NCBI Taxonomy: 2982306

Pluteineae (ncbi_taxid: 2982306)

found 171 associated metabolites at suborder taxonomy rank level.

Ancestor: Agaricales

Child Taxonomies: Pluteaceae, Amanitaceae

Carnitine

(3R)-3-hydroxy-4-(trimethylazaniumyl)butanoate

C7H15NO3 (161.105188)


(R)-carnitine is the (R)-enantiomer of carnitine. It has a role as an antilipemic drug, a water-soluble vitamin (role), a nutraceutical, a nootropic agent and a Saccharomyces cerevisiae metabolite. It is a conjugate base of a (R)-carnitinium. It is an enantiomer of a (S)-carnitine. Constituent of striated muscle and liver. It is used therapeutically to stimulate gastric and pancreatic secretions and in the treatment of hyperlipoproteinemias. L-Carnitine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Levocarnitine is a Carnitine Analog. Levocarnitine is a natural product found in Mucidula mucida, Pseudo-nitzschia multistriata, and other organisms with data available. Levocarnitine is an amino acid derivative. Levocarnitine facilitates long-chain fatty acid entry into mitochondria, delivering substrate for oxidation and subsequent energy production. Fatty acids are utilized as an energy substrate in all tissues except the brain. (NCI04) Carnitine is not an essential amino acid; it can be synthesized in the body. However, it is so important in providing energy to muscles including the heart-that some researchers are now recommending carnitine supplements in the diet, particularly for people who do not consume much red meat, the main food source for carnitine. Carnitine has been described as a vitamin, an amino acid, or a metabimin, i.e., an essential metabolite. Like the B vitamins, carnitine contains nitrogen and is very soluble in water, and to some researchers carnitine is a vitamin (Liebovitz 1984). It was found that an animal (yellow mealworm) could not grow without carnitine in its diet. However, as it turned out, almost all other animals, including humans, do make their own carnitine; thus, it is no longer considered a vitamin. Nevertheless, in certain circumstances-such as deficiencies of methionine, lysine or vitamin C or kidney dialysis--carnitine shortages develop. Under these conditions, carnitine must be absorbed from food, and for this reason it is sometimes referred to as a metabimin or a conditionally essential metabolite. Like the other amino acids used or manufactured by the body, carnitine is an amine. But like choline, which is sometimes considered to be a B vitamin, carnitine is also an alcohol (specifically, a trimethylated carboxy-alcohol). Thus, carnitine is an unusual amino acid and has different functions than most other amino acids, which are most usually employed by the body in the construction of protein. Carnitine is an essential factor in fatty acid metabolism in mammals. Its most important known metabolic function is to transport fat into the mitochondria of muscle cells, including those in the heart, for oxidation. This is how the heart gets most of its energy. In humans, about 25\\\\\% of carnitine is synthesized in the liver, kidney and brain from the amino acids lysine and methionine. Most of the carnitine in the body comes from dietary sources such as red meat and dairy products. Inborn errors of carnitine metabolism can lead to brain deterioration like that of Reyes syndrome, gradually worsening muscle weakness, Duchenne-like muscular dystrophy and extreme muscle weakness with fat accumulation in muscles. Borurn et al. (1979) describe carnitine as an essential nutrient for pre-term babies, certain types (non-ketotic) of hypoglycemics, kidney dialysis patients, cirrhosis, and in kwashiorkor, type IV hyperlipidemia, heart muscle disease (cardiomyopathy), and propionic or organic aciduria (acid urine resulting from genetic or other anomalies). In all these conditions and the inborn errors of carnitine metabolism, carnitine is essential to life and carnitine supplements are valuable. carnitine therapy may also be useful in a wide variety of clinical conditions. carnitine supplementation has improved some patients who have angina secondary to coronary artery disease. It may be worth a trial in any form of hyperlipidemia or muscle weakness. carnitine supplements may... (-)-Carnitine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=541-15-1 (retrieved 2024-06-29) (CAS RN: 541-15-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Carnitine ((R)-Carnitine), a highly polar, small zwitterion, is an essential co-factor for the mitochondrial β-oxidation pathway. L-Carnitine functions to transport long chain fatty acyl-CoAs into the mitochondria for degradation by β-oxidation. L-Carnitine is an antioxidant. L-Carnitine can ameliorate metabolic imbalances in many inborn errors of metabolism[1][2][3]. L-Carnitine ((R)-Carnitine), a highly polar, small zwitterion, is an essential co-factor for the mitochondrial β-oxidation pathway. L-Carnitine functions to transport long chain fatty acyl-CoAs into the mitochondria for degradation by β-oxidation. L-Carnitine is an antioxidant. L-Carnitine can ameliorate metabolic imbalances in many inborn errors of metabolism[1][2][3].

   

L-Valine

(2S)-2-amino-3-methylbutanoic acid

C5H11NO2 (117.0789746)


L-valine is the L-enantiomer of valine. It has a role as a nutraceutical, a micronutrient, a human metabolite, an algal metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a pyruvate family amino acid, a proteinogenic amino acid, a valine and a L-alpha-amino acid. It is a conjugate base of a L-valinium. It is a conjugate acid of a L-valinate. It is an enantiomer of a D-valine. It is a tautomer of a L-valine zwitterion. Valine is a branched-chain essential amino acid that has stimulant activity. It promotes muscle growth and tissue repair. It is a precursor in the penicillin biosynthetic pathway. L-Valine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Valine is an aliphatic and extremely hydrophobic essential amino acid in humans related to leucine, Valine is found in many proteins, mostly in the interior of globular proteins helping to determine three-dimensional structure. A glycogenic amino acid, valine maintains mental vigor, muscle coordination, and emotional calm. Valine is obtained from soy, cheese, fish, meats and vegetables. Valine supplements are used for muscle growth, tissue repair, and energy. (NCI04) Valine (abbreviated as Val or V) is an -amino acid with the chemical formula HO2CCH(NH2)CH(CH3)2. It is named after the plant valerian. L-Valine is one of 20 proteinogenic amino acids. Its codons are GUU, GUC, GUA, and GUG. This essential amino acid is classified as nonpolar. Along with leucine and isoleucine, valine is a branched-chain amino acid. Branched chain amino acids (BCAA) are essential amino acids whose carbon structure is marked by a branch point. These three amino acids are critical to human life and are particularly involved in stress, energy and muscle metabolism. BCAA supplementation as therapy, both oral and intravenous, in human health and disease holds great promise. BCAA denotes valine, isoleucine and leucine which are branched chain essential amino acids. Despite their structural similarities, the branched amino acids have different metabolic routes, with valine going solely to carbohydrates, leucine solely to fats and isoleucine to both. The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. Furthermore, these amino acids have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. Many types of inborn errors of BCAA metabolism exist, and are marked by various abnormalities. The most common form is the maple syrup urine disease, marked by a characteristic urinary odor. Other abnormalities are associated with a wide range of symptoms, such as mental retardation, ataxia, hypoglycemia, spinal muscle atrophy, rash, vomiting and excessive muscle movement. Most forms of BCAA metabolism errors are corrected by dietary restriction of BCAA and at least one form is correctable by supplementation with 10 mg of biotin daily. BCAA are decreased in patients with liver disease, such as hepatitis, hepatic coma, cirrhosis, extrahepatic biliary atresia or portacaval shunt; aromatic amino acids (AAA) tyrosine, tryptophan and phenylalanine, as well as methionine are increased in these conditions. Valine in particular, has been established as a useful supplemental therapy to the ailing liver. All the BCAA probably compete with AAA for absorption into the brain. Supplemental BCAA with vitamin B6 and zinc help normalize the BCAA:AAA ratio. In sickle-cell disease, valine substitutes for the hydrophilic amino acid glutamic acid in hemoglobin. Because valine is hydrophobic, the hemoglobin does not fold correctly. Valine is an essential amino acid, hence it must be ingested, usually as a component of proteins. A branched-chain essential amino acid that has stimulant activity. It promotes muscle growth and ... Valine (Val) or L-valine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (‚ÄìNH2) and carboxyl (‚ÄìCOOH) functional groups, along with a side chain (R group) specific to each amino acid. L-valine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Valine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aliphatic amino acid. Valine was first isolated from casein in 1901 by Hermann Emil Fischer. The name valine comes from valeric acid, which in turn is named after the plant valerian due to the presence of valine in the roots of the plant. Valine is essential in humans, meaning the body cannot synthesize it, and it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. L-valine is a branched chain amino acid (BCAA). The BCAAs consist of leucine, valine and isoleucine (and occasionally threonine). BCAAs are essential amino acids whose carbon structure is marked by a branch point at the beta-carbon position. BCAAs are critical to human life and are particularly involved in stress, energy and muscle metabolism. BCAA supplementation as therapy, both oral and intravenous, in human health and disease holds great promise. BCAAs have different metabolic routes, with valine going solely to carbohydrates (glucogenic), leucine solely to fats (ketogenic) and isoleucine being both a glucogenic and a ketogenic amino acid. The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. Like other branched-chain amino acids, the catabolism of valine starts with the removal of the amino group by transamination, giving alpha-ketoisovalerate, an alpha-keto acid, which is converted to isobutyryl-CoA through oxidative decarboxylation by the branched-chain Œ±-ketoacid dehydrogenase complex. This is further oxidised and rearranged to succinyl-CoA, which can enter the citric acid cycle. Furthermore, these amino acids have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. Many types of inborn errors of BCAA metabolism exist, and are marked by various abnormalities. The most common form is the maple syrup urine disease, marked by a characteristic urinary odor. Other abnormalities are associated with a wide range of symptoms, such as mental retardation, ataxia, hypoglycemia, spinal muscle atrophy, rash, vomiting and excessive muscle movement. Most forms of BCAA metabolism errors are corrected by dietary restriction of BCAA and at least one form is correctable by supplementation with 10 mg of biotin daily. BCAA are decreased in patients with liver disease, such as hepatitis, hepatic coma, cirrhosis, extrahepatic biliary atresia or portacaval shunt. Valine in particular, has been established as a useful supplemental therapy to the ailing liver. Valine, like other branched-chain amino acids, is associated with insulin resistance: higher levels of valine are observed in the blood of diabetic mice, rats, and humans (PMID: 25287287). Mice fed a valine deprivation diet for one day have improved insulin sensitivity and feeding of a valine deprivation diet for one week significantly decreases blood glucose levels (PMID: 24684822). In diet-induced obese and insulin resistant mice, a diet with decreased levels of valine and the other branched-chain amino acids results in reduced adiposity and improved insulin sensitivity (PMID: 29266268). In sickle-cell disease, valine substitutes for the hydrophilic amino acid glutamic acid in hemoglobin. Because valine ... L-valine, also known as (2s)-2-amino-3-methylbutanoic acid or L-(+)-alpha-aminoisovaleric acid, belongs to valine and derivatives class of compounds. Those are compounds containing valine or a derivative thereof resulting from reaction of valine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. L-valine is soluble (in water) and a moderately acidic compound (based on its pKa). L-valine can be found in watermelon, which makes L-valine a potential biomarker for the consumption of this food product. L-valine can be found primarily in most biofluids, including cerebrospinal fluid (CSF), breast milk, urine, and blood, as well as in human epidermis and fibroblasts tissues. L-valine exists in all living species, ranging from bacteria to humans. In humans, L-valine is involved in several metabolic pathways, some of which include streptomycin action pathway, tetracycline action pathway, methacycline action pathway, and kanamycin action pathway. L-valine is also involved in several metabolic disorders, some of which include methylmalonic aciduria due to cobalamin-related disorders, 3-methylglutaconic aciduria type III, isovaleric aciduria, and methylmalonic aciduria. Moreover, L-valine is found to be associated with schizophrenia, alzheimers disease, paraquat poisoning, and hypervalinemia. L-valine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Valine (abbreviated as Val or V) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH3+ form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −COO− form under biological conditions), and a side chain isopropyl group, making it a non-polar aliphatic amino acid. It is essential in humans, meaning the body cannot synthesize it: it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. In the genetic code it is encoded by all codons starting with GU, namely GUU, GUC, GUA, and GUG (Applies to Valine, Leucine and Isoleucine)
This group of essential amino acids are identified as the branched-chain amino acids, BCAAs. Because this arrangement of carbon atoms cannot be made by humans, these amino acids are an essential element in the diet. The catabolism of all three compounds initiates in muscle and yields NADH and FADH2 which can be utilized for ATP generation. The catabolism of all three of these amino acids uses the same enzymes in the first two steps. The first step in each case is a transamination using a single BCAA aminotransferase, with a-ketoglutarate as amine acceptor. As a result, three different a-keto acids are produced and are oxidized using a common branched-chain a-keto acid dehydrogenase, yielding the three different CoA derivatives. Subsequently the metabolic pathways diverge, producing many intermediates.
The principal product from valine is propionylCoA, the glucogenic precursor of succinyl-CoA. Isoleucine catabolism terminates with production of acetylCoA and propionylCoA; thus isoleucine is both glucogenic and ketogenic. Leucine gives rise to acetylCoA and acetoacetylCoA, and is thus classified as strictly ketogenic.
There are a number of genetic diseases associated with faulty catabolism of the BCAAs. The most common defect is in the branched-chain a-keto acid dehydrogenase. Since there is only one dehydrogenase enzyme for all three amino acids, all three a-keto acids accumulate and are excreted in the urine. The disease is known as Maple syrup urine disease because of the characteristic odor of the urine in afflicted individuals. Mental retardation in these cases is extensive. Unfortunately, since these are essential amino acids, they cannot be heavily restricted in the diet; ultimately, the life of afflicted individuals is short and development is abnormal The main neurological pr... L-Valine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7004-03-7 (retrieved 2024-06-29) (CAS RN: 72-18-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Valine (Valine) is a new nonlinear semiorganic material[1]. L-Valine (Valine) is a new nonlinear semiorganic material[1].

   

L-Threonine

(2S,3R)-2-amino-3-hydroxybutanoic acid

C4H9NO3 (119.0582404)


L-threonine is an optically active form of threonine having L-configuration. It has a role as a nutraceutical, a micronutrient, a Saccharomyces cerevisiae metabolite, a plant metabolite, an Escherichia coli metabolite, a human metabolite, an algal metabolite and a mouse metabolite. It is an aspartate family amino acid, a proteinogenic amino acid, a threonine and a L-alpha-amino acid. It is a conjugate base of a L-threoninium. It is a conjugate acid of a L-threoninate. It is an enantiomer of a D-threonine. It is a tautomer of a L-threonine zwitterion. An essential amino acid occurring naturally in the L-form, which is the active form. It is found in eggs, milk, gelatin, and other proteins. L-Threonine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Threonine is an essential amino acid in humans (provided by food), Threonine is an important residue of many proteins, such as tooth enamel, collagen, and elastin. An important amino acid for the nervous system, threonine also plays an important role in porphyrin and fat metabolism and prevents fat buildup in the liver. Useful with intestinal disorders and indigestion, threonine has also been used to alleviate anxiety and mild depression. (NCI04) Threonine is an essential amino acid in humans. It is abundant in human plasma, particularly in newborns. Severe deficiency of threonine causes neurological dysfunction and lameness in experimental animals. Threonine is an immunostimulant which promotes the growth of thymus gland. It also can probably promote cell immune defense function. This amino acid has been useful in the treatment of genetic spasticity disorders and multiple sclerosis at a dose of 1 gram daily. It is highly concentrated in meat products, cottage cheese and wheat germ. The threonine content of most of the infant formulas currently on the market is approximately 20\\\\\\% higher than the threonine concentration in human milk. Due to this high threonine content the plasma threonine concentrations are up to twice as high in premature infants fed these formulas than in infants fed human milk. The whey proteins which are used for infant formulas are sweet whey proteins. Sweet whey results from cheese production. Threonine catabolism in mammals appears to be due primarily (70-80\\\\\\%) to the activity of threonine dehydrogenase (EC 1.1.1.103) that oxidizes threonine to 2-amino-3-oxobutyrate, which forms glycine and acetyl CoA, whereas threonine dehydratase (EC 4.2.1.16) that catabolizes threonine into 2-oxobutyrate and ammonia, is significantly less active. Increasing the threonine plasma concentrations leads to accumulation of threonine and glycine in the brain. Such accumulation affects the neurotransmitter balance which may have consequences for the brain development during early postnatal life. Thus, excessive threonine intake during infant feeding should be avoided. (A3450). An essential amino acid occurring naturally in the L-form, which is the active form. It is found in eggs, milk, gelatin, and other proteins. See also: Amlisimod (monomer of) ... View More ... Threonine (Thr) or L-threonine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-threonine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Threonine is found in all organisms ranging from bacteria to plants to animals. It is classified as a polar, uncharged (at physiological pH), aliphatic amino acid. Threonine is sometimes considered as a branched chain amino acid. Threonine was actually the last of the 20 amino acids to be discovered (in 1938). It was named threonine because it was similar in structure to threonic acid, a four-carbon monosaccharide. Threonine is an essential amino acid in humans, meaning the body cannot synthesize it and that it must be obtained from the diet. Foods high in threonine include cottage cheese, poultry, fish, meat, lentils, black turtle bean and sesame seeds. Adult humans require about 20 mg/kg body weight/day. In plants and microorganisms, threonine is synthesized from aspartic acid via alpha-aspartyl-semialdehyde and homoserine. In proteins, the threonine residue is susceptible to numerous posttranslational modifications. The hydroxyl side-chain can undergo O-linked glycosylation and phosphorylation through the action of a threonine kinase. Threonine is abundant in human plasma, particularly in newborns. Severe deficiency of threonine causes neurological dysfunction and lameness in experimental animals. Threonine is an immunostimulant which promotes the growth of thymus gland. It also can probably promote cell immune defense function. The threonine content of most of the infant formulas currently on the market is approximately 20\\\\\\% higher than the threonine concentration in human milk. Due to this high threonine content the plasma threonine concentrations are up to twice as high in premature infants fed these formulas than in infants fed human milk. The whey proteins which are used for infant formulas are sweet whey proteins. Sweet whey results from cheese production. Increasing the threonine plasma concentrations leads to accumulation of threonine and glycine in the brain. Such accumulation affects the neurotransmitter balance which may have consequences for the brain development during early postnatal life. Thus, excessive threonine intake during infant feeding should be avoided. (PMID 9853925). Threonine is metabolized in at least two ways. In many animals it is converted to pyruvate via threonine dehydrogenase. An intermediate in this pathway can undergo thiolysis with CoA to produce acetyl-CoA and glycine. In humans the gene for threonine dehydrogenase is an inactive pseudogene, so threonine is converted to alpha-ketobutyrate. From wide variety of protein hydrolysates. Dietary supplement, nutrient L-Threonine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=72-19-5 (retrieved 2024-07-01) (CAS RN: 72-19-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-Threonine, an essential amino acid, has the potential to treat hypostatic leg ulceration[1]. L-Threonine is a natural amino acid, can be produced by microbial fermentation, and is used in food, medicine, or feed[1]. L-Threonine is a natural amino acid, can be produced by microbial fermentation, and is used in food, medicine, or feed[1].

   

L-Leucine

(2S)-2-amino-4-methylpentanoic acid

C6H13NO2 (131.0946238)


Leucine (Leu) or L-leucine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (‚ÄìNH2) and carboxyl (‚ÄìCOOH) functional groups, along with a side chain (R group) specific to each amino acid. L-leucine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Leucine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aliphatic amino acid. Leucine is essential in humans, meaning the body cannot synthesize it, and it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. L-Leucine is a branched chain amino acid (BCAA). The BCAAs consist of leucine, valine and isoleucine (and occasionally threonine). BCAAs are essential amino acids whose carbon structure is marked by a branch point at the beta-carbon position. BCAAs are critical to human life and are particularly involved in stress, energy and muscle metabolism. BCAA supplementation as therapy, both oral and intravenous, in human health and disease holds great promise. BCAAs have different metabolic routes, with valine going solely to carbohydrates (glucogenic), leucine solely to fats (ketogenic) and isoleucine being both a glucogenic and a ketogenic amino acid. The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. The primary metabolic end products of leucine metabolism are acetyl-CoA and acetoacetate; consequently, it is one of the two exclusively ketogenic amino acids, with lysine being the other. Leucine is the most important ketogenic amino acid in humans. The vast majority of l-leucine metabolism is initially catalyzed by the branched-chain amino acid aminotransferase enzyme, producing alpha-ketoisocaproate (alpha-KIC). alpha-KIC is metabolized by the mitochondrial enzyme branched-chain alpha-ketoacid dehydrogenase, which converts it to isovaleryl-CoA. Isovaleryl-CoA is subsequently metabolized by the enzyme isovaleryl-CoA dehydrogenase and converted to beta-methylcrotonyl-CoA (MC-CoA), which is used in the synthesis of acetyl-CoA and other compounds. During biotin deficiency, HMB can be synthesized from MC-CoA via enoyl-CoA hydratase and an unknown thioesterase enzyme, which convert MC-CoA into HMB-CoA and HMB-CoA into HMB respectively. Leucine has the capacity to directly stimulate myofibrillar muscle protein synthesis (PMID 15051860). This effect of leucine arises results from its role as an activator of the mechanistic target of rapamycin (mTOR) (PMID 23551944) a serine-threonine protein kinase that regulates protein biosynthesis and cell growth. The activation of mTOR by leucine is mediated through Rag GTPases. Leucine, like other BCAAs, is associated with insulin resistance. In particular, higher levels of leucine are observed in the blood of diabetic mice, rats, and humans (PMID 25287287). BCAAs such as leucine have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. Persistently low leucine levels can result in decreased appetite, poor feeding, lethargy, poor growth, weight loss, skin rashes, hair loss, and desquamation. Many types of inborn errors of BCAA metabolism exist and these are marked by various abnormalities. The most common form is maple syrup urine disease, marked by a characteristic urinary odor. Other abnormalities are associated with a wide range of symptoms, such as mental retardation, ataxia, hypoglycemia, spinal muscle atrophy, rash, vomiting and excessive muscle movement. Most forms of BCAA metabolism errors are corrected by dietary res... L-leucine is the L-enantiomer of leucine. It has a role as a plant metabolite, an Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite, a human metabolite, an algal metabolite and a mouse metabolite. It is a pyruvate family amino acid, a proteinogenic amino acid, a leucine and a L-alpha-amino acid. It is a conjugate base of a L-leucinium. It is a conjugate acid of a L-leucinate. It is an enantiomer of a D-leucine. It is a tautomer of a L-leucine zwitterion. An essential branched-chain amino acid important for hemoglobin formation. L-Leucine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Leucine is one of nine essential amino acids in humans (provided by food), Leucine is important for protein synthesis and many metabolic functions. Leucine contributes to regulation of blood-sugar levels; growth and repair of muscle and bone tissue; growth hormone production; and wound healing. Leucine also prevents breakdown of muscle proteins after trauma or severe stress and may be beneficial for individuals with phenylketonuria. Leucine is available in many foods and deficiency is rare. (NCI04) Leucine (abbreviated as Leu or L)[2] is a branched-chain л±-amino acid with the chemical formulaHO2CCH(NH2)CH2CH(CH3)2. Leucine is classified as a hydrophobic amino acid due to its aliphatic isobutyl side chain. It is encoded by six codons (UUA, UUG, CUU, CUC, CUA, and CUG) and is a major component of the subunits in ferritin, astacin, and other buffer proteins. Leucine is an essential amino acid, meaning that the human body cannot synthesize it, and it therefore must be ingested. It is important for hemoglobin formation. An essential branched-chain amino acid important for hemoglobin formation. See also: Isoleucine; Leucine (component of) ... View More ... Dietary supplement, nutrient [DFC]. (±)-Leucine is found in many foods, some of which are green bell pepper, italian sweet red pepper, green zucchini, and red bell pepper. L-Leucine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=61-90-5 (retrieved 2024-07-01) (CAS RN: 61-90-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1].

   

Fumaric acid

(2E)-but-2-enedioic acid

C4H4O4 (116.0109584)


Fumaric acid appears as a colorless crystalline solid. The primary hazard is the threat to the environment. Immediate steps should be taken to limit spread to the environment. Combustible, though may be difficult to ignite. Used to make paints and plastics, in food processing and preservation, and for other uses. Fumaric acid is a butenedioic acid in which the C=C double bond has E geometry. It is an intermediate metabolite in the citric acid cycle. It has a role as a food acidity regulator, a fundamental metabolite and a geroprotector. It is a conjugate acid of a fumarate(1-). Fumaric acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Fumaric acid is a precursor to L-malate in the Krebs tricarboxylic acid cycle. It is formed by the oxidation of succinate by succinate dehydrogenase. Fumarate is converted by fumarase to malate. A fumarate is a salt or ester of the organic compound fumaric acid, a dicarboxylic acid. Fumarate has recently been recognized as an oncometabolite. (A15199). As a food additive, fumaric acid is used to impart a tart taste to processed foods. It is also used as an antifungal agent in boxed foods such as cake mixes and flours, as well as tortillas. Fumaric acid is also added to bread to increase the porosity of the final baked product. It is used to impart a sour taste to sourdough and rye bread. In cake mixes, it is used to maintain a low pH and prevent clumping of the flours used in the mix. In fruit drinks, fumaric acid is used to maintain a low pH which, in turn, helps to stabilize flavor and color. Fumaric acid also prevents the growth of E. coli in beverages when used in combination with sodium benzoate. When added to wines, fumaric acid helps to prevent further fermentation and yet maintain low pH and eliminate traces of metallic elements. In this fashion, it helps to stabilize the taste of wine. Fumaric acid can also be added to dairy products, sports drinks, jams, jellies and candies. Fumaric acid helps to break down bonds between gluten proteins in wheat and helps to create a more pliable dough. Fumaric acid is used in paper sizing, printer toner, and polyester resin for making molded walls. Fumaric acid is a dicarboxylic acid. It is a precursor to L-malate in the Krebs tricarboxylic acid (TCA) cycle. It is formed by the oxidation of succinic acid by succinate dehydrogenase. Fumarate is converted by the enzyme fumarase to malate. Fumaric acid has recently been identified as an oncometabolite or an endogenous, cancer causing metabolite. High levels of this organic acid can be found in tumors or biofluids surrounding tumors. Its oncogenic action appears to due to its ability to inhibit prolyl hydroxylase-containing enzymes. In many tumours, oxygen availability becomes limited (hypoxia) very quickly due to rapid cell proliferation and limited blood vessel growth. The major regulator of the response to hypoxia is the HIF transcription factor (HIF-alpha). Under normal oxygen levels, protein levels of HIF-alpha are very low due to constant degradation, mediated by a series of post-translational modification events catalyzed by the prolyl hydroxylase domain-containing enzymes PHD1, 2 and 3, (also known as EglN2, 1 and 3) that hydroxylate HIF-alpha and lead to its degradation. All three of the PHD enzymes are inhibited by fumarate. Fumaric acid is found to be associated with fumarase deficiency, which is an inborn error of metabolism. It is also a metabolite of Aspergillus. Produced industrially by fermentation of Rhizopus nigricans, or manufactured by catalytic or thermal isomerisation of maleic anhydride or maleic acid. Used as an antioxidant, acidulant, leavening agent and flavouring agent in foods. Present in raw lean fish. Dietary supplement. Used in powdered products since fumaric acid is less hygroscopic than other acids. A precursor to L-malate in the Krebs tricarboxylic acid cycle. It is formed by the oxidation of succinate by succinate dehydrogenase (wikipedia). Fumaric acid is also found in garden tomato, papaya, wild celery, and star fruit. Fumaric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=110-17-8 (retrieved 2024-07-01) (CAS RN: 110-17-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Fumaric acid, associated with fumarase deficiency, is identified as an oncometabolite or an endogenous, cancer causing metabolite. Fumaric acid, associated with fumarase deficiency, is identified as an oncometabolite or an endogenous, cancer causing metabolite.

   

L-Glutamic acid

(1S)-2-[(3-O-beta-D-Glucopyranosyl-beta-D-galactopyranosyl)oxy]-1-{[(9E)-octadec-9-enoyloxy]methyl}ethyl (10E)-nonadec-10-enoic acid

C5H9NO4 (147.0531554)


Glutamic acid (Glu), also known as L-glutamic acid or as glutamate, the name of its anion, is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (‚ÄìNH2) and carboxyl (‚ÄìCOOH) functional groups, along with a side chain (R group) specific to each amino acid. L-glutamic acid is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Glutamic acid is found in all organisms ranging from bacteria to plants to animals. It is classified as an acidic, charged (at physiological pH), aliphatic amino acid. In humans it is a non-essential amino acid and can be synthesized via alanine or aspartic acid via alpha-ketoglutarate and the action of various transaminases. Glutamate also plays an important role in the bodys disposal of excess or waste nitrogen. Glutamate undergoes deamination, an oxidative reaction catalysed by glutamate dehydrogenase leading to alpha-ketoglutarate. In many respects glutamate is a key molecule in cellular metabolism. Glutamate is the most abundant fast excitatory neurotransmitter in the mammalian nervous system. At chemical synapses, glutamate is stored in vesicles. Nerve impulses trigger release of glutamate from the pre-synaptic cell. In the opposing post-synaptic cell, glutamate receptors, such as the NMDA receptor, bind glutamate and are activated. Because of its role in synaptic plasticity, it is believed that glutamic acid is involved in cognitive functions like learning and memory in the brain. Glutamate transporters are found in neuronal and glial membranes. They rapidly remove glutamate from the extracellular space. In brain injury or disease, they can work in reverse and excess glutamate can accumulate outside cells. This process causes calcium ions to enter cells via NMDA receptor channels, leading to neuronal damage and eventual cell death, and is called excitotoxicity. The mechanisms of cell death include: Damage to mitochondria from excessively high intracellular Ca2+. Glu/Ca2+-mediated promotion of transcription factors for pro-apoptotic genes, or downregulation of transcription factors for anti-apoptotic genes. Excitotoxicity due to glutamate occurs as part of the ischemic cascade and is associated with stroke and diseases like amyotrophic lateral sclerosis, lathyrism, and Alzheimers disease. Glutamic acid has been implicated in epileptic seizures. Microinjection of glutamic acid into neurons produces spontaneous depolarization around one second apart, and this firing pattern is similar to what is known as paroxysmal depolarizing shift in epileptic attacks. This change in the resting membrane potential at seizure foci could cause spontaneous opening of voltage activated calcium channels, leading to glutamic acid release and further depolarization (http://en.wikipedia.org/wiki/Glutamic_acid). Glutamate was discovered in 1866 when it was extracted from wheat gluten (from where it got its name. Glutamate has an important role as a food additive and food flavoring agent. In 1908, Japanese researcher Kikunae Ikeda identified brown crystals left behind after the evaporation of a large amount of kombu broth (a Japanese soup) as glutamic acid. These crystals, when tasted, reproduced a salty, savory flavor detected in many foods, most especially in seaweed. Professor Ikeda termed this flavor umami. He then patented a method of mass-producing a crystalline salt of glutamic acid, monosodium glutamate. L-glutamic acid is an optically active form of glutamic acid having L-configuration. It has a role as a nutraceutical, a micronutrient, an Escherichia coli metabolite, a mouse metabolite, a ferroptosis inducer and a neurotransmitter. It is a glutamine family amino acid, a proteinogenic amino acid, a glutamic acid and a L-alpha-amino acid. It is a conjugate acid of a L-glutamate(1-). It is an enantiomer of a D-glutamic acid. A peptide that is a homopolymer of glutamic acid. L-Glutamic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Glutamic acid (Glu), also referred to as glutamate (the anion), is one of the 20 proteinogenic amino acids. It is not among the essential amino acids. Glutamate is a key molecule in cellular metabolism. In humans, dietary proteins are broken down by digestion into amino acids, which serves as metabolic fuel or other functional roles in the body. Glutamate is the most abundant fast excitatory neurotransmitter in the mammalian nervous system. At chemical synapses, glutamate is stored in vesicles. Nerve impulses trigger release of glutamate from the pre-synaptic cell. In the opposing post-synaptic cell, glutamate receptors, such as the NMDA receptor, bind glutamate and are activated. Because of its role in synaptic plasticity, it is believed that glutamic acid is involved in cognitive functions like learning and memory in the brain. Glutamate transporters are found in neuronal and glial membranes. They rapidly remove glutamate from the extracellular space. In brain injury or disease, they can work in reverse and excess glutamate can accumulate outside cells. This process causes calcium ions to enter cells via NMDA receptor channels, leading to neuronal damage and eventual cell death, and is called excitotoxicity. The mechanisms of cell death include: * Damage to mitochondria from excessively high intracellular Ca2+. * Glu/Ca2+-mediated promotion of transcription factors for pro-apoptotic genes, or downregulation of transcription factors for anti-apoptotic genes. Excitotoxicity due to glutamate occurs as part of the ischemic cascade and is associated with stroke and diseases like amyotrophic lateral sclerosis, lathyrism, and Alzheimers disease. glutamic acid has been implicated in epileptic seizures. Microinjection of glutamic acid into neurons produces spontaneous depolarization around one second apart, and this firing pattern is similar to what is known as paroxysmal depolarizing shift in epileptic attacks. This change in the resting membrane potential at seizure foci could cause spontaneous opening of voltage activated calcium channels, leading to glutamic acid release and further depolarization. A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM. See also: Monosodium Glutamate (active moiety of); Glatiramer Acetate (monomer of); Glatiramer (monomer of) ... View More ... obtained from acid hydrolysis of proteins. Since 1965 the industrial source of glutamic acid for MSG production has been bacterial fermentation of carbohydrate sources such as molasses and corn starch hydrolysate in the presence of a nitrogen source such as ammonium salts or urea. Annual production approx. 350000t worldwide in 1988. Seasoning additive in food manuf. (as Na, K and NH4 salts). Dietary supplement, nutrient Glutamic acid (symbol Glu or E;[4] the anionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a non-essential nutrient for humans, meaning that the human body can synthesize enough for its use. It is also the most abundant excitatory neurotransmitter in the vertebrate nervous system. It serves as the precursor for the synthesis of the inhibitory gamma-aminobutyric acid (GABA) in GABAergic neurons. Its molecular formula is C 5H 9NO 4. Glutamic acid exists in two optically isomeric forms; the dextrorotatory l-form is usually obtained by hydrolysis of gluten or from the waste waters of beet-sugar manufacture or by fermentation.[5][full citation needed] Its molecular structure could be idealized as HOOC−CH(NH 2)−(CH 2)2−COOH, with two carboxyl groups −COOH and one amino group −NH 2. However, in the solid state and mildly acidic water solutions, the molecule assumes an electrically neutral zwitterion structure −OOC−CH(NH+ 3)−(CH 2)2−COOH. It is encoded by the codons GAA or GAG. The acid can lose one proton from its second carboxyl group to form the conjugate base, the singly-negative anion glutamate −OOC−CH(NH+ 3)−(CH 2)2−COO−. This form of the compound is prevalent in neutral solutions. The glutamate neurotransmitter plays the principal role in neural activation.[6] This anion creates the savory umami flavor of foods and is found in glutamate flavorings such as MSG. In Europe, it is classified as food additive E620. In highly alkaline solutions the doubly negative anion −OOC−CH(NH 2)−(CH 2)2−COO− prevails. The radical corresponding to glutamate is called glutamyl. The one-letter symbol E for glutamate was assigned in alphabetical sequence to D for aspartate, being larger by one methylene –CH2– group.[7] DL-Glutamic acid is the conjugate acid of Glutamic acid, which acts as a fundamental metabolite. Comparing with the second phase of polymorphs α and β L-Glutamic acid, DL-Glutamic acid presents better stability[1]. DL-Glutamic acid is the conjugate acid of Glutamic acid, which acts as a fundamental metabolite. Comparing with the second phase of polymorphs α and β L-Glutamic acid, DL-Glutamic acid presents better stability[1]. L-Glutamic acid acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). L-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals. L-Glutamic acid is an excitatory amino acid neurotransmitter that acts as an agonist for all subtypes of glutamate receptors (metabolic rhodophylline, NMDA, and AMPA). L-Glutamic acid has an agonist effect on the release of DA from dopaminergic nerve endings. L-Glutamic acid can be used in the study of neurological diseases[1][2][3][4][5]. L-Glutamic acid acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). L-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals.

   

L-Phenylalanine

(2S)-2-amino-3-phenylpropanoic acid

C9H11NO2 (165.0789746)


Phenylalanine (Phe), also known as L-phenylalanine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (‚ÄìNH2) and carboxyl (‚ÄìCOOH) functional groups, along with a side chain (R group) specific to each amino acid. L-phenylalanine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Phenylalanine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aromatic, non-polar amino acid. In humans, phenylalanine is an essential amino acid and the precursor of the amino acid tyrosine. Like tyrosine, phenylalanine is also a precursor for catecholamines including tyramine, dopamine, epinephrine, and norepinephrine. Catecholamines are neurotransmitters that act as adrenalin-like substances. Interestingly, several psychotropic drugs (mescaline, morphine, codeine, and papaverine) also have phenylalanine as a constituent. Phenylalanine is highly concentrated in the human brain and plasma. Normal metabolism of phenylalanine requires biopterin, iron, niacin, vitamin B6, copper, and vitamin C. An average adult ingests 5 g of phenylalanine per day and may optimally need up to 8 g daily. Phenylalanine is highly concentrated in a number of high protein foods, such as meat, cottage cheese, and wheat germ. An additional dietary source of phenylalanine is artificial sweeteners containing aspartame (a methyl ester of the aspartic acid/phenylalanine dipeptide). As a general rule, aspartame should be avoided by phenylketonurics and pregnant women. When present in sufficiently high levels, phenylalanine can act as a neurotoxin and a metabotoxin. A neurotoxin is a compound that disrupts or attacks neural cells and neural tissue. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of phenylalanine are associated with at least five inborn errors of metabolism, including Hartnup disorder, hyperphenylalaninemia due to guanosine triphosphate cyclohydrolase deficiency, phenylketonuria (PKU), tyrosinemia type 2 (or Richner-Hanhart syndrome), and tyrosinemia type III (TYRO3). Phenylketonurics have elevated serum plasma levels of phenylalanine up to 400 times normal. High plasma concentrations of phenylalanine influence the blood-brain barrier transport of large neutral amino acids. The high plasma phenylalanine concentrations increase phenylalanine entry into the brain and restrict the entry of other large neutral amino acids (PMID: 19191004). Phenylalanine has been found to interfere with different cerebral enzyme systems. Untreated phenylketonuria (PKU) can lead to intellectual disability, seizures, behavioural problems, and mental disorders. It may also result in a musty smell and lighter skin. Classic PKU dramatically affects myelination and white matter tracts in untreated infants; this may be one major cause of neurological disorders associated with phenylketonuria. Mild phenylketonuria can act as an unsuspected cause of hyperactivity, learning problems, and other developmental problems in children. It has been recently suggested that PKU may resemble amyloid diseases, such as Alzheimers disease and Parkinsons disease, due to the formation of toxic amyloid-like assemblies of phenylalanine (PMID: 22706200). Phenylalanine also has some potential benefits. Phenylalanine can act as an effective pain reliever. Its use in premenstrual syndrome and Parkinsons may enhance the effects of acupuncture and electric transcutaneous nerve stimulation (TENS). Phenylalanine and tyrosine, like L-DOPA, produce a catecholamine-like effect. Phenylalanine is better absorbed than tyrosine and may cause fewer headaches. Low phenylalanine diets have been prescribed for certain cancers with mixed results. For instance, some tumours use more phen... L-phenylalanine is an odorless white crystalline powder. Slightly bitter taste. pH (1\\\\\\% aqueous solution) 5.4 to 6. (NTP, 1992) L-phenylalanine is the L-enantiomer of phenylalanine. It has a role as a nutraceutical, a micronutrient, an Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite, a plant metabolite, an algal metabolite, a mouse metabolite, a human xenobiotic metabolite and an EC 3.1.3.1 (alkaline phosphatase) inhibitor. It is an erythrose 4-phosphate/phosphoenolpyruvate family amino acid, a proteinogenic amino acid, a phenylalanine and a L-alpha-amino acid. It is a conjugate base of a L-phenylalaninium. It is a conjugate acid of a L-phenylalaninate. It is an enantiomer of a D-phenylalanine. It is a tautomer of a L-phenylalanine zwitterion. Phenylalanine is an essential aromatic amino acid that is a precursor of melanin, [dopamine], [noradrenalin] (norepinephrine), and [thyroxine]. L-Phenylalanine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Phenylalanine is an essential aromatic amino acid in humans (provided by food), Phenylalanine plays a key role in the biosynthesis of other amino acids and is important in the structure and function of many proteins and enzymes. Phenylalanine is converted to tyrosine, used in the biosynthesis of dopamine and norepinephrine neurotransmitters. The L-form of Phenylalanine is incorporated into proteins, while the D-form acts as a painkiller. Absorption of ultraviolet radiation by Phenylalanine is used to quantify protein amounts. (NCI04) Phenylalanine is an essential amino acid and the precursor for the amino acid tyrosine. Like tyrosine, it is the precursor of catecholamines in the body (tyramine, dopamine, epinephrine and norepinephrine). The psychotropic drugs (mescaline, morphine, codeine, and papaverine) also have phenylalanine as a constituent. Phenylalanine is a precursor of the neurotransmitters called catecholamines, which are adrenalin-like substances. Phenylalanine is highly concentrated in the human brain and plasma. Normal metabolism of phenylalanine requires biopterin, iron, niacin, vitamin B6, copper and vitamin C. An average adult ingests 5 g of phenylalanine per day and may optimally need up to 8 g daily. Phenylalanine is highly concentrated in high protein foods, such as meat, cottage cheese and wheat germ. A new dietary source of phenylalanine is artificial sweeteners containing aspartame. Aspartame appears to be nutritious except in hot beverages; however, it should be avoided by phenylketonurics and pregnant women. Phenylketonurics, who have a genetic error of phenylalanine metabolism, have elevated serum plasma levels of phenylalanine up to 400 times normal. Mild phenylketonuria can be an unsuspected cause of hyperactivity, learning problems, and other developmental problems in children. Phenylalanine can be an effective pain reliever. Its use in premenstrual syndrome and Parkinsons may enhance the effects of acupuncture and electric transcutaneous nerve stimulation (TENS). Phenylalanine and tyrosine, like L-dopa, produce a catecholamine effect. Phenylalanine is better absorbed than tyrosine and may cause fewer headaches. Low phenylalanine diets have been prescribed for certain cancers with mixed results. Some tumors use more phenylalanine (particularly melatonin-producing tumors called melanoma). One strategy is to exclude this amino acid from the diet, i.e., a Phenylketonuria (PKU) diet (compliance is a difficult issue; it is hard to quantify and is under-researched). The other strategy is just to increase phenylalanines competing amino acids, i.e., tryptophan, valine, isoleucine and leucine, but not tyrosine. An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE. See also: Plovamer (monomer of); Plovamer Acetate (monomer of) ... View More ... L-phenylalanine, also known as phe or f, belongs to phenylalanine and derivatives class of compounds. Those are compounds containing phenylalanine or a derivative thereof resulting from reaction of phenylalanine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. L-phenylalanine is slightly soluble (in water) and a moderately acidic compound (based on its pKa). L-phenylalanine can be found in watermelon, which makes L-phenylalanine a potential biomarker for the consumption of this food product. L-phenylalanine can be found primarily in most biofluids, including sweat, blood, urine, and cerebrospinal fluid (CSF), as well as throughout all human tissues. L-phenylalanine exists in all living species, ranging from bacteria to humans. In humans, L-phenylalanine is involved in a couple of metabolic pathways, which include phenylalanine and tyrosine metabolism and transcription/Translation. L-phenylalanine is also involved in few metabolic disorders, which include phenylketonuria, tyrosinemia type 2 (or richner-hanhart syndrome), and tyrosinemia type 3 (TYRO3). Moreover, L-phenylalanine is found to be associated with viral infection, dengue fever, hypothyroidism, and myocardial infarction. L-phenylalanine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Phenylalanine (Phe or F) is an α-amino acid with the formula C 9H 11NO 2. It can be viewed as a benzyl group substituted for the methyl group of alanine, or a phenyl group in place of a terminal hydrogen of alanine. This essential amino acid is classified as neutral, and nonpolar because of the inert and hydrophobic nature of the benzyl side chain. The L-isomer is used to biochemically form proteins, coded for by DNA. The codons for L-phenylalanine are UUU and UUC. Phenylalanine is a precursor for tyrosine; the monoamine neurotransmitters dopamine, norepinephrine (noradrenaline), and epinephrine (adrenaline); and the skin pigment melanin . Hepatic. L-phenylalanine that is not metabolized in the liver is distributed via the systemic circulation to the various tissues of the body, where it undergoes metabolic reactions similar to those that take place in the liver (DrugBank). If PKU is diagnosed early, an affected newborn can grow up with normal brain development, but only by managing and controlling phenylalanine levels through diet, or a combination of diet and medication. The diet requires severely restricting or eliminating foods high in phenylalanine, such as meat, chicken, fish, eggs, nuts, cheese, legumes, milk and other dairy products. Starchy foods, such as potatoes, bread, pasta, and corn, must be monitored. Optimal health ranges (or "target ranges") of serum phenylalanine are between 120 and 360 µmol/L, and aimed to be achieved during at least the first 10 years of life. Recently it has been found that a chiral isomer of L-phenylalanine (called D-phenylalanine) actually arrests the fibril formation by L-phenylalanine and gives rise to flakes. These flakes do not propagate further and prevent amyloid formation by L-phenylalanine. D-phenylalanine may qualify as a therapeutic molecule in phenylketonuria (A8161) (T3DB). L-Phenylalanine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=63-91-2 (retrieved 2024-07-01) (CAS RN: 63-91-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4].

   

DL-Mannitol

(2R,3R,4R,5R)-hexane-1,2,3,4,5,6-hexol

C6H14O6 (182.0790344)


D-mannitol appears as odorless white crystalline powder or free-flowing granules. Sweet taste. (NTP, 1992) D-mannitol is the D-enantiomer of mannitol. It has a role as an osmotic diuretic, a sweetening agent, an antiglaucoma drug, a metabolite, an allergen, a hapten, a food bulking agent, a food anticaking agent, a food humectant, a food stabiliser, a food thickening agent, an Escherichia coli metabolite and a member of compatible osmolytes. Mannitol is an osmotic diuretic that is metabolically inert in humans and occurs naturally, as a sugar or sugar alcohol, in fruits and vegetables. Mannitol elevates blood plasma osmolality, resulting in enhanced flow of water from tissues, including the brain and cerebrospinal fluid, into interstitial fluid and plasma. As a result, cerebral edema, elevated intracranial pressure, and cerebrospinal fluid volume and pressure may be reduced. Mannitol may also be used for the promotion of diuresis before irreversible renal failure becomes established; the promotion of urinary excretion of toxic substances; as an Antiglaucoma agent; and as a renal function diagnostic aid. On October 30, 2020, mannitol was approved by the FDA as add-on maintenance therapy for the control of pulmonary symptoms associated with cystic fibrosis in adult patients and is currently marketed for this indication under the name BRONCHITOL® by Chiesi USA Inc. Mannitol is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Mannitol is an Osmotic Diuretic. The mechanism of action of mannitol is as an Osmotic Activity. The physiologic effect of mannitol is by means of Increased Diuresis. Mannitol is a natural product found in Pavetta indica, Scoparia dulcis, and other organisms with data available. Mannitol is a naturally occurring alcohol found in fruits and vegetables and used as an osmotic diuretic. Mannitol is freely filtered by the glomerulus and poorly reabsorbed from the renal tubule, thereby causing an increase in osmolarity of the glomerular filtrate. An increase in osmolarity limits tubular reabsorption of water and inhibits the renal tubular reabsorption of sodium, chloride, and other solutes, thereby promoting diuresis. In addition, mannitol elevates blood plasma osmolarity, resulting in enhanced flow of water from tissues into interstitial fluid and plasma. D-mannitol is a metabolite found in or produced by Saccharomyces cerevisiae. A diuretic and renal diagnostic aid related to sorbitol. It has little significant energy value as it is largely eliminated from the body before any metabolism can take place. It can be used to treat oliguria associated with kidney failure or other manifestations of inadequate renal function and has been used for determination of glomerular filtration rate. Mannitol is also commonly used as a research tool in cell biological studies, usually to control osmolarity. See also: Mannitol; sorbitol (component of); Mannitol; menthol (component of). Mannitol, or hexan-1,2,3,4,5,6-hexol (C6H8(OH)6), is an alcohol and a sugar (sugar alcohol), or a polyol, it is a stereoisomer of sorbitol and is similar to the C5 xylitol. The structure of mannitol is made of a straight chain of six carbon atoms, each of which is substituted with a hydroxyl group. Mannitol is one of the most abundant energy and carbon storage molecules in nature, it is produced by a wide range of organisms such as bacteria, fungi and plants (PMID: 19578847). In medicine, mannitol is used as a diuretic and renal diagnostic aid. Mannitol has little significant energy value as it is largely eliminated from the body before any metabolism can take place. It can be used to treat oliguria associated with kidney failure or other manifestations of inadequate renal function and has been used for determination of glomerular filtration rate. Mannitol is also commonly used as a research tool in cell biological studies, usually to control osmolarity. Mannitol has a tendency to lose a hydrogen ion in aqueous solutions, which causes the solution to become acidic. For this, it is not uncommon to add a weak base, such as sodium bicarbonate, to the solution to adjust its pH. Mannitol is a non-permeating molecule i.e., it cannot cross biological membranes. Mannitol is an osmotic diuretic agent and a weak renal vasodilator. Mannitol is found to be associated with cytochrome c oxidase deficiency and ribose-5-phosphate isomerase deficiency, which are inborn errors of metabolism. Mannitol is also a microbial metabolite found in Aspergillus, Candida, Clostridium, Gluconobacter, Lactobacillus, Lactococcus, Leuconostoc, Pseudomonas, Rhodobacteraceae, Saccharomyces, Streptococcus, Torulaspora and Zymomonas (PMID: 15240312; PMID: 29480337). Mannitol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=85085-15-0 (retrieved 2024-07-01) (CAS RN: 69-65-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1]. DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1]. D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7]. D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity. D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7]. D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity.

   

L-Isoleucine

(2S,3S)-2-amino-3-methylpentanoic acid

C6H13NO2 (131.0946238)


Isoleucine (Ile) or L-isoleucine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-isolecuine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Isoleucine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aliphatic amino acid. Isoleucine is an essential amino acid in humans, meaning the body cannot synthesize it and that it must be obtained from the diet. In plants and microorganisms, isoleucine is synthesized starting from pyruvate and alpha-ketobutyrate. Isoleucine is classified as a branched chain amino acid (BCAA). BCAAs include three amino acids: isoleucine, leucine and valine. They are alpha amino acids whose carbon structure is marked by a beta branch point. Despite their structural similarities, BCAAs have different metabolic routes, with valine going solely to carbohydrates (glucogenic), leucine solely to fats (ketogenic) and isoleucine being both a glucogenic and a ketogenic amino acid. Isoleucine is catabolized via with alpha-ketoglutarate where upon it is oxidized and split into propionyl-CoA and acetyl-CoA. Propionyl-CoA is converted into succinyl-CoA, a TCA cycle intermediate which can be converted into oxaloacetate for gluconeogenesis (hence glucogenic). The acetyl-CoA can be fed into the TCA cycle by condensing with oxaloacetate to form citrate or used in the synthesis of ketone bodies or fatty acids. The different metabolism of BCAAs accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine are required respectively. Furthermore, these amino acids have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. BCAAs are decreased in patients with liver disease, such as hepatitis, hepatic coma, cirrhosis, extrahepatic biliary atresia. An inability to break down isoleucine, along with other amino acids, is associated with maple syrup urine disease (MSUD) (PMID: 34125801). Isoleucine, like other BCAAs, is associated with insulin resistance. In particular, higher levels of isoleucine are observed in the blood of diabetic mice, rats, and humans (PMID 25287287). Mice fed an isoleucine deprivation diet for one day have improved insulin sensitivity, and feeding of an isoleucine deprivation diet for one week significantly decreases blood glucose levels (PMID: 24684822). L-isoleucine is the L-enantiomer of isoleucine. It has a role as a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a plant metabolite, a human metabolite, an algal metabolite and a mouse metabolite. It is an aspartate family amino acid, a proteinogenic amino acid, an isoleucine and a L-alpha-amino acid. It is a conjugate base of a L-isoleucinium. It is a conjugate acid of a L-isoleucinate. It is an enantiomer of a D-isoleucine. It is a tautomer of a L-isoleucine zwitterion. An essential branched-chain aliphatic amino acid found in many proteins. It is an isomer of leucine. It is important in hemoglobin synthesis and regulation of blood sugar and energy levels. L-Isoleucine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Isoleucine is one of nine essential amino acids in humans (present in dietary proteins), Isoleucine has diverse physiological functions, such as assisting wound healing, detoxification of nitrogenous wastes, stimulating immune function, and promoting secretion of several hormones. Necessary for hemoglobin formation and regulating blood sugar and energy levels, isoleucine is concentrated in muscle tissues in humans. Isoleucine is found especially in meats, fish, cheese, eggs, and most seeds and nuts. (NCI04) L-Isoleucine is one of the essential amino acids that cannot be made by the body and is known for its ability to help endurance and assist in the repair and rebuilding of muscle. This amino acid is important to body builders as it helps boost energy and helps the body recover from training. L-Isoleucine is also classified as a branched-chain amino acid (BCAA). It helps promote muscle recovery after exercise. Isoleucine is actually broken down for energy within the muscle tissue. It is important in hemoglobin synthesis and regulation of blood sugar and energy levels. An essential branched-chain aliphatic amino acid found in many proteins. It is an isomer of LEUCINE. It is important in hemoglobin synthesis and regulation of blood sugar and energy levels. L-Isoleucine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=73-32-5 (retrieved 2024-07-01) (CAS RN: 73-32-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-isoleucine is a nonpolar hydrophobic amino acid[1]. L-Isoleucine is an essential amino acid. L-isoleucine is a nonpolar hydrophobic amino acid[1]. L-Isoleucine is an essential amino acid.

   

Trehalose

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-3,4,5-triol

C12H22O11 (342.11620619999997)


Trehalose, also known as mycose, is a 1-alpha (disaccharide) sugar found extensively but not abundantly in nature. It is thought to be implicated in anhydrobiosis - the ability of plants and animals to withstand prolonged periods of desiccation. The sugar is thought to form a gel phase as cells dehydrate, which prevents disruption of internal cell organelles by effectively splinting them in position. Rehydration then allows normal cellular activity to be resumed without the major, generally lethal damage that would normally follow a dehydration/reyhdration cycle. Trehalose is a non-reducing sugar formed from two glucose units joined by a 1-1 alpha bond giving it the name of alpha-D-glucopyranoglucopyranosyl-1,1-alpha-D-glucopyranoside. The bonding makes trehalose very resistant to acid hydrolysis, and therefore stable in solution at high temperatures even under acidic conditions. The bonding also keeps non-reducing sugars in closed-ring form, such that the aldehyde or ketone end-groups do not bind to the lysine or arginine residues of proteins (a process called glycation). The enzyme trehalase, present but not abundant in most people, breaks it into two glucose molecules, which can then be readily absorbed in the gut. Trehalose is an important components of insects circulating fluid. It acts as a storage form of insect circulating fluid and it is important in respiration. Trehalose has also been found to be a metabolite of Burkholderia, Escherichia and Propionibacterium (PMID:12105274; PMID:25479689) (krishikosh.egranth.ac.in/bitstream/1/84382/1/88571\\\\%20P-1257.pdf). Alpha,alpha-trehalose is a trehalose in which both glucose residues have alpha-configuration at the anomeric carbon. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite and a geroprotector. Cabaletta has been used in trials studying the treatment of Oculopharyngeal Muscular Dystrophy. Trehalose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Trehalose is a natural product found in Cora pavonia, Selaginella nothohybrida, and other organisms with data available. Trehalose is a metabolite found in or produced by Saccharomyces cerevisiae. Occurs in fungi. EU and USA approved sweetener Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 149 D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient. D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient.

   

Serotonin

3-(b-Aminoethyl)-5-hydroxyindole

C10H12N2O (176.0949582)


Serotonin or 5-hydroxytryptamine (5-HT) is a molecule that belongs to the class of compounds known as indoleamines. An indoleamine consists of an indole ring that bears an amino group or an alkyl amino group attached to the indole ring. Serotonin has an aminoethyl at position 2 and a hydroxyl group at position 5 of the indole ring. Serotonin exists in all living organisms, ranging from bacteria to plants to humans. In mammals, serotonin functions as a monoamine neurotransmitter, a biochemical messenger and regulator. It is synthesized from the essential amino acid L-Tryptophan. Approximately 90\\\\% of the human bodys total serotonin is located in the enterochromaffin cells in the GI tract, where it regulates intestinal movements. About 8\\\\% is found in platelets and 1–2\\\\% in the CNS. Serotonin in the nervous system acts as a local transmitter at synapses, and as a paracrine or hormonal modulator of circuits upon diffusion, allowing a wide variety of "state-dependent" behavioral responses to different stimuli. Serotonin is widely distributed in the nervous system of vertebrates and invertebrates and some of its behavioral effects have been preserved along evolution. Such is the case of aggressive behavior and rhythmic motor patterns, including those responsible for feeding. In vertebrates, which display a wider and much more sophisticated behavioral repertoire, serotonin also modulates sleep, the arousal state, sexual behavior, and others. Deficiencies of the serotonergic system causes disorders such as depression, obsessive-compulsive disorder, phobias, posttraumatic stress disorder, epilepsy, and generalized anxiety disorder. Serotonin has three different modes of action in the nervous system: as transmitter, acting locally at synaptic boutons; upon diffusion at a distance from its release sites, producing paracrine (also called volume) effects, and by circulating in the blood stream, producing hormonal effects. The three modes can affect a single neuronal circuit. (PMID: 16047543). Serotonin is also a microbial metabolite that can be found in the feces and urine of mammals. Urinary serotonin is produced by Candida, Streptococcus, Escherichia, and Enterococcus (PMID: 24621061). In plants, serotonin was first found and reported in a legume called Mucuna pruriens. The greatest concentration of serotonin in plants has been found in walnuts and hickory. In pineapples, banana, kiwi fruit, plums and tomatoes the concentration of serotonin is around 3 to 30 mg/kg. Isolated from bananas and other fruitsand is also from cotton (Gossypium hirsutum) [DFC]. Serotonin is found in many foods, some of which are common pea, eggplant, swiss chard, and dill. Serotonin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=50-67-9 (retrieved 2024-07-01) (CAS RN: 50-67-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Adenosine monophosphate

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid

C10H14N5O7P (347.0630824)


Adenosine monophosphate, also known as adenylic acid or amp, is a member of the class of compounds known as purine ribonucleoside monophosphates. Purine ribonucleoside monophosphates are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. Adenosine monophosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Adenosine monophosphate can be found in a number of food items such as kiwi, taro, alaska wild rhubarb, and skunk currant, which makes adenosine monophosphate a potential biomarker for the consumption of these food products. Adenosine monophosphate can be found primarily in most biofluids, including blood, feces, cerebrospinal fluid (CSF), and urine, as well as throughout all human tissues. Adenosine monophosphate exists in all living species, ranging from bacteria to humans. In humans, adenosine monophosphate is involved in several metabolic pathways, some of which include josamycin action pathway, methacycline action pathway, nevirapine action pathway, and aspartate metabolism. Adenosine monophosphate is also involved in several metabolic disorders, some of which include hyperornithinemia-hyperammonemia-homocitrullinuria [hhh-syndrome], molybdenum cofactor deficiency, xanthinuria type I, and mitochondrial DNA depletion syndrome. Adenosine monophosphate is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalanc. Adenosine monophosphate, also known as 5-adenylic acid and abbreviated AMP, is a nucleotide that is found in RNA. It is an ester of phosphoric acid with the nucleoside adenosine. AMP consists of the phosphate group, the pentose sugar ribose, and the nucleobase adenine. AMP can be produced during ATP synthesis by the enzyme adenylate kinase. AMP has recently been approved as a Bitter Blocker additive to foodstuffs. When AMP is added to bitter foods or foods with a bitter aftertaste it makes them seem sweeter. This potentially makes lower calorie food products more palatable. [Spectral] AMP (exact mass = 347.06308) and Guanine (exact mass = 151.04941) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) and Glutathione disulfide (exact mass = 612.15196) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] AMP (exact mass = 347.06308) and Glutathione disulfide (exact mass = 612.15196) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] AMP (exact mass = 347.06308) and Adenine (exact mass = 135.0545) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Adenosine monophosphate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=67583-85-1 (retrieved 2024-07-01) (CAS RN: 61-19-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine monophosphate is a key cellular metabolite regulating energy homeostasis and signal transduction. Adenosine monophosphate is a key cellular metabolite regulating energy homeostasis and signal transduction. Adenosine monophosphate is a key cellular metabolite regulating energy homeostasis and signal transduction.

   

L-Arginine

(S)-2-Amino-5-[(aminoiminomethyl)amino]-pentanoic acid

C6H14N4O2 (174.1116704)


Arginine (Arg), also known as L-argninine, belongs to the class of organic compounds known as L-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom. Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-asparagine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Arginine is found in all organisms ranging from bacteria to plants to animals. Arginine is an essential amino acid that is physiologically active in the L-form. It is classified as a charged, basic, aliphatic amino acid. Arginine is considered to be a basic amino acid as it has a strongly basic guanidinium group. With a pKa of 12.48, the guanidinium group is positively charged in neutral, acidic, and even most basic environments. Because of the conjugation between the double bond and the nitrogen lone pairs, the positive charge is delocalized. This group is able to form multiple H-bonds. In mammals, arginine is formally classified as a semi-essential or conditionally essential amino acid, depending on the developmental stage and health status of the individual. Infants are unable to effectively synthesize arginine, making it nutritionally essential for infants. Adults, however, are able to synthesize arginine in the urea cycle. L-Arginine is an amino acid that has numerous functions in the body. It helps dispose of ammonia, is used to make compounds such as nitric oxide, creatine, L-glutamate, and L-proline, and it can be converted into glucose and glycogen if needed. Arginine also plays an important role in cell division, immunity and wound healing. Arginine is the immediate precursor of nitric oxide (NO), an important signaling molecule which can act as a second messenger, as well as an intercellular messenger which regulates vasodilation, and also has functions in the immune systems reaction to infection. Nitric oxide is made via the enzyme nitric oxide synthase (PMID 10690324). Arginine is also a precursor for several important nitrogen-containing compounds including urea, ornithine, and agmatine. Arginine is necessary for the synthesis of creatine and can be used for the synthesis of polyamines (mainly through ornithine and to a lesser degree through agmatine, citrulline, and glutamate.) The presence of asymmetric dimethylarginine (ADMA) in serum or plasma, a close relative of argninine, inhibits the nitric oxide synthase reaction. ADMA is considered a marker for vascular disease, just as L-arginine is considered a sign of a healthy endothelium. In large doses, L-arginine also stimulates the release of the hormones growth hormone and prolactin. Arginine is a known inducer of mTOR (mammalian target of rapamycin) and is responsible for inducing protein synthesis through the mTOR pathway. mTOR inhibition by rapamycin partially reduces arginine-induced protein synthesis (PMID: 20841502). Catabolic disease states such as sepsis, injury, and cancer cause an increase in arginine utilization, which can exceed normal body production, leading to arginine depletion. Arginine also activates AMP kinase (AMPK) which then stimulates skeletal muscle fatty acid oxidation and muscle glucose uptake, thereby increasing insulin secretion by pancreatic beta-cells (PMID: 21311355). Arginine is found in plant and animal proteins, such as dairy products, meat, poultry, fish, and nuts. The ratio of L-arginine to lysine is also important: soy and other plant proteins have more L-arginine than animal sources of protein. [Spectral] L-Arginine (exact mass = 174.11168) and L-Histidine (exact mass = 155.06948) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. L-Arginine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=74-79-3 (retrieved 2024-06-29) (CAS RN: 74-79-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Arginine ((S)-(+)-Arginine) is the substrate for the endothelial nitric oxide synthase (eNOS) to generate NO. L-Arginine is transported into vascular smooth muscle cells by the cationic amino acid transporter family of proteins where it is metabolized to nitric oxide (NO), polyamines, or L-proline[1][2]. L-Arginine ((S)-(+)-Arginine) is the substrate for the endothelial nitric oxide synthase (eNOS) to generate NO. L-Arginine is transported into vascular smooth muscle cells by the cationic amino acid transporter family of proteins where it is metabolized to nitric oxide (NO), polyamines, or L-proline[1][2].

   

L-Aspartic acid

(2S)-2-aminobutanedioic acid

C4H7NO4 (133.0375062)


Aspartic acid (Asp), also known as L-aspartic acid or as aspartate, the name of its anion, is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-aspartic acid is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Aspartic acid is found in all organisms ranging from bacteria to plants to animals. It is classified as an acidic, charged (at physiological pH), aliphatic amino acid. In humans, aspartic acid is a nonessential amino acid derived from glutamic acid by enzymes using vitamin B6. However, in the human body, aspartate is most frequently synthesized through the transamination of oxaloacetate. A non-essential amino acid is an amino acid that can be synthesized from central metabolic pathway intermediates in humans and is not required in the diet. As its name indicates, aspartic acid is the carboxylic acid analog of asparagine. The D-isomer of aspartic acid (D-aspartic acid) is one of two D-amino acids commonly found in mammals. Aspartic acid was first discovered in 1827 by Auguste-Arthur Plisson and Étienne Ossian Henry by hydrolysis of asparagine, which had been isolated from asparagus juice in 1806. Aspartate has many biochemical roles. It is a neurotransmitter, a metabolite in the urea cycle and it participates in gluconeogenesis. It carries reducing equivalents in the malate-aspartate shuttle, which utilizes the ready interconversion of aspartate and oxaloacetate, which is the oxidized (dehydrogenated) derivative of malic acid. Aspartate donates one nitrogen atom in the biosynthesis of inosine, the precursor to the purine bases which are key to DNA biosynthesis. In addition, aspartic acid acts as a hydrogen acceptor in a chain of ATP synthase. Aspartic acid is a major excitatory neurotransmitter, which is sometimes found to be increased in epileptic and stroke patients. It is decreased in depressed patients and in patients with brain atrophy. As a neurotransmitter, aspartic acid may provide resistance to fatigue and thus lead to endurance, although the evidence to support this idea is not strong (Wikipedia). Aspartic acid supplements are being evaluated. Five grams can raise blood levels. Magnesium and zinc may be natural inhibitors of some of the actions of aspartic acid. Aspartic acid, when chemically coupled with the amino acid D-phenylalanine, is a part of a natural sweetener, aspartame. This sweetener is an advance in artificial sweeteners, and is probably safe in normal doses to all except phenylketonurics. Aspartic acid may be a significant immunostimulant of the thymus and can protect against some of the damaging effects of radiation. Aspartic acid is found in higher abundance in: oysters, luncheon meats, sausage meat, wild game, sprouting seeds, oat flakes, avocado, asparagus, young sugarcane, and molasses from sugar beets. [Spectral] L-Aspartate (exact mass = 133.03751) and Taurine (exact mass = 125.01466) and L-Asparagine (exact mass = 132.05349) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] L-Aspartate (exact mass = 133.03751) and L-Threonine (exact mass = 119.05824) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. L-Aspartic acid is is an amino acid, shown to be a suitable proagent for colon-specific agent deliverly. L-Aspartic acid is is an amino acid, shown to be a suitable proagent for colon-specific agent deliverly.

   

L-Histidine

(2S)-2-amino-3-(1H-imidazol-5-yl)propanoic acid

C6H9N3O2 (155.0694734)


Histidine (His), also known as L-histidine, is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. Histidine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Histidine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, positively charged or basic amino acid. Histidine is a unique amino acid with an imidazole functional group. The acid-base properties of the imidazole side chain are relevant to the catalytic mechanism of many enzymes such as proteases. In catalytic triads, the basic nitrogen of histidine abstracts a proton from serine, threonine, or cysteine to activate it as a nucleophile. In a histidine proton shuttle, histidine is used to quickly shuttle protons. It can do this by abstracting a proton with its basic nitrogen to make a positively charged intermediate and then use another molecule to extract the proton from its acidic nitrogen. Histidine forms complexes with many metal ions. The imidazole sidechain of the histidine residue commonly serves as a ligand in metalloproteins. Histidine was first isolated by German physician Albrecht Kossel in 1896. Histidine is an essential amino acid in humans and other mammals. It was initially thought that it was only essential for infants, but longer-term studies established that it is also essential for adults. Infants four to six months old require 33 mg/kg of histidine. It is not clear how adults make small amounts of histidine, and dietary sources probably account for most of the histidine in the body. Histidine is a precursor for histamine and carnosine biosynthesis. Inborn errors of histidine metabolism, including histidinemia, maple syrup urine disease, propionic acidemia, and tyrosinemia I, exist and are marked by increased histidine levels in the blood. Elevated blood histidine is accompanied by a wide range of symptoms, from mental and physical retardation to poor intellectual functioning, emotional instability, tremor, ataxia and psychosis. Histidine and other imidazole compounds have anti-oxidant, anti-inflammatory and anti-secretory properties (PMID: 9605177 ). The efficacy of L-histidine in protecting inflamed tissue is attributed to the capacity of the imidazole ring to scavenge reactive oxygen species (ROS) generated by cells during acute inflammatory response (PMID: 9605177 ). Histidine, when administered in therapeutic quantities is able to inhibit cytokines and growth factors involved in cell and tissue damage (US patent 6150392). Histidine in medical therapies has its most promising trials in rheumatoid arthritis where up to 4.5 g daily have been used effectively in severely affected patients. Arthritis patients have been found to have low serum histidine levels, apparently because of very rapid removal of histidine from their blood (PMID: 1079527 ). Other patients besides arthritis patients that have been found to be low in serum histidine are those with chronic renal failure. Urinary levels of histidine are reduced in pediatric patients with pneumonia (PMID: 2084459 ). Asthma patients exhibit increased serum levels of histidine over normal controls (PMID: 23517038 ). Serum histidine levels are lower and are negatively associated with inflammation and oxidative stress in obese women (PMID: 23361591 ). Histidine supplementation has been shown to reduce insulin resistance, reduce BMI and fat mass and suppress inflammation and oxidative stress in obese women with metabolic syndrome. Histidine appears to suppress pro-inflammatory cytokine expression, possibly via the NF-κB pathway, in adipocytes (PMID: 23361591 ). Low plasma concentrations of histidine are associated with protein-energy... [Spectral] L-Histidine (exact mass = 155.06948) and L-Lysine (exact mass = 146.10553) and L-Arginine (exact mass = 174.11168) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] L-Histidine (exact mass = 155.06948) and L-Arginine (exact mass = 174.11168) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. Flavouring ingredient; dietary supplement, nutrient L-Histidine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=71-00-1 (retrieved 2024-07-01) (CAS RN: 71-00-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Histidine is an essential amino acid for infants. L-Histidine is an inhibitor of mitochondrial glutamine transport. L-Histidine is an essential amino acid for infants. L-Histidine is an inhibitor of mitochondrial glutamine transport. L-Histidine is an essential amino acid for infants. L-Histidine is an inhibitor of mitochondrial glutamine transport.

   

L-Serine

(2S)-2-amino-3-hydroxypropanoic acid

C3H7NO3 (105.0425912)


Serine (Ser) or L-serine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-serine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Serine is found in all organisms ranging from bacteria to plants to animals. It is classified as a polar, uncharged (at physiological pH), aliphatic amino acid. In humans, serine is a nonessential amino acid that can be easily derived from glycine. A non-essential amino acid is an amino acid that can be synthesized from central metabolic pathway intermediates in humans and is not required in the diet. Like all the amino acid building blocks of protein and peptides, serine can become essential under certain conditions, and is thus important in maintaining health and preventing disease. L-Serine may be derived from four possible sources: dietary intake; biosynthesis from the glycolytic intermediate 3-phosphoglycerate; from glycine; and by protein and phospholipid degradation. Little data is available on the relative contributions of each of these four sources of l-serine to serine homoeostasis. It is very likely that the predominant source of l-serine will be very different in different tissues and during different stages of human development. In the biosynthetic pathway, the glycolytic intermediate 3-phosphoglycerate is converted into phosphohydroxypyruvate, in a reaction catalyzed by 3-phosphoglycerate dehydrogenase (3- PGDH; EC 1.1.1.95). Phosphohydroxypyruvate is metabolized to phosphoserine by phosphohydroxypyruvate aminotransferase (EC 2.6.1.52) and, finally, phosphoserine is converted into l-serine by phosphoserine phosphatase (PSP; EC 3.1.3.3). In liver tissue, the serine biosynthetic pathway is regulated in response to dietary and hormonal changes. Of the three synthetic enzymes, the properties of 3-PGDH and PSP are the best documented. Hormonal factors such as glucagon and corticosteroids also influence 3-PGDH and PSP activities in interactions dependent upon the diet. L-serine is the predominant source of one-carbon groups for the de novo synthesis of purine nucleotides and deoxythymidine monophosphate. It has long been recognized that, in cell cultures, L-serine is a conditional essential amino acid, because it cannot be synthesized in sufficient quantities to meet the cellular demands for its utilization. In recent years, L-serine and the products of its metabolism have been recognized not only to be essential for cell proliferation, but also to be necessary for specific functions in the central nervous system. The findings of altered levels of serine and glycine in patients with psychiatric disorders and the severe neurological abnormalities in patients with defects of L-serine synthesis underscore the importance of L-serine in brain development and function. (PMID 12534373). [Spectral] L-Serine (exact mass = 105.04259) and D-2-Aminobutyrate (exact mass = 103.06333) and 4-Aminobutanoate (exact mass = 103.06333) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Dietary supplement. L-Serine is found in many foods, some of which are cold cut, mammee apple, coho salmon, and carrot. L-Serine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=56-45-1 (retrieved 2024-07-01) (CAS RN: 56-45-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation. L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation.

   

L-Methionine

(2S)-2-amino-4-(methylsulfanyl)butanoic acid

C5H11NO2S (149.0510466)


Methionine (Met), also known as L-methionine, is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. Methionine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Methionine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, non-polar amino acid. Methionine is an essential amino acid (there are 9 essential amino acids), meaning the body cannot synthesize it, and it must be obtained from the diet. It is required for normal growth and development of humans, other mammals, and avian species. In addition to being a substrate for protein synthesis, methionine is an intermediate in transmethylation reactions, serving as the major methyl group donor in vivo, including the methyl groups for DNA and RNA intermediates. Methionine is a methyl acceptor for 5-methyltetrahydrofolate-homocysteine methyltransferase (methionine synthase), the only reaction that allows for the recycling of this form of folate, and is also a methyl acceptor for the catabolism of betaine. Methionine is the metabolic precursor for cysteine. Only the sulfur atom from methionine is transferred to cysteine; the carbon skeleton of cysteine is donated by serine (PMID: 16702340 ). There is a general consensus concerning normal sulfur amino acid (SAA) requirements. WHO recommendations amount to 13 mg/kg per 24 h in healthy adults. This amount is roughly doubled in artificial nutrition regimens. In disease or after trauma, requirements may be altered for methionine, cysteine, and taurine. Although in specific cases of congenital enzyme deficiency, prematurity, or diminished liver function, hypermethioninemia or hyperhomocysteinemia may occur, SAA supplementation can be considered safe in amounts exceeding 2-3 times the minimum recommended daily intake. Apart from some very specific indications (e.g. acetaminophen poisoning) the usefulness of SAA supplementation is not yet established (PMID: 16702341 ). Methionine is known to exacerbate psychopathological symptoms in schizophrenic patients, but there is no evidence of similar effects in healthy subjects. The role of methionine as a precursor of homocysteine is the most notable cause for concern. Acute doses of methionine can lead to acute increases in plasma homocysteine, which can be used as an index of the susceptibility to cardiovascular disease. Sufficiently high doses of methionine can actually result in death. Longer-term studies in adults have indicated no adverse consequences of moderate fluctuations in dietary methionine intake, but intakes higher than 5 times the normal amount resulted in elevated homocysteine levels. These effects of methionine on homocysteine and vascular function are moderated by supplements of vitamins B-6, B-12, C, and folic acid (PMID: 16702346 ). When present in sufficiently high levels, methionine can act as an atherogen and a metabotoxin. An atherogen is a compound that when present at chronically high levels causes atherosclerosis and cardiovascular disease. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of methionine are associated with at least ten inborn errors of metabolism, including cystathionine beta-synthase deficiency, glycine N-methyltransferase deficiency, homocystinuria, tyrosinemia, galactosemia, homocystinuria-megaloblastic anemia due to defects in cobalamin metabolism, methionine adenosyltransferase deficiency, methylenetetrahydrofolate reductase deficiency, and S-adenosylhomocysteine (SAH) hydrolase deficiency. Chronically elevated levels of methionine in infants can lead to intellectual disability and othe... [Spectral] L-Methionine (exact mass = 149.05105) and Adenosine (exact mass = 267.09675) and S-Adenosyl-L-homocysteine (exact mass = 384.12159) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] L-Methionine (exact mass = 149.05105) and Tyramine (exact mass = 137.08406) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. l-Methionine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=63-68-3 (retrieved 2024-07-01) (CAS RN: 63-68-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Methionine is the L-isomer of Methionine, an essential amino acid for human development. Methionine acts as a hepatoprotectant. L-Methionine is the L-isomer of Methionine, an essential amino acid for human development. Methionine acts as a hepatoprotectant.

   

Dimethyltryptamine

N-(2-(1H-indol-3-yl)Ethyl)-N,N-dimethylamine (acd/name 4.0)

C12H16N2 (188.13134159999998)


An N-methylated indoleamine derivative, a serotonergic hallucinogen found in several plants, especially Prestonia amazonica (Apocynaceae) and in mammalian brain, blood, and urine. It apparently acts as an agonist at some types of serotonin receptors and an antagonist at others.; DMT is a derivative of tryptamine with two additional methyl groups at the amine nitrogen atom. DMT is often synthesized by the Speeter-Anthony synthesis from indole using oxalyl chloride, dimethylamine, and lithium aluminium hydride as reagents. DMT is usually used in its base form, but it is more stable as a salt, e.g. as a fumarate. In contrast to DMTs base, its salts are water-soluble. DMT in solution degrades relatively fast and should be stored protected from air and light in a freezer. Highly pure DMT crystals, when evaporated out of a solvent and depositing upon glass, often produce small but highly defined white crystalline needles which when viewed under intense light will sparkle, and appear colorless under high magnification. In labs, it has been known to be explosive under a certain degree of heat.; DMT is a powerful psychoactive substance. If DMT is smoked, injected, or orally ingested with an MAOI, it can produce powerful entheogenic experiences including intense visual hallucinations, euphoria, even true hallucinations (perceived extensions of reality). A trip sitter is recommended to assist the drug user in staying physically and mentally healthy, and, in the case of smoked DMT, to catch the pipe if the user loses awareness of it.; DMT is classified in the United States as a Schedule I drug. In December of 2004, the Supreme Court lifted a stay thereby allowing the Brazil-based Uniaeo do Vegetal (UDV) church to use a decoction containing DMT in their Christmas services that year. This decoction is a tea made from boiled leaves and vines, known as hoasca within the UDV, and ayahuasca in different cultures. In Gonzales v. O Centro EspArita Beneficente Uniaeo do Vegetal, the Supreme Court heard arguments on November 1, 2005 and unanimously ruled in February 2006 that the U.S. federal government must allow the UDV to import and consume the tea for religious ceremonies under the 1993 Religious Freedom Restoration Act. There are no drug tests that would show DMT usage. None of the basic NIDA 5 drug tests or any extended drug test will show a result for DMT.; Dimethyltryptamine (DMT), also known as N,N-dimethyltryptamine, is a psychedelic tryptamine. It is not to be confused with 5-MeO-DMT and is similar in chemical structure to the neurotransmitter serotonin. DMT is created in small amounts by the human body during normal metabolism by the enzyme tryptamine-N-methyltransferase. Pure DMT at room temperature is a clear or white crystalline solid. DMT was first chemically synthesized in 1931. It also occurs naturally in many species of plants. DMT-containing plants are used in several South American shamanic practices. It is one of the main active constituents of snuffs like yopo and of the drink ayahuasca.; Oral ingestion: DMT, which is broken down by the digestive enzyme monoamine oxidase, is practically inactive if taken orally, unless combined with a monoamine oxidase inhibitor (MAOI). The traditional South American ayahuasca, or yage, is a tea mixture containing DMT and a MAOI. There are a number of admixtures to this brew, but most commonly it is simply the leaves of Psychotria viridis (containing DMT), and the vine Banisteriopsis caapi (the source of MAOI). Other DMT containing plants, including Diplopterys cabrerana, are sometimes used in ayahuasca in different areas of South America. Two common sources in the western US are Reed canary grass (Phalaris arundinacea) and Harding grass (Phalaris aquatica). These invasive grasses contain low levels of DMT and other alkaloids. Taken orally with an appropriate MAOI, DMT produces a long lasting (over 3 hour), slow, but deep spiritual experience. MAOIs should be used with extreme caution as they... Dimethyltryptamine is an N-methylated indoleamine derivative, a serotonergic hallucinogen found in several plants, especially Prestonia amazonica (Apocynaceae) and in mammalian brain, blood, and urine. It apparently acts as an agonist at some types of serotonin receptors and an antagonist at others. DMT is a derivative of tryptamine with two additional methyl groups at the amine nitrogen atom. DMT is often synthesized by the Speeter-Anthony synthesis from indole using oxalyl chloride, dimethylamine, and lithium aluminium hydride as reagents. DMT is usually used in its base form, but it is more stable as a salt, e.g. as a fumarate. In contrast to DMTs base, its salts are water-soluble. DMT in solution degrades relatively fast and should be stored protected from air and light in a freezer. Highly pure DMT crystals, when evaporated out of a solvent and depositing upon glass, often produce small but highly defined white crystalline needles which when viewed under intense light will sparkle, and appear colorless under high magnification. In labs, it has been known to be explosive under a certain degree of heat. DMT is a powerful psychoactive substance. If DMT is smoked, injected, or orally ingested with an MAOI, it can produce powerful entheogenic experiences including intense visual hallucinations, euphoria, even true hallucinations (perceived extensions of reality). A trip sitter is recommended to assist the drug user in staying physically and mentally healthy, and, in the case of smoked DMT, to catch the pipe if the user loses awareness of it. DMT is classified in the United States as a Schedule I drug. There are no drug tests that would show DMT usage. None of the basic NIDA 5 drug tests or any extended drug test will show a result for DMT. Dimethyltryptamine (DMT), also known as N,N-dimethyltryptamine, is a psychedelic tryptamine. It is not to be confused with 5-MeO-DMT and is similar in chemical structure to the neurotransmitter serotonin. DMT is created in small amounts by the human body during normal metabolism by the enzyme tryptamine-N-methyltransferase. Pure DMT at room temperature is a clear or white crystalline solid. DMT was first chemically synthesized in 1931. It also occurs naturally in many species of plants. DMT-containing plants are used in several South American shamanic practices. It is one of the main active constituents of snuffs like yopo and of the drink ayahuasca. Oral ingestion: DMT, which is broken down by the digestive enzyme monoamine oxidase, is practically inactive if taken orally, unless combined with a monoamine oxidase inhibitor (MAOI). The traditional South American ayahuasca, or yage, is a tea mixture containing DMT and a MAOI. There are a number of admixtures to this brew, but most commonly it is simply the leaves of Psychotria viridis (containing DMT), and the vine Banisteriopsis caapi (the source of MAOI). Other DMT containing plants, including Diplopterys cabrerana, are sometimes used in ayahuasca in different areas of South America. Two common sources in the western US are Reed canary grass (Phalaris arundinacea) and Harding grass (Phalaris aquatica). These invasive grasses contain low levels of DMT and other alkaloids. Taken orally with an appropriate MAOI, DMT produces a long lasting (over 3 hour), slow, but deep spiritual experience. MAOIs should be used with extreme caution as they can have lethal complications with some prescription drugs, such as SSRI antidepressants, and some over-the-counter drugs. Smoked: If DMT is smoked, the maximal effects last for a short period of time (5-30 minutes dose dependent). The onset after inhalation is very fast (less than 45 seconds) and maximal effects are reached within about a minute. The Business Mans lunch trip is a common name due to the relatively short duration of vaporized, insufflated, or injected DMT. D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens

   

Psilocin

3-[2-(Dimethylamino)ethyl]-1H-indol-4-ol

C12H16N2O (204.12625659999998)


Psilocin (4-OH-DMT), an aromatic compound, sometimes also spelled psilocine, psilocyn, or psilotsin, is a psychedelic mushroom alkaloid. It is found in most psychedelic mushrooms together with its phosphorylated counterpart psilocybin. Psilocin is a Schedule I drug under the Convention on Psychotropic Substances. The mind-altering effects of psilocin are highly variable and subjective, but resemble those caused by LSD and mescaline. The effects typically last anywhere from three to eight hours depending on certain variables (such as metabolism, food interaction); however the effects can seem to last much longer due to psilocins ability to distort the perception of time. Sulfur analogs are known with a benzothienyl replacement as well as 4-SH-DMT. N1-methylpsilocin is a functionally 5-HT2C receptor preferring agonists. 4-fluoro-N,N-dimethyltryptamine is known. O-Acetylpsilocin is an acetylized analog of psilocin, also known as 4-AcO-DMT. Additionally, substitution of a methyl group at the dimethylated nitrogen with an isopropyl or ethyl group yields 4-HO-MIPT (4-Hydroxy-N-Methyl-N-Isopropyltryptamine) and 4-HO-MET (4-Hydroxy-N-Methyl-N-Ethyltryptamine), respectively. D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens

   

Choline

(2-hydroxyethyl)trimethylazanium

[C5H14NO]+ (104.10753340000001)


Choline is a basic constituent of lecithin that is found in many plants and animal organs. It is important as a precursor of acetylcholine, as a methyl donor in various metabolic processes, and in lipid metabolism. Choline is now considered to be an essential vitamin. While humans can synthesize small amounts (by converting phosphatidylethanolamine to phosphatidylcholine), it must be consumed in the diet to maintain health. Required levels are between 425 mg/day (female) and 550 mg/day (male). Milk, eggs, liver, and peanuts are especially rich in choline. Most choline is found in phospholipids, namely phosphatidylcholine or lecithin. Choline can be oxidized to form betaine, which is a methyl source for many reactions (i.e. conversion of homocysteine into methionine). Lack of sufficient amounts of choline in the diet can lead to a fatty liver condition and general liver damage. This arises from the lack of VLDL, which is necessary to transport fats away from the liver. Choline deficiency also leads to elevated serum levels of alanine amino transferase and is associated with increased incidence of liver cancer. Nutritional supplement. Occurs free and combined in many animal and vegetable foods with highest concentrations found in egg yolk, meat, fish, milk, cereaks and legumes Choline. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=62-49-7 (retrieved 2024-06-29) (CAS RN: 62-49-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Acetylcholine

Bournonville brand OF acetylcholine chloride

[C7H16NO2]+ (146.1180976)


Acetylcholine (ACh) is a neurotransmitter. Acetylcholine in vertebrates is the major transmitter at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. Its physiological and pharmacological effects, metabolism, release, and receptors have been well documented in several species. ACh has been considered an important excitatory neurotransmitter in the carotid body (CB). Various nicotinic and muscarinic ACh receptors are present in both afferent nerve endings and glomus cells. Therefore, ACh can depolarize or hyperpolarize the cell membrane depending on the available receptor type in the vicinity. Binding of ACh to its receptor can create a wide variety of cellular responses including opening cation channels (nicotinic ACh receptor activation), releasing Ca2+ from intracellular storage sites (via muscarinic ACh receptors), and modulating activities of K+ and Ca2+ channels. Interactions between ACh and other neurotransmitters (dopamine, adenosine, nitric oxide) have been known, and they may induce complicated responses. Cholinergic biology in the CB differs among species and even within the same species due to different genetic composition. Development and environment influence cholinergic biology. Pharmacological data clearly indicate that both muscarinic and nicotinic acetylcholine receptors have a role in the encoding of new memories. Localized lesions and antagonist infusions demonstrate the anatomical locus of these cholinergic effects, and computational modeling links the function of cholinergic modulation to specific cellular effects within these regions. Acetylcholine has been shown to increase the strength of afferent input relative to feedback, to contribute to theta rhythm oscillations, activate intrinsic mechanisms for persistent spiking, and increase the modification of synapses. These effects might enhance different types of encoding in different cortical structures. In particular, the effects in entorhinal and perirhinal cortex and hippocampus might be important for encoding new episodic memories. The role of ACh in attention has been repeatedly demonstrated in several tasks. Acetylcholine is linked to response accuracy in voluntary and reflexive attention and also to response speed in reflexive attention. It is well known that those with Attention-deficit/hyperactivity disorders tend to be inaccurate and slow to respond. (PMID:17284361, 17011181, 15556286). Acetylcholine has been found to be a microbial product, urinary acetylcholine is produced by Lactobacillus (PMID:24621061). S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EB - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists Acquisition and generation of the data is financially supported in part by CREST/JST. C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents IPB_RECORD: 232; CONFIDENCE confident structure COVID info from COVID-19 Disease Map Corona-virus KEIO_ID A060 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Octanol

Octyl alcohol normal-primary

C8H18O (130.1357578)


1-Octanol, also known as octan-1-ol, is the organic compound with the molecular formula CH3(CH2)7OH. It is a fatty alcohol. Many other isomers are also known generically as octanols. Octanol is mainly produced industrially by the oligomerization of ethylene using triethylaluminium followed by oxidation of the alkylaluminium products. This route is known as the Ziegler alcohol synthesis. Octanol also occurs naturally in the form of esters in some essential oils. Octanol and water are immiscible. The distribution of a compound between water and octanol is used to calculate the partition coefficient (logP) of that molecule. Water/octanol partitioning is a good approximation of the partitioning between the cytosol and lipid membranes of living systems. Octanol is a colorless, slightly viscous liquid used as a defoaming or wetting agent. It is also used as a solvent for protective coatings, waxes, and oils, and as a raw material for plasticizers. It is also one of many compounds derived from tobacco and tobacco smoke and shown to increase the permeability of the membranes of human lung fibroblasts (PMID 7466833). Occurs in the form of esters in some essential oils. Flavouring agent. 1-Octanol is found in many foods, some of which are common wheat, lime, tea, and corn. D012997 - Solvents 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2]. 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2].

   

5-Methoxydimethyltryptamine

[2-(5-methoxy-1H-indol-3-yl)ethyl]dimethylamine

C13H18N2O (218.1419058)


5-Methoxydimethyltryptamine, like all methoxydimethyltryptamines is a compound that contain the biogenic monoamine tryptamine and is substituted with one methoxy group and two methyl groups. Members of this group include several potent serotonergic hallucinogens found in several unrelated plants, skins of certain toads, and in mammalian brains. They are possibly involved in the etiology of schizophrenia. They are formed as metabolites of serotonin (5-hydroxytryptamine) or tryptamine by the enzyme indolethylamine N-methyltransferase (INMT). The physiological significance of the N-methylating pathway of indoleamine metabolism, and of the methylated end products, is unknown. Because of the known psychotropic properties of the dimethylated amines, their possible involvement in the chemical pathogenesis of mental disorders has received wide interest. The hallucinogenic actions of the methylated indoleamines, like those of LSD, are believed to be mediated through the 5HT2 receptor. (PMID 11763413). 5-Methoxydimethyltryptamine, like all Methoxydimethyltryptamines is a compound that contain the biogenic monoamine tryptamine and is substituted with one methoxy group and two methyl groups. Members of this group include several potent serotonergic hallucinogens found in several unrelated plants, skins of certain toads, and in mammalian brains. They are possibly involved in the etiology of schizophrenia. (PubChem) C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist KEIO_ID M103; [MS2] KO009040 KEIO_ID M103

   

Muscimol

5-(Aminomethyl)-3(2H)-isoxazolone

C4H6N2O2 (114.04292559999999)


D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins KEIO_ID M115

   

L-2-Amino-4-chloropent-4-enoate

(2S)-2-amino-4-chloropent-4-enoic acid

C5H8ClNO2 (149.0243538)


   

N-Methylserotonin

3-[2-(Methylamino)ethyl]-1H-indol-5-ol

C11H14N2O (190.1106074)


N-methylserotonin is a product of the serotonin-degradative pathway, found in urine specimens of patients with psychiatric disorders (PubMed ID 8747157 ).

   

Betalamic acid

(4Z)-4-(2-oxoethylidene)-1,2,3,4-tetrahydropyridine-2,6-dicarboxylic acid

C9H9NO5 (211.04807040000003)


Betalamic acid is found in common beet. Betalamic acid is a precursor of betalains pigments in plants of the Centrospermae. Betalamic acid is detected in Beta vulgaris (beetroot Precursor of betalains pigments in plants of the Centrospermae. Detected in Beta vulgaris (beetroot). Betalamic acid is found in red beetroot, common beet, and root vegetables. D004396 - Coloring Agents > D050858 - Betalains

   

Ibotenic acid

2-amino-2-(3-hydroxy-1,2-oxazol-5-yl)acetic acid

C5H6N2O4 (158.0327556)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins Ibotenic acid has agonist activity at both the N-methyl-D-aspartate (NMDA) and trans-ACPD or metabolotropic quisqualate (Qm) receptor sites. Ibotenic acid has agonist activity at both the N-methyl-D-aspartate (NMDA) and trans-ACPD or metabolotropic quisqualate (Qm) receptor sites.

   

DL-2-Aminopropionic acid

2-aminopropanoic acid

C3H7NO2 (89.0476762)


(alpha-D-mannosyl)7-beta-D-mannosyl-diacetylchitobiosyl-L-asparagine, isoform A (protein), also known as ALA or 2-Aminopropanoic acid, is classified as an alanine or an Alanine derivative. Alanines are compounds containing alanine or a derivative thereof resulting from reaction of alanine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. (alpha-D-mannosyl)7-beta-D-mannosyl-diacetylchitobiosyl-L-asparagine, isoform A (protein) is considered to be soluble (in water) and acidic. (alpha-D-mannosyl)7-beta-D-mannosyl-diacetylchitobiosyl-L-asparagine, isoform A (protein) can be synthesized from propionic acid. (alpha-D-mannosyl)7-beta-D-mannosyl-diacetylchitobiosyl-L-asparagine, isoform A (protein) can be synthesized into alanine derivative. (alpha-D-mannosyl)7-beta-D-mannosyl-diacetylchitobiosyl-L-asparagine, isoform A (protein) is an odorless tasting compound found in Green bell peppers, Green zucchinis, Italian sweet red peppers, and Red bell peppers Dietary supplement, nutrient, sweetening flavour enhancer in pickling spice mixts. DL-alanine, an amino acid, is the racemic compound of L- and D-alanine. DL-alanine is employed both as a reducing and a capping agent, used with silver nitrate aqueous solutions for the production of nanoparticles. DL-alanine can be used for the research of transition metals chelation, such as Cu(II), Zn(II), Cd(11). DL-alanine, a sweetener, is classed together with glycine, and sodium saccharin. DL-alanine plays a key role in the glucose-alanine cycle between tissues and liver[1][2][3][4][5][6].

   

L-Threonine

D-(+)-Threonine

C4H9NO3 (119.0582404)


An optically active form of threonine having L-configuration. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; AYFVYJQAPQTCCC_STSL_0105_Threonine_8000fmol_180506_S2_LC02_MS02_275; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. CONFIDENCE standard compound; INTERNAL_ID 10 DL-Threonine, an essential amino acid, has the potential to treat hypostatic leg ulceration[1]. L-Threonine is a natural amino acid, can be produced by microbial fermentation, and is used in food, medicine, or feed[1]. L-Threonine is a natural amino acid, can be produced by microbial fermentation, and is used in food, medicine, or feed[1].

   

Leucine

2-Amino-4-methylpentanoic acid

C6H13NO2 (131.0946238)


A branched-chain amino acid that consists of glycine in which one of the hydrogens attached to the alpha-carbon is substituted by an isobutyl group. Leucine (symbol Leu or L)[3] is an essential amino acid that is used in the biosynthesis of proteins. Leucine is an α-amino acid, meaning it contains an α-amino group (which is in the protonated −NH3+ form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −COO− form under biological conditions), and a side chain isobutyl group, making it a non-polar aliphatic amino acid. It is essential in humans, meaning the body cannot synthesize it: it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, and beans and other legumes. It is encoded by the codons UUA, UUG, CUU, CUC, CUA, and CUG. Leucine is named after the Greek word for "white": λευκός (leukós, "white"), after its common appearance as a white powder, a property it shares with many other amino acids.[4] Like valine and isoleucine, leucine is a branched-chain amino acid. The primary metabolic end products of leucine metabolism are acetyl-CoA and acetoacetate; consequently, it is one of the two exclusively ketogenic amino acids, with lysine being the other.[5] It is the most important ketogenic amino acid in humans.[6] Leucine and β-hydroxy β-methylbutyric acid, a minor leucine metabolite, exhibit pharmacological activity in humans and have been demonstrated to promote protein biosynthesis via the phosphorylation of the mechanistic target of rapamycin (mTOR).[7][8] L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1].

   

L-Carnitine

(3R)-3-hydroxy-4-(trimethylazaniumyl)butanoate

C7H15NO3 (161.105188)


Carnitine is a non-essential amino acid and a quaternary ammonium compound. Carnitine is also classified as an alcohol (specifically, a trimethylated carboxy-alcohol). Carnitine exists as one of two stereoisomers (the two enantiomers D-carnitine and L-carnitine. Both are biologically active, but only L-carnitine naturally occurs in animals, and D-carnitine is toxic as it inhibits the activity of the L-form. Carnitine is involved in the metabolism in most mammals, plants, and some bacteria. Carnitine plays a key role in lipid metabolism and beta-oxidation. It is used to transport long-chain fatty acids into the mitochondria to be oxidized for energy production. This is done by forming a long chain acetylcarnitine esters which are then transported by carnitine palmitoyltransferase I and carnitine palmitoyltransferase II. Carnitine also participates in removing products of metabolism from cells. Given its key metabolic roles, carnitine is concentrated in skeletal and cardiac muscle as well as other tissues that metabolize fatty acids as an energy source. A normal 70 kilogram person typically produces 11‚Äì34 mg of carnitine per day. Adults eating mixed diets of red meat and other animal products ingest 60‚Äì180 mg of carnitine per day, while vegans consume about 10‚Äì12 mg per day. Most carnitine obtained from the diet is absorbed in the small intestine before entering the blood.[3] The total body content of carnitine is about 20 grams in a person weighing 70 kilograms, with nearly all of it contained within skeletal muscle cells. Carnitine is so important in providing energy to muscles (including the heart) that some researchers are now recommending carnitine supplements in the diet, particularly for people who do not consume much red meat (the main food source for carnitine). Carnitine has been described as a vitamin, an amino acid, or a metabimin (i.e. an essential metabolite). Like the B vitamins, carnitine contains nitrogen and is very soluble in water. However, most animals, including humans, make their own carnitine; thus, carnitine cannot be considered to be a vitamin. In certain circumstances, such as methionine deficiency, lysine deficiency, vitamin C deficiency or kidney dialysis, carnitine shortages can develop. Under these conditions, carnitine must be absorbed from food, and for this reason, it is sometimes referred to as a "metabimin" or a conditionally essential metabolite. In humans, about 25\\\\% of carnitine is synthesized in the liver, kidney, and brain from lysine and methionine. Most of the carnitine in the body comes from dietary sources such as red meat and dairy products. Inborn errors of carnitine metabolism such as Reye‚Äôs syndrome can lead to brain deterioration gradually worsening muscle weakness, Duchenne-like muscular dystrophy, and extreme muscle weakness with fat accumulation in muscles. Carnitine is an essential nutrient for pre-term babies and individuals who are unable to eat a normal diet (e.g. non-ketotic hypoglycemics, kidney dialysis patients) (PMID: 115309). In conditions such as kwashiorkor, cirrhosis, and heart muscle disease (cardiomyopathy) as well as in inborn errors of metabolism such as type IV hyperlipidemia and propionic aciduria, carnitine is essential to life and carnitine supplements are critically important. Carnitine therapy may also be useful in a wide variety of clinical conditions. Carnitine supplementation has improved some patients who have angina secondary to coronary artery disease. Carnitine supplements may also be useful in many forms of metabolic liver diseases and heart muscle disease. Hearts undergoing severe arrhythmia quickly deplete their stores of carnitine. Athletes, particularly in Europe, have used carnitine supplements for improved endurance. Carnitine may improve muscle building by improving fat utilization and may even be useful in treating obesity. Carnitine may be of value in treating pregnant women, hypothyroid individuals, and male infertility due to t... Malonyl-carnitin, also known as d,l-carnitine or carnitine chloride, is a member of the class of compounds known as carnitines. Carnitines are organic compounds containing the quaternary ammonium compound carnitine. Malonyl-carnitin is slightly soluble (in water) and a weakly acidic compound (based on its pKa). Malonyl-carnitin can be synthesized from butyrate. Malonyl-carnitin is also a parent compound for other transformation products, including but not limited to, O-sebacoylcarnitine, O-(4,8-dimethylnonanoyl)carnitine, and O-(11-carboxyundecanoyl)carnitine. Malonyl-carnitin can be found in avocado, which makes malonyl-carnitin a potential biomarker for the consumption of this food product. Malonyl-carnitin can be found primarily in blood. L-Carnitine ((R)-Carnitine), a highly polar, small zwitterion, is an essential co-factor for the mitochondrial β-oxidation pathway. L-Carnitine functions to transport long chain fatty acyl-CoAs into the mitochondria for degradation by β-oxidation. L-Carnitine is an antioxidant. L-Carnitine can ameliorate metabolic imbalances in many inborn errors of metabolism[1][2][3]. L-Carnitine ((R)-Carnitine), a highly polar, small zwitterion, is an essential co-factor for the mitochondrial β-oxidation pathway. L-Carnitine functions to transport long chain fatty acyl-CoAs into the mitochondria for degradation by β-oxidation. L-Carnitine is an antioxidant. L-Carnitine can ameliorate metabolic imbalances in many inborn errors of metabolism[1][2][3].

   
   

N-Allylglycine

2-[(prop-2-en-1-yl)amino]acetic acid

C5H9NO2 (115.0633254)


   

Leucine

L-Leucine

C6H13NO2 (131.0946238)


COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1].

   

Serotonin

5-Hydroxytryptamine

C10H12N2O (176.09495819999998)


D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists

   

Carnitine

L-carnitine

C7H15NO3 (161.105188)


L-Carnitine ((R)-Carnitine), a highly polar, small zwitterion, is an essential co-factor for the mitochondrial β-oxidation pathway. L-Carnitine functions to transport long chain fatty acyl-CoAs into the mitochondria for degradation by β-oxidation. L-Carnitine is an antioxidant. L-Carnitine can ameliorate metabolic imbalances in many inborn errors of metabolism[1][2][3]. L-Carnitine ((R)-Carnitine), a highly polar, small zwitterion, is an essential co-factor for the mitochondrial β-oxidation pathway. L-Carnitine functions to transport long chain fatty acyl-CoAs into the mitochondria for degradation by β-oxidation. L-Carnitine is an antioxidant. L-Carnitine can ameliorate metabolic imbalances in many inborn errors of metabolism[1][2][3].

   

Choline

Choline

[C5H14NO]+ (104.10753340000001)


D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D008082 - Lipotropic Agents D002491 - Central Nervous System Agents > D018697 - Nootropic Agents D009676 - Noxae > D000963 - Antimetabolites D005765 - Gastrointestinal Agents

   

Phenylalanine

(2S)-2-amino-3-phenylpropanoic acid

C9H11NO2 (165.0789746)


COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4].

   

2-amino-3-cyclopropylbutanoic acid

(-)-2-Amino-3-cyclopropylbutanoic acid

C7H13NO2 (143.0946238)


   

Betaine

2-(trimethylazaniumyl)acetate

C5H11NO2 (117.0789746)


Betaine or trimethylglycine is a methylated derivative of glycine. It functions as a methyl donor in that it carries and donates methyl functional groups to facilitate necessary chemical processes. The donation of methyl groups is important to proper liver function, cellular replication, and detoxification reactions. Betaine also plays a role in the manufacture of carnitine and serves to protect the kidneys from damage. Betaine has also been of interest for its role in osmoregulation. As a drug, betaine hydrochloride has been used as a source of hydrochloric acid in the treatment of hypochlorhydria. Betaine has also been used in the treatment of liver disorders, for hyperkalemia, for homocystinuria, and for gastrointestinal disturbances. (From Martindale, The Extra Pharmacopoeia, 30th Ed, p1341). Betaine is found in many foods, some of which are potato puffs, poppy, hazelnut, and garden cress. Betaine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=107-43-7 (retrieved 2024-06-28) (CAS RN: 107-43-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

N-Methylserotonin

N-Methylserotonin

C11H14N2O (190.1106074)


A member of the class of tryptamines that is serotonin in which one of the hydrogens attached to the primary amino group is replaced by a methyl group. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053

   

2-Amino-4,5-hexadienoic acid

2-Amino-4,5-hexadienoic acid

C6H9NO2 (127.0633254)


   

2-amino-3-cyclopropylpropanoic acid

2-amino-3-cyclopropylpropanoic acid

C6H11NO2 (129.0789746)


   
   

Choline

Choline chloride

[C5H14NO]+ (104.10753340000001)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; OEYIOHPDSNJKLS_STSL_0152_Choline_0125fmol_180430_S2_LC02_MS02_80; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D008082 - Lipotropic Agents D002491 - Central Nervous System Agents > D018697 - Nootropic Agents IPB_RECORD: 922; CONFIDENCE confident structure D009676 - Noxae > D000963 - Antimetabolites D005765 - Gastrointestinal Agents

   

Phenylalanine

(2S)-2-amino-3-phenylpropanoic acid

C9H11NO2 (165.0789746)


An aromatic amino acid that is alanine in which one of the methyl hydrogens is substituted by a phenyl group. Annotation level-2 Acquisition and generation of the data is financially supported by the Max-Planck-Society COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS IPB_RECORD: 2701; CONFIDENCE confident structure L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4].

   

Levodopa

L-3-(3,4-dihydroxyphenyl)-Alanine

C9H11NO4 (197.0688046)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.052

   

DL-Leucine

2-Amino-4-methylpentanoic acid

C6H13NO2 (131.0946238)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.062 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.057 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.055

   

Serotonin

5-Hydroxytryptamine

C10H12N2O (176.09495819999998)


D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists A primary amino compound that is the 5-hydroxy derivative of tryptamine. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; QZAYGJVTTNCVMB_STSL_0135_Serotonin_8000fmol_180506_S2_LC02_MS02_147; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053

   

L-Isoleucine

L-Isoleucine

C6H13NO2 (131.0946238)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; AGPKZVBTJJNPAG-WHFBIAKZSA-N_STSL_0101_Isoleucine_8000fmol_180425_S2_LC02_MS02_58; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. CONFIDENCE standard compound; INTERNAL_ID 8 COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-isoleucine is a nonpolar hydrophobic amino acid[1]. L-Isoleucine is an essential amino acid. L-isoleucine is a nonpolar hydrophobic amino acid[1]. L-Isoleucine is an essential amino acid.

   

L-Methionine

L-Methionine

C5H11NO2S (149.0510466)


The L-enantiomer of methionine. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; FFEARJCKVFRZRR-BYPYZUCNSA-N_STSL_0047_Methionine_8000fmol_180416_S2_LC02_MS02_69; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. L-Methionine is the L-isomer of Methionine, an essential amino acid for human development. Methionine acts as a hepatoprotectant. L-Methionine is the L-isomer of Methionine, an essential amino acid for human development. Methionine acts as a hepatoprotectant.

   

L-Valine

L-Valine

C5H11NO2 (117.0789746)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; KZSNJWFQEVHDMF_STSL_0100_Valine_8000fmol_180506_S2_LC02_MS02_131; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. L-Valine (Valine) is a new nonlinear semiorganic material[1]. L-Valine (Valine) is a new nonlinear semiorganic material[1].

   

L-Arginine

L-Arginine monohydrochloride

C6H14N4O2 (174.1116704)


An L-alpha-amino acid that is the L-isomer of arginine. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; ODKSFYDXXFIFQN-BYPYZUCNSA-N_STSL_0099_L-Arginine_8000fmol_180506_S2_LC02_MS02_67; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. L-Arginine ((S)-(+)-Arginine) is the substrate for the endothelial nitric oxide synthase (eNOS) to generate NO. L-Arginine is transported into vascular smooth muscle cells by the cationic amino acid transporter family of proteins where it is metabolized to nitric oxide (NO), polyamines, or L-proline[1][2]. L-Arginine ((S)-(+)-Arginine) is the substrate for the endothelial nitric oxide synthase (eNOS) to generate NO. L-Arginine is transported into vascular smooth muscle cells by the cationic amino acid transporter family of proteins where it is metabolized to nitric oxide (NO), polyamines, or L-proline[1][2].

   

L-Histidine

L-Histidine

C6H9N3O2 (155.06947340000002)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; HNDVDQJCIGZPNO_STSL_0107_Histidine_8000fmol_180430_S2_LC02_MS02_142; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. L-Histidine is an essential amino acid for infants. L-Histidine is an inhibitor of mitochondrial glutamine transport. L-Histidine is an essential amino acid for infants. L-Histidine is an inhibitor of mitochondrial glutamine transport. L-Histidine is an essential amino acid for infants. L-Histidine is an inhibitor of mitochondrial glutamine transport.

   

Acetylcholine

(2-acetoxyethyl)trimethylammonium

[C7H16NO2]+ (146.1180976)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; OIPILFWXSMYKGL_STSL_0140_Acetylcholine_0125fmol_180506_S2_LC02_MS02_248; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.

   

L-Serine

L-Serine

C3H7NO3 (105.0425912)


The L-enantiomer of serine. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; MTCFGRXMJLQNBG_STSL_0098_Serine_8000fmol_180430_S2_LC02_MS02_174; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation. L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation.

   

L-Leucine

L-Leucine, (Cell Culture Reagent, Crystalline)

C6H13NO2 (131.0946238)


Flavouring ingredient; dietary supplement, nutrient. L-Leucine is found in many foods, some of which are lettuce, common bean, pacific herring, and kefir. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; ROHFNLRQFUQHCH-YFKPBYRVSA-N_STSL_0102_Leucine_8000fmol_180425_S2_LC02_MS02_19; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1].

   

L-Phenylalanine

L-(-)-Phenylalanine

C9H11NO2 (165.0789746)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; COLNVLDHVKWLRT_STSL_0103_Phenylalanine_2000fmol_180506_S2_LC02_MS02_290; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4]. L-Phenylalanine ((S)-2-Amino-3-phenylpropionic acid) is an essential amino acid isolated from Escherichia coli. L-Phenylalanine is a α2δ subunit of voltage-dependent Ca+ channels antagonist with a Ki of 980 nM. L-phenylalanine is a competitive antagonist for the glycine- and glutamate-binding sites of N-methyl-D-aspartate receptors (NMDARs) (KB of 573 μM ) and non-NMDARs, respectively. L-Phenylalanine is widely used in the production of food flavors and pharmaceuticals[1][2][3][4].

   

L-glutamic acid

L-glutamic acid

C5H9NO4 (147.0531554)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; WHUUTDBJXJRKMK-VKHMYHEASA-N_STSL_0113_Glutamic acid_8000fmol_180425_S2_LC02_MS02_66; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. L-Glutamic acid acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). L-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals. L-Glutamic acid is an excitatory amino acid neurotransmitter that acts as an agonist for all subtypes of glutamate receptors (metabolic rhodophylline, NMDA, and AMPA). L-Glutamic acid has an agonist effect on the release of DA from dopaminergic nerve endings. L-Glutamic acid can be used in the study of neurological diseases[1][2][3][4][5]. L-Glutamic acid acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). L-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals.

   

L-Aspartic Acid

L-Aspartic Acid

C4H7NO4 (133.0375062)


The L-enantiomer of aspartic acid. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; CKLJMWTZIZZHCS_STSL_0112_Aspartic acid_2000fmol_180430_S2_LC02_MS02_26; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. L-Aspartic acid is is an amino acid, shown to be a suitable proagent for colon-specific agent deliverly. L-Aspartic acid is is an amino acid, shown to be a suitable proagent for colon-specific agent deliverly.

   

Alanine

L-α-Aminopropionic acid

C3H7NO2 (89.0476762)


An alpha-amino acid that consists of propionic acid bearing an amino substituent at position 2. Alanine (symbol Ala or A),[4] or α-alanine, is an α-amino acid that is used in the biosynthesis of proteins. It contains an amine group and a carboxylic acid group, both attached to the central carbon atom which also carries a methyl group side chain. Consequently it is classified as a nonpolar, aliphatic α-amino acid. Under biological conditions, it exists in its zwitterionic form with its amine group protonated (as −NH + 3 ) and its carboxyl group deprotonated (as −CO − 2 ). It is non-essential to humans as it can be synthesized metabolically and does not need to be present in the diet. It is encoded by all codons starting with GC (GCU, GCC, GCA, and GCG). The L-isomer of alanine (left-handed) is the one that is incorporated into proteins. L-alanine is second only to L-leucine in rate of occurrence, accounting for 7.8\\\\\% of the primary structure in a sample of 1,150 proteins.[5] The right-handed form, D-alanine, occurs in peptides in some bacterial cell walls[6]: 131  (in peptidoglycan) and in some peptide antibiotics, and occurs in the tissues of many crustaceans and molluscs as an osmolyte. D-Alanine is a weak GlyR (inhibitory glycine receptor) and PMBA agonist, with an EC50 of 9 mM for GlyR. D-Alanine is a weak GlyR (inhibitory glycine receptor) and PMBA agonist, with an EC50 of 9 mM for GlyR. L-Alanine is a non-essential amino acid, involved in sugar and acid metabolism, increases immunity, and provides energy for muscle tissue, brain, and central nervous system. L-Alanine is a non-essential amino acid, involved in sugar and acid metabolism, increases immunity, and provides energy for muscle tissue, brain, and central nervous system.

   

Fumaric Acid

(2Z)-2-Butenedioic acid

C4H4O4 (116.01095839999999)


Fumaric acid, associated with fumarase deficiency, is identified as an oncometabolite or an endogenous, cancer causing metabolite. Fumaric acid, associated with fumarase deficiency, is identified as an oncometabolite or an endogenous, cancer causing metabolite.

   

Carnitine

γ-Trimethyl-hydroxybutyroβine

C7H15NO3 (161.105188)


An amino-acid betaine that is butanoate substituted with a hydroxy group at position C-3 and a trimethylammonium group at C-4.

   

3-OCTANOL

(±)-octan-3-ol

C8H18O (130.1357578)


Present in Japanese peppermint oil and many other essential oils. (S)-3-Octanol is found in herbs and spices.

   

Octanol

InChI=1\C8H18O\c1-2-3-4-5-6-7-8-9\h9H,2-8H2,1H

C8H18O (130.1357578)


D012997 - Solvents 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2]. 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2].

   
   
   

Choline

Choline Hydroxide

C5H14NO+ (104.10753340000001)


A choline that is the parent compound of the cholines class, consisting of ethanolamine having three methyl substituents attached to the amino function. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D008082 - Lipotropic Agents D002491 - Central Nervous System Agents > D018697 - Nootropic Agents D009676 - Noxae > D000963 - Antimetabolites D005765 - Gastrointestinal Agents

   

Acetylcholine

(2-acetoxyethyl)trimethylammonium

C7H16NO2+ (146.1180976)


S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EB - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists Actylcholine is an ester of acetic acid and choline, which acts as a neurotransmitter. C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   
   
   

1-OCTEN-3-OL

(3R)-oct-1-en-3-ol

C8H16O (128.1201086)


Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2]. Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2].

   

(+)-Muscarine

2,5-anhydro-1,4,6-trideoxy-6-(trimethylammonio)-D-ribo-hexitol, iodide

C9H19NO2 (173.1415714)


   

Octan-1-ol

Octan-1-ol

C8H18O (130.1357578)


An octanol carrying the hydroxy group at position 1.

   

KI-II

2-[(2-amino-2-carboxyethyl)sulfanyl]butanedioic acid

C7H11NO6S (237.0307066)


   

2-amino-3-methylidenehexanoic acid

L-2-Amino-3-methylenehexanoic acid

C7H13NO2 (143.0946238)


   

Acetylcholine

Bournonville brand OF acetylcholine chloride

C7H16NO2+ (146.1180976)


Acetylcholine (ACh) is a neurotransmitter. Acetylcholine in vertebrates is the major transmitter at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. Its physiological and pharmacological effects, metabolism, release, and receptors have been well documented in several species. ACh has been considered an important excitatory neurotransmitter in the carotid body (CB). Various nicotinic and muscarinic ACh receptors are present in both afferent nerve endings and glomus cells. Therefore, ACh can depolarize or hyperpolarize the cell membrane depending on the available receptor type in the vicinity. Binding of ACh to its receptor can create a wide variety of cellular responses including opening cation channels (nicotinic ACh receptor activation), releasing Ca2+ from intracellular storage sites (via muscarinic ACh receptors), and modulating activities of K+ and Ca2+ channels. Interactions between ACh and other neurotransmitters (dopamine, adenosine, nitric oxide) have been known, and they may induce complicated responses. Cholinergic biology in the CB differs among species and even within the same species due to different genetic composition. Development and environment influence cholinergic biology. Pharmacological data clearly indicate that both muscarinic and nicotinic acetylcholine receptors have a role in the encoding of new memories. Localized lesions and antagonist infusions demonstrate the anatomical locus of these cholinergic effects, and computational modeling links the function of cholinergic modulation to specific cellular effects within these regions. Acetylcholine has been shown to increase the strength of afferent input relative to feedback, to contribute to theta rhythm oscillations, activate intrinsic mechanisms for persistent spiking, and increase the modification of synapses. These effects might enhance different types of encoding in different cortical structures. In particular, the effects in entorhinal and perirhinal cortex and hippocampus might be important for encoding new episodic memories. The role of ACh in attention has been repeatedly demonstrated in several tasks. Acetylcholine is linked to response accuracy in voluntary and reflexive attention and also to response speed in reflexive attention. It is well known that those with Attention-deficit/hyperactivity disorders tend to be inaccurate and slow to respond. (PMID:17284361, 17011181, 15556286). Acetylcholine has been found to be a microbial product, urinary acetylcholine is produced by Lactobacillus (PMID:24621061). S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EB - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Occurs in Capsella bursa-pastoris (shepherds purse) COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

4-formyl-2,3-dihydro-1H-azepine-2,7-dicarboxylic acid

4-formyl-2,3-dihydro-1H-azepine-2,7-dicarboxylic acid

C9H9NO5 (211.04807040000003)


   

muscimol

muscimol

C4H6N2O2 (114.04292559999999)


A member of the class of isoxazoles that is 1,2-oxazol-3(2H)-one substituted by an aminomethyl group at position 5. It has been isolated from mushrooms of the genus Amanita. D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins

   

Dimethyltryptamine

N,N-DIMETHYLTRYPTAMINE

C12H16N2 (188.13134159999998)


D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens A tryptamine derivative having two N-methyl substituents on the side-chain.

   

PSILOCIN

PSILOCIN

C12H16N2O (204.12625659999998)


A tryptamine alkaloid that is N,N-dimethyltryptamine carrying an additional hydroxy substituent at position 4. A hallucinogenic alkaloid isolated in trace amounts from Psilocybe mushrooms (also known as Teonanacatl or "magic mushrooms"). D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens

   

Betalamic acid

Betalamic acid

C9H9NO5 (211.04807040000003)


D004396 - Coloring Agents > D050858 - Betalains

   

L-2-amino-4-chloropent-4-enoic acid

(2S)-2-amino-4-chloropent-4-enoic acid

C5H8ClNO2 (149.0243538)


An alpha-amino acid having a 2-chloro-2-propenyl group at the alpha-position and L-configuration.

   

octan-3-ol

octan-3-ol

C8H18O (130.1357578)


A secondary alcohol that is octane substituted by a hydroxy group at position 3.

   

Psilocybin

Psilocybin

C12H17N2O4P (284.0925892)


A tryptamine alkaloid that is N,N-dimethyltryptamine carrying an additional phosphoryloxy substituent at position 4. The major hallucinogenic alkaloid isolated from Psilocybe mushrooms (also known as Teonanacatl or "magic mushrooms").

   

Oct-1-en-3-ol

Oct-1-en-3-ol

C8H16O (128.1201086)


An alkenyl alcohol with a structure based on a C8 unbranched chain with the hydroxy group at C-2 and unsaturation at C-1-C-2. It is a major volatile compound present in many mushrooms and fungi.

   

(2e,4z,6s)-6-hydroxydocosa-2,4-dienoic acid

(2e,4z,6s)-6-hydroxydocosa-2,4-dienoic acid

C22H40O3 (352.297729)


   

4-chloro-3-hydroxypent-4-enimidic acid

4-chloro-3-hydroxypent-4-enimidic acid

C5H8ClNO2 (149.0243538)


   

(1s,2s,5s,7r,9s,10r,11r,12r,15r,16r)-15-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-2,16-dimethyl-8,19-dioxahexacyclo[9.7.1.0¹,¹¹.0²,⁷.0⁷,⁹.0¹²,¹⁶]nonadecane-5,10-diol

(1s,2s,5s,7r,9s,10r,11r,12r,15r,16r)-15-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-2,16-dimethyl-8,19-dioxahexacyclo[9.7.1.0¹,¹¹.0²,⁷.0⁷,⁹.0¹²,¹⁶]nonadecane-5,10-diol

C28H44O4 (444.3239424)


   

{28-[2,3-dihydroxy-2-(hydroxymethyl)propyl]-18,21,24,26,29,32,35-heptahydroxy-31-isopropyl-23-methyl-15-oxo-12-thia-10,16,22,25,27,30,33,36-octaazapentacyclo[12.11.11.0³,¹¹.0⁴,⁹.0¹⁶,²⁰]hexatriaconta-3(11),4,6,8,21,24,26,29,32,35-decaen-34-yl}(hydroxy)acetic acid

{28-[2,3-dihydroxy-2-(hydroxymethyl)propyl]-18,21,24,26,29,32,35-heptahydroxy-31-isopropyl-23-methyl-15-oxo-12-thia-10,16,22,25,27,30,33,36-octaazapentacyclo[12.11.11.0³,¹¹.0⁴,⁹.0¹⁶,²⁰]hexatriaconta-3(11),4,6,8,21,24,26,29,32,35-decaen-34-yl}(hydroxy)acetic acid

C37H50N8O14S (862.3167040000001)


   

(1s,4r,10r,13r,16r,34r)-13-(3,4-dihydroxybutan-2-yl)-2,8,11,14,22,30,33,36,39-nonahydroxy-4-(c-hydroxycarbonimidoylmethyl)-5-oxo-34-(sec-butyl)-27-thia-3,6,12,15,25,29,32,35,38-nonaazapentacyclo[14.12.11.0⁶,¹⁰.0¹⁸,²⁶.0¹⁹,²⁴]nonatriaconta-2,11,14,18(26),19,21,23,29,32,35,38-undecaen-27-ium-27-olate

(1s,4r,10r,13r,16r,34r)-13-(3,4-dihydroxybutan-2-yl)-2,8,11,14,22,30,33,36,39-nonahydroxy-4-(c-hydroxycarbonimidoylmethyl)-5-oxo-34-(sec-butyl)-27-thia-3,6,12,15,25,29,32,35,38-nonaazapentacyclo[14.12.11.0⁶,¹⁰.0¹⁸,²⁶.0¹⁹,²⁴]nonatriaconta-2,11,14,18(26),19,21,23,29,32,35,38-undecaen-27-ium-27-olate

C39H54N10O14S (918.3541504000001)


   

(3r)-4-chloro-3-hydroxypent-4-enimidic acid

(3r)-4-chloro-3-hydroxypent-4-enimidic acid

C5H8ClNO2 (149.0243538)


   

2-hydroxy-n-(1,3,4-trihydroxyicosan-2-yl)hexacosanimidic acid

2-hydroxy-n-(1,3,4-trihydroxyicosan-2-yl)hexacosanimidic acid

C46H93NO5 (739.7053367999999)


   

(2s)-2-{[(2r)-2-amino-2-carboxyethyl]sulfanyl}butanedioic acid

(2s)-2-{[(2r)-2-amino-2-carboxyethyl]sulfanyl}butanedioic acid

C7H11NO6S (237.0307066)


   

(1r,3ar,5r,5ar,7s,9ar,9br,11ar)-1-[(2r,5s)-5,6-dimethylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,5h,6h,7h,8h,9h,10h,11h-cyclopenta[a]phenanthrene-5,5a,7,9b-tetrol

(1r,3ar,5r,5ar,7s,9ar,9br,11ar)-1-[(2r,5s)-5,6-dimethylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,5h,6h,7h,8h,9h,10h,11h-cyclopenta[a]phenanthrene-5,5a,7,9b-tetrol

C28H48O4 (448.3552408)


   

(2s)-2-amino-3-cyclopropylpropanoic acid

(2s)-2-amino-3-cyclopropylpropanoic acid

C6H11NO2 (129.0789746)


   

4-(2-oxoethylidene)-2,3-dihydro-1h-pyridine-2,6-dicarboxylic acid

4-(2-oxoethylidene)-2,3-dihydro-1h-pyridine-2,6-dicarboxylic acid

C9H9NO5 (211.04807040000003)


   

(1r,3ar,5r,5ar,7s,9ar,9bs,11ar)-9a,11a-dimethyl-1-[(2r,3e,5r)-4,5,6-trimethylhept-3-en-2-yl]-1h,2h,3h,3ah,5h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-5,5a,7-triol

(1r,3ar,5r,5ar,7s,9ar,9bs,11ar)-9a,11a-dimethyl-1-[(2r,3e,5r)-4,5,6-trimethylhept-3-en-2-yl]-1h,2h,3h,3ah,5h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-5,5a,7-triol

C29H48O3 (444.36032579999994)


   

[28-(2,3-dihydroxy-2-methylpropyl)-18,21,24,26,29,32,35-heptahydroxy-31-isopropyl-23-methyl-15-oxo-12-thia-10,16,22,25,27,30,33,36-octaazapentacyclo[12.11.11.0³,¹¹.0⁴,⁹.0¹⁶,²⁰]hexatriaconta-3(11),4,6,8,21,24,26,29,32,35-decaen-34-yl](hydroxy)acetic acid

[28-(2,3-dihydroxy-2-methylpropyl)-18,21,24,26,29,32,35-heptahydroxy-31-isopropyl-23-methyl-15-oxo-12-thia-10,16,22,25,27,30,33,36-octaazapentacyclo[12.11.11.0³,¹¹.0⁴,⁹.0¹⁶,²⁰]hexatriaconta-3(11),4,6,8,21,24,26,29,32,35-decaen-34-yl](hydroxy)acetic acid

C37H50N8O13S (846.3217890000001)


   

18,21,24,26,29,32,35-heptahydroxy-28-(2-hydroxy-2-methylpropyl)-34-(1-hydroxyethyl)-23,31-dimethyl-12-thia-10,16,22,25,27,30,33,36-octaazapentacyclo[12.11.11.0³,¹¹.0⁴,⁹.0¹⁶,²⁰]hexatriaconta-3(11),4,6,8,21,24,26,29,32,35-decaen-15-one

18,21,24,26,29,32,35-heptahydroxy-28-(2-hydroxy-2-methylpropyl)-34-(1-hydroxyethyl)-23,31-dimethyl-12-thia-10,16,22,25,27,30,33,36-octaazapentacyclo[12.11.11.0³,¹¹.0⁴,⁹.0¹⁶,²⁰]hexatriaconta-3(11),4,6,8,21,24,26,29,32,35-decaen-15-one

C35H48N8O10S (772.3213948)


   

13-(3,4-dihydroxybutan-2-yl)-2,8,11,14,30,33,36,39-octahydroxy-4-(c-hydroxycarbonimidoylmethyl)-5-oxo-34-(sec-butyl)-27-thia-3,6,12,15,25,29,32,35,38-nonaazapentacyclo[14.12.11.0⁶,¹⁰.0¹⁸,²⁶.0¹⁹,²⁴]nonatriaconta-2,11,14,18(26),19,21,23,29,32,35,38-undecaen-27-ium-27-olate

13-(3,4-dihydroxybutan-2-yl)-2,8,11,14,30,33,36,39-octahydroxy-4-(c-hydroxycarbonimidoylmethyl)-5-oxo-34-(sec-butyl)-27-thia-3,6,12,15,25,29,32,35,38-nonaazapentacyclo[14.12.11.0⁶,¹⁰.0¹⁸,²⁶.0¹⁹,²⁴]nonatriaconta-2,11,14,18(26),19,21,23,29,32,35,38-undecaen-27-ium-27-olate

C39H54N10O13S (902.3592354000001)


   

2-amino-5-chlorohex-4-enoic acid

2-amino-5-chlorohex-4-enoic acid

C6H10ClNO2 (163.040003)


   

4,6-dihydroxy-3,3,4,7-tetramethylnaphthalene-1,2-dione

4,6-dihydroxy-3,3,4,7-tetramethylnaphthalene-1,2-dione

C14H16O4 (248.10485359999998)


   

(2s)-2-amino-3-cyclopropylbutanoic acid

(2s)-2-amino-3-cyclopropylbutanoic acid

C7H13NO2 (143.0946238)


   
   

(1r,3r,7s,9r)-11-hydroxy-3,7,14,14-tetramethyl-8,12,13-trioxatetracyclo[7.3.1.1⁷,¹¹.0¹,⁶]tetradec-5-en-4-one

(1r,3r,7s,9r)-11-hydroxy-3,7,14,14-tetramethyl-8,12,13-trioxatetracyclo[7.3.1.1⁷,¹¹.0¹,⁶]tetradec-5-en-4-one

C15H20O5 (280.13106700000003)


   

(1r,4s,8r,10s,13s,16s,27r,34s)-34-[(2s)-butan-2-yl]-2,8,11,14,22,30,33,36,39-nonahydroxy-13-[(2r,3s)-3-hydroxybutan-2-yl]-4-(c-hydroxycarbonimidoylmethyl)-5-oxo-27-thia-3,6,12,15,25,29,32,35,38-nonaazapentacyclo[14.12.11.0⁶,¹⁰.0¹⁸,²⁶.0¹⁹,²⁴]nonatriaconta-2,11,14,18(26),19,21,23,29,32,35,38-undecaen-27-ium-27-olate

(1r,4s,8r,10s,13s,16s,27r,34s)-34-[(2s)-butan-2-yl]-2,8,11,14,22,30,33,36,39-nonahydroxy-13-[(2r,3s)-3-hydroxybutan-2-yl]-4-(c-hydroxycarbonimidoylmethyl)-5-oxo-27-thia-3,6,12,15,25,29,32,35,38-nonaazapentacyclo[14.12.11.0⁶,¹⁰.0¹⁸,²⁶.0¹⁹,²⁴]nonatriaconta-2,11,14,18(26),19,21,23,29,32,35,38-undecaen-27-ium-27-olate

C39H54N10O13S (902.3592354000001)


   

(2r)-2-hydroxy-n-[(2r,3s,4r)-1,3,4-trihydroxyicosan-2-yl]hexacosanimidic acid

(2r)-2-hydroxy-n-[(2r,3s,4r)-1,3,4-trihydroxyicosan-2-yl]hexacosanimidic acid

C46H93NO5 (739.7053367999999)


   

(2s)-2-amino-5-chloro-4-hydroxyhex-5-enoic acid

(2s)-2-amino-5-chloro-4-hydroxyhex-5-enoic acid

C6H10ClNO3 (179.034918)


   

(2s)-2-amino-5-chlorohex-5-enoic acid

(2s)-2-amino-5-chlorohex-5-enoic acid

C6H10ClNO2 (163.040003)


   

(2s,4z)-2-amino-5-chloro-6-hydroxyhex-4-enoic acid

(2s,4z)-2-amino-5-chloro-6-hydroxyhex-4-enoic acid

C6H10ClNO3 (179.034918)


   

(2s)-2-(cyclopropylamino)propanoic acid

(2s)-2-(cyclopropylamino)propanoic acid

C6H11NO2 (129.0789746)


   

13-(3,4-dihydroxybutan-2-yl)-2,8,11,14,22,30,33,36,39-nonahydroxy-4-(c-hydroxycarbonimidoylmethyl)-5-oxo-34-(sec-butyl)-27-thia-3,6,12,15,25,29,32,35,38-nonaazapentacyclo[14.12.11.0⁶,¹⁰.0¹⁸,²⁶.0¹⁹,²⁴]nonatriaconta-2,11,14,18(26),19,21,23,29,32,35,38-undecaen-27-ium-27-olate

13-(3,4-dihydroxybutan-2-yl)-2,8,11,14,22,30,33,36,39-nonahydroxy-4-(c-hydroxycarbonimidoylmethyl)-5-oxo-34-(sec-butyl)-27-thia-3,6,12,15,25,29,32,35,38-nonaazapentacyclo[14.12.11.0⁶,¹⁰.0¹⁸,²⁶.0¹⁹,²⁴]nonatriaconta-2,11,14,18(26),19,21,23,29,32,35,38-undecaen-27-ium-27-olate

C39H54N10O14S (918.3541504000001)


   

(2e)-10-methoxy-10-oxodec-2-enoic acid

(2e)-10-methoxy-10-oxodec-2-enoic acid

C11H18O4 (214.1205028)


   

11-hydroxy-3,7,14,14-tetramethyl-8,12,13-trioxatetracyclo[7.3.1.1⁷,¹¹.0¹,⁶]tetradec-5-en-4-one

11-hydroxy-3,7,14,14-tetramethyl-8,12,13-trioxatetracyclo[7.3.1.1⁷,¹¹.0¹,⁶]tetradec-5-en-4-one

C15H20O5 (280.13106700000003)


   

2-amino-5-chloro-6-hydroxyhex-4-enoic acid

2-amino-5-chloro-6-hydroxyhex-4-enoic acid

C6H10ClNO3 (179.034918)


   

(8r,27r)-13-[(2s,3s)-3,4-dihydroxybutan-2-yl]-2,8,11,14,30,33,36,39-octahydroxy-4-(c-hydroxycarbonimidoylmethyl)-5-oxo-34-(sec-butyl)-27-thia-3,6,12,15,25,29,32,35,38-nonaazapentacyclo[14.12.11.0⁶,¹⁰.0¹⁸,²⁶.0¹⁹,²⁴]nonatriaconta-2,11,14,18(26),19,21,23,29,32,35,38-undecaen-27-ium-27-olate

(8r,27r)-13-[(2s,3s)-3,4-dihydroxybutan-2-yl]-2,8,11,14,30,33,36,39-octahydroxy-4-(c-hydroxycarbonimidoylmethyl)-5-oxo-34-(sec-butyl)-27-thia-3,6,12,15,25,29,32,35,38-nonaazapentacyclo[14.12.11.0⁶,¹⁰.0¹⁸,²⁶.0¹⁹,²⁴]nonatriaconta-2,11,14,18(26),19,21,23,29,32,35,38-undecaen-27-ium-27-olate

C39H54N10O13S (902.3592354000001)


   

(2r)-2-amino-6-hydroxyhex-4-ynoic acid

(2r)-2-amino-6-hydroxyhex-4-ynoic acid

C6H9NO3 (143.0582404)


   

(2e,4z,6s,19z)-6-hydroxytetracosa-2,4,19-trienoic acid

(2e,4z,6s,19z)-6-hydroxytetracosa-2,4,19-trienoic acid

C24H42O3 (378.3133782)


   

methyl 2-({9-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6-hydroxy-3h-purin-2-ylidene}amino)propanoate

methyl 2-({9-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6-hydroxy-3h-purin-2-ylidene}amino)propanoate

C14H19N5O7 (369.1284424)


   

methyl 2-({9-[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6-hydroxy-3h-purin-2-ylidene}amino)propanoate

methyl 2-({9-[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6-hydroxy-3h-purin-2-ylidene}amino)propanoate

C14H19N5O7 (369.1284424)


   

2-amino-6-hydroxyhex-4-ynoic acid

2-amino-6-hydroxyhex-4-ynoic acid

C6H9NO3 (143.0582404)


   

(2r)-2-{[(2r)-2-amino-2-carboxyethyl]sulfanyl}butanedioic acid

(2r)-2-{[(2r)-2-amino-2-carboxyethyl]sulfanyl}butanedioic acid

C7H11NO6S (237.0307066)


   

9-[2,3-dihydroxy-2-(hydroxymethyl)propyl]-1,4,7,10,13,16,22,23-octahydroxy-15-(1-hydroxyethyl)-18-(hydroxymethyl)-12-isopropyl-6-[(2-methanesulfinyl-1h-indol-3-yl)methyl]-3-methyl-3h,6h,9h,12h,15h,18h,21h,22h,23h,23ah-pyrrolo[1,2-a]1,4,7,10,13,16,19-heptaazacyclohenicosan-19-one

9-[2,3-dihydroxy-2-(hydroxymethyl)propyl]-1,4,7,10,13,16,22,23-octahydroxy-15-(1-hydroxyethyl)-18-(hydroxymethyl)-12-isopropyl-6-[(2-methanesulfinyl-1h-indol-3-yl)methyl]-3-methyl-3h,6h,9h,12h,15h,18h,21h,22h,23h,23ah-pyrrolo[1,2-a]1,4,7,10,13,16,19-heptaazacyclohenicosan-19-one

C38H56N8O15S (896.3585666)


   

9-(2,3-dihydroxy-2-methylpropyl)-1,4,7,10,13,16,22,23-octahydroxy-15-(1-hydroxyethyl)-18-(hydroxymethyl)-12-isopropyl-6-[(2-methanesulfinyl-1h-indol-3-yl)methyl]-3-methyl-3h,6h,9h,12h,15h,18h,21h,22h,23h,23ah-pyrrolo[1,2-a]1,4,7,10,13,16,19-heptaazacyclohenicosan-19-one

9-(2,3-dihydroxy-2-methylpropyl)-1,4,7,10,13,16,22,23-octahydroxy-15-(1-hydroxyethyl)-18-(hydroxymethyl)-12-isopropyl-6-[(2-methanesulfinyl-1h-indol-3-yl)methyl]-3-methyl-3h,6h,9h,12h,15h,18h,21h,22h,23h,23ah-pyrrolo[1,2-a]1,4,7,10,13,16,19-heptaazacyclohenicosan-19-one

C38H56N8O14S (880.3636516)


   

21,24,26,29,32,35-hexahydroxy-28-(2-hydroxy-2-methylpropyl)-34-(1-hydroxyethyl)-23,31-dimethyl-12-thia-10,16,22,25,27,30,33,36-octaazapentacyclo[12.11.11.0³,¹¹.0⁴,⁹.0¹⁶,²⁰]hexatriaconta-3(11),4,6,8,21,24,26,29,32,35-decaen-15-one

21,24,26,29,32,35-hexahydroxy-28-(2-hydroxy-2-methylpropyl)-34-(1-hydroxyethyl)-23,31-dimethyl-12-thia-10,16,22,25,27,30,33,36-octaazapentacyclo[12.11.11.0³,¹¹.0⁴,⁹.0¹⁶,²⁰]hexatriaconta-3(11),4,6,8,21,24,26,29,32,35-decaen-15-one

C35H48N8O9S (756.3264798)


   
   

2-[2,8,11,14,22,30,33,36,39-nonahydroxy-13-(3-hydroxybutan-2-yl)-5-oxo-34-(sec-butyl)-27-thia-3,6,12,15,25,29,32,35,38-nonaazapentacyclo[14.12.11.0⁶,¹⁰.0¹⁸,²⁶.0¹⁹,²⁴]nonatriaconta-2,11,14,18(26),19,21,23,29,32,35,38-undecaen-4-yl]ethanimidic acid

2-[2,8,11,14,22,30,33,36,39-nonahydroxy-13-(3-hydroxybutan-2-yl)-5-oxo-34-(sec-butyl)-27-thia-3,6,12,15,25,29,32,35,38-nonaazapentacyclo[14.12.11.0⁶,¹⁰.0¹⁸,²⁶.0¹⁹,²⁴]nonatriaconta-2,11,14,18(26),19,21,23,29,32,35,38-undecaen-4-yl]ethanimidic acid

C39H54N10O12S (886.3643204000001)


   

(2r,4r)-2,4,6-trihydroxy-3,3,4,7-tetramethyl-2h-naphthalen-1-one

(2r,4r)-2,4,6-trihydroxy-3,3,4,7-tetramethyl-2h-naphthalen-1-one

C14H18O4 (250.1205028)


   

6-hydroxytetracosa-2,4,19-trienoic acid

6-hydroxytetracosa-2,4,19-trienoic acid

C24H42O3 (378.3133782)


   

(s)-[(1s,14r,18s,20s,23s,28s,31s,34r)-28-(2,3-dihydroxy-2-methylpropyl)-18,21,24,26,29,32,35-heptahydroxy-31-isopropyl-23-methyl-15-oxo-12-thia-10,16,22,25,27,30,33,36-octaazapentacyclo[12.11.11.0³,¹¹.0⁴,⁹.0¹⁶,²⁰]hexatriaconta-3(11),4,6,8,21,24,26,29,32,35-decaen-34-yl](hydroxy)acetic acid

(s)-[(1s,14r,18s,20s,23s,28s,31s,34r)-28-(2,3-dihydroxy-2-methylpropyl)-18,21,24,26,29,32,35-heptahydroxy-31-isopropyl-23-methyl-15-oxo-12-thia-10,16,22,25,27,30,33,36-octaazapentacyclo[12.11.11.0³,¹¹.0⁴,⁹.0¹⁶,²⁰]hexatriaconta-3(11),4,6,8,21,24,26,29,32,35-decaen-34-yl](hydroxy)acetic acid

C37H50N8O13S (846.3217890000001)


   

9-(2,3-dihydroxy-2-methylpropyl)-1,4,7,10,13,16,22,23-octahydroxy-15-(1-hydroxyethyl)-18-(hydroxymethyl)-12-isopropyl-6-[(2-methanesulfonyl-1h-indol-3-yl)methyl]-3-methyl-3h,6h,9h,12h,15h,18h,21h,22h,23h,23ah-pyrrolo[1,2-a]1,4,7,10,13,16,19-heptaazacyclohenicosan-19-one

9-(2,3-dihydroxy-2-methylpropyl)-1,4,7,10,13,16,22,23-octahydroxy-15-(1-hydroxyethyl)-18-(hydroxymethyl)-12-isopropyl-6-[(2-methanesulfonyl-1h-indol-3-yl)methyl]-3-methyl-3h,6h,9h,12h,15h,18h,21h,22h,23h,23ah-pyrrolo[1,2-a]1,4,7,10,13,16,19-heptaazacyclohenicosan-19-one

C38H56N8O15S (896.3585666)


   

6-hydroxydocosa-2,4-dienoic acid

6-hydroxydocosa-2,4-dienoic acid

C22H40O3 (352.297729)


   

(2r)-2-amino-5-chlorohex-5-enoic acid

(2r)-2-amino-5-chlorohex-5-enoic acid

C6H10ClNO2 (163.040003)


   

28-[2,3-dihydroxy-2-(hydroxymethyl)propyl]-18,21,24,26,29,32,35-heptahydroxy-34-(1-hydroxyethyl)-23,31-dimethyl-12-thia-10,16,22,25,27,30,33,36-octaazapentacyclo[12.11.11.0³,¹¹.0⁴,⁹.0¹⁶,²⁰]hexatriaconta-3(11),4,6,8,21,24,26,29,32,35-decaen-15-one

28-[2,3-dihydroxy-2-(hydroxymethyl)propyl]-18,21,24,26,29,32,35-heptahydroxy-34-(1-hydroxyethyl)-23,31-dimethyl-12-thia-10,16,22,25,27,30,33,36-octaazapentacyclo[12.11.11.0³,¹¹.0⁴,⁹.0¹⁶,²⁰]hexatriaconta-3(11),4,6,8,21,24,26,29,32,35-decaen-15-one

C35H48N8O12S (804.3112248)


   

2-amino-5-chloropent-4-enoic acid

2-amino-5-chloropent-4-enoic acid

C5H8ClNO2 (149.0243538)


   

4-(carboxymethyl)-13-(3,4-dihydroxybutan-2-yl)-2,8,11,14,22,30,33,36,39-nonahydroxy-5-oxo-34-(sec-butyl)-27-thia-3,6,12,15,25,29,32,35,38-nonaazapentacyclo[14.12.11.0⁶,¹⁰.0¹⁸,²⁶.0¹⁹,²⁴]nonatriaconta-2,11,14,18(26),19,21,23,29,32,35,38-undecaen-27-ium-27-olate

4-(carboxymethyl)-13-(3,4-dihydroxybutan-2-yl)-2,8,11,14,22,30,33,36,39-nonahydroxy-5-oxo-34-(sec-butyl)-27-thia-3,6,12,15,25,29,32,35,38-nonaazapentacyclo[14.12.11.0⁶,¹⁰.0¹⁸,²⁶.0¹⁹,²⁴]nonatriaconta-2,11,14,18(26),19,21,23,29,32,35,38-undecaen-27-ium-27-olate

C39H53N9O15S (919.3381668)


   

(1s,2s,5r,6r,8s,9s,10s)-5-methoxy-10-methyl-5-(2-methylpropyl)-4,7-dioxatricyclo[6.4.0.0²,⁶]dodecane-2,6,9,10-tetrol

(1s,2s,5r,6r,8s,9s,10s)-5-methoxy-10-methyl-5-(2-methylpropyl)-4,7-dioxatricyclo[6.4.0.0²,⁶]dodecane-2,6,9,10-tetrol

C16H28O7 (332.1834938)


   

[(2r,3s,4r,5r)-3,4-dihydroxy-5-(6-hydroxy-2-imino-3h-purin-9-yl)oxolan-2-yl]methoxyphosphonic acid

[(2r,3s,4r,5r)-3,4-dihydroxy-5-(6-hydroxy-2-imino-3h-purin-9-yl)oxolan-2-yl]methoxyphosphonic acid

C10H14N5O8P (363.05799740000003)


   

(2s,4z)-2-amino-5-chlorohex-4-enoic acid

(2s,4z)-2-amino-5-chlorohex-4-enoic acid

C6H10ClNO2 (163.040003)


   

(2s,3r)-2-amino-3-cyclopropylbutanoic acid

(2s,3r)-2-amino-3-cyclopropylbutanoic acid

C7H13NO2 (143.0946238)


   

[18,21,24,26,29,32,35-heptahydroxy-28-(2-hydroxy-2-methylpropyl)-31-isopropyl-23-methyl-15-oxo-12-thia-10,16,22,25,27,30,33,36-octaazapentacyclo[12.11.11.0³,¹¹.0⁴,⁹.0¹⁶,²⁰]hexatriaconta-3(11),4,6,8,21,24,26,29,32,35-decaen-34-yl](hydroxy)acetic acid

[18,21,24,26,29,32,35-heptahydroxy-28-(2-hydroxy-2-methylpropyl)-31-isopropyl-23-methyl-15-oxo-12-thia-10,16,22,25,27,30,33,36-octaazapentacyclo[12.11.11.0³,¹¹.0⁴,⁹.0¹⁶,²⁰]hexatriaconta-3(11),4,6,8,21,24,26,29,32,35-decaen-34-yl](hydroxy)acetic acid

C37H50N8O12S (830.3268740000001)


   

(2s)-2-aminohexa-4,5-dienoic acid

(2s)-2-aminohexa-4,5-dienoic acid

C6H9NO2 (127.0633254)


   

5-methoxy-10-methyl-5-(2-methylpropyl)-4,7-dioxatricyclo[6.4.0.0²,⁶]dodecane-2,6,9,10-tetrol

5-methoxy-10-methyl-5-(2-methylpropyl)-4,7-dioxatricyclo[6.4.0.0²,⁶]dodecane-2,6,9,10-tetrol

C16H28O7 (332.1834938)


   

(2s,3s)-2-amino-3-cyclopropylbutanoic acid

(2s,3s)-2-amino-3-cyclopropylbutanoic acid

C7H13NO2 (143.0946238)


   

(2s,4z)-2-amino-5-chloropent-4-enoic acid

(2s,4z)-2-amino-5-chloropent-4-enoic acid

C5H8ClNO2 (149.0243538)


   

amino(2-hydroxy-1,3-oxazol-5-yl)acetic acid

amino(2-hydroxy-1,3-oxazol-5-yl)acetic acid

C5H6N2O4 (158.0327556)


   

9-[2,3-dihydroxy-2-(hydroxymethyl)propyl]-1,4,7,10,13,16,22,23-octahydroxy-15-(1-hydroxyethyl)-18-(hydroxymethyl)-12-isopropyl-6-[(2-methanesulfonyl-1h-indol-3-yl)methyl]-3-methyl-3h,6h,9h,12h,15h,18h,21h,22h,23h,23ah-pyrrolo[1,2-a]1,4,7,10,13,16,19-heptaazacyclohenicosan-19-one

9-[2,3-dihydroxy-2-(hydroxymethyl)propyl]-1,4,7,10,13,16,22,23-octahydroxy-15-(1-hydroxyethyl)-18-(hydroxymethyl)-12-isopropyl-6-[(2-methanesulfonyl-1h-indol-3-yl)methyl]-3-methyl-3h,6h,9h,12h,15h,18h,21h,22h,23h,23ah-pyrrolo[1,2-a]1,4,7,10,13,16,19-heptaazacyclohenicosan-19-one

C38H56N8O16S (912.3534816)


   

(3s,6s,9s,12s,15r,18r,22r,23r,23as)-9-[2,3-dihydroxy-2-(hydroxymethyl)propyl]-1,4,7,10,13,16,22,23-octahydroxy-15-[(1s)-1-hydroxyethyl]-18-(hydroxymethyl)-12-isopropyl-6-[(2-methanesulfonyl-1h-indol-3-yl)methyl]-3-methyl-3h,6h,9h,12h,15h,18h,21h,22h,23h,23ah-pyrrolo[1,2-a]1,4,7,10,13,16,19-heptaazacyclohenicosan-19-one

(3s,6s,9s,12s,15r,18r,22r,23r,23as)-9-[2,3-dihydroxy-2-(hydroxymethyl)propyl]-1,4,7,10,13,16,22,23-octahydroxy-15-[(1s)-1-hydroxyethyl]-18-(hydroxymethyl)-12-isopropyl-6-[(2-methanesulfonyl-1h-indol-3-yl)methyl]-3-methyl-3h,6h,9h,12h,15h,18h,21h,22h,23h,23ah-pyrrolo[1,2-a]1,4,7,10,13,16,19-heptaazacyclohenicosan-19-one

C38H56N8O16S (912.3534816)


   

(1r,14s,18r,20r,23s,28r,31r,34s)-28-[(2s)-2,3-dihydroxy-2-methylpropyl]-18,21,24,26,29,32,35-heptahydroxy-34-[(1s)-1-hydroxyethyl]-23,31-dimethyl-12-thia-10,16,22,25,27,30,33,36-octaazapentacyclo[12.11.11.0³,¹¹.0⁴,⁹.0¹⁶,²⁰]hexatriaconta-3(11),4,6,8,21,24,26,29,32,35-decaen-15-one

(1r,14s,18r,20r,23s,28r,31r,34s)-28-[(2s)-2,3-dihydroxy-2-methylpropyl]-18,21,24,26,29,32,35-heptahydroxy-34-[(1s)-1-hydroxyethyl]-23,31-dimethyl-12-thia-10,16,22,25,27,30,33,36-octaazapentacyclo[12.11.11.0³,¹¹.0⁴,⁹.0¹⁶,²⁰]hexatriaconta-3(11),4,6,8,21,24,26,29,32,35-decaen-15-one

C35H48N8O11S (788.3163098)


   

10-methoxy-10-oxodec-2-enoic acid

10-methoxy-10-oxodec-2-enoic acid

C11H18O4 (214.1205028)


   

(2s)-2-amino-3-methylidenehexanoic acid

(2s)-2-amino-3-methylidenehexanoic acid

C7H13NO2 (143.0946238)


   

4-(aminomethyl)-1,2-oxazol-3-ol

4-(aminomethyl)-1,2-oxazol-3-ol

C4H6N2O2 (114.04292559999999)


   

2,4,6-trihydroxy-3,3,4,7-tetramethyl-2h-naphthalen-1-one

2,4,6-trihydroxy-3,3,4,7-tetramethyl-2h-naphthalen-1-one

C14H18O4 (250.1205028)


   

2-amino-5-chlorohex-5-enoic acid

2-amino-5-chlorohex-5-enoic acid

C6H10ClNO2 (163.040003)


   

(1s,14r,18s,20s,23s,28s,31s,34r)-28-[(2r)-2,3-dihydroxy-2-methylpropyl]-18,21,24,26,29,32,35-heptahydroxy-34-[(1s)-1-hydroxyethyl]-23,31-dimethyl-12-thia-10,16,22,25,27,30,33,36-octaazapentacyclo[12.11.11.0³,¹¹.0⁴,⁹.0¹⁶,²⁰]hexatriaconta-3(11),4,6,8,21,24,26,29,32,35-decaen-15-one

(1s,14r,18s,20s,23s,28s,31s,34r)-28-[(2r)-2,3-dihydroxy-2-methylpropyl]-18,21,24,26,29,32,35-heptahydroxy-34-[(1s)-1-hydroxyethyl]-23,31-dimethyl-12-thia-10,16,22,25,27,30,33,36-octaazapentacyclo[12.11.11.0³,¹¹.0⁴,⁹.0¹⁶,²⁰]hexatriaconta-3(11),4,6,8,21,24,26,29,32,35-decaen-15-one

C35H48N8O11S (788.3163098)


   

(2s)-2-aminohex-4-ynoic acid

(2s)-2-aminohex-4-ynoic acid

C6H9NO2 (127.0633254)


   

(2s)-4-formyl-2,3-dihydro-1h-azepine-2,7-dicarboxylic acid

(2s)-4-formyl-2,3-dihydro-1h-azepine-2,7-dicarboxylic acid

C9H9NO5 (211.04807040000003)


   

1,10-dimethyl (2e)-dec-2-enedioate

1,10-dimethyl (2e)-dec-2-enedioate

C12H20O4 (228.136152)


   

2-aminohex-4-ynoic acid

2-aminohex-4-ynoic acid

C6H9NO2 (127.0633254)


   

(3s,6s,9s,12s,15r,18r,22r,23s,23as)-9-[(2r)-2,3-dihydroxy-2-methylpropyl]-1,4,7,10,13,16,22,23-octahydroxy-15-[(1s)-1-hydroxyethyl]-18-(hydroxymethyl)-12-isopropyl-6-[(2-methanesulfonyl-1h-indol-3-yl)methyl]-3-methyl-3h,6h,9h,12h,15h,18h,21h,22h,23h,23ah-pyrrolo[1,2-a]1,4,7,10,13,16,19-heptaazacyclohenicosan-19-one

(3s,6s,9s,12s,15r,18r,22r,23s,23as)-9-[(2r)-2,3-dihydroxy-2-methylpropyl]-1,4,7,10,13,16,22,23-octahydroxy-15-[(1s)-1-hydroxyethyl]-18-(hydroxymethyl)-12-isopropyl-6-[(2-methanesulfonyl-1h-indol-3-yl)methyl]-3-methyl-3h,6h,9h,12h,15h,18h,21h,22h,23h,23ah-pyrrolo[1,2-a]1,4,7,10,13,16,19-heptaazacyclohenicosan-19-one

C38H56N8O15S (896.3585666)


   

(1s,4s,10s,13s,16s,34s)-34-[(2r)-butan-2-yl]-4-(carboxymethyl)-13-[(2r,3r)-3,4-dihydroxybutan-2-yl]-2,8,11,14,22,30,33,36,39-nonahydroxy-5-oxo-27-thia-3,6,12,15,25,29,32,35,38-nonaazapentacyclo[14.12.11.0⁶,¹⁰.0¹⁸,²⁶.0¹⁹,²⁴]nonatriaconta-2,11,14,18(26),19,21,23,29,32,35,38-undecaen-27-ium-27-olate

(1s,4s,10s,13s,16s,34s)-34-[(2r)-butan-2-yl]-4-(carboxymethyl)-13-[(2r,3r)-3,4-dihydroxybutan-2-yl]-2,8,11,14,22,30,33,36,39-nonahydroxy-5-oxo-27-thia-3,6,12,15,25,29,32,35,38-nonaazapentacyclo[14.12.11.0⁶,¹⁰.0¹⁸,²⁶.0¹⁹,²⁴]nonatriaconta-2,11,14,18(26),19,21,23,29,32,35,38-undecaen-27-ium-27-olate

C39H53N9O15S (919.3381668)


   

2-(2,2-dimethylcyclopentyl)-3-hydroxy-5-methylcyclohexa-2,5-diene-1,4-dione

2-(2,2-dimethylcyclopentyl)-3-hydroxy-5-methylcyclohexa-2,5-diene-1,4-dione

C14H18O3 (234.1255878)


   

1,10-dimethyl dec-2-enedioate

1,10-dimethyl dec-2-enedioate

C12H20O4 (228.136152)


   

2-[(1s)-2,2-dimethylcyclopentyl]-3-hydroxy-5-methylcyclohexa-2,5-diene-1,4-dione

2-[(1s)-2,2-dimethylcyclopentyl]-3-hydroxy-5-methylcyclohexa-2,5-diene-1,4-dione

C14H18O3 (234.1255878)