NCBI Taxonomy: 163736

Podalyrieae (ncbi_taxid: 163736)

found 302 associated metabolites at tribe taxonomy rank level.

Ancestor: core genistoids

Child Taxonomies: Cadia, Virgilia, Calpurnia, Podalyria, Liparia, Cyclopia, Xiphotheca, Amphithalea, Stirtonanthus

Isomangiferin

1,3,6,7-Tetrahydroxy-4-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-9H-xanthen-9-one

C19H18O11 (422.0849078)


Isomangiferin is a member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3, 6 and 7 and a 1,5-anhydro-D-glucitol moiety at position 1. It has a role as an anti-HSV-1 agent and a plant metabolite. It is a member of xanthones, a C-glycosyl compound and a polyphenol. Isomangiferin is a natural product found in Cystopteris moupinensis, Cystopteris montana, and other organisms with data available. Isomangiferin is found in fruits. Isomangiferin is a constituent of Mangifera indica (mango) Constituent of Mangifera indica (mango). Isomangiferin is found in fruits. Isomangiferin, a natural product, is reported to have antiviral activity. Isomangiferin, a natural product, is reported to have antiviral activity.

   

Luteolin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one

C15H10O6 (286.047736)


Luteolin is a naturally occurring flavonoid. (PMID:17168665). The flavonoids are polyphenolic compounds found as integral components of the human diet. They are universally present as constituents of flowering plants, particularly of food plants. The flavonoids are phenyl substituted chromones (benzopyran derivatives) consisting of a 15-carbon basic skeleton (C6-C3-C6), composed of a chroman (C6-C3) nucleus (the benzo ring A and the heterocyclic ring C), also shared by the tocopherols, with a phenyl (the aromatic ring B) substitution usually at the 2-position. Different substitutions can typically occur in the rings, A and B. Several plants and spices containing flavonoid derivatives have found application as disease preventive and therapeutic agents in traditional medicine in Asia for thousands of years. The selection of a particular food plant, plant tissue or herb for its potential health benefits appears to mirror its flavonoid composition. The much lower risk of colon, prostate and breast cancers in Asians, who consume more vegetables, fruits and tea than populations in the Western hemisphere do, raises the question of whether flavonoid components mediate the protective effects of diets rich in these foodstuffs by acting as natural chemopreventive and anticancer agents. An impressive body of information exists on the antitumoral action of plant flavonoids. In vitro work has concentrated on the direct and indirect actions of flavonoids on tumor cells, and has found a variety of anticancer effects such as cell growth and kinase activity inhibition, apoptosis induction, suppression of the secretion of matrix metalloproteinases and of tumor invasive behavior. Furthermore, some studies have reported the impairment of in vivo angiogenesis by dietary flavonoids. Experimental animal studies indicate that certain dietary flavonoids possess antitumoral activity. The hydroxylation pattern of the B ring of the flavones and flavonols, such as luteolin seems to critically influence their activities, especially the inhibition of protein kinase activity and antiproliferation. The different mechanisms underlying the potential anticancer action of plant flavonoids await further elucidation. Certain dietary flavonols and flavones targeting cell surface signal transduction enzymes, such as protein tyrosine and focal adhesion kinases, and the processes of angiogenesis appear to be promising candidates as anticancer agents. Further in vivo studies of these bioactive constituents is deemed necessary in order to develop flavonoid-based anticancer strategies. In view of the increasing interest in the association between dietary flavonoids and cancer initiation and progression, this important field is likely to witness expanded effort and to attract and stimulate further vigorous investigations (PMID:16097445). Luteolin is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. It has a role as an EC 2.3.1.85 (fatty acid synthase) inhibitor, an antineoplastic agent, a vascular endothelial growth factor receptor antagonist, a plant metabolite, a nephroprotective agent, an angiogenesis inhibitor, a c-Jun N-terminal kinase inhibitor, an anti-inflammatory agent, an apoptosis inducer, a radical scavenger and an immunomodulator. It is a 3-hydroxyflavonoid and a tetrahydroxyflavone. It is a conjugate acid of a luteolin-7-olate. Luteolin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Luteolin is a naturally-occurring flavonoid, with potential anti-oxidant, anti-inflammatory, apoptosis-inducing and chemopreventive activities. Upon administration, luteolin scavenges free radicals, protects cells from reactive oxygen species (ROS)-induced damage and induces direct cell cycle arrest and apoptosis in tumor cells. This inhibits tumor cell proliferation and suppresses metastasis. 5,7,3,4-tetrahydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. Flavone v. widespread in plant world; found especies in celery, peppermint, rosemary, thyme and Queen Annes Lace leaves (wild carrot). Potential nutriceutical. Luteolin is found in many foods, some of which are soy bean, ginger, abalone, and swiss chard. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 361; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 48 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Calycosin

4H-1-Benzopyran-4-one, 7-hydroxy-3-(3-hydroxy-4-methoxyphenyl)-

C16H12O5 (284.0684702)


Calycosin is a member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone which is substituted by an additional hydroxy group at the 3 position and a methoxy group at the 4 position. It has a role as a metabolite and an antioxidant. It is a member of 7-hydroxyisoflavones and a member of 4-methoxyisoflavones. It is functionally related to an isoflavone. It is a conjugate acid of a calycosin(1-). Calycosin is a natural product found in Thermopsis lanceolata, Hedysarum polybotrys, and other organisms with data available. A polyphenol metabolite detected in biological fluids [PhenolExplorer] Calycosin is a natural compound with antioxidant and anti-inflammatory activity. Calycosin is a natural compound with antioxidant and anti-inflammatory activity.

   

Narirutin

(S)-5-hydroxy-2-(4-hydroxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C27H32O14 (580.1791972)


Narirutin is a disaccharide derivative that is (S)-naringenin substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an anti-inflammatory agent, an antioxidant and a metabolite. It is a disaccharide derivative, a dihydroxyflavanone, a member of 4-hydroxyflavanones, a (2S)-flavan-4-one and a rutinoside. It is functionally related to a (S)-naringenin. Narirutin is a natural product found in Cyclopia subternata, Citrus latipes, and other organisms with data available. See also: Tangerine peel (part of). obtained from Camellia sinensis (tea). Narirutin is found in many foods, some of which are lemon, globe artichoke, grapefruit, and grapefruit/pummelo hybrid. Narirutin is found in globe artichoke. Narirutin is obtained from Camellia sinensis (tea Narirutin, one of the active constituents isolated from citrus fruits, has antioxidant and anti-inflammatory activities. Narirutin is a shikimate kinase inhibitor with anti-tubercular potency[1][2]. Narirutin, one of the active constituents isolated from citrus fruits, has antioxidant and anti-inflammatory activities. Narirutin is a shikimate kinase inhibitor with anti-tubercular potency[1][2].

   

Fisetin

2-(3,4-dihydroxyphenyl)-3,7-dihydroxy-4H-chromen-4-one

C15H10O6 (286.047736)


Fisetin is a 7-hydroxyflavonol with additional hydroxy groups at positions 3, 3 and 4. It has a role as an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an antioxidant, an anti-inflammatory agent, a metabolite, a plant metabolite and a geroprotector. It is a 3-hydroxyflavonoid, a 7-hydroxyflavonol and a tetrahydroxyflavone. It is a conjugate acid of a fisetin(1-). Fisetin is a natural product found in Acacia carneorum, Acacia buxifolia, and other organisms with data available. Fisetin is an orally bioavailable naturally occurring polyphenol found in many fruits and vegetables, with potential antioxidant, neuroprotective, anti-inflammatory, antineoplastic, senolytic, and longevity promoting activities. Upon administration, fisetin, as an antioxidant, scavenges free radicals, protect cells from oxidative stress, and is able to upregulate glutathione. It inhibits pro-inflammatory mediators, such as tumor necrosis factor alpha (TNF-a), interleukin-6 (IL-6), and nuclear factor kappa B (NF-kB). Fisetin promotes cellular metabolism, reduces senescence, regulates sirtuin function and may promote longevity. Fisetin also exerts anti-cancer activity by inhibiting certain signaling pathways. It also inhibits certain anti-apoptotic proteins and induces apoptosis in susceptible cells. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials A 7-hydroxyflavonol with additional hydroxy groups at positions 3, 3 and 4. C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor C26170 - Protective Agent > C1509 - Neuroprotective Agent C26170 - Protective Agent > C275 - Antioxidant Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 3,7,3,4-tetrahydroxyflavone, also known as 5-desoxyquercetin or fisetinidin, is a member of the class of compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, 3,7,3,4-tetrahydroxyflavone is considered to be a flavonoid lipid molecule. 3,7,3,4-tetrahydroxyflavone is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 3,7,3,4-tetrahydroxyflavone is a bitter tasting compound found in soy bean, which makes 3,7,3,4-tetrahydroxyflavone a potential biomarker for the consumption of this food product. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.847 [Raw Data] CB035_Fisetin_pos_20eV_CB000018.txt [Raw Data] CB035_Fisetin_pos_30eV_CB000018.txt [Raw Data] CB035_Fisetin_pos_40eV_CB000018.txt [Raw Data] CB035_Fisetin_pos_10eV_CB000018.txt [Raw Data] CB035_Fisetin_pos_50eV_CB000018.txt [Raw Data] CB035_Fisetin_neg_10eV_000011.txt [Raw Data] CB035_Fisetin_neg_30eV_000011.txt [Raw Data] CB035_Fisetin_neg_40eV_000011.txt [Raw Data] CB035_Fisetin_neg_20eV_000011.txt [Raw Data] CB035_Fisetin_neg_50eV_000011.txt Fisetin is a natural flavonol found in many fruits and vegetables with various benefits, such as antioxidant, anticancer, neuroprotection effects. Fisetin is a natural flavonol found in many fruits and vegetables with various benefits, such as antioxidant, anticancer, neuroprotection effects. Fisetin is a natural flavonol found in many fruits and vegetables with various benefits, such as antioxidant, anticancer, neuroprotection effects.

   

Eriocitrin

(S)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C27H32O15 (596.1741122)


Eriocitrin is a disaccharide derivative that consists of eriodictyol substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an antioxidant. It is a disaccharide derivative, a member of 3-hydroxyflavanones, a trihydroxyflavanone, a flavanone glycoside, a member of 4-hydroxyflavanones and a rutinoside. It is functionally related to an eriodictyol. Eriocitrin is a natural product found in Cyclopia subternata, Citrus latipes, and other organisms with data available. Eriocitrin is a flavonoid glycoside that can be found in plants like Citrus grandis, Citrus limon, Mentha longifolia, Mentha piperita, Thymus vulgaris. It shows important antioxidant activities. Isolated from Mentha piperita (peppermint) leaves and from Citrus subspecies Eriocitrin is a flavonoid isolated from lemon, which is a strong antioxidant agent. Eriocitrin could inhibit the proliferation of hepatocellular carcinoma cell lines by arresting cell cycle in S phase through up-regulation of p53, cyclin A, cyclin D3 and CDK6. Eriocitrin triggers apoptosis by activating mitochondria-involved intrinsic signaling pathway[1]. Eriocitrin is a flavonoid isolated from lemon, which is a strong antioxidant agent. Eriocitrin could inhibit the proliferation of hepatocellular carcinoma cell lines by arresting cell cycle in S phase through up-regulation of p53, cyclin A, cyclin D3 and CDK6. Eriocitrin triggers apoptosis by activating mitochondria-involved intrinsic signaling pathway[1].

   

Eriodictyol

(S) -2- (3,4-Dihydroxyphenyl) -2,3-dihydro-5,7-dihydroxy-4H-1-benzopyran-4-one

C15H12O6 (288.06338519999997)


Eriodictyol, also known as 3,4,5,7-tetrahydroxyflavanone or 2,3-dihydroluteolin, belongs to the class of organic compounds known as flavanones. Flavanones are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. Thus, eriodictyol is considered to be a flavonoid lipid molecule. Outside of the human body, eriodictyol has been detected, but not quantified in, several different foods, such as common oregano, common thymes, parsley, sweet basils, and tarragons. This could make eriodictyol a potential biomarker for the consumption of these foods. Eriodictyol is a compound isolated from Eriodictyon californicum and can be used in medicine as an expectorant. BioTransformer predicts that eriodictiol is a product of luteolin metabolism via a flavonoid-c-ring-reduction reaction catalyzed by an unspecified-gut microbiota enzyme (PMID: 30612223). Eriodictyol, also known as 5735-tetrahydroxyflavanone, is a member of the class of compounds known as flavanones. Flavanones are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. Eriodictyol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Eriodictyol can be found in a number of food items such as rowal, grape, cardamom, and lemon balm, which makes eriodictyol a potential biomarker for the consumption of these food products. Eriodictyol is a bitter-masking flavanone, a flavonoid extracted from yerba santa (Eriodictyon californicum), a plant native to North America. Eriodictyol is one of the four flavanones identified in this plant as having taste-modifying properties, the other three being homoeriodictyol, its sodium salt, and sterubin . Eriodictyol is a tetrahydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 7, 3 and 4 respectively. It is a tetrahydroxyflavanone and a member of 3-hydroxyflavanones. Eriodictyol is a natural product found in Eupatorium album, Eupatorium hyssopifolium, and other organisms with data available. A tetrahydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 7, 3 and 4 respectively. Acquisition and generation of the data is financially supported in part by CREST/JST. Eriodictyol is a flavonoid isolated from the Chinese herb, with antioxidant and anti-inflammatory activity. Eriodictyol induces Nrf2 signaling pathway. Eriodictyol is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 18 nM. Eriodictyol is a flavonoid isolated from the Chinese herb, with antioxidant and anti-inflammatory activity. Eriodictyol induces Nrf2 signaling pathway. Eriodictyol is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 18 nM.

   

Hesperidin

(S)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C28H34O15 (610.1897614000001)


Hesperidin is an abundant and inexpensive by-product of Citrus cultivation and is the major flavonoid in sweet orange and lemon. In young immature oranges it can account for up to 14\\\\% of the fresh weight of the fruit. Hesperidin is an abundant and inexpensive by-product of Citrus cultivation and is the major flavonoid in sweet orange and lemon. In young immature oranges it can account for up to 14\\\\% of the fresh weight of the fruit due to vitamin C deficiency such as bruising due to capillary fragility were found in early studies to be relieved by crude vitamin C extract but not by purified vitamin C. The bioflavonoids, formerly called "vitamin P", were found to be the essential components in correcting this bruising tendency and improving the permeability and integrity of the capillary lining. These bioflavonoids include hesperidin, citrin, rutin, flavones, flavonols, catechin and quercetin. Of historical importance is the observation that "citrin", a mixture of two flavonoids, eriodictyol and hesperidin, was considered to possess a vitamin-like activity, as early as in 1949. Hesperidin deficiency has since been linked with abnormal capillary leakiness as well as pain in the extremities causing aches, weakness and night leg cramps. Supplemental hesperidin also helps in reducing oedema or excess swelling in the legs due to fluid accumulation. As with other bioflavonoids, hesperidin works best when administered concomitantly with vitamin C. No signs of toxicity have been observed with normal intake of hesperidin. Hesperidin was first discovered in 1827, by Lebreton, but not in a pure state and has been under continuous investigation since then (PMID:11746857). Hesperidin is a disaccharide derivative that consists of hesperetin substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a mutagen. It is a disaccharide derivative, a member of 3-hydroxyflavanones, a dihydroxyflavanone, a monomethoxyflavanone, a flavanone glycoside, a member of 4-methoxyflavanones and a rutinoside. It is functionally related to a hesperetin. Hesperidin is a flavan-on glycoside found in citrus fruits. Hesperidin is a natural product found in Ficus erecta var. beecheyana, Citrus tankan, and other organisms with data available. A flavanone glycoside found in CITRUS fruit peels. See also: Tangerine peel (part of). Found in most citrus fruits and other members of the Rutaceae, also in Mentha longifolia Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 0.770 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.767 [Raw Data] CB217_Hesperidin_pos_50eV_CB000076.txt [Raw Data] CB217_Hesperidin_pos_20eV_CB000076.txt [Raw Data] CB217_Hesperidin_pos_30eV_CB000076.txt [Raw Data] CB217_Hesperidin_pos_10eV_CB000076.txt [Raw Data] CB217_Hesperidin_pos_40eV_CB000076.txt [Raw Data] CB217_Hesperidin_neg_20eV_000038.txt [Raw Data] CB217_Hesperidin_neg_50eV_000038.txt [Raw Data] CB217_Hesperidin_neg_10eV_000038.txt [Raw Data] CB217_Hesperidin_neg_30eV_000038.txt [Raw Data] CB217_Hesperidin_neg_40eV_000038.txt Annotation level-1 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2]. Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2].

   

Hesperetin

(2S)-5,7-Dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-2,3-dihydro-4H-1-benzopyran-4-one (Hesperetin)

C16H14O6 (302.0790344)


Hesperetin, also known as prestwick_908 or YSO2, belongs to the class of organic compounds known as 4-o-methylated flavonoids. These are flavonoids with methoxy groups attached to the C4 atom of the flavonoid backbone. Thus, hesperetin is considered to be a flavonoid lipid molecule. Hesperetin also seems to upregulate the LDL receptor. Hesperetin, in the form of its glycoside , is the predominant flavonoid in lemons and oranges. Hesperetin is a drug which is used for lowering cholesterol and, possibly, otherwise favorably affecting lipids. In vitro research also suggests the possibility that hesperetin might have some anticancer effects and that it might have some anti-aromatase activity. Hesperetin is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Hesperetin is a bitter tasting compound. Hesperetin is found, on average, in the highest concentration within a few different foods, such as limes, persian limes, and sweet oranges and in a lower concentration in pummelo, welsh onions, and lemons. Hesperetin has also been detected, but not quantified, in several different foods, such as yellow bell peppers, carrots, rapinis, hazelnuts, and beers. Hesperetin is a biomarker for the consumption of citrus fruits. Hesperetin reduces or inhibits the activity of acyl-coenzyme A:cholesterol acyltransferase genes (ACAT1 and ACAT2) and it reduces microsomal triglyceride transfer protein (MTP) activity. Hesperetin is a trihydroxyflavanone having the three hydroxy gropus located at the 3-, 5- and 7-positions and an additional methoxy substituent at the 4-position. It has a role as an antioxidant, an antineoplastic agent and a plant metabolite. It is a monomethoxyflavanone, a trihydroxyflavanone, a member of 3-hydroxyflavanones and a member of 4-methoxyflavanones. It is a conjugate acid of a hesperetin(1-). Hesperetin belongs to the flavanone class of flavonoids. Hesperetin, in the form of its glycoside [hesperidin], is the predominant flavonoid in lemons and oranges. Hesperetin is a natural product found in Brassica oleracea var. sabauda, Dalbergia parviflora, and other organisms with data available. Isolated from Mentha (peppermint) and numerous Citrussubspecies, with lemons, tangerines and oranges being especially good sources. Nutriceutical with anti-cancer props. Glycosides also widely distributed A trihydroxyflavanone having the three hydroxy gropus located at the 3-, 5- and 7-positions and an additional methoxy substituent at the 4-position. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB046_Hesperetin_pos_40eV_CB000021.txt [Raw Data] CB046_Hesperetin_pos_50eV_CB000021.txt [Raw Data] CB046_Hesperetin_pos_30eV_CB000021.txt [Raw Data] CB046_Hesperetin_pos_20eV_CB000021.txt [Raw Data] CB046_Hesperetin_pos_10eV_CB000021.txt [Raw Data] CB046_Hesperetin_neg_20eV_000014.txt [Raw Data] CB046_Hesperetin_neg_10eV_000014.txt [Raw Data] CB046_Hesperetin_neg_40eV_000014.txt [Raw Data] CB046_Hesperetin_neg_50eV_000014.txt [Raw Data] CB046_Hesperetin_neg_30eV_000014.txt Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin regulates apoptosis. Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin regulates apoptosis.

   

Formononetin

7-hydroxy-3-(4-methoxyphenyl)-4H-chromen-4-one

C16H12O4 (268.0735552)


Formononetin is a member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone substituted by a methoxy group at position 4. It has a role as a phytoestrogen and a plant metabolite. It is a member of 7-hydroxyisoflavones and a member of 4-methoxyisoflavones. It is functionally related to a daidzein. It is a conjugate acid of a formononetin(1-). Formononetin is under investigation in clinical trial NCT02174666 (Isoflavone Treatment for Postmenopausal Osteopenia.). Formononetin is a natural product found in Pterocarpus indicus, Ardisia paniculata, and other organisms with data available. See also: Astragalus propinquus root (part of); Trifolium pratense flower (part of). Formononetin are abundant in vegetables. It is a phyto-oestrogen that is a polyphenolic non-steroidal plant compound with oestrogen-like biological activity (PMID: 16108819). It can be the source of considerable estrogenic activity (http://www.herbalchem.net/Intermediate.htm). Widespread isoflavone found in soy beans (Glycine max), red clover (Trifolium pratense and chick peas (Cicer arietinum). Potential nutriceutical A member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone substituted by a methoxy group at position 4. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8803; ORIGINAL_PRECURSOR_SCAN_NO 8802 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8826; ORIGINAL_PRECURSOR_SCAN_NO 8825 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4484; ORIGINAL_PRECURSOR_SCAN_NO 4480 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4474; ORIGINAL_PRECURSOR_SCAN_NO 4471 DATA_PROCESSING MERGING RMBmix ver. 0.2.7; CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4474; ORIGINAL_PRECURSOR_SCAN_NO 4470 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8863; ORIGINAL_PRECURSOR_SCAN_NO 8861 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4474; ORIGINAL_PRECURSOR_SCAN_NO 4470 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8847; ORIGINAL_PRECURSOR_SCAN_NO 8844 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8852; ORIGINAL_PRECURSOR_SCAN_NO 8851 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8822; ORIGINAL_PRECURSOR_SCAN_NO 8821 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4569; ORIGINAL_PRECURSOR_SCAN_NO 4566 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4507; ORIGINAL_PRECURSOR_SCAN_NO 4504 Acquisition and generation of the data is financially supported in part by CREST/JST. INTERNAL_ID 2291; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2291 IPB_RECORD: 481; CONFIDENCE confident structure Formononetin is a potent FGFR2 inhibitor with an IC50 of ~4.31 μM. Formononetin potently inhibits angiogenesis and tumor growth[1]. Formononetin is a potent FGFR2 inhibitor with an IC50 of ~4.31 μM. Formononetin potently inhibits angiogenesis and tumor growth[1].

   

Tyrosol

4-hydroxy-Benzeneethanol;4-Hydroxyphenylethanol;beta-(4-Hydroxyphenyl)ethanol

C8H10O2 (138.06807600000002)


Tyrosol is a phenolic compound present in two of the traditional components of the Mediterranean diet: wine and virgin olive oil. The presence of tyrosol has been described in red and white wines. Tyrosol is also present in vermouth and beer. Tyrosol has been shown to be able to exert antioxidant activity in vitro studies. Oxidation of low-density lipoprotein (LDL) appears to occur predominantly in arterial intimae in microdomains sequestered from antioxidants of plasma. The antioxidant content of the LDL particle is critical for its protection. The ability of tyrosol to bind human LDL has been reported. The bioavailability of tyrosol in humans from virgin olive oil in its natural form has been demonstrated. Urinary tyrosol increases, reaching a peak at 0-4 h after virgin olive oil administration. Men and women show a different pattern of urinary excretion of tyrosol. Moreover, tyrosol is absorbed in a dose-dependent manner after sustained and moderate doses of virgin olive oil. Tyrosol from wine or virgin olive oil could exert beneficial effects on human health in vivo if its biological properties are confirmed (PMID 15134375). Tyrosol is a microbial metabolite found in Bifidobacterium, Escherichia and Lactobacillus (PMID:28393285). 2-(4-hydroxyphenyl)ethanol is a phenol substituted at position 4 by a 2-hydroxyethyl group. It has a role as an anti-arrhythmia drug, an antioxidant, a cardiovascular drug, a protective agent, a fungal metabolite, a geroprotector and a plant metabolite. It is functionally related to a 2-phenylethanol. 2-(4-Hydroxyphenyl)ethanol is a natural product found in Thalictrum petaloideum, Casearia sylvestris, and other organisms with data available. Tyrosol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Sedum roseum root (part of); Rhodiola crenulata root (part of). D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents A phenol substituted at position 4 by a 2-hydroxyethyl group. D020011 - Protective Agents > D000975 - Antioxidants Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1]. Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1].

   

D-Pinitol

(1R,2S,3R,4S,5S,6S)-6-methoxycyclohexane-1,2,3,4,5-pentol

C7H14O6 (194.0790344)


Widely distributed in plants. Pinitol is a cyclitol, a cyclic polyol. It is a known anti-diabetic agent isolated from Sutherlandia frutescens leaves. D-Pinitol is a biomarker for the consumption of soy beans and other soy products. D-Pinitol is found in many foods, some of which are ginkgo nuts, carob, soy bean, and common pea. D-Pinitol is found in carob. D-Pinitol is widely distributed in plants.Pinitol is a cyclitol, a cyclic polyol. It is a known anti-diabetic agent isolated from Sutherlandia frutescens leaves. (Wikipedia). D-Pinitol is a biomarker for the consumption of soy beans and other soy products. D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3]. D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3].

   

Anabasine

1-[(tert-butyl)oxycarbonyl]-4-phenylpyrroline-3-carboxylicacid

C10H14N2 (162.1156924)


Anabasine is a pyridine alkaloid that is pyridine substituted by a piperidin-2-yl group at position 3. It has a role as a plant metabolite, a teratogenic agent and a nicotinic acetylcholine receptor agonist. It is a piperidine alkaloid and a pyridine alkaloid. Anabasine is a natural product found in Nicotiana, Nicotiana tabacum, and Anabasis aphylla with data available. Anabasine is a nicotine analog that is an alkaloid found in tree tobacco (Nicotiana glauca) and is comprised of a pyridine substituted by a piperidin-2-yl group at position 3. Anabasine has been used as an industrial insecticide and, since it is present in trace amounts in tobacco smoke, its detection in urine can be used as an indicator of exposure to tobacco smoke. Anabasine is a nicotinic receptor agonist toxin and Cholinesterase inhibitor which acts upon the nicotinic acetylcholine receptors. Anabasine is an unstable yellow liquid which is succeptable to light, heat and moisture. Its decomposition products include Nitrogen oxides, carbon monoxide, irritating and toxic fumes and gases and carbon dioxide. Anabasine is a pyridine alkaloid found in the stem of the (Nicotiana glauca) plant, a close relative of (Nicotiana tabacum) the common tobacco plant. Anabasine is a metabolite of nicotine which can be used as an indicator of a persons exposure to tobbacco smoke. A piperidine botanical insecticide. A piperidine botanical insecticide. Anabasine is a pyridine and piperidine alkaloid found in the Tree Tobacco (Nicotiana glauca) plant, a close relative of the common tobacco plant (Nicotiana tabacum). It is a structural isomer of, and chemically similar to, nicotine. Its principal (historical) industrial use is as an insecticide. Anabasine is a nicotinic receptor agonist toxin and Cholinesterase inhibitor which acts upon the nicotinic acetylcholine receptors. Anabasine is an unstable yellow liquid which is succeptable to light, heat and moisture. Its decomposition products include Nitrogen oxides, carbon monoxide, irritating and toxic fumes and gases and carbon dioxide. Anabasine is a nicotinic receptor agonist toxin and Cholinesterase inhibitor which acts upon the nicotinic acetylcholine receptors. A pyridine alkaloid that is pyridine substituted by a piperidin-2-yl group at position 3. D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals (±) Anabasine is a biphasic muscle relaxant. (±) Anabasine is a biphasic muscle relaxant. Anabasine ((S)-Anabasine) is an alkaloid that found as a minor component in tobacco (Nicotiana). Anabasine is a botanical?pesticide?nicotine, acts as a full agonist of nicotinic acetylcholine receptors (nAChRs). Anabasine induces depolarization of TE671 cells endogenously expressing human fetal muscle-type nAChRs (EC50=0.7 μM)[1][2]. Anabasine ((S)-Anabasine) is an alkaloid that found as a minor component in tobacco (Nicotiana). Anabasine is a botanical?pesticide?nicotine, acts as a full agonist of nicotinic acetylcholine receptors (nAChRs). Anabasine induces depolarization of TE671 cells endogenously expressing human fetal muscle-type nAChRs (EC50=0.7 μM)[1][2].

   

Angustifoline

(1R,2R,9S,10S)-10-Prop-2-enyl-7,11-diazatricyclo[7.3.1.02,7]tridecan-6-one

C14H22N2O (234.1732042)


Angustifoline is a member of quinolizidines and a cyclic ketone. 4-(Prop-2-en-1-yl)decahydro-8H-1,5-methanopyrido[1,2-a][1,5]diazocin-8-one is a natural product found in Haplophyllum thesioides, Lupinus hintonii, and other organisms with data available. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 54 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 18 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 33 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 40 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 25 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 10 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 3

   

Fustin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-2,3-dihydro-3,7-dihydroxy-, (2R,3R)-rel-

C15H12O6 (288.06338519999997)


Fustin is a natural product found in Acacia vestita, Acacia carneorum, and other organisms with data available. See also: Cotinus coggygria whole (part of); Toxicodendron succedaneum whole (part of). A dihydroflavonol that is the 2,3-dihydro derivative of fisetin. Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) is a potent amyloid β (Aβ) inhibitor. Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) increases the expression of acetylcholine (ACh) levels, choline acetyltransferase (ChAT) activity, and ChAT gene induced by Aβ (1-42). Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) decreases in acetyl cholinesterase (AChE) activity and AChE gene expression induced by Aβ (1-42). Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) increases muscarinic M1 receptor gene expression and muscarinic M1 receptor binding activity. Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) can be used for Alzheimer's disease research[1].

   

Tyramine

alpha-(4-Hydroxyphenyl)-beta-aminoethane

C8H11NO (137.0840596)


Tyramine is a monoamine compound derived from the amino acid tyrosine. Tyramine is metabolized by the enzyme monoamine oxidase. In foods, it is often produced by the decarboxylation of tyrosine during fermentation or decay. Foods containing considerable amounts of tyramine include fish, chocolate, alcoholic beverages, cheese, soy sauce, sauerkraut, and processed meat. A large dietary intake of tyramine can cause an increase in systolic blood pressure of 30 mmHg or more. Tyramine acts as a neurotransmitter via a G protein-coupled receptor with high affinity for tyramine called TA1. The TA1 receptor is found in the brain as well as peripheral tissues including the kidney. An indirect sympathomimetic, Tyramine can also serve as a substrate for adrenergic uptake systems and monoamine oxidase so it prolongs the actions of adrenergic transmitters. It also provokes transmitter release from adrenergic terminals. Tyramine is a biomarker for the consumption of cheese [Spectral] Tyramine (exact mass = 137.08406) and L-Methionine (exact mass = 149.05105) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Tyramine (exact mass = 137.08406) and Glutathione (exact mass = 307.08381) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics Acquisition and generation of the data is financially supported in part by CREST/JST. D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents IPB_RECORD: 267; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 5105 D049990 - Membrane Transport Modulators KEIO_ID T008 Tyramine is an amino acid that helps regulate blood pressure. Tyramine occurs naturally in the body, and it's found in certain foods[1]. Tyramine is an amino acid that helps regulate blood pressure. Tyramine occurs naturally in the body, and it's found in certain foods[1].

   

Cytisine

Cytisine

C11H14N2O (190.1106074)


N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BA - Drugs used in nicotine dependence C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist > C73579 - Nicotinic Agonist relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.052 Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3].

   

Sparteine

7,14-METHANO-2H,6H-DIPYRIDO(1,2-A:1,2-E)(1,5)DIAZOCINE, DODECAHYDRO-, (7S-(7.ALPHA.,7A.BETA.,14.ALPHA.,14A.BETA.))-

C15H26N2 (234.2095876)


Sparteine is a quinolizidine alkaloid and a quinolizidine alkaloid fundamental parent. Sparteine is a plant alkaloid derived from Cytisus scoparius and Lupinus mutabilis which may chelate calcium and magnesium. It is a sodium channel blocker, so it falls in the category of class 1a antiarrhythmic agents. Sparteine is not currently FDA-approved for human use, and its salt, sparteine sulfate, is one of the products that have been withdrawn or removed from the market for reasons of safety or effectiveness. Sparteine is a natural product found in Ormosia coarctata, Thermopsis chinensis, and other organisms with data available. A quinolizidine alkaloid isolated from several FABACEAE including LUPINUS; SPARTIUM; and CYTISUS. It has been used as an oxytocic and an anti-arrhythmia agent. It has also been of interest as an indicator of CYP2D6 genotype. See also: Cytisus scoparius flowering top (part of). C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BA - Antiarrhythmics, class ia C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D012102 - Reproductive Control Agents > D010120 - Oxytocics Annotation level-1 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 53 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 39 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 32 INTERNAL_ID 24; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 24 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 17 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 9 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.395 beta-Isosparteine is a natural product found in Ulex airensis, Ulex densus, and other organisms with data available. A quinolizidine alkaloid isolated from several FABACEAE including LUPINUS; SPARTIUM; and CYTISUS. It has been used as an oxytocic and an anti-arrhythmia agent. It has also been of interest as an indicator of CYP2D6 genotype. (+)-Sparteine is a natural product found in Baptisia australis, Dermatophyllum secundiflorum, and other organisms with data available. A quinolizidine alkaloid isolated from several FABACEAE including LUPINUS; SPARTIUM; and CYTISUS. It has been used as an oxytocic and an anti-arrhythmia agent. It has also been of interest as an indicator of CYP2D6 genotype. (-)-Sparteine is a natural alkaloid isolated from beans. (-)-Sparteine is a natural alkaloid isolated from beans. (+)-Sparteine is a natural alkaloid acting as a ganglionic blocking agent. (+)-Sparteine competitively blocks nicotinic ACh receptor in the neurons. (+)-Sparteine is a natural alkaloid acting as a ganglionic blocking agent. (+)-Sparteine competitively blocks nicotinic ACh receptor in the neurons. (+)-Sparteine is a natural alkaloid acting as a ganglionic blocking agent. (+)-Sparteine competitively blocks nicotinic ACh receptor in the neurons.

   

Cyanidin 3-glucoside

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1lambda4-chromen-1-ylium

[C21H21O11]+ (449.10838160000003)


Cyanidin 3-glucoside, also known as chrysanthenin or cyanidin 3-glucoside chloride (CAS: 7084-24-4), belongs to the class of organic compounds known as pyranones and derivatives. Pyranones and derivatives are compounds containing a pyran ring which bears a ketone. Cyanidin 3-glucoside is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, cyanidin 3-glucoside is found, on average, in the highest concentration within a few different foods, such as black elderberries, rubus (blackberry, raspberry), and bilberries and in a lower concentration in redcurrants, strawberries, and sweet oranges. Cyanidin 3-glucoside has also been detected, but not quantified in, several different foods, such as common pea, peaches, Tartary buckwheats, soft-necked garlic, and fats and oils. This could make cyanidin 3-glucoside a potential biomarker for the consumption of these foods. Cyanidin (and its glycosides) is the most commonly occurring of the anthocyanins, a widespread group of pigments responsible for the red-blue colour of many fruits and vegetables (PMID: 14711454). BioTransformer predicts that cyanidin 3-​glucoside is a product of cyanidin 3-​sophoroside metabolism via a glycoside-hydrolysis reaction occurring in human gut microbiota and catalyzed by the EC.3.2.1.X enzyme (PMID: 30612223). Acquisition and generation of the data is financially supported in part by CREST/JST. Found in many plants and fruits, e.g. cherries, olives and grapes

   

lupinine

Octahydro-2H-quinolizin-1-ylmethanol

C10H19NO (169.14665639999998)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 41 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 55 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 34 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 19 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 11 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 26 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 4

   

Mangiferol

1,3,6,7-tetrahydroxy-2-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-9H-xanthen-9-one

C19H18O11 (422.0849078)


Mangiferol, also known as alpizarin or chinomin, is a member of the class of compounds known as xanthones. Xanthones are polycyclic aromatic compounds containing a xanthene moiety conjugated to a ketone group at carbon 9. Xanthene is a tricyclic compound made up of two benzene rings linearly fused to each other through a pyran ring. Mangiferol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Mangiferol can be found in mango, which makes mangiferol a potential biomarker for the consumption of this food product. Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3]. Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3].

   

13-hydroxylupanine

(+)-13α-Hydroxylupanine

C15H24N2O2 (264.18376839999996)


   

Ammodendrine

Isoammodendrine

C12H20N2O (208.157555)


A piperidine alkaloid that is piperidine substituted by a 1-acetyl-1,4,5,6-tetrahydropyridin-3-yl group at position 2 (the 2R-stereoisomer). relative retention time with respect to 9-anthracene Carboxylic Acid is 0.321 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.317

   
   
   

L-Arabinose

(2S,3R,4S,5S)-oxane-2,3,4,5-tetrol

C5H10O5 (150.052821)


L-Arabinose (CAS: 5328-37-0) belongs to the class of compounds known as aldopentoses. An aldopentose is a monosaccharide containing five carbon atoms, including an aldehyde (CHO) functional group. Arabinose gets its name from gum arabic, from which it was first isolate. Most saccharides found in nature are in the "D"-form, however, L-arabinose is in fact more common than D-arabinose. L-arabinose is found in nature as a component of biopolymers such as hemicellulose and pectin. L-arabinose is found in all organisms from bacteria to plants to animals. Arabinose is the second most abundant pentose in lignocellulosic biomass after xylose. There are two different arabinose utilization pathways in nature: bacterial and fungal. The bacterial pathway converts arabinose into xylulose-5-P via ribulose-5-P using three enzymes (L-arabinose isomerase, L-ribulokinase, and L-ribulose-5-P 4-epimerase) after which it enters the pentose phosphate pathway for ethanol production. The fungal pathway converts arabinose into L-arabinitol by aldose reductase (AR) or XR, L-xylulose by L-arabinitol 4-dehydrogenase (LAD), xylitol by L-xylulose reductase (LXR), D-xylulose by xylulose dehydrogenase (XDH), and D-xylulose-5-P by xylulose kinase (XK), and lastly enters the nonoxidative pentose phosphate pathway for further metabolism. Arabinose has a sweet taste and is one of the most abundant components released by complete hydrolysis of non-starch polysaccharides (NSP) of vegetable origin. Although widely present in nature, L-arabinose is rarely used in food production or food flavoring, and its physiological effects in vivo have received little attention. L-arabinose is known to selectively inhibit intestinal sucrase activity in a non-competitive manner. Sucrase is the enzyme that breaks down sucrose into glucose and fructose in the small intestine. As a result, L-arabinose suppresses plasma glucose increase due to sucrose ingestion. The presence of arabinose in urine may indicate overgrowth of intestinal yeast such as Candida albicans or other yeast/fungus species. L-arabinose is also a microbial metabolite found in, and produced by, Mycobacterium (PMID: 16232643). In a rare case of two autistic brothers that were not associated with any known metabolic disease, it was found the median value for L-arabinose in their urine samples was 179 umol/mmol creatinine, nearly six times greater than normal children (PMID: 11238761, 8931641, 1390604, 7628083). COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Flavouring agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

L-Arabinose

(3R,4S,5S)-oxane-2,3,4,5-tetrol

C5H10O5 (150.052821)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials A L-arabinopyranose with a beta-configuration at the anomeric position. Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Arabinose is an endogenous metabolite. Arabinose is an endogenous metabolite. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion.

   

17-Oxosparteine

7,14-Methano-2H,6H-dipyrido[1,2-a:1,2-E][1,5]diazocin-6-one, dodecahydro-, [7R-(7alpha,7aalpha,14alpha,14abeta)]-

C15H24N2O (248.18885339999997)


   

Anabasine

(-)-Anabasine

C10H14N2 (162.1156924)


D010575 - Pesticides > D007306 - Insecticides The (S)-enantiomer of anabasine. D016573 - Agrochemicals CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 KEIO_ID A068 Anabasine ((S)-Anabasine) is an alkaloid that found as a minor component in tobacco (Nicotiana). Anabasine is a botanical?pesticide?nicotine, acts as a full agonist of nicotinic acetylcholine receptors (nAChRs). Anabasine induces depolarization of TE671 cells endogenously expressing human fetal muscle-type nAChRs (EC50=0.7 μM)[1][2]. Anabasine ((S)-Anabasine) is an alkaloid that found as a minor component in tobacco (Nicotiana). Anabasine is a botanical?pesticide?nicotine, acts as a full agonist of nicotinic acetylcholine receptors (nAChRs). Anabasine induces depolarization of TE671 cells endogenously expressing human fetal muscle-type nAChRs (EC50=0.7 μM)[1][2].

   

Pinitol

(1R,2S,3R,4S,5S,6S)-6-methoxycyclohexane-1,2,3,4,5-pentaol

C7H14O6 (194.0790344)


D-pinitol is the D-enantiomer of pinitol. It has a role as a geroprotector and a member of compatible osmolytes. It is functionally related to a 1D-chiro-inositol. It is an enantiomer of a L-pinitol. Methylinositol has been used in trials studying the treatment of Dementia and Alzheimers Disease. D-Pinitol is a natural product found in Aegialitis annulata, Senna macranthera var. micans, and other organisms with data available. A member of the class of methyl myo-inositols that is cyclohexane-1,2,3,4,5-pentol substituted by a methoxy group at position 6 (the 1R,2S,3S,4S,5S,6S-isomer). D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3]. D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3].

   

Medicagol

16-hydroxy-5,7,11,19-tetraoxapentacyclo[10.8.0.0²,¹⁰.0⁴,⁸.0¹³,¹⁸]icosa-1(12),2,4(8),9,13(18),14,16-heptaen-20-one

C16H8O6 (296.0320868)


Medicagol is a member of coumestans. Medicagol is a natural product found in Cicer chorassanicum, Sophora moorcroftiana, and other organisms with data available. See also: Trifolium pratense flower (part of). Medicagol is found in alfalfa. Medicagol is found in alfalfa (Medicago sativa) having viral leaf spot infections. Also from Cicer arietinum (chick pea) and Trifolium pratense (red clover). Found in alfalfa (Medicago sativa) having viral leaf spot infectionsand is also from Cicer arietinum (chick pea) and Trifolium pratense (red clover).

   
   

Mangiferin

1,3,6,7-tetrahydroxy-2-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-9H-xanthen-9-one

C19H18O11 (422.0849078)


Mangiferin is found in fruits. Mangiferin is a constituent of Mangifera indica (mango) Constituent of Mangifera indica (mango). Mangiferin is found in mango and fruits. Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3]. Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3].

   

Arabinofuranobiose

2-{[4,5-dihydroxy-2-(hydroxymethyl)oxolan-3-yl]oxy}-5-(hydroxymethyl)oxolane-3,4-diol

C10H18O9 (282.0950778)


Arabinofuranobiose is formed on partial acid hydrolysis of sugar beet araban and certain plant gums. Arabinofuranobiose belongs to the family of Other Disaccharides. These are disaccharides that are neither an hexose disaccharide nor a mixed hexose/pentose disaccharide.

   

Farnisin

7-Hydroxy-2-(3-hydroxy-4-methoxyphenyl)-4H-1-benzopyran-4-one

C16H12O5 (284.0684702)


Farnisin is a constituent of the seeds of Acacia farnesiana (sweet acacia)

   

alpha-Amyrin

4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.386145)


Epi-alpha-amyrin, also known as epi-α-amyrin, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Epi-alpha-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Epi-alpha-amyrin can be found in herbs and spices, pomes, and rosemary, which makes epi-alpha-amyrin a potential biomarker for the consumption of these food products.

   

6-O-alpha-D-Galactopyranosyl-D-galactopyranose

6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-2,3,4,5-tetrol

C12H22O11 (342.11620619999997)


   

D-ononitol

(1r,2s,4s,5s)-6-methoxycyclohexane-1,2,3,4,5-pentol

C7H14O6 (194.0790344)


D-ononitol is a member of the class of compounds known as cyclohexanols. Cyclohexanols are compounds containing an alcohol group attached to a cyclohexane ring. D-ononitol is soluble (in water) and a very weakly acidic compound (based on its pKa). D-ononitol can be found in a number of food items such as blackcurrant, sour cherry, strawberry guava, and epazote, which makes D-ononitol a potential biomarker for the consumption of these food products. D-ononitol is a cyclitol. It is a 4-O-methyl-myo-inositol and is a constituent of Medicago sativa .

   

Mangiferin

1,3,6,7-Tetrahydroxy-2-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-9H-xanthen-9-one

C19H18O11 (422.0849078)


Mangiferin is a C-glycosyl compound consisting of 1,3,6,7-tetrahydroxyxanthen-9-one having a beta-D-glucosyl residue at the 6-position. It has a role as a hypoglycemic agent, an antioxidant, an anti-inflammatory agent and a plant metabolite. It is a C-glycosyl compound and a member of xanthones. It is functionally related to a xanthone. It is a conjugate acid of a mangiferin(1-). Mangiferin is a natural product found in Salacia chinensis, Smilax bracteata, and other organisms with data available. See also: Mangifera indica bark (part of). A C-glycosyl compound consisting of 1,3,6,7-tetrahydroxyxanthen-9-one having a beta-D-glucosyl residue at the 6-position. Origin: Plant Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3]. Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3].

   

Dehydromaackiain

3-Hydroxy-8,9-methylenedioxypterocarp-6a-ene

C16H10O5 (282.052821)


   

fujikinetin

3- (1,3-Benzodioxol-5-yl) -7-hydroxy-6-methoxy-4H-1-benzopyran-4-one

C17H12O6 (312.06338519999997)


   

Sophoracoumestan B

3-Hydroxy-4-methoxy-8,9-methylenedioxycoumestan

C17H10O7 (326.042651)


   

Luteolin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy- (9CI)

C15H10O6 (286.047736)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.976 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.975 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.968 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.971 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Farnisin

7-Hydroxy-2- (3-hydroxy-4-methoxyphenyl) -4H-1-benzopyran-4-one

C16H12O5 (284.0684702)


   

Eriocitrin

(S)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C27H32O15 (596.1741122)


Eriocitrin is a disaccharide derivative that consists of eriodictyol substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an antioxidant. It is a disaccharide derivative, a member of 3-hydroxyflavanones, a trihydroxyflavanone, a flavanone glycoside, a member of 4-hydroxyflavanones and a rutinoside. It is functionally related to an eriodictyol. Eriocitrin is a natural product found in Cyclopia subternata, Citrus latipes, and other organisms with data available. A disaccharide derivative that consists of eriodictyol substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. Eriocitrin is a flavonoid isolated from lemon, which is a strong antioxidant agent. Eriocitrin could inhibit the proliferation of hepatocellular carcinoma cell lines by arresting cell cycle in S phase through up-regulation of p53, cyclin A, cyclin D3 and CDK6. Eriocitrin triggers apoptosis by activating mitochondria-involved intrinsic signaling pathway[1]. Eriocitrin is a flavonoid isolated from lemon, which is a strong antioxidant agent. Eriocitrin could inhibit the proliferation of hepatocellular carcinoma cell lines by arresting cell cycle in S phase through up-regulation of p53, cyclin A, cyclin D3 and CDK6. Eriocitrin triggers apoptosis by activating mitochondria-involved intrinsic signaling pathway[1].

   

Eriodictyol

(S) -2- (3,4-Dihydroxyphenyl) -2,3-dihydro-5,7-dihydroxy-4H-1-benzopyran-4-one

C15H12O6 (288.06338519999997)


Constituent of the leaves and branches of Phyllanthus emblica (emblic). Eriodictyol 7-(6-coumaroylglucoside) is found in fruits. Annotation level-1 Eriodictyol is a flavonoid isolated from the Chinese herb, with antioxidant and anti-inflammatory activity. Eriodictyol induces Nrf2 signaling pathway. Eriodictyol is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 18 nM. Eriodictyol is a flavonoid isolated from the Chinese herb, with antioxidant and anti-inflammatory activity. Eriodictyol induces Nrf2 signaling pathway. Eriodictyol is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 18 nM.

   

Medicagol

7-Hydroxy-11,12-methylenedioxycoumestan

C16H8O6 (296.0320868)


   

Narirutin

(S)-5-hydroxy-2-(4-hydroxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C27H32O14 (580.1791972)


Narirutin is a disaccharide derivative that is (S)-naringenin substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an anti-inflammatory agent, an antioxidant and a metabolite. It is a disaccharide derivative, a dihydroxyflavanone, a member of 4-hydroxyflavanones, a (2S)-flavan-4-one and a rutinoside. It is functionally related to a (S)-naringenin. Narirutin is a natural product found in Cyclopia subternata, Citrus latipes, and other organisms with data available. See also: Tangerine peel (part of). A disaccharide derivative that is (S)-naringenin substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. Narirutin, one of the active constituents isolated from citrus fruits, has antioxidant and anti-inflammatory activities. Narirutin is a shikimate kinase inhibitor with anti-tubercular potency[1][2]. Narirutin, one of the active constituents isolated from citrus fruits, has antioxidant and anti-inflammatory activities. Narirutin is a shikimate kinase inhibitor with anti-tubercular potency[1][2].

   

Isomangiferin

1,3,6,7-Tetrahydroxy-4-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-9H-xanthen-9-one

C19H18O11 (422.0849078)


Isomangiferin is a member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3, 6 and 7 and a 1,5-anhydro-D-glucitol moiety at position 1. It has a role as an anti-HSV-1 agent and a plant metabolite. It is a member of xanthones, a C-glycosyl compound and a polyphenol. Isomangiferin is a natural product found in Cystopteris moupinensis, Cystopteris montana, and other organisms with data available. A member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3, 6 and 7 and a 1,5-anhydro-D-glucitol moiety at position 1. Isomangiferin, a natural product, is reported to have antiviral activity. Isomangiferin, a natural product, is reported to have antiviral activity.

   

3-(4-methoxyphenyl)-4-oxo-4h-chromen-7-yl acetate

3-(4-methoxyphenyl)-4-oxo-4h-chromen-7-yl acetate

C18H14O5 (310.0841194)


   
   

Hesperidin

(S)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C28H34O15 (610.1897614000001)


Hesperidin is a disaccharide derivative that consists of hesperetin substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a mutagen. It is a disaccharide derivative, a member of 3-hydroxyflavanones, a dihydroxyflavanone, a monomethoxyflavanone, a flavanone glycoside, a member of 4-methoxyflavanones and a rutinoside. It is functionally related to a hesperetin. Hesperidin is a flavan-on glycoside found in citrus fruits. Hesperidin is a natural product found in Ficus erecta var. beecheyana, Citrus tankan, and other organisms with data available. A flavanone glycoside found in CITRUS fruit peels. See also: Tangerine peel (part of). A disaccharide derivative that consists of hesperetin substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2]. Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2].

   

Xylose

(+/-)-Arabinose; DL-Arabinose; dl-Arabinose

C5H10O5 (150.052821)


2,3,4,5-tetrahydroxypentanal is a pentose, a polyol and a hydroxyaldehyde. DL-Arabinose is a natural product found in Arabidopsis thaliana, Streptomyces hainanensis, and other organisms with data available. Citrus Pectin is dietary fiber source, extracted from rind of citrus fruits, and used as a gelling agent. High molecular weight polysaccharides present in the cell walls of all plants. Pectins cement cell walls together. They are used as emulsifiers and stabilizers in the food industry. They have been tried for a variety of therapeutic uses including as antidiarrheals, where they are now generally considered ineffective, and in the treatment of hypercholesterolemia. D000074385 - Food Ingredients > D005503 - Food Additives > D010368 - Pectins Arabinose is an endogenous metabolite. Arabinose is an endogenous metabolite. DL-Xylose is an intermediate of organic synthesis. DL-Xylose is an intermediate of organic synthesis. D-Lyxose is an endogenous metabolite. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion. L-Xylose (L-(-)-Xylose) is the levo-isomer of Xylose. Xylose is classified as a?monosaccharide?of the?aldopentose?type[1]. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose.

   

Icariside D2

(2S,3R,4S,5S,6R)-2-[4-(2-hydroxyethyl)phenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C14H20O7 (300.120897)


Icariside D2 is a glycoside. Icariside D2 is a natural product found in Schisandra propinqua, Cyclopia subternata, and other organisms with data available.

   

Tyramine

Tyramine

C8H11NO (137.0840596)


D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics A primary amino compound obtained by formal decarboxylation of the amino acid tyrosine. D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators Annotation level-2 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2741; CONFIDENCE confident structure Tyramine is an amino acid that helps regulate blood pressure. Tyramine occurs naturally in the body, and it's found in certain foods[1]. Tyramine is an amino acid that helps regulate blood pressure. Tyramine occurs naturally in the body, and it's found in certain foods[1].

   

Formononetin

Formononetin (Biochanin B)

C16H12O4 (268.0735552)


Annotation level-1 D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens relative retention time with respect to 9-anthracene Carboxylic Acid is 1.059 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.061 Formononetin is a potent FGFR2 inhibitor with an IC50 of ~4.31 μM. Formononetin potently inhibits angiogenesis and tumor growth[1]. Formononetin is a potent FGFR2 inhibitor with an IC50 of ~4.31 μM. Formononetin potently inhibits angiogenesis and tumor growth[1].

   

Hesperetin

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-, (S)- (9CI)

C16H14O6 (302.0790344)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.958 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.957 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.955 (Rac)-Hesperetin is the racemate of Hesperetin. Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin induces apoptosis via p38 MAPK activation. (Rac)-Hesperetin is the racemate of Hesperetin. Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin induces apoptosis via p38 MAPK activation. Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin regulates apoptosis. Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin regulates apoptosis.

   
   
   

Calycosin

4H-1-Benzopyran-4-one, 7-hydroxy-3-(3-hydroxy-4-methoxyphenyl)-

C16H12O5 (284.0684702)


Calycosin is a member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone which is substituted by an additional hydroxy group at the 3 position and a methoxy group at the 4 position. It has a role as a metabolite and an antioxidant. It is a member of 7-hydroxyisoflavones and a member of 4-methoxyisoflavones. It is functionally related to an isoflavone. It is a conjugate acid of a calycosin(1-). Calycosin is a natural product found in Thermopsis lanceolata, Hedysarum polybotrys, and other organisms with data available. A member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone which is substituted by an additional hydroxy group at the 3 position and a methoxy group at the 4 position. Calycosin is a natural compound with antioxidant and anti-inflammatory activity. Calycosin is a natural compound with antioxidant and anti-inflammatory activity.

   

(2S,3R,4S,5S,6R)-2-[4-(2-hydroxyethyl)phenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

(2S,3R,4S,5S,6R)-2-[4-(2-hydroxyethyl)phenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C14H20O7 (300.120897)


   

(+)-Lupanine

(+)-Lupanine

C15H24N2O (248.18885339999997)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 29

   

shikimate

Shikimic acid

C7H10O5 (174.052821)


Shikimic acid, also known as shikimate or 3,4,5-trihydroxy-1-cyclohexenecarboxylic acid, is a member of the class of compounds known as shikimic acids and derivatves. Shikimic acids and derivatves are cyclitols containing a cyclohexanecarboxylic acid substituted with three hydroxyl groups at positions 3, 4, and 5. Shikimic acid is soluble (in water) and a weakly acidic compound (based on its pKa). Shikimic acid can be found in a number of food items such as date, rocket salad, redcurrant, and poppy, which makes shikimic acid a potential biomarker for the consumption of these food products. Shikimic acid can be found primarily in blood and urine. Shikimic acid exists in all living species, ranging from bacteria to humans. Shikimic acid, more commonly known as its anionic form shikimate, is a cyclohexene, a cyclitol and a cyclohexanecarboxylic acid. It is an important biochemical metabolite in plants and microorganisms. Its name comes from the Japanese flower shikimi (シキミ, the Japanese star anise, Illicium anisatum), from which it was first isolated in 1885 by Johan Fredrik Eykman. The elucidation of its structure was made nearly 50 years later . Shikimic acid is a key metabolic intermediate of the aromatic amino acid biosynthesis pathway, found in microbes and plants. Shikimic acid is a key metabolic intermediate of the aromatic amino acid biosynthesis pathway, found in microbes and plants.

   

Homovanillyl alcohol

4-Hydroxy-3-methoxyphenethyl alcohol

C9H12O3 (168.0786402)


Homovanillyl alcohol is a biological metabolite of Hydroxytyrosol. Hydroxytyrosol is a phenolic compound that is present in virgin olive oil (VOO) and wine. Homovanillyl alcohol protects red blood cells (RBCs) from oxidative injury and has protective effect on cardiovascular disease[1][2]. Homovanillyl alcohol is a biological metabolite of Hydroxytyrosol. Hydroxytyrosol is a phenolic compound that is present in virgin olive oil (VOO) and wine. Homovanillyl alcohol protects red blood cells (RBCs) from oxidative injury and has protective effect on cardiovascular disease[1][2].

   

Maackiain

(-)-Maackiain

C16H12O5 (284.0684702)


Widespread in the Leguminosae subfamily. Constituent of Trifolium pratense (red clover). (-)-Maackiain is found in many foods, some of which are nectarine, chickpea, alaska blueberry, and adzuki bean. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1].

   

Arabinofuranobiose

2-{[4,5-dihydroxy-2-(hydroxymethyl)oxolan-3-yl]oxy}-5-(hydroxymethyl)oxolane-3,4-diol

C10H18O9 (282.0950778)


   

pinitol

(1R,2S,3R,4S,5S,6S)-6-methoxycyclohexane-1,2,3,4,5-pentol

C7H14O6 (194.0790344)


D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3]. D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3].

   

Epi-a-amyrin

4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.386145)


   

(2S)-7-hydroxyflavanone

(2S)-7-hydroxyflavanone

C15H12O3 (240.0786402)


   

Hydroxycinnamic acid

Hydroxycinnamic acid

C9H8O3 (164.0473418)


The cis-stereoisomer of 3-coumaric acid.

   

L-(+)-Ribose

(2R,3S,4S)-2,3,4,5-tetrahydroxypentanal

C5H10O5 (150.052821)


Arabinose is an endogenous metabolite. Arabinose is an endogenous metabolite. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion.

   

Tyrosol

InChI=1\C8H10O2\c9-6-5-7-1-3-8(10)4-2-7\h1-4,9-10H,5-6H

C8H10O2 (138.06807600000002)


Tyrosol, also known as 4-hydroxyphenylethanol or 4-(2-hydroxyethyl)phenol, is a member of the class of compounds known as tyrosols. Tyrosols are organic aromatic compounds containing a phenethyl alcohol moiety that carries a hydroxyl group at the 4-position of the benzene group. Tyrosol is soluble (in water) and a very weakly acidic compound (based on its pKa). Tyrosol can be synthesized from 2-phenylethanol. Tyrosol is also a parent compound for other transformation products, including but not limited to, hydroxytyrosol, crosatoside B, and oleocanthal. Tyrosol is a mild, sweet, and floral tasting compound and can be found in a number of food items such as breadnut tree seed, sparkleberry, loquat, and savoy cabbage, which makes tyrosol a potential biomarker for the consumption of these food products. Tyrosol can be found primarily in feces and urine, as well as in human prostate tissue. Tyrosol exists in all eukaryotes, ranging from yeast to humans. Tyrosol present in wine is also shown to be cardioprotective. Samson et al. has shown that tyrosol-treated animals showed significant increase in the phosphorylation of Akt, eNOS and FOXO3a. In addition, tyrosol also induced the expression of longevity protein SIRT1 in the heart after myocardial infarction in a rat MI model. Hence tyrosols SIRT1, Akt and eNOS activating power adds another dimension to the wine research, because it adds a great link to the French paradox. In conclusion these findings suggest that tyrosol induces myocardial protection against ischemia related stress by inducing survival and longevity proteins that may be considered as anti-aging therapy for the heart . D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D020011 - Protective Agents > D000975 - Antioxidants Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1]. Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1].

   

Polydextrose

Polydextrose

C12H22O11 (342.11620619999997)


Polydextrose is a food ingredient classified as soluble fiber and is frequently used to increase the non-dietary fiber content of food, replace sugar, reduce calories and reduce fat content. It is a multi-purpose food ingredient synthesized from dextrose, plus about 10 percent sorbitol and 1 percent citric acid. Its E number is E1200. The US FDA approved it in 1981. [Wikipedia]. Polydextrose is found in many foods, some of which are tinda, garden rhubarb, white cabbage, and natal plum.

   

Cyanidin 3-glucoside

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1lambda4-chromen-1-ylium

C21H21O11+ (449.10838160000003)


Cyanidin 3-glucoside, also known as chrysanthenin or cyanidin 3-glucoside chloride (CAS: 7084-24-4), belongs to the class of organic compounds known as pyranones and derivatives. Pyranones and derivatives are compounds containing a pyran ring which bears a ketone. Cyanidin 3-glucoside is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, cyanidin 3-glucoside is found, on average, in the highest concentration within a few different foods, such as black elderberries, rubus (blackberry, raspberry), and bilberries and in a lower concentration in redcurrants, strawberries, and sweet oranges. Cyanidin 3-glucoside has also been detected, but not quantified in, several different foods, such as common pea, peaches, Tartary buckwheats, soft-necked garlic, and fats and oils. This could make cyanidin 3-glucoside a potential biomarker for the consumption of these foods. Cyanidin (and its glycosides) is the most commonly occurring of the anthocyanins, a widespread group of pigments responsible for the red-blue colour of many fruits and vegetables (PMID: 14711454). BioTransformer predicts that cyanidin 3-​glucoside is a product of cyanidin 3-​sophoroside metabolism via a glycoside-hydrolysis reaction occurring in human gut microbiota and catalyzed by the EC.3.2.1.X enzyme (PMID: 30612223). Found in many plants and fruits, e.g. cherries, olives and grapes

   
   

shikimate

shikimate

C7H9O5 (173.0449964)


A cyclohexenecarboxylate that is the conjugate base of shikimic acid.

   

Maackiain

Maackiain

C16H12O5 (284.0684702)


Maackiain (DL-Maackiain) is isolated from Maackia amurensis Rupr.et Maxim. Maackiain (DL-Maackiain) is a larvicidal agent against Aedes aegypti mosquito.xp Parasitol with a LD50 of ?21.95 μg/mL[1]. Maackiain (DL-Maackiain) induces fragmentations of DNA to oligonucleosomal-sized fragments that like a characteristic of apoptosis in the HL-60 cells[2]. Maackiain (DL-Maackiain) is isolated from Maackia amurensis Rupr.et Maxim. Maackiain (DL-Maackiain) is a larvicidal agent against Aedes aegypti mosquito.xp Parasitol with a LD50 of ?21.95 μg/mL[1]. Maackiain (DL-Maackiain) induces fragmentations of DNA to oligonucleosomal-sized fragments that like a characteristic of apoptosis in the HL-60 cells[2].

   

[(1s,2s,9ar)-2-hydroxy-octahydro-1h-quinolizin-1-yl]methyl 1h-pyrrole-2-carboxylate

[(1s,2s,9ar)-2-hydroxy-octahydro-1h-quinolizin-1-yl]methyl 1h-pyrrole-2-carboxylate

C15H22N2O3 (278.16303419999997)


   

14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 2-phenylacetate

14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 2-phenylacetate

C23H30N2O3 (382.225631)


   

(1s,2s,9s,10r,12s)-12-hydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

(1s,2s,9s,10r,12s)-12-hydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

C15H24N2O2 (264.18376839999996)


   

(1r,2r,9r)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-8-one

(1r,2r,9r)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-8-one

C15H24N2O (248.18885339999997)


   

(1r,2s,8s,9s,10r,12r)-8,12-dihydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

(1r,2s,8s,9s,10r,12r)-8,12-dihydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

C15H24N2O3 (280.17868339999995)


   

(1s,2r,4s,9s,10r)-3-hydroxy-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

(1s,2r,4s,9s,10r)-3-hydroxy-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

C20H27N3O4 (373.20014620000006)


   

2-(acetyloxy)-5-{5-hydroxy-4-oxo-7-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]chromen-2-yl}phenyl acetate

2-(acetyloxy)-5-{5-hydroxy-4-oxo-7-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]chromen-2-yl}phenyl acetate

C31H34O17 (678.1795914)


   

2-(acetyloxy)-5-(5-hydroxy-4-oxo-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-2-yl)phenyl acetate

2-(acetyloxy)-5-(5-hydroxy-4-oxo-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-2-yl)phenyl acetate

C31H34O17 (678.1795914)


   

(9r)-7,11-diazatricyclo[7.3.1.0²,⁷]trideca-2,4-dien-6-one

(9r)-7,11-diazatricyclo[7.3.1.0²,⁷]trideca-2,4-dien-6-one

C11H14N2O (190.1106074)


   

(2r,3r,4s,5s,6r)-6-(hydroxymethyl)-4-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2,3,5-triol

(2r,3r,4s,5s,6r)-6-(hydroxymethyl)-4-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2,3,5-triol

C12H22O11 (342.11620619999997)


   

3,5,7-trihydroxy-2-(4-hydroxyphenyl)-8-[2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]chromen-4-one

3,5,7-trihydroxy-2-(4-hydroxyphenyl)-8-[2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]chromen-4-one

C21H20O11 (448.100557)


   

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

C27H30O16 (610.153378)


   

(1s,2s,4s,9s,10r,13s)-13-hydroxy-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl (2z)-2-methylbut-2-enoate

(1s,2s,4s,9s,10r,13s)-13-hydroxy-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl (2z)-2-methylbut-2-enoate

C20H30N2O4 (362.220546)


   

(2r,7r,9r,9as)-7-[(2r)-6-hydroxy-2,3,4,5-tetrahydropyridin-2-yl]-9-(hydroxymethyl)-octahydro-1h-quinolizin-2-yl 1h-pyrrole-2-carboxylate

(2r,7r,9r,9as)-7-[(2r)-6-hydroxy-2,3,4,5-tetrahydropyridin-2-yl]-9-(hydroxymethyl)-octahydro-1h-quinolizin-2-yl 1h-pyrrole-2-carboxylate

C20H29N3O4 (375.21579540000005)


   

7-{[6-({[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-3-(4-methoxyphenyl)chromen-4-one

7-{[6-({[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-3-(4-methoxyphenyl)chromen-4-one

C27H30O13 (562.168633)


   

5-({[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}methyl)oxolane-2,3,4-triol

5-({[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}methyl)oxolane-2,3,4-triol

C10H18O9 (282.0950778)


   

5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-{[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium

5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-{[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium

[C22H23O11]+ (463.1240308)


   
   

(1s,2s,4s,9s,10r)-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 2-phenylacetate

(1s,2s,4s,9s,10r)-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 2-phenylacetate

C23H30N2O3 (382.225631)


   

(1s,2s,9s,10r)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

(1s,2s,9s,10r)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

C15H24N2O (248.18885339999997)


   

16-hydroxy-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

16-hydroxy-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

C20H27N3O4 (373.20014620000006)


   

aphylline

NA

C15H24N2O (248.18885339999997)


{"Ingredient_id": "HBIN016405","Ingredient_name": "aphylline","Alias": "NA","Ingredient_formula": "C15H24N2O","Ingredient_Smile": "C1CCN2CC3CC(C2C1)C(=O)N4C3CCCC4","Ingredient_weight": "248.36 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "1474","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "118701428","DrugBank_id": "NA"}

   

11,12-dihydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

11,12-dihydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

C15H24N2O3 (280.17868339999995)


   

1-(2,4-dihydroxyphenyl)-2-hydroxy-3-(4-methoxyphenyl)propan-1-one

1-(2,4-dihydroxyphenyl)-2-hydroxy-3-(4-methoxyphenyl)propan-1-one

C16H16O5 (288.0997686)


   

(2s,3r,4r,5s,6r)-2-[3-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxyphenyl]-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4r,5s,6r)-2-[3-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxyphenyl]-6-(hydroxymethyl)oxane-3,4,5-triol

C19H20O11 (424.100557)


   

(1r,2s,4s,9r,10r,12s)-12-hydroxy-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

(1r,2s,4s,9r,10r,12s)-12-hydroxy-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

C20H27N3O4 (373.20014620000006)


   

16-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

16-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

C20H27N3O3 (357.20523120000007)


   

(3s)-7-hydroxy-3-(4-methoxyphenyl)-2,3-dihydro-1-benzopyran-4-one

(3s)-7-hydroxy-3-(4-methoxyphenyl)-2,3-dihydro-1-benzopyran-4-one

C16H14O4 (270.0892044)


   

(1s,2r,9r)-7,11-diazatricyclo[7.3.1.0²,⁷]tridecan-8-one

(1s,2r,9r)-7,11-diazatricyclo[7.3.1.0²,⁷]tridecan-8-one

C11H18N2O (194.1419058)


   

(2s,3r,4s,5s,6r)-2-{[(2s)-2-(3,4-dihydroxyphenyl)-7-hydroxy-3,4-dihydro-2h-1-benzopyran-5-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2s)-2-(3,4-dihydroxyphenyl)-7-hydroxy-3,4-dihydro-2h-1-benzopyran-5-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C21H24O10 (436.13694039999996)


   

2-(3,4-dihydroxyphenyl)-7-hydroxy-5-{[2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

2-(3,4-dihydroxyphenyl)-7-hydroxy-5-{[2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

C21H22O11 (450.11620619999997)


   

(1r,2r,9r,10s)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

(1r,2r,9r,10s)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

C15H24N2O (248.18885339999997)


   

8,12-dihydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

8,12-dihydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

C15H24N2O3 (280.17868339999995)


   

(1s,2r,9r)-11-(but-3-en-1-yl)-7,11-diazatricyclo[7.3.1.0²,⁷]tridecan-8-one

(1s,2r,9r)-11-(but-3-en-1-yl)-7,11-diazatricyclo[7.3.1.0²,⁷]tridecan-8-one

C15H24N2O (248.18885339999997)


   

2-{[2-(3,4-dihydroxyphenyl)-7-hydroxy-3,4-dihydro-2h-1-benzopyran-5-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[2-(3,4-dihydroxyphenyl)-7-hydroxy-3,4-dihydro-2h-1-benzopyran-5-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C21H24O10 (436.13694039999996)


   
   

2-(3,4-dihydroxyphenyl)-5-hydroxy-7-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-2,3-dihydro-1-benzopyran-4-one

2-(3,4-dihydroxyphenyl)-5-hydroxy-7-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-2,3-dihydro-1-benzopyran-4-one

C27H32O15 (596.1741122)


   

2-[(3,4,5-trihydroxyoxolan-2-yl)methoxy]oxane-3,4,5-triol

2-[(3,4,5-trihydroxyoxolan-2-yl)methoxy]oxane-3,4,5-triol

C10H18O9 (282.0950778)


   

(1r,2r,9r,10s)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-8-one

(1r,2r,9r,10s)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-8-one

C15H24N2O (248.18885339999997)


   

12,13-dihydroxy-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

12,13-dihydroxy-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

C20H27N3O5 (389.19506120000005)


   

(1s,2r,9s,10r,11s,12s)-11,12-dihydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

(1s,2r,9s,10r,11s,12s)-11,12-dihydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

C15H24N2O3 (280.17868339999995)


   

(1s,2r,4r,5s,9s,10s,12s)-4,5,12-trihydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

(1s,2r,4r,5s,9s,10s,12s)-4,5,12-trihydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

C15H24N2O4 (296.1735984)


   

(1s,2r,9r,10s,12s)-12-[(2e)-but-2-en-2-yloxy]-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

(1s,2r,9r,10s,12s)-12-[(2e)-but-2-en-2-yloxy]-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

C19H30N2O2 (318.230716)


   

(2s,10r)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-ol

(2s,10r)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-ol

C15H26N2O (250.20450259999998)


   

(1s,2s,4s,9r,10s)-16-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadec-13-en-4-yl 1h-pyrrole-2-carboxylate

(1s,2s,4s,9r,10s)-16-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadec-13-en-4-yl 1h-pyrrole-2-carboxylate

C20H25N3O3 (355.189582)


   

(1r,2r,10s)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

(1r,2r,10s)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

C15H24N2O (248.18885339999997)


   

(2s)-5-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-7-hydroxy-2-(4-hydroxyphenyl)-2,3-dihydro-1-benzopyran-4-one

(2s)-5-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-7-hydroxy-2-(4-hydroxyphenyl)-2,3-dihydro-1-benzopyran-4-one

C27H32O14 (580.1791972)


   

12-hydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-8-one

12-hydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-8-one

C15H24N2O2 (264.18376839999996)


   

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[(2r,3r,4r,5s,6r)-2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]-3-{[(2r,3r,4s,5s,6r)-2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}chromen-4-one

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[(2r,3r,4r,5s,6r)-2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]-3-{[(2r,3r,4s,5s,6r)-2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}chromen-4-one

C27H30O16 (610.153378)


   

4-{[(2s,3r,4s,5s,6r)-3-{[(2s,3s,4s)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}benzaldehyde

4-{[(2s,3r,4s,5s,6r)-3-{[(2s,3s,4s)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}benzaldehyde

C18H24O11 (416.13185539999995)


   
   

(1s,2s,9ar)-1-(hydroxymethyl)-octahydro-1h-quinolizin-2-yl 1h-pyrrole-2-carboxylate

(1s,2s,9ar)-1-(hydroxymethyl)-octahydro-1h-quinolizin-2-yl 1h-pyrrole-2-carboxylate

C15H22N2O3 (278.16303419999997)


   

3,7-dihydroxy-2-(4-hydroxyphenyl)-5-{[(2s,3r,4s,5s,6r)-2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}chromen-4-one

3,7-dihydroxy-2-(4-hydroxyphenyl)-5-{[(2s,3r,4s,5s,6r)-2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}chromen-4-one

C21H20O11 (448.100557)


   

2-({[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-6-[4-(2-hydroxyethyl)phenoxy]oxane-3,4,5-triol

2-({[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-6-[4-(2-hydroxyethyl)phenoxy]oxane-3,4,5-triol

C19H28O11 (432.16315380000003)


   

(1r,2r,3s,4s,9r,10s)-3-hydroxy-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

(1r,2r,3s,4s,9r,10s)-3-hydroxy-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

C20H27N3O4 (373.20014620000006)


   

(2r,3r,4s,5r)-2-{[(2s,3r,4r,5r)-3,4,5-trihydroxyoxolan-2-yl]methoxy}oxane-3,4,5-triol

(2r,3r,4s,5r)-2-{[(2s,3r,4r,5r)-3,4,5-trihydroxyoxolan-2-yl]methoxy}oxane-3,4,5-triol

C10H18O9 (282.0950778)


   

(1r,2s,4s,9r,10r)-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

(1r,2s,4s,9r,10r)-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

C20H27N3O3 (357.20523120000007)


   

(1r,2s,4r,9s,10r,16s)-16-hydroxy-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

(1r,2s,4r,9s,10r,16s)-16-hydroxy-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

C20H27N3O4 (373.20014620000006)


   

(2s)-2-(3,4-dihydroxyphenyl)-7-hydroxy-5-{[(2r,3r,4s,5s,6r)-2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

(2s)-2-(3,4-dihydroxyphenyl)-7-hydroxy-5-{[(2r,3r,4s,5s,6r)-2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

C21H22O11 (450.11620619999997)


   

16-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadec-13-en-4-yl 1h-pyrrole-2-carboxylate

16-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadec-13-en-4-yl 1h-pyrrole-2-carboxylate

C20H25N3O3 (355.189582)


   

(1r,2s,4s,9r,10r,12r,13s)-12,13-dihydroxy-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

(1r,2s,4s,9r,10r,12r,13s)-12,13-dihydroxy-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

C20H27N3O5 (389.19506120000005)


   

(2s)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-{[(2r,3r,4s,5s,6r)-2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

(2s)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-{[(2r,3r,4s,5s,6r)-2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

C21H22O11 (450.11620619999997)


   

3-hydroxy-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

3-hydroxy-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

C20H27N3O4 (373.20014620000006)


   

5-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-7-hydroxy-2-(4-hydroxyphenyl)-2,3-dihydro-1-benzopyran-4-one

5-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-7-hydroxy-2-(4-hydroxyphenyl)-2,3-dihydro-1-benzopyran-4-one

C27H32O14 (580.1791972)


   

(1r,2s,4s,9s,10r)-16-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

(1r,2s,4s,9s,10r)-16-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

C20H27N3O3 (357.20523120000007)


   

(1s,2r,9r,10r,11s,12s)-11,12-dihydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

(1s,2r,9r,10r,11s,12s)-11,12-dihydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

C15H24N2O3 (280.17868339999995)


   

(1s,2r,4r,5s,9s,10s)-5-hydroxy-6-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl (2e)-2-methylbut-2-enoate

(1s,2r,4r,5s,9s,10s)-5-hydroxy-6-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl (2e)-2-methylbut-2-enoate

C20H30N2O4 (362.220546)


   

7-{[(2s,3r,4s,5s,6r)-6-({[(2r,3s,4s)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-3-(4-methoxyphenyl)chromen-4-one

7-{[(2s,3r,4s,5s,6r)-6-({[(2r,3s,4s)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-3-(4-methoxyphenyl)chromen-4-one

C27H30O13 (562.168633)


   

7,3',4'-trihydroxyflavone

7,3',4'-trihydroxyflavone

C15H10O5 (270.052821)


   

(2s,3r,4s,5s)-2-{[(2s,3r,4r,5s)-3,4,5-trihydroxyoxolan-2-yl]methoxy}oxane-3,4,5-triol

(2s,3r,4s,5s)-2-{[(2s,3r,4r,5s)-3,4,5-trihydroxyoxolan-2-yl]methoxy}oxane-3,4,5-triol

C10H18O9 (282.0950778)


   

2-(2h-1,3-benzodioxol-5-yl)-6-{[(2s,3r,4s,5s,6r)-6-({[(2r,3s,4s)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-3-hydroxychromen-4-one

2-(2h-1,3-benzodioxol-5-yl)-6-{[(2s,3r,4s,5s,6r)-6-({[(2r,3s,4s)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-3-hydroxychromen-4-one

C27H28O15 (592.1428138)


   

4,5,12-trihydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

4,5,12-trihydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

C15H24N2O4 (296.1735984)


   

(3r)-2-(3,4-dihydroxyphenyl)-3,7-dihydroxy-2,3-dihydro-1-benzopyran-4-one

(3r)-2-(3,4-dihydroxyphenyl)-3,7-dihydroxy-2,3-dihydro-1-benzopyran-4-one

C15H12O6 (288.06338519999997)


   

(1r,2r,4r,5s,9r,10s,12s)-4,5,12-trihydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

(1r,2r,4r,5s,9r,10s,12s)-4,5,12-trihydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

C15H24N2O4 (296.1735984)


   

(2s,3r,4r,5s,6r)-2-[2,4-dihydroxy-3-(4-hydroxybenzoyl)-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl]-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4r,5s,6r)-2-[2,4-dihydroxy-3-(4-hydroxybenzoyl)-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl]-6-(hydroxymethyl)oxane-3,4,5-triol

C25H30O15 (570.158463)


   

3,5,7-trihydroxy-2-(4-hydroxyphenyl)-6-[2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]chromen-4-one

3,5,7-trihydroxy-2-(4-hydroxyphenyl)-6-[2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]chromen-4-one

C21H20O11 (448.100557)


   

(1s,2r,9r)-11-(but-3-en-1-yl)-7,11-diazatricyclo[7.3.1.0²,⁷]tridecan-6-one

(1s,2r,9r)-11-(but-3-en-1-yl)-7,11-diazatricyclo[7.3.1.0²,⁷]tridecan-6-one

C15H24N2O (248.18885339999997)


   

(1s,2s,4s,9s,10r,12s)-12-hydroxy-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

(1s,2s,4s,9s,10r,12s)-12-hydroxy-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

C20H27N3O4 (373.20014620000006)


   

(2r,3s)-7-hydroxy-4-oxo-2-(3,4,5-trihydroxyphenyl)-2,3-dihydro-1-benzopyran-3-yl 3,4,5-trihydroxybenzoate

(2r,3s)-7-hydroxy-4-oxo-2-(3,4,5-trihydroxyphenyl)-2,3-dihydro-1-benzopyran-3-yl 3,4,5-trihydroxybenzoate

C22H16O11 (456.0692586)


   

(1s,2s,4s,9r,10r)-16-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

(1s,2s,4s,9r,10r)-16-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

C20H27N3O3 (357.20523120000007)


   

(3s,4r,5s)-3,4,5-trihydroxycyclohex-1-ene-1-carboxylic acid

(3s,4r,5s)-3,4,5-trihydroxycyclohex-1-ene-1-carboxylic acid

C7H10O5 (174.052821)


   

5-hydroxy-2-(4-hydroxyphenyl)-7-{[2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

5-hydroxy-2-(4-hydroxyphenyl)-7-{[2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

C21H22O10 (434.1212912)


   

(1s,2r,9s,10s,12s)-12-ethoxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

(1s,2r,9s,10s,12s)-12-ethoxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

C17H28N2O2 (292.2150668)


   

3,5,7-trihydroxy-2-(4-hydroxyphenyl)-8-[(2r,3r,4r,5s,6r)-2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]chromen-4-one

3,5,7-trihydroxy-2-(4-hydroxyphenyl)-8-[(2r,3r,4r,5s,6r)-2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]chromen-4-one

C21H20O11 (448.100557)


   

2-(3,4-dihydroxyphenyl)-5-hydroxy-7-{[2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

2-(3,4-dihydroxyphenyl)-5-hydroxy-7-{[2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

C21H22O11 (450.11620619999997)


   

7-(6-hydroxy-2,3,4,5-tetrahydropyridin-2-yl)-9-(hydroxymethyl)-octahydro-1h-quinolizin-2-yl 2-phenylacetate

7-(6-hydroxy-2,3,4,5-tetrahydropyridin-2-yl)-9-(hydroxymethyl)-octahydro-1h-quinolizin-2-yl 2-phenylacetate

C23H32N2O4 (400.2361952)


   

[(2r,3s,4r,5r,6s)-6-{[2-(3,4-dihydroxyphenyl)-7-hydroxy-5-oxochromen-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl 3-(4-hydroxyphenyl)prop-2-enoate

[(2r,3s,4r,5r,6s)-6-{[2-(3,4-dihydroxyphenyl)-7-hydroxy-5-oxochromen-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl 3-(4-hydroxyphenyl)prop-2-enoate

C30H26O13 (594.1373346)


   

3,5,7-trihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]chromen-4-one

3,5,7-trihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]chromen-4-one

C21H20O11 (448.100557)


   

(2s,3r,4r,5s)-5-({[(2r,3r,4r,5s)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}methyl)oxolane-2,3,4-triol

(2s,3r,4r,5s)-5-({[(2r,3r,4r,5s)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}methyl)oxolane-2,3,4-triol

C10H18O9 (282.0950778)


   

3,7-dihydroxy-2-phenyl-2,3-dihydro-1-benzopyran-4-one

3,7-dihydroxy-2-phenyl-2,3-dihydro-1-benzopyran-4-one

C15H12O4 (256.0735552)


   

n-[(1e,9ar)-octahydroquinolizin-1-ylidenemethyl]ethanimidic acid

n-[(1e,9ar)-octahydroquinolizin-1-ylidenemethyl]ethanimidic acid

C12H20N2O (208.157555)


   

(2s)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

(2s)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

C28H34O15 (610.1897614000001)


   
   

(1r,2r,9s,10s)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

(1r,2r,9s,10s)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

C15H24N2O (248.18885339999997)


   

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]-3-{[2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}chromen-4-one

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]-3-{[2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}chromen-4-one

C27H30O16 (610.153378)


   

(1s,2s,4s,9s,10r,13s)-13-hydroxy-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl (2e)-2-methylbut-2-enoate

(1s,2s,4s,9s,10r,13s)-13-hydroxy-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl (2e)-2-methylbut-2-enoate

C20H30N2O4 (362.220546)


   

2-[4-(2-hydroxyethyl)phenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

2-[4-(2-hydroxyethyl)phenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C14H20O7 (300.120897)


   

6-methoxy-3-(4-methoxyphenyl)-7-{[(2r,3r,4s,5s,6r)-2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}chromen-4-one

6-methoxy-3-(4-methoxyphenyl)-7-{[(2r,3r,4s,5s,6r)-2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}chromen-4-one

C23H24O10 (460.13694039999996)


   

(1r,2r,4s,9r,10s,12s)-4,12-dihydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

(1r,2r,4s,9r,10s,12s)-4,12-dihydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

C15H24N2O3 (280.17868339999995)


   

(1s,2s,4s,9s,10r,12r,13s)-12,13-dihydroxy-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

(1s,2s,4s,9s,10r,12r,13s)-12,13-dihydroxy-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

C20H27N3O5 (389.19506120000005)


   

(2r,7r,9r,9as)-7-[(2r)-6-hydroxy-2,3,4,5-tetrahydropyridin-2-yl]-9-(hydroxymethyl)-octahydro-1h-quinolizin-2-ol

(2r,7r,9r,9as)-7-[(2r)-6-hydroxy-2,3,4,5-tetrahydropyridin-2-yl]-9-(hydroxymethyl)-octahydro-1h-quinolizin-2-ol

C15H26N2O3 (282.1943326)


   

3,5,7-trihydroxy-2-(4-hydroxyphenyl)-8-[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]chromen-4-one

3,5,7-trihydroxy-2-(4-hydroxyphenyl)-8-[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]chromen-4-one

C21H20O11 (448.100557)


   

3,7-dihydroxy-2-(4-hydroxyphenyl)-5-{[2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}chromen-4-one

3,7-dihydroxy-2-(4-hydroxyphenyl)-5-{[2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}chromen-4-one

C21H20O11 (448.100557)


   

3,5,7-trihydroxy-2-(4-hydroxyphenyl)-6-[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]chromen-4-one

3,5,7-trihydroxy-2-(4-hydroxyphenyl)-6-[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]chromen-4-one

C21H20O11 (448.100557)


   

(1s,2s,4s,9s,10r,13s,17s)-13,17-dihydroxy-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl (2z)-2-methylbut-2-enoate

(1s,2s,4s,9s,10r,13s,17s)-13,17-dihydroxy-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl (2z)-2-methylbut-2-enoate

C20H30N2O5 (378.215461)


   

(2r,7r,9r,9as)-7-[(2r)-6-hydroxy-2,3,4,5-tetrahydropyridin-2-yl]-9-(hydroxymethyl)-octahydro-1h-quinolizin-2-yl 2-phenylacetate

(2r,7r,9r,9as)-7-[(2r)-6-hydroxy-2,3,4,5-tetrahydropyridin-2-yl]-9-(hydroxymethyl)-octahydro-1h-quinolizin-2-yl 2-phenylacetate

C23H32N2O4 (400.2361952)


   
   

4-[(3-{[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl)oxy]benzaldehyde

4-[(3-{[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl)oxy]benzaldehyde

C18H24O11 (416.13185539999995)


   
   

(3s,4ar,6ar,6bs,8ar,11r,12s,12as,14ar,14br)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picen-3-ol

(3s,4ar,6ar,6bs,8ar,11r,12s,12as,14ar,14br)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picen-3-ol

C30H50O (426.386145)


   

(1r,2r,9r,10s)-10-(prop-2-en-1-yl)-7,11-diazatricyclo[7.3.1.0²,⁷]tridecan-6-one

(1r,2r,9r,10s)-10-(prop-2-en-1-yl)-7,11-diazatricyclo[7.3.1.0²,⁷]tridecan-6-one

C14H22N2O (234.1732042)


   

(2s)-5-hydroxy-2-(4-hydroxyphenyl)-7-{[(2r,3r,4s,5s,6r)-2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

(2s)-5-hydroxy-2-(4-hydroxyphenyl)-7-{[(2r,3r,4s,5s,6r)-2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

C21H22O10 (434.1212912)


   

(1r,2r,9s,10s)-10-(prop-2-en-1-yl)-7,11-diazatricyclo[7.3.1.0²,⁷]tridecan-6-one

(1r,2r,9s,10s)-10-(prop-2-en-1-yl)-7,11-diazatricyclo[7.3.1.0²,⁷]tridecan-6-one

C14H22N2O (234.1732042)


   

(2r,3r)-3,7-dihydroxy-2-phenyl-2,3-dihydro-1-benzopyran-4-one

(2r,3r)-3,7-dihydroxy-2-phenyl-2,3-dihydro-1-benzopyran-4-one

C15H12O4 (256.0735552)


   

14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

C20H27N3O3 (357.20523120000007)


   

(2r,3s,4s,5r,6s)-2-({[(2r,3s,4s)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-6-[4-(2-hydroxyethyl)phenoxy]oxane-3,4,5-triol

(2r,3s,4s,5r,6s)-2-({[(2r,3s,4s)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-6-[4-(2-hydroxyethyl)phenoxy]oxane-3,4,5-triol

C19H28O11 (432.16315380000003)


   

12-ethoxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

12-ethoxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

C17H28N2O2 (292.2150668)


   

(1s,2r,9r,10s,12s)-12-hydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-8-one

(1s,2r,9r,10s,12s)-12-hydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-8-one

C15H24N2O2 (264.18376839999996)


   

(1r,2r,9s,10r)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

(1r,2r,9s,10r)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

C15H24N2O (248.18885339999997)


   

7-(6-hydroxy-2,3,4,5-tetrahydropyridin-2-yl)-9-(hydroxymethyl)-octahydro-1h-quinolizin-2-yl 1h-pyrrole-2-carboxylate

7-(6-hydroxy-2,3,4,5-tetrahydropyridin-2-yl)-9-(hydroxymethyl)-octahydro-1h-quinolizin-2-yl 1h-pyrrole-2-carboxylate

C20H29N3O4 (375.21579540000005)


   

7-hydroxy-4-oxo-2-(3,4,5-trihydroxyphenyl)-2,3-dihydro-1-benzopyran-3-yl 3,4,5-trihydroxybenzoate

7-hydroxy-4-oxo-2-(3,4,5-trihydroxyphenyl)-2,3-dihydro-1-benzopyran-3-yl 3,4,5-trihydroxybenzoate

C22H16O11 (456.0692586)


   

(1r,2r,9r,10s,12s)-12-hydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

(1r,2r,9r,10s,12s)-12-hydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

C15H24N2O2 (264.18376839999996)


   

(1s,2s,4s,9r,10r)-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

(1s,2s,4s,9r,10r)-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

C20H27N3O3 (357.20523120000007)


   

12-hydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

12-hydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

C15H24N2O2 (264.18376839999996)


   

(1s,2r,8r,9r,10s,12s)-8,12-dihydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

(1s,2r,8r,9r,10s,12s)-8,12-dihydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-6-one

C15H24N2O3 (280.17868339999995)


   

(1s,9ar)-octahydro-1h-quinolizin-1-ylmethanol

(1s,9ar)-octahydro-1h-quinolizin-1-ylmethanol

C10H19NO (169.14665639999998)


   

2-hydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-8-one

2-hydroxy-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-8-one

C15H24N2O2 (264.18376839999996)


   

(2r,10s)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecane

(2r,10s)-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecane

C15H26N2 (234.2095876)


   

(2r)-1-(2,4-dihydroxyphenyl)-2-hydroxy-3-(4-methoxyphenyl)propan-1-one

(2r)-1-(2,4-dihydroxyphenyl)-2-hydroxy-3-(4-methoxyphenyl)propan-1-one

C16H16O5 (288.0997686)


   

2-(2h-1,3-benzodioxol-5-yl)-6-{[6-({[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-3-hydroxychromen-4-one

2-(2h-1,3-benzodioxol-5-yl)-6-{[6-({[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-3-hydroxychromen-4-one

C27H28O15 (592.1428138)


   

(2s,3r,4r,5s)-2-{[(2s,3r,4r,5s)-4,5-dihydroxy-2-(hydroxymethyl)oxolan-3-yl]oxy}-5-(hydroxymethyl)oxolane-3,4-diol

(2s,3r,4r,5s)-2-{[(2s,3r,4r,5s)-4,5-dihydroxy-2-(hydroxymethyl)oxolan-3-yl]oxy}-5-(hydroxymethyl)oxolane-3,4-diol

C10H18O9 (282.0950778)


   

(1s,2r,3s,4s,9s,10r)-3-hydroxy-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

(1s,2r,3s,4s,9s,10r)-3-hydroxy-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

C20H27N3O4 (373.20014620000006)


   

(1s,2s,4s,9s,10r,13s,17r)-13,17-dihydroxy-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl (2e)-2-methylbut-2-enoate

(1s,2s,4s,9s,10r,13s,17r)-13,17-dihydroxy-14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl (2e)-2-methylbut-2-enoate

C20H30N2O5 (378.215461)


   

6-methoxy-3-(4-methoxyphenyl)-7-{[2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}chromen-4-one

6-methoxy-3-(4-methoxyphenyl)-7-{[2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}chromen-4-one

C23H24O10 (460.13694039999996)


   

2,13-dihydroxy-3,10-diazatetracyclo[6.6.3.0¹,¹⁰.0³,⁸]heptadecan-4-one

2,13-dihydroxy-3,10-diazatetracyclo[6.6.3.0¹,¹⁰.0³,⁸]heptadecan-4-one

C15H24N2O3 (280.17868339999995)


   

(1s,2s,4s,9r,10s)-16-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

(1s,2s,4s,9r,10s)-16-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 1h-pyrrole-2-carboxylate

C20H27N3O3 (357.20523120000007)


   
   

3,5,7-trihydroxy-2-(4-hydroxyphenyl)-6-[(2r,3r,4r,5s,6r)-2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]chromen-4-one

3,5,7-trihydroxy-2-(4-hydroxyphenyl)-6-[(2r,3r,4r,5s,6r)-2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]chromen-4-one

C21H20O11 (448.100557)