Spartioidine (BioDeep_00000003328)

 

Secondary id: BioDeep_00000229983, BioDeep_00000375575

PANOMIX_OTCML-2023


代谢物信息卡片


Seneciphylline

化学式: C18H23NO5 (333.1576)
中文名称: 千屈茶碱-D3, 千里光菲灵碱
谱图信息: 最多检出来源 Viridiplantae(plant) 32.04%

分子结构信息

SMILES: C/C=C\1/CC(=C)[C@@](C(=O)OCC2=CCN3[C@H]2[C@@H](CC3)OC1=O)(C)O
InChI: InChI=1S/C18H23NO5/c1-4-12-9-11(2)18(3,22)17(21)23-10-13-5-7-19-8-6-14(15(13)19)24-16(12)20/h4-5,14-15,22H,2,6-10H2,1,3H3

描述信息

A pyrrolizine alkaloid that is 13,19-didehydrosenecionane carrying a hydroxy substituent at position 12 and two oxo substituents at positions 11 and 16.
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2297
[Raw Data] CB082b_Seneciphylline_pos_40eV_CB000034.txt
[Raw Data] CB082b_Seneciphylline_pos_30eV_CB000034.txt
[Raw Data] CB082b_Seneciphylline_pos_20eV_CB000034.txt
[Raw Data] CB082b_Seneciphylline_pos_10eV_CB000034.txt
[Raw Data] CB082b_Seneciphylline_pos_50eV_CB000034.txt
Seneciphylline is a toxic pyrrolizidine alkaloid in Gynura japonica[1]. Seneciphylline significantly increases the activities of epoxide hydrase and glutathione-S-transferase but causes reduction of cytochrome P-450 and related monooxygenase activities[2].

同义名列表

4 个代谢物同义名

Spartioidine; Seneciphylline; Seneciphylline; Spartioidine



数据库引用编号

44 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

50 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 7 ALOX5, ANXA5, AQP1, CYP1A1, GADD45G, HPGDS, PDLIM4
Peripheral membrane protein 4 ALOX5, ANXA5, CYP1A1, PDLIM4
Endoplasmic reticulum membrane 1 CYP1A1
Nucleus 3 AQP1, GADD45G, PDLIM4
autophagosome 1 MAP1LC3A
cytosol 7 ALOX5, ANXA5, GPT, GSR, HPGDS, MAP1LC3A, SST
nucleoplasm 2 ALOX5, HPGDS
Cell membrane 1 AQP1
Lipid-anchor 1 MAP1LC3A
Cytoplasmic side 1 PDLIM4
lamellipodium 1 PDLIM4
Early endosome membrane 1 PDLIM4
Multi-pass membrane protein 1 AQP1
Synapse 1 PDLIM4
glutamatergic synapse 1 MAP1LC3A
lysosomal membrane 1 EGF
mitochondrial inner membrane 1 CYP1A1
neuronal cell body 1 SST
sarcolemma 2 ANXA5, AQP1
Cytoplasm, cytosol 1 ALOX5
Lysosome 1 SGSH
plasma membrane 2 AQP1, EGF
Membrane 3 ANXA5, AQP1, EGF
apical plasma membrane 1 AQP1
axon 1 AQP1
basolateral plasma membrane 1 AQP1
brush border 1 AQP1
caveola 1 AQP1
extracellular exosome 6 ANXA5, AQP1, EGF, GPT, GSR, SGSH
extracellular space 5 ALOX5, EGF, GAST, SST, TG
lysosomal lumen 1 SGSH
perinuclear region of cytoplasm 2 ALOX5, PDLIM4
adherens junction 1 PDLIM4
mitochondrion 2 CYP1A1, GSR
intracellular membrane-bounded organelle 3 CYP1A1, HPGDS, MAP1LC3A
Microsome membrane 1 CYP1A1
Secreted 3 GAST, SST, TG
extracellular region 6 ALOX5, ANXA5, EGF, GAST, SST, TG
mitochondrial matrix 1 GSR
Nucleus membrane 1 ALOX5
nuclear membrane 2 ALOX5, AQP1
external side of plasma membrane 2 ANXA5, GSR
dendritic spine 1 PDLIM4
Z disc 1 PDLIM4
nucleolus 1 PANO1
apical part of cell 1 AQP1
postsynaptic membrane 1 PDLIM4
Cell projection, lamellipodium 1 PDLIM4
Cytoplasm, perinuclear region 2 ALOX5, PDLIM4
Mitochondrion inner membrane 1 CYP1A1
Cytoplasm, cytoskeleton 2 MAP1LC3A, PDLIM4
focal adhesion 1 ANXA5
microtubule 1 MAP1LC3A
GABA-ergic synapse 1 SST
Cell projection, dendritic spine 1 PDLIM4
collagen-containing extracellular matrix 1 ANXA5
Late endosome 1 MAP1LC3A
Zymogen granule membrane 1 ANXA5
Cytoplasmic vesicle, autophagosome membrane 1 MAP1LC3A
autophagosome membrane 1 MAP1LC3A
cytoskeleton 1 PDLIM4
brush border membrane 1 AQP1
Nucleus, nucleolus 1 PANO1
organelle membrane 1 MAP1LC3A
nuclear envelope 1 ALOX5
Recycling endosome membrane 1 PDLIM4
Nucleus envelope 1 ALOX5
Endomembrane system 2 MAP1LC3A, PDLIM4
filamentous actin 1 PDLIM4
stress fiber 1 PDLIM4
basal plasma membrane 1 AQP1
ficolin-1-rich granule lumen 1 ALOX5
secretory granule lumen 1 ALOX5
nuclear matrix 1 ALOX5
platelet alpha granule lumen 1 EGF
neuronal dense core vesicle 1 SST
Nucleus matrix 1 ALOX5
nuclear envelope lumen 1 ALOX5
[Isoform 2]: Cytoplasm 1 PDLIM4
vesicle membrane 1 ANXA5
clathrin-coated endocytic vesicle membrane 1 EGF
Synapse, synaptosome 1 PDLIM4
[Isoform 1]: Cytoplasm, cytoskeleton 1 PDLIM4
ankyrin-1 complex 1 AQP1
Autolysosome 1 MAP1LC3A
endothelial microparticle 1 ANXA5
Nucleus intermembrane space 1 ALOX5
early endosome lumen 1 PDLIM4
recycling endosome lumen 1 PDLIM4


文献列表

  • Feng Long, Jie Ji, Xin Wang, Lili Wang, Ting Chen. LC-MS/MS method for determination of seneciphylline and its metabolite, seneciphylline N-oxide in rat plasma, and its application to a rat pharmacokinetic study. Biomedical chromatography : BMC. 2021 Sep; 35(9):e5145. doi: 10.1002/bmc.5145. [PMID: 33886121]
  • Lukas Rutz, Lan Gao, Jan-Heiner Küpper, Dieter Schrenk. Structure-dependent genotoxic potencies of selected pyrrolizidine alkaloids in metabolically competent HepG2 cells. Archives of toxicology. 2020 12; 94(12):4159-4172. doi: 10.1007/s00204-020-02895-z. [PMID: 32910235]
  • Weiqian Wang, Xiao Yang, Yan Chen, Xuanling Ye, Kaiyuan Jiang, Aizhen Xiong, Li Yang, Zhengtao Wang. Seneciphylline, a main pyrrolizidine alkaloid in Gynura japonica, induces hepatotoxicity in mice and primary hepatocytes via activating mitochondria-mediated apoptosis. Journal of applied toxicology : JAT. 2020 11; 40(11):1534-1544. doi: 10.1002/jat.4004. [PMID: 32618019]
  • Xiaojie Liu, Peter G L Klinkhamer, Klaas Vrieling. The effect of structurally related metabolites on insect herbivores: A case study on pyrrolizidine alkaloids and western flower thrips. Phytochemistry. 2017 Jun; 138(?):93-103. doi: 10.1016/j.phytochem.2017.02.027. [PMID: 28267991]
  • Reuel A Field, Bryan L Stegelmeier, Steven M Colegate, Ammon W Brown, Benedict T Green. An in vitro comparison of the cytotoxic potential of selected dehydropyrrolizidine alkaloids and some N-oxides. Toxicon : official journal of the International Society on Toxinology. 2015 Apr; 97(?):36-45. doi: 10.1016/j.toxicon.2015.02.001. [PMID: 25666399]
  • Jia-Yin Han, Yan Yi, Ai-Hua Liang, Yu-Shi Zhang, Chun-Ying Li, Yong Zhao, Hong-Yu Cui, Yu-Ting Lu. [Embryotoxicity of Senecionis Scandentis Hebra on in vitro cultured mouse embryos]. Yao xue xue bao = Acta pharmaceutica Sinica. 2014 Sep; 49(9):1267-72. doi: . [PMID: 25518325]
  • Tri R Nuringtyas, Robert Verpoorte, Peter G L Klinkhamer, Monique M van Oers, Kirsten A Leiss. Toxicity of pyrrolizidine alkaloids to Spodoptera exigua using insect cell lines and injection bioassays. Journal of chemical ecology. 2014 Jun; 40(6):609-16. doi: 10.1007/s10886-014-0459-4. [PMID: 24981118]
  • Dandan Cheng, Heather Kirk, Klaas Vrieling, Patrick P J Mulder, Peter G L Klinkhamer. The relationship between structurally different pyrrolizidine alkaloids and western flower thrips resistance in F(2) hybrids of Jacobaea vulgaris and Jacobaea aquatica. Journal of chemical ecology. 2011 Oct; 37(10):1071-80. doi: 10.1007/s10886-011-0021-6. [PMID: 21969251]
  • Xuejing Yang, Li Yang, Aizhen Xiong, Dingxiang Li, Zhengtao Wang. Authentication of Senecio scandens and S. vulgaris based on the comprehensive secondary metabolic patterns gained by UPLC-DAD/ESI-MS. Journal of pharmaceutical and biomedical analysis. 2011 Sep; 56(2):165-72. doi: 10.1016/j.jpba.2011.05.004. [PMID: 21664784]
  • Gregory Röder, Martine Rahier, Russell E Naisbit. Do induced responses mediate the ecological interactions between the specialist herbivores and phytopathogens of an alpine plant?. PloS one. 2011 May; 6(5):e19571. doi: 10.1371/journal.pone.0019571. [PMID: 21573247]
  • Ge Lin, Ji Yao Wang, Na Li, Mi Li, Hong Gao, Yuan Ji, Fan Zhang, Huali Wang, Yan Zhou, Yang Ye, Hong Xi Xu, Jiang Zheng. Hepatic sinusoidal obstruction syndrome associated with consumption of Gynura segetum. Journal of hepatology. 2011 Apr; 54(4):666-73. doi: 10.1016/j.jhep.2010.07.031. [PMID: 21146894]
  • Heather Kirk, Klaas Vrieling, Eddy Van Der Meijden, Peter G L Klinkhamer. Species by environment interactions affect pyrrolizidine alkaloid expression in Senecio jacobaea, Senecio aquaticus, and their hybrids. Journal of chemical ecology. 2010 Apr; 36(4):378-87. doi: 10.1007/s10886-010-9772-8. [PMID: 20309618]
  • Xueyong Qi, Bin Wu, Yiyu Cheng, Haibin Qu. Simultaneous characterization of pyrrolizidine alkaloids and N-oxides in Gynura segetum by liquid chromatography/ion trap mass spectrometry. Rapid communications in mass spectrometry : RCM. 2009 Jan; 23(2):291-302. doi: 10.1002/rcm.3862. [PMID: 19072862]
  • Song-Lin Li, Ge Lin, Peter P Fu, Chi-Leung Chan, Mi Li, Zhi-Hong Jiang, Zhong-Zhen Zhao. Identification of five hepatotoxic pyrrolizidine alkaloids in a commonly used traditional Chinese medicinal herb, Herba Senecionis scandentis (Qianliguang). Rapid communications in mass spectrometry : RCM. 2008; 22(4):591-602. doi: 10.1002/rcm.3398. [PMID: 18220326]
  • Rajendra P Tangallapally, Robin E B Lee, Anne J M Lenaerts, Richard E Lee. Synthesis of new and potent analogues of anti-tuberculosis agent 5-nitro-furan-2-carboxylic acid 4-(4-benzyl-piperazin-1-yl)-benzylamide with improved bioavailability. Bioorganic & medicinal chemistry letters. 2006 May; 16(10):2584-9. doi: 10.1016/j.bmcl.2006.02.048. [PMID: 16529927]
  • Lijun Yu, Yan Xu, Huatao Feng, Sam Fong Yau Li. Separation and determination of toxic pyrrolizidine alkaloids in traditional Chinese herbal medicines by micellar electrokinetic chromatography with organic modifier. Electrophoresis. 2005 Sep; 26(17):3397-404. doi: 10.1002/elps.200500233. [PMID: 16080213]
  • Brian T Schaneberg, Russell J Molyneux, Ikhlas A Khan. Evaporative light scattering detection of pyrrolizidine alkaloids. Phytochemical analysis : PCA. 2004 Jan; 15(1):36-9. doi: 10.1002/pca.715. [PMID: 14979525]
  • H Eröksüz, Y Eröksüz, H Ozer, I Yaman, F Tosun, C Akyüz Kizilay, U Tamer. Toxicity of Senecio vernalis to laying hens and evaluation of residues in eggs. Veterinary and human toxicology. 2003 Mar; 45(2):76-80. doi: . [PMID: 12678291]
  • Jeannette T Hovermale, A Morrie Craig. Metabolism of pyrrolizidine alkaloids by Peptostreptococcus heliotrinreducens and a mixed culture derived from ovine ruminal fluid. Biophysical chemistry. 2002 Dec; 101-102(?):387-99. doi: 10.1016/s0301-4622(02)00152-7. [PMID: 12488016]
  • Veselin S Christov, Bozhanka P Mikhova, Luba N Evstatieva. Alkaloids from Senecio aquaticus. Fitoterapia. 2002 Apr; 73(2):171-3. doi: 10.1016/s0367-326x(02)00012-6. [PMID: 11978435]
  • M T Skaanild, C Friis, L Brimer. Interplant alkaloid variation and Senecio vernalis toxicity in cattle. Veterinary and human toxicology. 2001 Jun; 43(3):147-51. doi: . [PMID: 11383654]
  • M Noorwala, F V Mohammad, V U Ahmad, B Sener, F Ergun, D Deliorman. Pyrrolizidine alkaloids from Senecio lorenthii. Fitoterapia. 2000 Sep; 71(5):618-20. doi: 10.1016/s0367-326x(00)00194-5. [PMID: 11449528]
  • G T Tan, J M Pezzuto, A D Kinghorn, S H Hughes. Evaluation of natural products as inhibitors of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. Journal of natural products. 1991 Jan; 54(1):143-54. doi: 10.1021/np50073a012. [PMID: 1710653]
  • U Candrian, J Lüthy, C Schlatter. In vivo covalent binding of retronecine-labelled [3H]seneciphylline and [3H]senecionine to DNA of rat liver, lung and kidney. Chemico-biological interactions. 1985 Jun; 54(1):57-69. doi: 10.1016/s0009-2797(85)80152-6. [PMID: 4017105]
  • D F Eastman, G P Dimenna, H J Segall. Covalent binding of two pyrrolizidine alkaloids, senecionine and seneciphylline, to hepatic macromolecules and their distribution, excretion, and transfer into milk of lactating mice. Drug metabolism and disposition: the biological fate of chemicals. 1982 May; 10(3):236-40. doi: . [PMID: 6179729]