Wogonin (BioDeep_00000002575)
natural product PANOMIX_OTCML-2023
代谢物信息卡片
化学式: C16H12O5 (284.0685)
中文名称: 汉黄芩素, 汉黄芩黄酮
谱图信息:
最多检出来源 Viridiplantae(plant) 7.37%
分子结构信息
SMILES: c1(cc(c2c(c1OC)oc(cc2=O)c1ccccc1)O)O
InChI: InChI=1S/C16H12O5/c1-20-15-12(19)7-10(17)14-11(18)8-13(21-16(14)15)9-5-3-2-4-6-9/h2-8,17,19H,1H3
描述信息
Wogonin is a dihydroxy- and monomethoxy-flavone in which the hydroxy groups are positioned at C-5 and C-7 and the methoxy group is at C-8. It has a role as a cyclooxygenase 2 inhibitor, an antineoplastic agent, an angiogenesis inhibitor and a plant metabolite. It is a dihydroxyflavone and a monomethoxyflavone. It is a conjugate acid of a wogonin(1-).
Wogonin is a natural product found in Scutellaria likiangensis, Scutellaria amoena, and other organisms with data available.
A dihydroxy- and monomethoxy-flavone in which the hydroxy groups are positioned at C-5 and C-7 and the methoxy group is at C-8.
Annotation level-1
Wogonin is a naturally occurring mono-flavonoid, can inhibit the activity of CDK8 and Wnt, and exhibits anti-inflammatory and anti-tumor effects.
Wogonin is a naturally occurring mono-flavonoid, can inhibit the activity of CDK8 and Wnt, and exhibits anti-inflammatory and anti-tumor effects.
同义名列表
32 个代谢物同义名
4H-1-Benzopyran-4-one, 5,7-dihydroxy-8-methoxy-2-phenyl-; Flavone, 5,7-dihydroxy-8-methoxy- (7CI,8CI); Wogonin (6CI); 5,7-Dihydroxy-8-methoxy-2-phenyl-4H-1-benzopyran-4-one; 5,7-Dihydroxy-8-methoxyflavone; 4H-1-Benzopyran-4-one, 5,7-dihydroxy-8-methoxy-2-phenyl-; 5,7-Dihydroxy-8-methoxy-2-phenyl-chromen-4-one(Wogonin); 5,7-dihydroxy-8-methoxy-2-phenyl-4H-1-benzopyran-4-one; 5,7-dihydroxy-8-methoxy-2-phenyl-4H-chromen-4-one; 5,7-Dihydroxy-8-methoxy-2-phenyl-chromen-4-one; 5,7-dihydroxy-8-methoxy-2-phenylchromen-4-one; FLAVONE, 5,7-DIHYDROXY-8-METHOXY-; 5,7-dihydroxy-8-methoxyflavone; Norwogonin 8-methyl ether; Wogonin, S. baicalensis; UNII-POK93PO28W; Wogonin hydrate; WOGONIN [INCI]; NCI60_040649; Wogonin,(S); POK93PO28W; Wogonin; Vogonin; wagonin; 5,7-dihydroxy-8-methoxy-2-phenyl-4-chromenone; 5-18-04-00571 (Beilstein Handbook Reference); 5,7-dihydroxy-8-methoxy-2-phenyl-chromone; BRN 0287152; AIDS-001403; AIDS001403; NSC717845; ST077088; 632-85-9; 10-29-7; C10197; Wogonin
数据库引用编号
63 个数据库交叉引用编号
- ChEBI: CHEBI:10043
- KEGG: C10197
- PubChem: 5281703
- Metlin: METLIN49754
- ChEMBL: CHEMBL16171
- Wikipedia: Wogonin
- LipidMAPS: LMPK12111330
- MeSH: wogonin
- ChemIDplus: 0000632859
- MetaCyc: CPD-12727
- KNApSAcK: C00001111
- chemspider: 4445020
- CAS: 632-85-9
- MoNA: VF-NPL-QTOF009943
- MoNA: VF-NPL-QTOF009942
- MoNA: VF-NPL-QTOF009941
- MoNA: VF-NPL-QTOF009940
- MoNA: VF-NPL-QTOF009939
- MoNA: VF-NPL-QTOF009938
- MoNA: PR310477
- MoNA: PR308792
- MoNA: RIKENPlaSMA007455
- MoNA: RIKENPlaSMA007454
- MoNA: RIKENPlaSMA007453
- MoNA: RIKENPlaSMA007452
- MoNA: RIKENPlaSMA007451
- MoNA: RIKENPlaSMA007450
- MoNA: RIKENPlaSMA007449
- MoNA: RIKENPlaSMA007448
- MoNA: RIKENPlaSMA007447
- MoNA: RIKENPlaSMA007446
- MoNA: RIKENPlaSMA007445
- MoNA: RIKENPlaSMA007444
- MoNA: RIKENPlaSMA003588
- MoNA: RIKENPlaSMA003587
- MoNA: RIKENPlaSMA003586
- MoNA: RIKENPlaSMA003585
- MoNA: RIKENPlaSMA003584
- MoNA: RIKENPlaSMA003583
- MoNA: RIKENPlaSMA003582
- MoNA: RIKENPlaSMA003581
- MoNA: RIKENPlaSMA003580
- MoNA: RIKENPlaSMA003579
- MoNA: RIKENPlaSMA003578
- MoNA: RIKENPlaSMA003577
- MoNA: VF-NPL-QEHF014244
- MoNA: VF-NPL-QEHF014243
- MoNA: VF-NPL-QEHF014242
- MoNA: VF-NPL-QEHF014241
- MoNA: VF-NPL-QEHF014240
- MoNA: VF-NPL-QEHF014239
- MoNA: TY000118
- MoNA: TY000033
- MoNA: TY000023
- medchemexpress: HY-N0400
- PMhub: MS000004014
- Flavonoid: FL3FF9NS0002
- MetaboLights: MTBLC10043
- PubChem: 12383
- 3DMET: B03628
- NIKKAJI: J12.474E
- KNApSAcK: 10043
- LOTUS: LTS0176185
分类词条
相关代谢途径
Reactome(0)
代谢反应
109 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(2)
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(107)
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
- wogonin metabolism:
UDP-α-D-glucose + wogonin ⟶ H+ + UDP + wogonin 7-O-β-D-glucoside
- wogonin metabolism:
H2O + wogonin 7-O-β-D-glucuronate ⟶ D-glucopyranuronate + wogonin
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
201 个相关的物种来源信息
- 4185 - Acanthaceae: LTS0176185
- 357 - Agrobacterium: LTS0176185
- 359 - Agrobacterium rhizogenes: 10.1016/0031-9422(95)00433-8
- 28211 - Alphaproteobacteria: LTS0176185
- 49044 - Anaphalis: LTS0176185
- 1209471 - Anaphalis sinica: 10.1002/JCCS.200400063
- 1209471 - Anaphalis sinica: LTS0176185
- 175694 - Andrographis paniculata (Burm f.) Nees: -
- 4037 - Apiaceae: LTS0176185
- 4050 - Araliaceae: LTS0176185
- 36601 - Aria: LTS0176185
- 2906878 - Aria edulis: 10.1248/CPB.39.199
- 2906878 - Aria edulis: LTS0176185
- 4890 - Ascomycota: LTS0176185
- 4210 - Asteraceae: LTS0176185
- 41485 - Atractylodes: LTS0176185
- 41486 - Atractylodes lancea: 10.1016/J.BSE.2010.12.023
- 41486 - Atractylodes lancea: LTS0176185
- 41486 - Atractylodes Lancea (Thunb.)Dc.: -
- 2 - Bacteria: LTS0176185
- 46366 - Bupleurum: LTS0176185
- 48105 - Bupleurum scorzonerifolium: 10.1016/J.PHYTOCHEM.2003.08.002
- 48105 - Bupleurum scorzonerifolium: LTS0176185
- 301453 - Capparaceae: LTS0176185
- 13394 - Capparis: LTS0176185
- 2762527 - Capparis himalayensis: 10.1248/CPB.56.189
- 65558 - Capparis spinosa: LTS0176185
- 24942 - Dilleniaceae: LTS0176185
- 50304 - Eleutherococcus: LTS0176185
- 2291122 - Eleutherococcus brachypus: 10.1248/CPB.59.135
- 2291122 - Eleutherococcus brachypus: LTS0176185
- 4391 - Eucommia: LTS0176185
- 4392 - Eucommia ulmoides: 10.1016/J.JPBA.2011.08.023
- 4392 - Eucommia ulmoides: LTS0176185
- 4390 - Eucommiaceae: LTS0176185
- 2759 - Eukaryota: LTS0176185
- 4751 - Fungi: LTS0176185
- 41389 - Holmskioldia: LTS0176185
- 41390 - Holmskioldia sanguinea: 10.1002/PTR.2650040303
- 41390 - Holmskioldia sanguinea: LTS0176185
- 694359 - Lagochilus: LTS0176185
- 2039844 - Lagochilus leiacanthus: 10.1248/CPB.59.1535
- 2039844 - Lagochilus leiacanthus: LTS0176185
- 4136 - Lamiaceae: LTS0176185
- 147547 - Lecanoromycetes: LTS0176185
- 3398 - Magnoliopsida: LTS0176185
- 13215 - Piper: LTS0176185
- 130418 - Piper umbellatum: 10.1248/YAKUSHI.122.291
- 130418 - Piper umbellatum: LTS0176185
- 16739 - Piperaceae: LTS0176185
- 33090 - Plants: -
- 141328 - Rhinacanthus: LTS0176185
- 537489 - Rhinacanthus nasutus:
- 537489 - Rhinacanthus nasutus: 10.1016/S0031-9422(98)00425-7
- 537489 - Rhinacanthus nasutus: 10.1248/CPB.46.413
- 537489 - Rhinacanthus nasutus: LTS0176185
- 82115 - Rhizobiaceae: LTS0176185
- 379 - Rhizobium: LTS0176185
- 359 - Rhizobium rhizogenes: LTS0176185
- 3745 - Rosaceae: LTS0176185
- 203716 - Saposhnikovia: LTS0176185
- 203717 - Saposhnikovia divaricata: 10.4268/CJCMM20101214
- 203717 - Saposhnikovia divaricata: LTS0176185
- 4139 - Scutellaria: 10.1021/NP970035L
- 4139 - Scutellaria: LTS0176185
- 53167 - Scutellaria alpina: 10.1248/CPB.39.199
- 53167 - Scutellaria alpina: LTS0176185
- 53168 - Scutellaria altissima:
- 53168 - Scutellaria altissima: 10.1007/BF00566807
- 53168 - Scutellaria altissima: 10.1016/S0006-2952(01)00597-4
- 53168 - Scutellaria altissima: LTS0176185
- 1267536 - Scutellaria amabilis:
- 1267536 - Scutellaria amabilis: 10.1016/S0006-2952(01)00597-4
- 1267536 - Scutellaria amabilis: 10.1248/CPB.54.435
- 1267536 - Scutellaria amabilis: LTS0176185
- 1052904 - Scutellaria amoena:
- 1052904 - Scutellaria amoena: 10.1016/S0006-2952(01)00597-4
- 1052904 - Scutellaria amoena: LTS0176185
- 65409 - Scutellaria baicalensis:
- 65409 - Scutellaria baicalensis: 10.1002/(SICI)1099-1573(199808)12:5<340::AID-PTR316>3.0.CO;2-U
- 65409 - Scutellaria baicalensis: 10.1002/(SICI)1099-1573(199909)13:6<479::AID-PTR484>3.0.CO;2-M
- 65409 - Scutellaria baicalensis: 10.1002/CHIN.200333219
- 65409 - Scutellaria baicalensis: 10.1006/JMCC.1999.1021
- 65409 - Scutellaria baicalensis: 10.1007/978-1-4614-0535-1_168
- 65409 - Scutellaria baicalensis: 10.1007/BF00040133
- 65409 - Scutellaria baicalensis: 10.1007/BF02277510
- 65409 - Scutellaria baicalensis: 10.1007/BF02976430
- 65409 - Scutellaria baicalensis: 10.1007/BF02980087
- 65409 - Scutellaria baicalensis: 10.1016/0003-2670(94)80134-7
- 65409 - Scutellaria baicalensis: 10.1016/J.JPBA.2010.04.019
- 65409 - Scutellaria baicalensis: 10.1016/S0006-2952(01)00597-4
- 65409 - Scutellaria baicalensis: 10.1016/S0006-2952(02)01347-3
- 65409 - Scutellaria baicalensis: 10.1016/S0021-9673(01)87399-4
- 65409 - Scutellaria baicalensis: 10.1016/S0021-9673(98)00906-6
- 65409 - Scutellaria baicalensis: 10.1016/S0031-9422(00)94792-7
- 65409 - Scutellaria baicalensis: 10.1016/S0031-9422(96)00443-8
- 65409 - Scutellaria baicalensis: 10.1016/S0031-9422(99)00306-4
- 65409 - Scutellaria baicalensis: 10.1016/S0176-1617(00)80282-5
- 65409 - Scutellaria baicalensis: 10.1016/S0304-4165(99)00152-X
- 65409 - Scutellaria baicalensis: 10.1016/S0378-8741(97)00045-7
- 65409 - Scutellaria baicalensis: 10.1055/S-0029-1243121
- 65409 - Scutellaria baicalensis: 10.1055/S-2001-15810
- 65409 - Scutellaria baicalensis: 10.1055/S-2006-958036
- 65409 - Scutellaria baicalensis: 10.1055/S-2006-961769
- 65409 - Scutellaria baicalensis: 10.1055/S-2007-969517
- 65409 - Scutellaria baicalensis: 10.1055/S-2007-969712
- 65409 - Scutellaria baicalensis: 10.1111/J.2042-7158.1997.TB06119.X
- 65409 - Scutellaria baicalensis: 10.1158/1078-0432.CCR-04-1974
- 65409 - Scutellaria baicalensis: 10.1248/BPB.31.838
- 65409 - Scutellaria baicalensis: 10.1248/CPB.32.5051
- 65409 - Scutellaria baicalensis: 10.1248/CPB.33.2411
- 65409 - Scutellaria baicalensis: 10.1248/CPB.33.4894
- 65409 - Scutellaria baicalensis: 10.1248/CPB.35.3494
- 65409 - Scutellaria baicalensis: 10.1248/CPB.40.531
- 65409 - Scutellaria baicalensis: 10.1248/CPB.50.896
- 65409 - Scutellaria baicalensis: 10.1248/CPB.51.339
- 65409 - Scutellaria baicalensis: 10.1248/YAKUSHI1947.104.5_529
- 65409 - Scutellaria baicalensis: 10.1248/YAKUSHI1947.105.2_148
- 65409 - Scutellaria baicalensis: 10.1248/YAKUSHI1947.107.4_315
- 65409 - Scutellaria baicalensis: 10.1515/ZNC-1997-11-1215
- 65409 - Scutellaria baicalensis: 10.15281/JPLANTRES1887.36.1
- 65409 - Scutellaria baicalensis: 10.5586/ASBP.1999.015
- 65409 - Scutellaria baicalensis: LTS0176185
- 65409 - Scutellaria baicalensis Georgi: -
- 396367 - Scutellaria barbata:
- 396367 - Scutellaria barbata: 10.1016/S0006-2952(01)00597-4
- 396367 - Scutellaria barbata: LTS0176185
- 2802331 - Scutellaria columnae: 10.1016/S0367-326X(99)00022-2
- 2802331 - Scutellaria columnae: LTS0176185
- 2858894 - Scutellaria comosa:
- 2858894 - Scutellaria comosa: LTS0176185
- 1383557 - Scutellaria discolor:
- 1383557 - Scutellaria discolor: 10.1248/CPB.33.4457
- 1383557 - Scutellaria discolor: 10.1248/CPB.36.3654
- 1383557 - Scutellaria discolor: LTS0176185
- 53169 - Scutellaria galericulata: 10.1007/BF00567050
- 53169 - Scutellaria galericulata: LTS0176185
- 2802335 - Scutellaria glabrata: 10.1007/BF00630555
- 2802335 - Scutellaria glabrata: LTS0176185
- 2858926 - Scutellaria grossa: 10.1248/CPB.39.1051
- 2858926 - Scutellaria grossa: LTS0176185
- 2182738 - Scutellaria hypericifolia:
- 2182738 - Scutellaria hypericifolia: -
- 2182738 - Scutellaria hypericifolia: LTS0176185
- 2721167 - Scutellaria immaculata: 10.1007/S10600-005-0068-0
- 2721167 - Scutellaria immaculata: LTS0176185
- 233892 - Scutellaria indica:
- 233892 - Scutellaria indica: 10.1016/S0006-2952(01)00597-4
- 233892 - Scutellaria indica: 10.1055/S-2006-959477
- 233892 - Scutellaria indica: 10.1248/CPB.35.3720
- 233892 - Scutellaria indica: LTS0176185
- 233893 - Scutellaria lateriflora:
- 233893 - Scutellaria lateriflora: 10.1021/NP0205102
- 233893 - Scutellaria lateriflora: 10.1021/NP900068T
- 233893 - Scutellaria lateriflora: LTS0176185
- 1046405 - Scutellaria likiangensis:
- 1046405 - Scutellaria likiangensis: 10.1016/S0006-2952(01)00597-4
- 1046405 - Scutellaria likiangensis: LTS0176185
- 53170 - Scutellaria orientalis:
- 53170 - Scutellaria orientalis: 10.1007/BF00567878
- 53170 - Scutellaria orientalis: 10.1007/S10600-010-9647-9
- 53170 - Scutellaria orientalis: 10.1016/J.PHYMED.2009.06.001
- 53170 - Scutellaria orientalis: LTS0176185
- 1383558 - Scutellaria pekinensis: LTS0176185
- 2858946 - Scutellaria prostrata: 10.1248/CPB.39.1047
- 2858946 - Scutellaria prostrata: LTS0176185
- 2858899 - Scutellaria ramosissima: 10.1007/BF00629967
- 2858899 - Scutellaria ramosissima: LTS0176185
- 516072 - Scutellaria rehderiana:
- 516072 - Scutellaria rehderiana: 10.1016/S0006-2952(01)00597-4
- 516072 - Scutellaria rehderiana: LTS0176185
- 2802346 - Scutellaria scandens: 10.1248/CPB.36.2371
- 2802346 - Scutellaria scandens: LTS0176185
- 2200806 - Scutellaria squarrosa: 10.1007/BF00599011
- 2200806 - Scutellaria squarrosa: LTS0176185
- 1986532 - Scutellaria strigillosa: 10.1007/S11418-005-0023-1
- 1986532 - Scutellaria strigillosa: LTS0176185
- 512023 - Scutellaria viscidula:
- 512023 - Scutellaria viscidula: 10.1016/S0006-2952(01)00597-4
- 512023 - Scutellaria viscidula: LTS0176185
- 35493 - Streptophyta: LTS0176185
- 85284 - Tetracera: LTS0176185
- 85285 - Tetracera asiatica: 10.1080/10286020600782454
- 85285 - Tetracera asiatica: LTS0176185
- 1489826 - Tetracera indica: 10.1055/S-2006-959551
- 1489826 - Tetracera indica: LTS0176185
- 1815893 - Tetracera sarmentosa: 10.1080/10286020600782454
- 58023 - Tracheophyta: LTS0176185
- 29875 - Trichoderma virens: 10.1094/MPMI-04-20-0081-R
- 21910 - Verbenaceae: LTS0176185
- 33090 - Viridiplantae: LTS0176185
- 33090 - 关黄柏: -
- 396367 - 半枝莲: -
- 33090 - 木蝴蝶: -
- 33090 - 牛膝: -
- 33090 - 白鲜皮: -
- 33090 - 穿心莲: -
- 33090 - 苍术: -
- 33090 - 连翘: -
- 203717 - 防风: -
- 33090 - 黄芩: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Shiyong Gao, Huixin Tan, Jian Gang. Inhibition of hepatocellular carcinoma cell proliferation through regulation of the Cell Cycle, AGE-RAGE, and Leptin signaling pathways by a compound formulation comprised of andrographolide, wogonin, and oroxylin A derived from Andrographis Paniculata(Burm.f.) Nees.
Journal of ethnopharmacology.
2024 Jul; 329(?):118001. doi:
10.1016/j.jep.2024.118001
. [PMID: 38467318] - Xixi Wang, Yanfei Wang, Jing Chen, Qinyao Wang, Zhongjian Liu, Yijie Yin, Tonghua Yang, Tao Shen, Yalian Sa. On the mechanism of wogonin against acute monocytic leukemia using network pharmacology and experimental validation.
Scientific reports.
2024 05; 14(1):10114. doi:
10.1038/s41598-024-60859-0
. [PMID: 38698063] - Jie Zhang, Cong Qi, He Li, Chenhuan Ding, Libo Wang, Hongjin Wu, Weiwei Dai, Chenglong Wang. Exploration of the effect and mechanism of Scutellaria barbata D. Don in the treatment of ovarian cancer based on network pharmacology and in vitro experimental verification.
Medicine.
2023 Dec; 102(51):e36656. doi:
10.1097/md.0000000000036656
. [PMID: 38134066] - Xin He, Juan Wang, Lei Sun, Wenqi Ma, Miao Li, Shanshan Yu, Qi Zhou, Jue Jiang. Wogonin attenuates inflammation and oxidative stress in lipopolysaccharide-induced mastitis by inhibiting Akt/NF-κB pathway and activating the Nrf2/HO-1 signaling.
Cell stress & chaperones.
2023 Nov; ?(?):. doi:
10.1007/s12192-023-01391-4
. [PMID: 37910344] - Ming-Yue Ma, Qian Wang, Shou-Mei Wang, Xiao-Jun Feng, Zhi-Hong Xian, Shu-Hui Zhang. Wogonin inhibits hepatoma cell proliferation by targeting miR-27b-5p/YWHAZ axis.
Journal of biochemical and molecular toxicology.
2023 Aug; ?(?):e23508. doi:
10.1002/jbt.23508
. [PMID: 37623816] - Zhenhua Ni, Honghong Ma, Xiaodong Li, Liwei Zou, Zongjun Liu, Xiongbiao Wang, Hong Ma, Ling Yang. Wogonin alleviates BaP-induced DNA damage and oxidative stress in human airway epithelial cells by dual inhibiting CYP1A1 activity and expression.
Environmental toxicology.
2023 Jul; ?(?):. doi:
10.1002/tox.23907
. [PMID: 37515497] - Hardeep Singh Tuli, Prangya Rath, Abhishek Chauhan, Gaurav Parashar, Nidarshana Chaturvedi Parashar, Hemant Joshi, Isha Rani, Seema Ramniwas, Diwakar Aggarwal, Manoj Kumar, Rashmi Rana. Wogonin, as a potent anticancer compound: From chemistry to cellular interactions.
Experimental biology and medicine (Maywood, N.J.).
2023 Jun; ?(?):15353702231179961. doi:
10.1177/15353702231179961
. [PMID: 37387217] - Anna Radajewska, Helena Moreira, Dorota Bęben, Oliwia Siwiela, Anna Szyjka, Katarzyna Gębczak, Paulina Nowak, Jakub Frąszczak, Fathi Emhemmed, Christian D Muller, Ewa Barg. Combination of Irinotecan and Melatonin with the Natural Compounds Wogonin and Celastrol for Colon Cancer Treatment.
International journal of molecular sciences.
2023 May; 24(11):. doi:
10.3390/ijms24119544
. [PMID: 37298495] - Xuemei Liu, Yan Yu, Yanqing Wu, Ai Luo, Mei Yang, Ting Li, Tingqian Li, Bing Mao, Xiaoting Chen, Juanjuan Fu, Hongli Jiang, Wei Liu. A systematic pharmacology-based in vivo study to reveal the effective mechanism of Yupingfeng in asthma treatment.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2023 Mar; 114(?):154783. doi:
10.1016/j.phymed.2023.154783
. [PMID: 37004399] - Jitian Li, Weifeng Duan, Shuang Chai, Yage Luo, Yan Ma, Ning Yang, Man Liu, Wei He. Wogonin, a Bioactive Ingredient from Huangqi Guizhi Formula, Alleviates Discogenic Low Back Pain via Suppressing the Overexpressed NGF in Intervertebral Discs.
Mediators of inflammation.
2023; 2023(?):4436587. doi:
10.1155/2023/4436587
. [PMID: 36860203] - Yuening Sun, Wenjing Guo, Yongjian Guo, Zhangxing Lin, Dechao Wang, Qinglong Guo, Yuxin Zhou. Apoptosis induction in human prostate cancer cells related to the fatty acid metabolism by wogonin-mediated regulation of the AKT-SREBP1-FASN signaling network.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2022 Nov; 169(?):113450. doi:
10.1016/j.fct.2022.113450
. [PMID: 36208653] - Yasunari Yamada, Hodaka Saito, Masaya Araki, Yuhei Tsuchimoto, Shin-Ichi Muroi, Kyohei Suzuki, Kazufumi Toume, Jun-Dal Kim, Takashi Matsuzaka, Hirohito Sone, Hitoshi Shimano, Yoshimi Nakagawa. Wogonin, a Compound in Scutellaria baicalensis, Activates ATF4-FGF21 Signaling in Mouse Hepatocyte AML12 Cells.
Nutrients.
2022 Sep; 14(19):. doi:
10.3390/nu14193920
. [PMID: 36235573] - Caiyun Chen, Gaotian Li, Long Dai, Huijuan Zhao, Ning Li, Wei Mi, Shuying Yin, Shaoping Wang, Jiayu Zhang. Simultaneous separation of glycyrrhizic acid, baicalein and wogonin from Radix Glycyrrhizae and Radix Scutellariae using foam fractionation and in vitro activity evaluation.
Journal of the science of food and agriculture.
2022 Sep; 102(12):5200-5209. doi:
10.1002/jsfa.11872
. [PMID: 35289954] - Kishore Banik, Elina Khatoon, Choudhary Harsha, Varsha Rana, Dey Parama, Krishan Kumar Thakur, Anupam Bishayee, Ajaikumar B Kunnumakkara. Wogonin and its analogs for the prevention and treatment of cancer: A systematic review.
Phytotherapy research : PTR.
2022 May; 36(5):1854-1883. doi:
10.1002/ptr.7386
. [PMID: 35102626] - Fan Ping, Yanxia Wang, Xia Shen, Conge Tan, Lin Zhu, Wenwen Xing, Jun Xu. Virtual Screening and Molecular Docking to Study the Mechanism of Chinese Medicines in the Treatment of Coronavirus Infection.
Medical science monitor : international medical journal of experimental and clinical research.
2022 Jan; 28(?):e934102. doi:
10.12659/msm.934102
. [PMID: 35075100] - Yi Wu, Xinqiao Liu, Guiwei Li. Integrated bioinformatics and network pharmacology to identify the therapeutic target and molecular mechanisms of Huangqin decoction on ulcerative Colitis.
Scientific reports.
2022 01; 12(1):159. doi:
10.1038/s41598-021-03980-8
. [PMID: 34997010] - Cholil Yun, Shengfang Wang, Yuan Gao, Zhuowen Zhao, Na Miao, Yutong Shi, Ilbong Ri, Wenjie Wang, Huimei Wang. Optimization of ultrasound-assisted enzymatic pretreatment for enhanced extraction of baicalein and wogonin from Scutellaria baicalensis roots.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2022 Jan; 1188(?):123077. doi:
10.1016/j.jchromb.2021.123077
. [PMID: 34894479] - Xue-Qi Liu, Ling Jiang, Yuan-Yuan Li, Yue-Bo Huang, Xue-Ru Hu, Wei Zhu, Xian Wang, Yong-Gui Wu, Xiao-Ming Meng, Xiang-Ming Qi. Wogonin protects glomerular podocytes by targeting Bcl-2-mediated autophagy and apoptosis in diabetic kidney disease.
Acta pharmacologica Sinica.
2022 Jan; 43(1):96-110. doi:
10.1038/s41401-021-00721-5
. [PMID: 34253875] - Cheng Zhou, Xiaoling Yin. Wogonin Ameliorated Obesity-Induced Lipid Metabolism Disorders and Cardiac Injury via Suppressing Pyroptosis and Deactivating IL-17 Signaling Pathway.
The American journal of Chinese medicine.
2022; 50(6):1553-1564. doi:
10.1142/s0192415x22500653
. [PMID: 35770725] - Keyan Wu, Man Teng, Wei Zhou, Fanglin Lu, Yang Zhou, Jing Zeng, Jie Yang, Xinnong Liu, Yu Zhang, Yanbing Ding, Weigan Shen. Wogonin Induces Cell Cycle Arrest and Apoptosis of Hepatocellular Carcinoma Cells by Activating Hippo Signaling.
Anti-cancer agents in medicinal chemistry.
2022; 22(8):1551-1560. doi:
10.2174/1871520621666210824105915
. [PMID: 34431466] - Jinlin Ge, Huanhuan Yang, Yufeng Zeng, Yunjie Liu. Protective effects of wogonin on lipopolysaccharide-induced inflammation and apoptosis of lung epithelial cells and its possible mechanisms.
Biomedical engineering online.
2021 Dec; 20(1):125. doi:
10.1186/s12938-021-00965-6
. [PMID: 34906140] - Zhao Tianyu, Cui Xiaoli, Wang Yaru, Zhang Min, Yue Fengli, He Kan, Chen Li, Li Jing. New tale on LianHuaQingWen: IL6R/IL6/IL6ST complex is a potential target for COVID-19 treatment.
Aging.
2021 11; 13(21):23913-23935. doi:
10.18632/aging.203666
. [PMID: 34731090] - Mohammad A Alfhili, Ahmed M Basudan, Jawaher Alsughayyir. Antiproliferative Wnt inhibitor wogonin prevents eryptosis following ionophoric challenge, hyperosmotic shock, oxidative stress, and metabolic deprivation.
Journal of food biochemistry.
2021 11; 45(11):e13977. doi:
10.1111/jfbc.13977
. [PMID: 34664287] - Justyna Chanaj-Kaczmarek, Tomasz Osmałek, Emilia Szymańska, Katarzyna Winnicka, Tomasz M Karpiński, Magdalena Dyba, Marta Bekalarska-Dębek, Judyta Cielecka-Piontek. Development and Evaluation of Thermosensitive Hydrogels with Binary Mixture of Scutellariae baicalensis radix Extract and Chitosan for Periodontal Diseases Treatment.
International journal of molecular sciences.
2021 Oct; 22(21):. doi:
10.3390/ijms222111319
. [PMID: 34768748] - Tomasz Tronina, Monika Mrozowska, Agnieszka Bartmańska, Jarosław Popłoński, Sandra Sordon, Ewa Huszcza. Simple and Rapid Method for Wogonin Preparation and Its Biotransformation.
International journal of molecular sciences.
2021 Aug; 22(16):. doi:
10.3390/ijms22168973
. [PMID: 34445678] - Su Liang, Zeyu Wang, Luyu Qi, Chao Tang, Yiming Zhang, Qun Luo, Yayun Wu, Jinghe Yuan, Yao Zhao, Yanyan Zhang, Xiaohong Fang, Shijun Wang, Fuyi Wang. Fluorescence live cell imaging revealed wogonin targets mitochondria.
Talanta.
2021 Aug; 230(?):122328. doi:
10.1016/j.talanta.2021.122328
. [PMID: 33934785] - Ji-Min Dai, Wei-Nan Guo, Yi-Zhou Tan, Kun-Wei Niu, Jia-Jia Zhang, Cheng-Li Liu, Xiang-Min Yang, Kai-Shan Tao, Zhi-Nan Chen, Jing-Yao Dai. Wogonin alleviates liver injury in sepsis through Nrf2-mediated NF-κB signalling suppression.
Journal of cellular and molecular medicine.
2021 06; 25(12):5782-5798. doi:
10.1111/jcmm.16604
. [PMID: 33982381] - Seung-Hyun Jeong, Ji-Hun Jang, Hea-Young Cho, Yong-Bok Lee. Simultaneous determination of asarinin, β-eudesmol, and wogonin in rats using ultraperformance liquid chromatography-tandem mass spectrometry and its application to pharmacokinetic studies following administration of standards and Gumiganghwal-tang.
Biomedical chromatography : BMC.
2021 Apr; 35(4):e5021. doi:
10.1002/bmc.5021
. [PMID: 33169364] - Yingjie Qing, Hui Li, Yunzi Zhao, Po Hu, Xiangyuan Wang, Xiaoxuan Yu, Mengyuan Zhu, Hongzheng Wang, Zhanyu Wang, Qinglong Guo, Hui Hui. One-Two Punch Therapy for the Treatment of T-Cell Malignancies Involving p53-Dependent Cellular Senescence.
Oxidative medicine and cellular longevity.
2021; 2021(?):5529518. doi:
10.1155/2021/5529518
. [PMID: 34603598] - Lei Lei, Jing Zhao, Xue-Qi Liu, Juan Chen, Xiang-Ming Qi, Ling-Ling Xia, Yong-Gui Wu. Wogonin Alleviates Kidney Tubular Epithelial Injury in Diabetic Nephropathy by Inhibiting PI3K/Akt/NF-κB Signaling Pathways.
Drug design, development and therapy.
2021; 15(?):3131-3150. doi:
10.2147/dddt.s310882
. [PMID: 34295152] - Rajesh Kumar, Seetha Harilal, Della G T Parambi, Siju E Narayanan, Md Sahab Uddin, Akash Marathakam, Jobin Jose, Githa E Mathew, Bijo Mathew. Fascinating Chemopreventive Story of Wogonin: A Chance to Hit on the Head in Cancer Treatment.
Current pharmaceutical design.
2021; 27(4):467-478. doi:
10.2174/1385272824999200427083040
. [PMID: 32338206] - Do Luong Huynh, Tran Hoang Ngau, Nguyen Hoai Nguyen, Gia-Buu Tran, Cuong Thach Nguyen. Potential therapeutic and pharmacological effects of Wogonin: an updated review.
Molecular biology reports.
2020 Dec; 47(12):9779-9789. doi:
10.1007/s11033-020-05972-9
. [PMID: 33165817] - Nobumitsu Hanioka, Takashi Isobe, Toshiko Tanaka-Kagawa, Susumu Ohkawara. Wogonin glucuronidation in liver and intestinal microsomes of humans, monkeys, dogs, rats, and mice.
Xenobiotica; the fate of foreign compounds in biological systems.
2020 Aug; 50(8):906-912. doi:
10.1080/00498254.2020.1725180
. [PMID: 32005083] - Caiyu Li, Xue Wang, Yajuan Bi, Heshui Yu, Jing Wei, Yi Zhang, Lifeng Han, Youcai Zhang. Potent Inhibitors of Organic Anion Transporters 1 and 3 From Natural Compounds and Their Protective Effect on Aristolochic Acid Nephropathy.
Toxicological sciences : an official journal of the Society of Toxicology.
2020 06; 175(2):279-291. doi:
10.1093/toxsci/kfaa033
. [PMID: 32159797] - Yuntai Huang, Lubo Guo, Renukaradhya Chitti, Nagaraja Sreeharsha, Anurag Mishra, Shiva K Gubbiyappa, Yogendra Singh. Wogonin ameliorate complete Freund's adjuvant induced rheumatoid arthritis via targeting NF-κB/MAPK signaling pathway.
BioFactors (Oxford, England).
2020 Mar; 46(2):283-291. doi:
10.1002/biof.1585
. [PMID: 31721330] - Liying Wang, Chenyu Li, Nagaraja Sreeharsha, Anurag Mishra, Vipin Shrotriya, Ajay Sharma. Neuroprotective effect of Wogonin on Rat's brain exposed to gamma irradiation.
Journal of photochemistry and photobiology. B, Biology.
2020 Mar; 204(?):111775. doi:
10.1016/j.jphotobiol.2020.111775
. [PMID: 31935591] - Zhengquan Huang, Xiaoqing Shi, Xiaochen Li, Li Zhang, Peng Wu, Jun Mao, Runlin Xing, Nongshan Zhang, Peimin Wang. Network Pharmacology Approach to Uncover the Mechanism Governing the Effect of Simiao Powder on Knee Osteoarthritis.
BioMed research international.
2020; 2020(?):6971503. doi:
10.1155/2020/6971503
. [PMID: 33376732] - Wan Bei, Li Jing, Nie Chen. Cardio protective role of wogonin loaded nanoparticle against isoproterenol induced myocardial infarction by moderating oxidative stress and inflammation.
Colloids and surfaces. B, Biointerfaces.
2020 Jan; 185(?):110635. doi:
10.1016/j.colsurfb.2019.110635
. [PMID: 31744760] - Bei Yin, Yi-Ming Bi, Guan-Jie Fan, Ya-Qing Xia. Molecular Mechanism of the Effect of Huanglian Jiedu Decoction on Type 2 Diabetes Mellitus Based on Network Pharmacology and Molecular Docking.
Journal of diabetes research.
2020; 2020(?):5273914. doi:
10.1155/2020/5273914
. [PMID: 33134394] - Zhi-Chao Zheng, Wei Zhu, Lei Lei, Xue-Qi Liu, Yong-Gui Wu. Wogonin Ameliorates Renal Inflammation and Fibrosis by Inhibiting NF-κB and TGF-β1/Smad3 Signaling Pathways in Diabetic Nephropathy.
Drug design, development and therapy.
2020; 14(?):4135-4148. doi:
10.2147/dddt.s274256
. [PMID: 33116403] - Faiza Khushdil, Farzana Gul Jan, Gul Jan, Muhammad Hamayun, Amjad Iqbal, Anwar Hussain, Nusrat Bibi. Salt stress alleviation in Pennisetum glaucum through secondary metabolites modulation by Aspergillus terreus.
Plant physiology and biochemistry : PPB.
2019 Nov; 144(?):127-134. doi:
10.1016/j.plaphy.2019.09.038
. [PMID: 31563093] - Xiao-Sa Du, Hai-Di Li, Xiao-Juan Yang, Juan-Juan Li, Jie-Jie Xu, Yu Chen, Qing-Qing Xu, Lei Yang, Chang-Sheng He, Cheng Huang, Xiao-Ming Meng, Jun Li. Wogonin attenuates liver fibrosis via regulating hepatic stellate cell activation and apoptosis.
International immunopharmacology.
2019 Oct; 75(?):105671. doi:
10.1016/j.intimp.2019.05.056
. [PMID: 31377590] - Yi-Hong Wu, Li-Pang Chuang, Chao-Lan Yu, Shyi-Wu Wang, Hsin-Yung Chen, Ying-Ling Chang. Anticoagulant effect of wogonin against tissue factor expression.
European journal of pharmacology.
2019 Sep; 859(?):172517. doi:
10.1016/j.ejphar.2019.172517
. [PMID: 31265843] - Jubo Wang, Tinghan Li, Tengteng Zhao, Tizhi Wu, Chuang Liu, Hong Ding, Zhiyu Li, Jinlei Bian. Design of wogonin-inspired selective cyclin-dependent kinase 9 (CDK9) inhibitors with potent in vitro and in vivo antitumor activity.
European journal of medicinal chemistry.
2019 Sep; 178(?):782-801. doi:
10.1016/j.ejmech.2019.06.024
. [PMID: 31238183] - D Jiao, Q Jiang, Y Liu, L Ji. Nephroprotective effect of wogonin against cadmium-induced nephrotoxicity via inhibition of oxidative stress-induced MAPK and NF-kB pathway in Sprague Dawley rats.
Human & experimental toxicology.
2019 Sep; 38(9):1082-1091. doi:
10.1177/0960327119842635
. [PMID: 31132876] - Khurshed Bozorov, Jiangyu Zhao, Haji A Aisa. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview.
Bioorganic & medicinal chemistry.
2019 08; 27(16):3511-3531. doi:
10.1016/j.bmc.2019.07.005
. [PMID: 31300317] - Han Xing, Chang Ren, Ying Kong, Qi Ni, Zeyu Wang, Di Zhao, Ning Li, Xijing Chen, Yang Lu. Determination of GL-V9, a derivative of wogonin, in rat plasma by UPLC-MS/MS and its application to a pharmacokinetic study after oral and pulmonary administration.
Biomedical chromatography : BMC.
2019 Aug; 33(8):e4556. doi:
10.1002/bmc.4556
. [PMID: 30990904] - Alaa M Badawy, Reem N El-Naga, Amany M Gad, Mariane G Tadros, Hala M Fawzy. Wogonin pre-treatment attenuates cisplatin-induced nephrotoxicity in rats: Impact on PPAR-γ, inflammation, apoptosis and Wnt/β-catenin pathway.
Chemico-biological interactions.
2019 Aug; 308(?):137-146. doi:
10.1016/j.cbi.2019.05.029
. [PMID: 31103702] - Qing Zhao, Jun Yang, Meng-Ying Cui, Jie Liu, Yumin Fang, Mengxiao Yan, Wenqing Qiu, Huiwen Shang, Zhicheng Xu, Reheman Yidiresi, Jing-Ke Weng, Tomáš Pluskal, Marielle Vigouroux, Burkhard Steuernagel, Yukun Wei, Lei Yang, Yonghong Hu, Xiao-Ya Chen, Cathie Martin. The Reference Genome Sequence of Scutellaria baicalensis Provides Insights into the Evolution of Wogonin Biosynthesis.
Molecular plant.
2019 07; 12(7):935-950. doi:
10.1016/j.molp.2019.04.002
. [PMID: 30999079] - Hao Tan, Xiang Li, Wei Han Yang, Yong Kang. A flavone, Wogonin from Scutellaria baicalensis inhibits the proliferation of human colorectal cancer cells by inducing of autophagy, apoptosis and G2/M cell cycle arrest via modulating the PI3K/AKT and STAT3 signalling pathways.
Journal of B.U.ON. : official journal of the Balkan Union of Oncology.
2019 May; 24(3):1143-1149. doi:
. [PMID: 31424673]
- Xia Da, Yayoi Nishiyama, Duerna Tie, Kyaw Zaw Hein, Osamu Yamamoto, Eishin Morita. Antifungal activity and mechanism of action of Ou-gon (Scutellaria root extract) components against pathogenic fungi.
Scientific reports.
2019 02; 9(1):1683. doi:
10.1038/s41598-019-38916-w
. [PMID: 30737463] - Yanqiu Gu, Xiaofei Chen, Rong Wang, Shaozhan Wang, Xiaoyu Wang, Leyi Zheng, Bin Zhang, Yifeng Chai, Zhenyu Zhu, Yongfang Yuan. Comparative two-dimensional HepG2 and L02/ cell membrane chromatography/ C18/ time-of-flight mass spectrometry for screening selective anti-hepatoma components from Scutellariae Radix.
Journal of pharmaceutical and biomedical analysis.
2019 Feb; 164(?):550-556. doi:
10.1016/j.jpba.2018.10.028
. [PMID: 30458388] - Dong-Zhu Tu, Hong-Ying Ma, Ya-Qiao Wang, Xiao-Hua Zhao, Wen-Zhi Guo, Guang-Bo Ge, Ling Yang. [Inhibitory effect of flavonoids from Scutellariae Radix on human cytochrome P450 1A].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2019 Feb; 44(3):566-573. doi:
10.19540/j.cnki.cjcmm.20181128.005
. [PMID: 30989924] - Shahzad Khan, Mohammad A Kamal. Can Wogonin be Used in Controlling Diabetic Cardiomyopathy?.
Current pharmaceutical design.
2019; 25(19):2171-2177. doi:
10.2174/1381612825666190708173108
. [PMID: 31298148] - Xue Jintao, Yang Quanwei, Li Chunyan, Jing Yun, Wang Shuangxi, Zhang Mingxiang, Li Peng. Rapid and Simultaneous Determination of Three Active Components in Raw and Processed Root Samples of Scutellaria baicalensis by Near-infrared Spectroscopy.
Planta medica.
2019 Jan; 85(1):72-80. doi:
10.1055/a-0655-2211
. [PMID: 30005428] - Zhengxiao Zhao, Baojun Liu, Jing Sun, Linwei Lu, Lumei Liu, Jian Qiu, Qiuping Li, Chen Yan, Shan Jiang, Nabijan Mohammadtursun, Wenjuan Ma, Mihui Li, Jingcheng Dong, Weiyi Gong. Scutellaria Flavonoids Effectively Inhibit the Malignant Phenotypes of Non-small Cell Lung Cancer in an Id1-dependent Manner.
International journal of biological sciences.
2019; 15(7):1500-1513. doi:
10.7150/ijbs.33146
. [PMID: 31337979] - Shahzad Khan, Mohammad A Kamal. Wogonin Alleviates Hyperglycemia Through Increased Glucose Entry into Cells Via AKT/GLUT4 Pathway.
Current pharmaceutical design.
2019; 25(23):2602-2606. doi:
10.2174/1381612825666190722115410
. [PMID: 31333118] - Luciana Ferella, Juan Ignacio Bastón, Mariela Andrea Bilotas, José Javier Singla, Alejandro Martín González, Carla Noemí Olivares, Gabriela Fabiana Meresman. Active compounds present inRosmarinus officinalis leaves andScutellaria baicalensis root evaluated as new therapeutic agents for endometriosis.
Reproductive biomedicine online.
2018 Dec; 37(6):769-782. doi:
10.1016/j.rbmo.2018.09.018
. [PMID: 30446309] - Qamar Uddin Ahmed, Murni Nazira Sarian, Siti Zaiton Mat So'ad, Jalifah Latip, Solachuddin Jauhari Arief Ichwan, Nurlaili Najmie Hussein, Muhammad Taher, Alhassan Muhammad Alhassan, Hanisuhana Hamidon, Sharida Fakurazi. Methylation and Acetylation Enhanced the Antidiabetic Activity of Some Selected Flavonoids: In Vitro, Molecular Modelling and Structure Activity Relationship-Based Study.
Biomolecules.
2018 11; 8(4):. doi:
10.3390/biom8040149
. [PMID: 30445784] - Chong-Zhi Wang, Jin-Yi Wan, Chun-Feng Zhang, Fang Lu, Lina Chen, Chun-Su Yuan. Deglycosylation of wogonoside enhances its anticancer potential.
Journal of cancer research and therapeutics.
2018 Sep; 14(Supplement):S594-S599. doi:
10.4103/0973-1482.183218
. [PMID: 30249874] - Yaqing Zhang, Zunjian Zhang, Rui Song. The Influence of Compatibility of Rhubarb and Radix Scutellariae on the Pharmacokinetics of Anthraquinones and Flavonoids in Rat Plasma.
European journal of drug metabolism and pharmacokinetics.
2018 Jun; 43(3):291-300. doi:
10.1007/s13318-017-0444-8
. [PMID: 29134502] - Ming Hong, Honghui Cheng, Lei Song, Wencai Wang, Qi Wang, Donggang Xu, Weiwei Xing. Wogonin Suppresses the Activity of Matrix Metalloproteinase-9 and Inhibits Migration and Invasion in Human Hepatocellular Carcinoma.
Molecules (Basel, Switzerland).
2018 Feb; 23(2):. doi:
10.3390/molecules23020384
. [PMID: 29439451] - Qing Zhao, Meng-Ying Cui, Olesya Levsh, Dongfeng Yang, Jie Liu, Jie Li, Lionel Hill, Lei Yang, Yonghong Hu, Jing-Ke Weng, Xiao-Ya Chen, Cathie Martin. Two CYP82D Enzymes Function as Flavone Hydroxylases in the Biosynthesis of Root-Specific 4'-Deoxyflavones in Scutellaria baicalensis.
Molecular plant.
2018 01; 11(1):135-148. doi:
10.1016/j.molp.2017.08.009
. [PMID: 28842248] - Xiao-Ming Meng, Hai-Di Li, Wei-Feng Wu, Patrick Ming-Kuen Tang, Gui-Ling Ren, Li Gao, Xiao-Feng Li, Yang Yang, Tao Xu, Tao-Tao Ma, Zeng Li, Cheng Huang, Lei Zhang, Xiong-Wen Lv, Jun Li. Wogonin protects against cisplatin-induced acute kidney injury by targeting RIPK1-mediated necroptosis.
Laboratory investigation; a journal of technical methods and pathology.
2018 01; 98(1):79-94. doi:
10.1038/labinvest.2017.115
. [PMID: 29200200] - Tomofumi Shimizu, Nobuhiko Shibuya, Yuji Narukawa, Naohiro Oshima, Noriyasu Hada, Fumiyuki Kiuchi. Synergistic effect of baicalein, wogonin and oroxylin A mixture: multistep inhibition of the NF-κB signalling pathway contributes to an anti-inflammatory effect of Scutellaria root flavonoids.
Journal of natural medicines.
2018 Jan; 72(1):181-191. doi:
10.1007/s11418-017-1129-y
. [PMID: 28921127] - R-K Seong, J-A Kim, O S Shin. Wogonin, a flavonoid isolated from Scutellaria baicalensis, has anti-viral activities against influenza infection via modulation of AMPK pathways.
Acta virologica.
2018 ; 62(1):78-85. doi:
10.4149/av_2018_109
. [PMID: 29521106] - Basma Sukkar, Stefan Hauser, Lisann Pelzl, Zohreh Hosseinzadeh, Itishri Sahu, Tamer Al-Maghout, Abdulla Al Mamun Bhuyan, Nefeli Zacharopoulou, Christos Stournaras, Ludger Schöls, Florian Lang. Inhibition of Lithium Sensitive Orai1/ STIM1 Expression and Store Operated Ca2+ Entry in Chorea-Acanthocytosis Neurons by NF-κB Inhibitor Wogonin.
Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology.
2018; 51(1):278-289. doi:
10.1159/000495229
. [PMID: 30453283] - Xuelin Zhou, Haotian Li, Zhilong Shi, Sijia Gao, Shizhang Wei, Kun Li, Jiabo Wang, Jianyu Li, Ruilin Wang, Man Gong, Yanling Zhao, Xiaohe Xiao. Inhibition activity of a traditional Chinese herbal formula Huang-Lian-Jie-Du-Tang and its major components found in its plasma profile on neuraminidase-1.
Scientific reports.
2017 Nov; 7(1):15549. doi:
10.1038/s41598-017-15733-7
. [PMID: 29138445] - Minting Chen, Suying Wei, Chaohua Luo, Feilong Chen, Shuai Song, Qun Shen, Zhixian Mo, Fenghuan Wei. Simultaneous determination of wogonin, oroxylin a, schisandrin, paeoniflorin and emodin in rat serum by HPLC-MS/MS and application to pharmacokinetic studies.
Biomedical chromatography : BMC.
2017 Oct; 31(10):. doi:
10.1002/bmc.3966
. [PMID: 28236316] - Sophia Yui Kau Fong, Chenrui Li, Yiu Cheong Ho, Rui Li, Qian Wang, Yin Cheong Wong, Hong Xue, Zhong Zuo. Brain Uptake of Bioactive Flavones in Scutellariae Radix and Its Relationship to Anxiolytic Effect in Mice.
Molecular pharmaceutics.
2017 09; 14(9):2908-2916. doi:
10.1021/acs.molpharmaceut.7b00029
. [PMID: 28426226] - Jumah Masoud Mohammad Salmani, Xue Wu, Joe Antony Jacob, Rong Fu, Baoan Chen. Development of a new HPLC method for wogonin in rat plasma: Compatibility of standard and test samples.
Acta pharmaceutica (Zagreb, Croatia).
2017 Sep; 67(3):373-384. doi:
10.1515/acph-2017-0029
. [PMID: 28858841] - Md Mahmudul Hasan, Qamar Uddin Ahmed, Siti Zaiton Mat Soad, Jalifah Latip, Muhammad Taher, Tengku Muhamad Faris Syafiq, Murni Nazira Sarian, Alhassan Muhammad Alhassan, Zainul Amiruddin Zakaria. Flavonoids from Tetracera indica Merr. induce adipogenesis and exert glucose uptake activities in 3T3-L1 adipocyte cells.
BMC complementary and alternative medicine.
2017 Aug; 17(1):431. doi:
10.1186/s12906-017-1929-3
. [PMID: 28854906] - Nazir M Khan, Abdul Haseeb, Mohammad Y Ansari, Pratap Devarapalli, Sara Haynie, Tariq M Haqqi. Wogonin, a plant derived small molecule, exerts potent anti-inflammatory and chondroprotective effects through the activation of ROS/ERK/Nrf2 signaling pathways in human Osteoarthritis chondrocytes.
Free radical biology & medicine.
2017 05; 106(?):288-301. doi:
10.1016/j.freeradbiomed.2017.02.041
. [PMID: 28237856] - Qinmeng Shu, Hong Zhuang, Jiawen Fan, Xin Wang, Gezhi Xu. Wogonin induces retinal neuron-like differentiation of bone marrow stem cells by inhibiting Notch-1 signaling.
Oncotarget.
2017 Apr; 8(17):28431-28441. doi:
10.18632/oncotarget.16085
. [PMID: 28415701] - Nazir M Khan, Abdul Haseeb, Mohammad Y Ansari, Tariq M Haqqi. A wogonin-rich-fraction of Scutellaria baicalensis root extract exerts chondroprotective effects by suppressing IL-1β-induced activation of AP-1 in human OA chondrocytes.
Scientific reports.
2017 03; 7(?):43789. doi:
10.1038/srep43789
. [PMID: 28256567] - Weiming Xiao, Min Yin, Keyan Wu, Guotao Lu, Bin Deng, Yu Zhang, Li Qian, Xiaoqing Jia, Yanbing Ding, Weijuan Gong. High-dose wogonin exacerbates DSS-induced colitis by up-regulating effector T cell function and inhibiting Treg cell.
Journal of cellular and molecular medicine.
2017 02; 21(2):286-298. doi:
10.1111/jcmm.12964
. [PMID: 27641629] - Rong-Xiu Liu, Guo-Hu Song, Pei-Gen Wu, Xue-Wen Zhang, Hui-Juan Hu, Jia Liu, Xiao-Su Miao, Zhi-Yan Hou, Wen-Quan Wang, Sheng-Li Wei. Distribution patterns of the contents of five biologically activate ingredients in the root of Scutellaria baicalensis.
Chinese journal of natural medicines.
2017 Feb; 15(2):152-160. doi:
10.1016/s1875-5364(17)30030-4
. [PMID: 28284428] - Michiko Kudo, Kumiko Kobayashi-Nakamura, Kentaro Tsuji-Naito. Bifunctional effects of O-methylated flavones from Scutellaria baicalensis Georgi on melanocytes: Inhibition of melanin production and intracellular melanosome transport.
PloS one.
2017; 12(2):e0171513. doi:
10.1371/journal.pone.0171513
. [PMID: 28182699] - Jiang Ruibin, Jin Bo, Wan Danying, Zhu Chihong, Feng Jianguo, Gu Linhui. Therapy Effects of Wogonin on Ovarian Cancer Cells.
BioMed research international.
2017; 2017(?):9381513. doi:
10.1155/2017/9381513
. [PMID: 29181409] - Do Luong Huynh, Neelesh Sharma, Amit Kumar Singh, Simrinder Singh Sodhi, Jiao-Jiao Zhang, Raj Kumar Mongre, Mrinmoy Ghosh, Nameun Kim, Yang Ho Park, Dong Kee Jeong. Anti-tumor activity of wogonin, an extract from Scutellaria baicalensis, through regulating different signaling pathways.
Chinese journal of natural medicines.
2017 Jan; 15(1):15-40. doi:
10.1016/s1875-5364(17)30005-5
. [PMID: 28259249] - Miao-Xin Peng, Xiao-Yue Wang, Fan Wang, Lei Wang, Pei-Pei Xu, Bing Chen. Apoptotic Mechanism of Human Leukemia K562/A02 Cells Induced by Magnetic Ferroferric Oxide Nanoparticles Loaded with Wogonin.
Chinese medical journal.
2016 12; 129(24):2958-2966. doi:
10.4103/0366-6999.195466
. [PMID: 27958228] - Hai-Lun Sun, Mei-Ling Peng, Shiuan-Shinn Lee, Chun-Jung Chen, Wen-Ying Chen, Ming-Ling Yang, Yu-Hsiang Kuan. Endotoxin-induced acute lung injury in mice is protected by 5,7-dihydroxy-8-methoxyflavone via inhibition of oxidative stress and HIF-1α.
Environmental toxicology.
2016 Dec; 31(12):1700-1709. doi:
10.1002/tox.22172
. [PMID: 26213241] - Lian Huang, Hiroyuki Fuchino, Nobuo Kawahara, Yuji Narukawa, Noriyasu Hada, Fumiyuki Kiuchi. Application of a new method, orthogonal projection to latent structure (OPLS) combined with principal component analysis (PCA), to screening of prostaglandin E2 production inhibitory flavonoids in Scutellaria Root.
Journal of natural medicines.
2016 Oct; 70(4):731-9. doi:
10.1007/s11418-016-1004-2
. [PMID: 27164908] - Gang Chen, Yang Yang, Chunping Hu, Xiaolan Cheng, Yuehua Xu, Xueting Cai, Min Wang, Chung S Yang, Peng Cao. Protective effects of Huangqin Decoction against ulcerative colitis and associated cancer in mice.
Oncotarget.
2016 Sep; 7(38):61643-61655. doi:
10.18632/oncotarget.11426
. [PMID: 27557503] - Chenghe Sun, Hecheng Wang, Yingping Wang, Shengyuan Xiao. Rapid Isolation and Determination of Flavones in Biological Samples Using Zinc Complexation Coupled with High-Performance Liquid Chromatography.
Molecules (Basel, Switzerland).
2016 Aug; 21(8):. doi:
10.3390/molecules21081067
. [PMID: 27537870] - Qing Zhao, Yang Zhang, Gang Wang, Lionel Hill, Jing-Ke Weng, Xiao-Ya Chen, Hongwei Xue, Cathie Martin. A specialized flavone biosynthetic pathway has evolved in the medicinal plant, Scutellaria baicalensis.
Science advances.
2016 Apr; 2(4):e1501780. doi:
10.1126/sciadv.1501780
. [PMID: 27152350] - Rong Fu, Yan Chen, Xiao-Ping Wang, Teng An, Lei Tao, Yu-Xin Zhou, Yu-Jie Huang, Bao-An Chen, Zhi-Yu Li, Qi-Dong You, Qing-Long Guo, Zhao-Qiu Wu. Wogonin inhibits multiple myeloma-stimulated angiogenesis via c-Myc/VHL/HIF-1α signaling axis.
Oncotarget.
2016 Feb; 7(5):5715-27. doi:
10.18632/oncotarget.6796
. [PMID: 26735336] - Barnabas Oche, Lu Chen, Ya-Ke Ma, Yue Yang, Chun-Xiao Li, Xiao Geng, Li-Zhen Qiu, Xiu-Mei Gao, Hong Wang. Cryptotanshinone and wogonin up-regulate eNOS in vascular endothelial cells via ERα and down-regulate iNOS in LPS stimulated vascular smooth muscle cells via ERβ.
Archives of pharmacal research.
2016 Feb; 39(2):249-258. doi:
10.1007/s12272-015-0671-y
. [PMID: 26481132] - Wei Liu, Fan Yang, Hai-Hua Lv, Jie Zhou, Xiao Wang, Yan-Ling Geng. [Influence of different germination stage on plant biomass and active compounds of Scutellaria baicalensis germchit].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2016 Jan; 41(1):56-59. doi:
10.4268/cjcmm20160111
. [PMID: 28845640] - Zhu-yan Huang, Bei-bei Pan, Chun-yan Huang, Yi-lu Ye, Dan-dan Liu, Yue-ping Yu, Qi Zhang. [Screening of Active Fractions from Huanglian Jiedu Decoction against Primary Neuron Injury after Oxygen-Glucose Deprivation].
Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi = Chinese journal of integrated traditional and Western medicine.
2015 Aug; 35(8):981-7. doi:
. [PMID: 26485915]
- Ye-min Zhang, Ming-xin Li, Zhao Tang, Chang-hua Wang. Wogonin suppresses osteopontin expression in adipocytes by activating PPARα.
Acta pharmacologica Sinica.
2015 Aug; 36(8):987-97. doi:
10.1038/aps.2015.37
. [PMID: 26073326] - Yue Zhao, Jing Yao, Xiao-Ping Wu, Li Zhao, Yu-Xin Zhou, Yi Zhang, Qi-Dong You, Qing-Long Guo, Na Lu. Wogonin suppresses human alveolar adenocarcinoma cell A549 migration in inflammatory microenvironment by modulating the IL-6/STAT3 signaling pathway.
Molecular carcinogenesis.
2015 Jun; 54 Suppl 1(?):E81-93. doi:
10.1002/mc.22182
. [PMID: 24976450] - Weiming Xiao, Keyan Wu, Min Yin, Sen Han, Yanbing Ding, Ahui Qiao, Guotao Lu, Bing Deng, Ping Bo, Weijuan Gong. Wogonin Inhibits Tumor-derived Regulatory Molecules by Suppressing STAT3 Signaling to Promote Tumor Immunity.
Journal of immunotherapy (Hagerstown, Md. : 1997).
2015 Jun; 38(5):167-84. doi:
10.1097/cji.0000000000000080
. [PMID: 25962106] - Zhiqing Zeng, Hong Liu. [Inhibitory effect of wogonin on the proliferation and invasion of glioblastoma U87 cells and related mechanism].
Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology.
2015 Mar; 31(3):302-6. doi:
NULL
. [PMID: 25744831] - Dorota Woźniak, Andrzej Dryś, Adam Matkowski. Antiradical and antioxidant activity of flavones from Scutellariae baicalensis radix.
Natural product research.
2015; 29(16):1567-70. doi:
10.1080/14786419.2014.983920
. [PMID: 25427178] - Motahareh Boozari, Ameneh Mohammadi, Javad Asili, Seyed Ahmad Emami, Zahra Tayarani-Najaran. Growth inhibition and apoptosis induction by Scutellaria pinnatifida A. Ham. on HL-60 and K562 leukemic cell lines.
Environmental toxicology and pharmacology.
2015 Jan; 39(1):307-12. doi:
10.1016/j.etap.2014.12.002
. [PMID: 25546119] - Jing-Tian Qu, Dong-Xuan Zhang, Fang Liu, Hao-Ping Mao, Ya-Ke Ma, Yue Yang, Chun-Xiao Li, Li-Zhen Qiu, Xiao Geng, Jian-Mei Zhang, Xiu-Mei Gao, Lu Chen, Hong Wang. Vasodilatory Effect of Wogonin on the Rat Aorta and Its Mechanism Study.
Biological & pharmaceutical bulletin.
2015; 38(12):1873-8. doi:
10.1248/bpb.b15-00444
. [PMID: 26632179] - Jinxin Liu, Jingyi Hou, Chao Jiang, Geng Li, Heng Lu, Fanyun Meng, Linchun Shi. Deep Sequencing of the Scutellaria baicalensis Georgi Transcriptome Reveals Flavonoid Biosynthetic Profiling and Organ-Specific Gene Expression.
PloS one.
2015; 10(8):e0136397. doi:
10.1371/journal.pone.0136397
. [PMID: 26317778] - Tingqin Yan, Hongsheng Bi, Yun Wang. Wogonin modulates hydroperoxide-induced apoptosis via PI3K/Akt pathway in retinal pigment epithelium cells.
Diagnostic pathology.
2014 Nov; 9(?):154. doi:
10.1186/s13000-014-0154-3
. [PMID: 25432585]