548)


Isolated from leaves of Citrus paradisi (grapefruit) and other plant subspecies Isorhoifolin is found in many foods, some of which are sweet orange, citrus, dill, and lemon. Isorhoifolin is a flavonoid glycoside from Hemistepta lyrata. Isorhoifolin displays an anti-leakage effect[1][2]. Isorhoifolin is a flavonoid glycoside from Hemistepta lyrata. Isorhoifolin displays an anti-leakage effect[1][2].

   

Isorhoifolin

5-hydroxy-2-(4-hydroxyphenyl)-7-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-({[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-4H-chromen-4-one

C27H30O14 (578.163548)


Apigenin 8-c-rhamnosyl-glucoside, also known as isorhoifoline or apigenin-7-O-rutinoside, is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Apigenin 8-c-rhamnosyl-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Apigenin 8-c-rhamnosyl-glucoside can be found in oat, which makes apigenin 8-c-rhamnosyl-glucoside a potential biomarker for the consumption of this food product. Isorhoifolin is found in citrus. Isorhoifolin is isolated from leaves of Citrus paradisi (grapefruit) and other plant species. Isorhoifolin is a flavonoid glycoside from Hemistepta lyrata. Isorhoifolin displays an anti-leakage effect[1][2]. Isorhoifolin is a flavonoid glycoside from Hemistepta lyrata. Isorhoifolin displays an anti-leakage effect[1][2].

   

5-Hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-[3,4,5-trihydroxy-6-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxymethyl]oxan-2-yl]oxychromen-4-one

5-Hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-[3,4,5-trihydroxy-6-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxymethyl]oxan-2-yl]oxychromen-4-one

C28H32O15 (608.1741122)


   

1-[(2r)-1-methylpiperidin-2-yl]pentan-2-one

1-[(2r)-1-methylpiperidin-2-yl]pentan-2-one

C11H21NO (183.1623056)


   

(2r,3r,4s,5s,6r)-2-{[(4e,12e)-1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl]oxy}-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(4e,12e)-1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl]oxy}-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C26H38O12 (542.2363148)


   

2-(3,4-dihydroxyphenyl)-5-hydroxy-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5-hydroxy-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one

C27H30O15 (594.158463)


   

1-(1-methylpiperidin-2-yl)butan-2-one

1-(1-methylpiperidin-2-yl)butan-2-one

C10H19NO (169.14665639999998)


   

(2r,3r,4s,5r,6r)-2-{[(4e,6r,7s,12e)-1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5r,6r)-2-{[(4e,6r,7s,12e)-1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C20H28O8 (396.1784088)


   

2-{[(4e,12e)-1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl]oxy}-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

2-{[(4e,12e)-1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl]oxy}-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C26H38O13 (558.2312297999999)


   

2-[(1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl)oxy]-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxane-3,4,5-triol

2-[(1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl)oxy]-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxane-3,4,5-triol

C26H38O12 (542.2363148)


   

(2r,3r,4s,5s,6r)-2-{[(4e,12e)-1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl]oxy}-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(4e,12e)-1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl]oxy}-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C32H48O18 (720.2840507999999)


   

(2r,3r,4s,5s,6r)-2-{[(4e,6s,7r,12e)-1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(4e,6s,7r,12e)-1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C20H28O8 (396.1784088)


   

(2r,3r,4s,5s,6r)-2-{[(4e,6s,7r,12e)-1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl]oxy}-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(4e,6s,7r,12e)-1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl]oxy}-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C26H38O13 (558.2312297999999)


   

(2r,3r,4s,5r,6r)-2-{[(4e,6s,7s,12e)-1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl]oxy}-6-({[(2r,3r,4r,5s,6s)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

(2r,3r,4s,5r,6r)-2-{[(4e,6s,7s,12e)-1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl]oxy}-6-({[(2r,3r,4r,5s,6s)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C32H48O18 (720.2840507999999)


   

2-[(1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl)oxy]-6-({[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

2-[(1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl)oxy]-6-({[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C32H48O18 (720.2840507999999)


   

1-(1-methylpiperidin-2-yl)pentan-2-one

1-(1-methylpiperidin-2-yl)pentan-2-one

C11H21NO (183.1623056)


   

(2r,3r,4s,5s,6r)-2-{[(4e,6s,7r,12e)-1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl]oxy}-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(4e,6s,7r,12e)-1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl]oxy}-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C26H38O12 (542.2363148)


   

1-[(2r)-1-methylpiperidin-2-yl]butan-2-one

1-[(2r)-1-methylpiperidin-2-yl]butan-2-one

C10H19NO (169.14665639999998)


   

5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one

5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one

C28H32O15 (608.1741122)


   

(2r,3r,4r,5s,6r)-2-[(1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4r,5s,6r)-2-[(1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C20H28O8 (396.1784088)


   

(2s,3s,4r,5r,6s)-2-{[(4e,6s,7r,12e)-1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl]oxy}-6-({[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-({[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

(2s,3s,4r,5r,6s)-2-{[(4e,6s,7r,12e)-1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl]oxy}-6-({[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-({[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C32H48O18 (720.2840507999999)


   

2-[(1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl)oxy]-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

2-[(1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl)oxy]-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C26H38O13 (558.2312297999999)


   

(4e,6s,7r,12e)-tetradeca-4,12-dien-8,10-diyne-1,6,7-triol

(4e,6s,7r,12e)-tetradeca-4,12-dien-8,10-diyne-1,6,7-triol

C14H18O3 (234.1255878)


   

(2z)-4-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}but-2-enenitrile

(2z)-4-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}but-2-enenitrile

C10H15NO6 (245.089933)


   

(2r,3r,4s,5s,6r)-2-{[(4e,6s,7r,12e)-1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl]oxy}-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(4e,6s,7r,12e)-1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl]oxy}-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C32H48O18 (720.2840507999999)


   

(4e,12e)-tetradeca-4,12-dien-8,10-diyne-1,6,7-triol

(4e,12e)-tetradeca-4,12-dien-8,10-diyne-1,6,7-triol

C14H18O3 (234.1255878)


   

(2r,3r,4s,5r,6r)-2-{[(4e,6s,7r,12e)-1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl]oxy}-6-({[(3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxane-3,4,5-triol

(2r,3r,4s,5r,6r)-2-{[(4e,6s,7r,12e)-1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl]oxy}-6-({[(3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C26H38O12 (542.2363148)


   

(2s,3s,4r,5s,6s)-2-{[(4e,6s,7s,12e)-1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl]oxy}-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

(2s,3s,4r,5s,6s)-2-{[(4e,6s,7s,12e)-1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl]oxy}-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C26H38O13 (558.2312297999999)


   

(2r,3r,4s,5s,6r)-2-{[(4e,6r,7r,12e)-1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl]oxy}-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(4e,6r,7r,12e)-1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl]oxy}-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C26H38O13 (558.2312297999999)


   

2-{[(4e,12e)-1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[(4e,12e)-1,7-dihydroxytetradeca-4,12-dien-8,10-diyn-6-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C20H28O8 (396.1784088)