L-Leucine (BioDeep_00000000246)
Secondary id: BioDeep_00000016679, BioDeep_00000229623
natural product human metabolite PANOMIX_OTCML-2023 blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C6H13NO2 (131.0946)
中文名称: (±)-氨基-4-甲基戊酸, L-亮氨酸, 亮氨酸, L-白氨酸
谱图信息:
最多检出来源 Homo sapiens(blood) 15.4%
Last reviewed on 2024-07-01.
Cite this Page
L-Leucine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/l-leucine (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000000246). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CC(C)CC(C(=O)O)N
InChI: InChI=1S/C6H13NO2/c1-4(2)3-5(7)6(8)9/h4-5H,3,7H2,1-2H3,(H,8,9)
描述信息
Leucine (Leu) or L-leucine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-leucine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Leucine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aliphatic amino acid. Leucine is essential in humans, meaning the body cannot synthesize it, and it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. L-Leucine is a branched chain amino acid (BCAA). The BCAAs consist of leucine, valine and isoleucine (and occasionally threonine). BCAAs are essential amino acids whose carbon structure is marked by a branch point at the beta-carbon position. BCAAs are critical to human life and are particularly involved in stress, energy and muscle metabolism. BCAA supplementation as therapy, both oral and intravenous, in human health and disease holds great promise. BCAAs have different metabolic routes, with valine going solely to carbohydrates (glucogenic), leucine solely to fats (ketogenic) and isoleucine being both a glucogenic and a ketogenic amino acid. The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. The primary metabolic end products of leucine metabolism are acetyl-CoA and acetoacetate; consequently, it is one of the two exclusively ketogenic amino acids, with lysine being the other. Leucine is the most important ketogenic amino acid in humans. The vast majority of l-leucine metabolism is initially catalyzed by the branched-chain amino acid aminotransferase enzyme, producing alpha-ketoisocaproate (alpha-KIC). alpha-KIC is metabolized by the mitochondrial enzyme branched-chain alpha-ketoacid dehydrogenase, which converts it to isovaleryl-CoA. Isovaleryl-CoA is subsequently metabolized by the enzyme isovaleryl-CoA dehydrogenase and converted to beta-methylcrotonyl-CoA (MC-CoA), which is used in the synthesis of acetyl-CoA and other compounds. During biotin deficiency, HMB can be synthesized from MC-CoA via enoyl-CoA hydratase and an unknown thioesterase enzyme, which convert MC-CoA into HMB-CoA and HMB-CoA into HMB respectively. Leucine has the capacity to directly stimulate myofibrillar muscle protein synthesis (PMID 15051860). This effect of leucine arises results from its role as an activator of the mechanistic target of rapamycin (mTOR) (PMID 23551944) a serine-threonine protein kinase that regulates protein biosynthesis and cell growth. The activation of mTOR by leucine is mediated through Rag GTPases. Leucine, like other BCAAs, is associated with insulin resistance. In particular, higher levels of leucine are observed in the blood of diabetic mice, rats, and humans (PMID 25287287). BCAAs such as leucine have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. Persistently low leucine levels can result in decreased appetite, poor feeding, lethargy, poor growth, weight loss, skin rashes, hair loss, and desquamation. Many types of inborn errors of BCAA metabolism exist and these are marked by various abnormalities. The most common form is maple syrup urine disease, marked by a characteristic urinary odor. Other abnormalities are associated with a wide range of symptoms, such as mental retardation, ataxia, hypoglycemia, spinal muscle atrophy, rash, vomiting and excessive muscle movement. Most forms of BCAA metabolism errors are corrected by dietary res...
L-leucine is the L-enantiomer of leucine. It has a role as a plant metabolite, an Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite, a human metabolite, an algal metabolite and a mouse metabolite. It is a pyruvate family amino acid, a proteinogenic amino acid, a leucine and a L-alpha-amino acid. It is a conjugate base of a L-leucinium. It is a conjugate acid of a L-leucinate. It is an enantiomer of a D-leucine. It is a tautomer of a L-leucine zwitterion.
An essential branched-chain amino acid important for hemoglobin formation.
L-Leucine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Leucine is one of nine essential amino acids in humans (provided by food), Leucine is important for protein synthesis and many metabolic functions. Leucine contributes to regulation of blood-sugar levels; growth and repair of muscle and bone tissue; growth hormone production; and wound healing. Leucine also prevents breakdown of muscle proteins after trauma or severe stress and may be beneficial for individuals with phenylketonuria. Leucine is available in many foods and deficiency is rare. (NCI04)
Leucine (abbreviated as Leu or L)[2] is a branched-chain л±-amino acid with the chemical formulaHO2CCH(NH2)CH2CH(CH3)2. Leucine is classified as a hydrophobic amino acid due to its aliphatic isobutyl side chain. It is encoded by six codons (UUA, UUG, CUU, CUC, CUA, and CUG) and is a major component of the subunits in ferritin, astacin, and other buffer proteins. Leucine is an essential amino acid, meaning that the human body cannot synthesize it, and it therefore must be ingested. It is important for hemoglobin formation.
An essential branched-chain amino acid important for hemoglobin formation.
See also: Isoleucine; Leucine (component of) ... View More ...
Dietary supplement, nutrient [DFC]. (±)-Leucine is found in many foods, some of which are green bell pepper, italian sweet red pepper, green zucchini, and red bell pepper.
L-Leucine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=61-90-5 (retrieved 2024-07-01) (CAS RN: 61-90-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1].
L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1].
L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1].
L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1].
同义名列表
144 个代谢物同义名
L-Leucine, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0\\%; L-Leucine, Pharmaceutical Secondary Standard; Certified Reference Material; (S)-2-Amino-4-methyl-pentanoic acid methyl ester hydrochloride; L-Leucine, United States Pharmacopeia (USP) Reference Standard; Leucine, European Pharmacopoeia (EP) Reference Standard; L-Leucine, certified reference material, TraceCERT(R); (2R)-2-amino-4-methyl-pentanoic acid;D-HOMO-VALINE; (2S)-2-azaniumyl-4-methyl-pentanoate;H-Leu-OH; LYSINE HYDROCHLORIDE IMPURITY A [EP IMPURITY]; L-Leucine, Cell Culture Reagent (H-L-Leu-OH); L-Leucine, Vetec(TM) reagent grade, >=98\\%; Certified Reference Material of L-leucine; .alpha.-Amino-.gamma.-methylvaleric acid; L-Leucine, reagent grade, >=98\\% (HPLC); (2S)-alpha-2-amino-4-methylvaleric acid; Pentanoic acid, 2-amino-4-methyl-, (S)-; L-Leucine, tested according to Ph.Eur.; L-Leucine, SAJ special grade, >=99.0\\%; Valeric acid, 2-amino-4-methyl-, (S)-; L-(-)-2-Amino-4-methylpentanoic acid; 2-Amino-4-methylpentanoic acid, (S)-; 2-Amino-4-methylpentanoic acid, (L)-; 2B9FF792-3CA1-4BEA-BC63-6D4E1A86714E; (2S)-2-amino-4-methyl-pentanoic acid; (2S)-2-amino-4-methylpentanoic acid; (2S)-Α-2-amino-4-methylvaleric acid; (2S)-a-2-Amino-4-methylvaleric acid; (S)-2-Amino-4-methyl-pentanoic acid; (2S)-alpha-2-Amino-4-methylvalerate; (S)-2-Amino-4-methylpentanoic acid; 2-Amino-4-methylvaleric acid, (L)-; L-Leucine, BioUltra, >=99.5\\% (NT); 2-Amino-4-methylpentanoic acid (L); Oxirane, 2,3-bis(2-chlorophenyl)-; (S)-2-Amino-4-methylvaleric acid; 2-Amino-4-methylvaleric acid (L); L-2-Amino-4-methylpentanoic acid; (2S)-Α-2-amino-4-methylvalerate; L-Leucine, labeled with tritium; (2S)-2-amino-4-methylpentanoate; (2S)-a-2-Amino-4-methylvalerate; VALINE IMPURITY C [EP IMPURITY]; (S)-2-Amino-4-methylpentanoate; L-.alpha.-Aminoisocaproic acid; 2-Amino-4-methylpentanoic acid; 2-Amino-4-methyl-valeric acid; 2-amino-4-methylvaleric acid; L-alpha-Aminoisocaproic acid; L-Leucine, Vetec(TM), 98.5\\%; (S)-2-Amino-4-methylvalerate; alpha-Aminoisocaproic acid; Norvaline, 4-methyl-, (L)-; 2-Amino-4-methylvalerate; L-alpha-Aminoisocaproate; L-a-Aminoisocaproic acid; LEUCINE (USP MONOGRAPH); Leucina (Latin,Spanish); LEUCINE [USP MONOGRAPH]; Leucina [Latin,Spanish]; LEUCINE [EP MONOGRAPH]; LEUCINE (EP MONOGRAPH); L-Norvaline, 4-methyl-; Leucina (INN-Spanish); Leucina [INN-Spanish]; Leucinum [INN-Latin]; 4-methyl-L-Norvaline; L-a-Aminoisocaproate; Leucinum (INN-Latin); Norvaline, 4-methyl-; iso-C4H9CH(NH2)COOH; IS_LEUCINE-5,5,5-D3; Leucine (L-Leucine); L-Leucine, 99\\%, FG; H-Leu-OH USP grade; (2S)-alpha-leucine; L-LEUCINE [USP-RS]; Leucine [USAN:INN]; Leucine, L Isomer; Leucine, L-Isomer; NCIStruc2_000010; LEUCINE [WHO-DD]; L-LEUCINE [FHFI]; L-Leucine (JP17); L-Isomer Leucine; NCIStruc1_001860; LEUCINE (MART.); LEUCINE [VANDF]; UNII-GMW67QNF9C; L-LEUCINE [FCC]; Leucin [German]; LEUCINE [MART.]; L-LEUCINE [JAN]; (S)-(+)-Leucine; LEUCINE [USAN]; LEUCINE [HSDB]; (2S)-a-Leucine; LEUCINE [INCI]; (2S)-Α-leucine; Leucine (USP); Leucine (H-3); LEUCINE [INN]; Leucine (VAN); L-Leucine,(S); L-(+)-Leucine; LEUCINE [II]; LEUCINE (II); LEUCINE [MI]; 3h-l-leucine; (3H)Leucine; (L)-leucine; LEUCINE, L-; (±)-Leucine; (S)-Leucine; L-Leucine;; Leucine, l; GMW67QNF9C; AI3-08899; L-Leucine; Leucinum; L-leucin; L-Leu-OH; L-Leuzin; H-Leu-OH; Leucina; Leucine; Leuzin; Leucin; L-Leu; H-Leu; LeuOH; Hleu; 1lan; 1f2o; 1usk; leu; l; L-Leucine, (Cell Culture Reagent, Crystalline); (2S)-α-2-Amino-4-methylvaleric acid; (2S)-α-Leucine; Poly-L-leucine; DL-Leucine; Leucine; L-Leucine; Leucine
数据库引用编号
49 个数据库交叉引用编号
- ChEBI: CHEBI:15603
- ChEBI: CHEBI:25017
- KEGG: C00123
- KEGGdrug: D00030
- PubChem: 6106
- PubChem: 857
- HMDB: HMDB0000687
- Metlin: METLIN24
- DrugBank: DB00149
- ChEMBL: CHEMBL291962
- ChEMBL: CHEMBL46575
- Wikipedia: Leucine
- MeSH: Leucine
- ChemIDplus: 0000061905
- MetaCyc: LEU
- KNApSAcK: C00001377
- foodb: FDB000899
- chemspider: 5880
- CAS: 61-90-5
- MoNA: KO001263
- MoNA: KO003279
- MoNA: KO003280
- MoNA: KO001264
- MoNA: KNA00361
- MoNA: PS005202
- MoNA: PB000392
- MoNA: KO001261
- MoNA: PS005201
- MoNA: PB000394
- MoNA: KNA00126
- MoNA: PS005203
- MoNA: PR100496
- MoNA: KO003278
- MoNA: PS005205
- MoNA: PS005204
- MoNA: KO003277
- MoNA: KO003281
- MoNA: PB000393
- MoNA: KO001262
- medchemexpress: HY-N0486
- PMhub: MS000000006
- MetaboLights: MTBLC15603
- PDB-CCD: LEU
- 3DMET: B00034
- NIKKAJI: J1.167C
- LOTUS: LTS0113423
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-677
- PubChem: 3423
- KNApSAcK: 15603
分类词条
相关代谢途径
Reactome(0)
PlantCyc(0)
代谢反应
80 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(4)
- leucine degradation I:
2-oxoglutarate + leu ⟶ 4-methyl-2-oxopentanoate + glt
- superpathway of sterol biosynthesis:
4-methyl-2-oxopentanoate + NAD+ + coenzyme A ⟶ CO2 + NADH + isovaleryl-CoA
- tRNA charging pathway:
ATP + arg ⟶ AMP + diphosphate
- leucine degradation I:
4-methyl-2-oxopentanoate + NAD+ + coenzyme A ⟶ CO2 + NADH + isovaleryl-CoA
WikiPathways(2)
- Glucosinolate biosynthesis from branched-chain amino acid:
2-Oxo-3-methyl-butanoic acid ⟶ L-Valine
- Leucine, isoleucine and valine metabolism:
Methylmalonyl-CoA ⟶ Succinyl-CoA
Plant Reactome(0)
INOH(2)
- Valine,Leucine and Isoleucine degradation ( Valine,Leucine and Isoleucine degradation ):
2-Methyl-3-acetoacetyl-CoA + CoA ⟶ Acetyl-CoA + Propanoyl-CoA
- 2-Oxo-glutaric acid + L-Leucine = L-Glutamic acid + 4-Methyl-2-oxo-pentanoic acid ( Valine,Leucine and Isoleucine degradation ):
2-Oxo-glutaric acid + L-Leucine ⟶ 4-Methyl-2-oxo-pentanoic acid + L-Glutamic acid
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(72)
- beta-Ketothiolase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 2-Methyl-3-hydroxybutyryl-CoA Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Propionic Acidemia:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Maple Syrup Urine Disease:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Methylcrotonyl-CoA Carboxylase Deficiency Type I:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Methylglutaconic Aciduria Type I:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Methylglutaconic Aciduria Type III:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Methylmalonate Semialdehyde Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Methylmalonic Aciduria:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Isovaleric Aciduria:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Methylglutaconic Aciduria Type IV:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Hydroxyisobutyric Acid Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Hydroxyisobutyric Aciduria:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Isobutyryl-CoA Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Isovaleric Acidemia:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- tRNA Charging 2:
Adenosine triphosphate + Hydrogen Ion + L-Arginine ⟶ Adenosine monophosphate + Pyrophosphate
- Leucine Biosynthesis:
3-Methyl-2-oxovaleric acid + Acetyl-CoA + Water ⟶ 2-Isopropylmalic acid + Coenzyme A + Hydrogen Ion
- Secondary Metabolites: Valine and L-Leucine Biosynthesis from Pyruvate:
3-Methyl-2-oxovaleric acid + Acetyl-CoA + Water ⟶ 2-Isopropylmalic acid + Coenzyme A + Hydrogen Ion
- Secondary Metabolites: Leucine Biosynthesis:
3-Methyl-2-oxovaleric acid + Acetyl-CoA + Water ⟶ 2-Isopropylmalic acid + Coenzyme A + Hydrogen Ion
- Operon: Glycine Cleavage System III:
L-Leucine + Leucine-responsive regulatory protein ⟶ Leucine-responsive regulatory protein
- Operon: Lysine Decarboxylase III:
L-Leucine + Leucine-responsive regulatory protein ⟶ Leucine-responsive regulatory protein
- Leucine Biosynthesis:
3-Methyl-2-oxovaleric acid + Acetyl-CoA + Water ⟶ 2-Isopropylmalic acid + Coenzyme A + Hydrogen Ion
- Leucine Biosynthesis:
3-Methyl-2-oxovaleric acid + Acetyl-CoA + Water ⟶ 2-Isopropylmalic acid + Coenzyme A + Hydrogen Ion
- Leucine Degradation:
3-Hydroxy-3-methylglutaryl-CoA ⟶ Acetoacetic acid + Acetyl-CoA
- Valine, Leucine, and Isoleucine Degradation:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 2-Methyl-3-hydroxybutryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylcrotonyl-CoA Carboxylase Deficiency Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type III:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type IV:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Leucine Degradation:
L-Leucine + Oxoglutaric acid ⟶ Ketoleucine + L-Glutamic acid
- Isovaleric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Maple Syrup Urine Disease:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Methylmalonate Semialdehyde Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Methylmalonic Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Propionic Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Acid Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isobutyryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isovaleric Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- beta-Ketothiolase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- tRNA Charging:
Adenosine triphosphate + Hydrogen Ion + L-Arginine ⟶ Adenosine monophosphate + Pyrophosphate
- tRNA Charging:
Adenosine triphosphate + Hydrogen Ion + L-Arginine ⟶ Adenosine monophosphate + Pyrophosphate
- Valine, Leucine, and Isoleucine Degradation:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Valine, Leucine, and Isoleucine Degradation:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Protein Synthesis: Leucine:
Adenosine triphosphate + L-Leucine ⟶ Adenosine monophosphate + Pyrophosphate
- Protein Synthesis: Leucine:
Adenosine triphosphate + L-Leucine ⟶ Adenosine monophosphate + Pyrophosphate
- Protein Synthesis: Leucine:
Adenosine triphosphate + L-Leucine ⟶ Adenosine monophosphate + Pyrophosphate
- Protein Synthesis: Leucine:
Adenosine triphosphate + L-Leucine ⟶ Adenosine monophosphate + Pyrophosphate
- Valine, Leucine, and Isoleucine Degradation:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylcrotonyl-CoA Carboxylase Deficiency Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type III:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type IV:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- beta-Ketothiolase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isovaleric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Maple Syrup Urine Disease:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Methylmalonate Semialdehyde Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 2-Methyl-3-hydroxybutryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Propionic Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Acid Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isobutyryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isovaleric Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- tRNA Charging 2:
Adenosine triphosphate + Hydrogen Ion + L-Arginine ⟶ Adenosine monophosphate + Pyrophosphate
- Leucine Biosynthesis:
3-Methyl-2-oxovaleric acid + Acetyl-CoA + Water ⟶ 2-Isopropylmalic acid + Coenzyme A + Hydrogen Ion
- Secondary Metabolites: Valine and L-Leucine Biosynthesis from Pyruvate:
3-Methyl-2-oxovaleric acid + Acetyl-CoA + Water ⟶ 2-Isopropylmalic acid + Coenzyme A + Hydrogen Ion
- Secondary Metabolites: Leucine Biosynthesis:
3-Methyl-2-oxovaleric acid + Acetyl-CoA + Water ⟶ 2-Isopropylmalic acid + Coenzyme A + Hydrogen Ion
- Methylmalonic Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
PharmGKB(0)
490 个相关的物种来源信息
- 3319 - Abies: LTS0113423
- 90345 - Abies balsamea: 10.1016/S0021-9673(01)97854-9
- 90345 - Abies balsamea: LTS0113423
- 3630 - Abutilon: LTS0113423
- 318060 - Abutilon indicum: 10.1055/S-0028-1097714
- 318060 - Abutilon indicum: LTS0113423
- 4185 - Acanthaceae: LTS0113423
- 13328 - Achillea: LTS0113423
- 13329 - Achillea millefolium: 10.1016/S0031-9422(00)90576-4
- 13329 - Achillea millefolium: LTS0113423
- 482479 - Achillea millefolium var. borealis: 10.1016/S0031-9422(00)90576-4
- 482479 - Achillea millefolium var. borealis: LTS0113423
- 5339 - Agaricaceae: LTS0113423
- 155619 - Agaricomycetes: LTS0113423
- 5340 - Agaricus: LTS0113423
- 56157 - Agaricus campestris: 10.1021/JF60199A047
- 56157 - Agaricus campestris: 10.1515/BCHM2.1908.55.5.395
- 56157 - Agaricus campestris: LTS0113423
- 4449 - Alismataceae: LTS0113423
- 4678 - Allium: LTS0113423
- 4682 - Allium sativum: 10.1016/0378-8741(96)01416-X
- 4682 - Allium sativum: LTS0113423
- 94326 - Alpinia: LTS0113423
- 94327 - Alpinia galanga: 10.1016/0305-1978(86)90092-X
- 94327 - Alpinia galanga: LTS0113423
- 230707 - Alpinia purpurata: 10.1016/0305-1978(86)90092-X
- 230707 - Alpinia purpurata: LTS0113423
- 41955 - Amanita: LTS0113423
- 41956 - Amanita muscaria: 10.1039/CT9222101743
- 41956 - Amanita muscaria: LTS0113423
- 41954 - Amanitaceae: LTS0113423
- 3563 - Amaranthaceae: LTS0113423
- 3564 - Amaranthus: LTS0113423
- 124765 - Amaranthus spinosus: 10.1079/9781780642635.0298
- 124765 - Amaranthus spinosus: LTS0113423
- 4668 - Amaryllidaceae: LTS0113423
- 8292 - Amphibia: LTS0113423
- 4614 - Ananas: LTS0113423
- 4615 - Ananas comosus: 10.1016/0305-1978(86)90092-X
- 4615 - Ananas comosus: LTS0113423
- 4037 - Apiaceae: LTS0113423
- 3701 - Arabidopsis: LTS0113423
- 3702 - Arabidopsis thaliana: 10.1104/PP.109.148031
- 3702 - Arabidopsis thaliana: 10.1111/TPJ.14311
- 3702 - Arabidopsis thaliana: LTS0113423
- 4454 - Araceae: LTS0113423
- 4050 - Araliaceae: LTS0113423
- 131254 - Archontophoenix: LTS0113423
- 180981 - Archontophoenix alexandrae: 10.1016/0305-1978(86)90092-X
- 180981 - Archontophoenix alexandrae: LTS0113423
- 115440 - Areca: LTS0113423
- 184783 - Areca catechu: 10.1016/0305-1978(86)90092-X
- 184783 - Areca catechu: LTS0113423
- 4710 - Arecaceae: LTS0113423
- 6660 - Artemia: LTS0113423
- 85549 - Artemia salina: 10.1021/JF60200A008
- 85549 - Artemia salina: LTS0113423
- 38009 - Artemiidae: LTS0113423
- 4219 - Artemisia: LTS0113423
- 72332 - Artemisia absinthium: 10.1007/BF00600846
- 72332 - Artemisia absinthium: LTS0113423
- 6656 - Arthropoda: LTS0113423
- 4890 - Ascomycota: LTS0113423
- 40552 - Asparagaceae: LTS0113423
- 4210 - Asteraceae: LTS0113423
- 7600 - Asteriidae: LTS0113423
- 7588 - Asteroidea: LTS0113423
- 91061 - Bacilli: LTS0113423
- 2 - Bacteria: LTS0113423
- 318051 - Bambusa textilis McClure,Schizostachyum chinense Rendle: -
- 5204 - Basidiomycota: LTS0113423
- 7091 - Bombyx Mori L.: -
- 6658 - Branchiopoda: LTS0113423
- 3705 - Brassica: LTS0113423
- 3708 - Brassica napus: 10.1021/JF00011A007
- 3708 - Brassica napus: LTS0113423
- 3700 - Brassicaceae: LTS0113423
- 4613 - Bromeliaceae: LTS0113423
- 37796 - Buccinidae: LTS0113423
- 3593 - Cactaceae: LTS0113423
- 3820 - Cajanus: LTS0113423
- 3821 - Cajanus cajan: 10.1055/S-2006-960880
- 3821 - Cajanus cajan: LTS0113423
- 41495 - Calendula: LTS0113423
- 41496 - Calendula officinalis: 10.29296/25877313-2018-06-01
- 41496 - Calendula officinalis: LTS0113423
- 5475 - Candida: LTS0113423
- 5476 - Candida albicans: LTS0113423
- 3481 - Cannabaceae: LTS0113423
- 3482 - Cannabis: LTS0113423
- 3483 - Cannabis sativa: 10.1021/NP50008A001
- 3483 - Cannabis sativa: LTS0113423
- 4200 - Caprifoliaceae: LTS0113423
- 3568 - Caryophyllaceae: LTS0113423
- 21019 - Castanea: LTS0113423
- 21020 - Castanea sativa: 10.1016/S0031-9422(00)83785-1
- 21020 - Castanea sativa: LTS0113423
- 3521 - Casuarina: LTS0113423
- 3523 - Casuarina equisetifolia: 10.1079/9781780642635.0298
- 3523 - Casuarina equisetifolia: LTS0113423
- 3520 - Casuarinaceae: LTS0113423
- 123403 - Catha: LTS0113423
- 123405 - Catha edulis: 10.1002/ARDP.19602931105
- 123405 - Catha edulis: LTS0113423
- 4305 - Celastraceae: LTS0113423
- 81097 - Cephalosporium: 10.1271/BBB1961.48.1685
- 81097 - Cephalosporium: LTS0113423
- 95343 - Cephalothecaceae: LTS0113423
- 1804623 - Chenopodiaceae: LTS0113423
- 7540 - Chilopoda: LTS0113423
- 3051 - Chlamydomonadaceae: LTS0113423
- 3052 - Chlamydomonas: LTS0113423
- 3055 - Chlamydomonas reinhardtii: 10.1111/TPJ.12747
- 3055 - Chlamydomonas reinhardtii: LTS0113423
- 3166 - Chlorophyceae: LTS0113423
- 3041 - Chlorophyta: LTS0113423
- 7711 - Chordata: LTS0113423
- 5110 - Claviceps: LTS0113423
- 5111 - Claviceps purpurea: 10.1055/S-0028-1100051
- 5111 - Claviceps purpurea: LTS0113423
- 34397 - Clavicipitaceae: LTS0113423
- 13893 - Cocos: LTS0113423
- 13894 - Cocos nucifera: 10.1016/0305-1978(86)90092-X
- 13894 - Cocos nucifera: LTS0113423
- 41218 - Colchicaceae: LTS0113423
- 13444 - Colchicum: LTS0113423
- 1094124 - Colchicum trigynum: 10.1055/S-0028-1097874
- 1094124 - Colchicum trigynum: LTS0113423
- 4743 - Commelina: LTS0113423
- 4740 - Commelinaceae: LTS0113423
- 28832 - Cucumaria: LTS0113423
- 36326 - Cucumaria frondosa: 10.1021/NP50028A028
- 36326 - Cucumaria frondosa: LTS0113423
- 36325 - Cucumariidae: LTS0113423
- 3660 - Cucurbita: LTS0113423
- 184136 - Cucurbita foetidissima: 10.1021/JF60216A022
- 184136 - Cucurbita foetidissima: LTS0113423
- 3650 - Cucurbitaceae: LTS0113423
- 3367 - Cupressaceae: LTS0113423
- 4609 - Cyperaceae: LTS0113423
- 4610 - Cyperus: LTS0113423
- 1234190 - Cyperus aromaticus: 10.1016/0305-1978(86)90092-X
- 1234190 - Cyperus aromaticus: LTS0113423
- 6668 - Daphnia: LTS0113423
- 6669 - Daphnia pulex: 10.1038/SREP25125
- 6669 - Daphnia pulex: LTS0113423
- 77658 - Daphniidae: LTS0113423
- 4038 - Daucus: LTS0113423
- 4039 - Daucus carota: 10.1016/0008-6215(84)85339-2
- 4039 - Daucus carota: 10.1079/9781780642635.0298
- 4039 - Daucus carota: LTS0113423
- 766764 - Debaryomycetaceae: LTS0113423
- 37818 - Dendrobium: LTS0113423
- 51096 - Dendrobium crumenatum: 10.1016/0305-1978(86)90092-X
- 51096 - Dendrobium crumenatum: LTS0113423
- 42195 - Dieffenbachia: LTS0113423
- 4671 - Dioscoreaceae: LTS0113423
- 44615 - Discinaceae: LTS0113423
- 40129 - Donax: LTS0113423
- 96514 - Donax canniformis: 10.1016/0305-1978(86)90092-X
- 96514 - Donax canniformis: LTS0113423
- 210034 - Donax grandis: 10.1016/0305-1978(86)90092-X
- 210034 - Donax grandis: LTS0113423
- 147541 - Dothideomycetes: LTS0113423
- 7586 - Echinodermata: LTS0113423
- 543 - Enterobacteriaceae: LTS0113423
- 174214 - Epipremnum: LTS0113423
- 78380 - Epipremnum aureum: 10.1016/0305-1978(86)90092-X
- 78380 - Epipremnum aureum: LTS0113423
- 258264 - Epipremnum pinnatum: 10.1016/0305-1978(86)90092-X
- 258264 - Epipremnum pinnatum: LTS0113423
- 561 - Escherichia: LTS0113423
- 562 - Escherichia coli: LTS0113423
- 33682 - Euglenozoa: LTS0113423
- 2759 - Eukaryota: LTS0113423
- 3977 - Euphorbiaceae: LTS0113423
- 46053 - Euphrasia: LTS0113423
- 290213 - Euphrasia officinalis: 10.1055/S-0028-1099453
- 290213 - Euphrasia officinalis: LTS0113423
- 374709 - Euphrasia stricta: 10.1055/S-0028-1099453
- 374709 - Euphrasia stricta: LTS0113423
- 3803 - Fabaceae: LTS0113423
- 3503 - Fagaceae: LTS0113423
- 38944 - Flammulina: LTS0113423
- 38945 - Flammulina velutipes: 10.1111/J.1365-2621.1987.TB13989.X
- 38945 - Flammulina velutipes: LTS0113423
- 4751 - Fungi: LTS0113423
- 1236 - Gammaproteobacteria: LTS0113423
- 6448 - Gastropoda: LTS0113423
- 21472 - Gentianaceae: LTS0113423
- 3310 - Ginkgo: LTS0113423
- 3311 - Ginkgo biloba: 10.1016/S0731-7085(98)00094-6
- 3311 - Ginkgo biloba: LTS0113423
- 3309 - Ginkgoaceae: LTS0113423
- 29811 - Ginkgoopsida: LTS0113423
- 41219 - Gloriosa: LTS0113423
- 41220 - Gloriosa superba: 10.1016/0305-1978(86)90092-X
- 41220 - Gloriosa superba: LTS0113423
- 3846 - Glycine: LTS0113423
- 3847 - Glycine max: 10.1007/BF00576124
- 3847 - Glycine max: LTS0113423
- 33160 - Gyromitra: LTS0113423
- 33161 - Gyromitra esculenta: 10.1021/JF60199A047
- 33161 - Gyromitra esculenta: LTS0113423
- 54723 - Hansenia: LTS0113423
- 54724 - Hansenia weberbaueriana: 10.1248/CPB.41.926
- 54724 - Hansenia weberbaueriana: LTS0113423
- 4051 - Hedera: LTS0113423
- 4052 - Hedera helix: 10.1016/S0731-7085(98)00094-6
- 4052 - Hedera helix: LTS0113423
- 85353 - Hedera hibernica: 10.1016/S0731-7085(98)00094-6
- 85353 - Hedera hibernica: LTS0113423
- 7705 - Holothuroidea: LTS0113423
- 9604 - Hominidae: LTS0113423
- 9605 - Homo: LTS0113423
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-012-0464-Y
- 9606 - Homo sapiens: 10.1038/NBT.2488
- 9606 - Homo sapiens: LTS0113423
- 228586 - Humulus Scandens (Lour.) Merr.: -
- 51023 - Hydrilla: LTS0113423
- 51024 - Hydrilla verticillata: 10.1016/0305-1978(86)90092-X
- 51024 - Hydrilla verticillata: LTS0113423
- 26319 - Hydrocharitaceae: LTS0113423
- 8418 - Hylidae: LTS0113423
- 80649 - Hymenogastraceae: LTS0113423
- 71944 - Hypholoma: LTS0113423
- 72129 - Hypholoma fasciculare: 10.1055/S-0028-1097581
- 72129 - Hypholoma fasciculare: LTS0113423
- 20685 - Indigofera: LTS0113423
- 520844 - Indigofera hendecaphylla: 10.1021/JF60189A002
- 520844 - Indigofera hendecaphylla: LTS0113423
- 539088 - Indigofera hirsuta: 10.1021/JF60189A002
- 539088 - Indigofera hirsuta: LTS0113423
- 3089969 - Indigofera pilosa: LTS0113423
- 138272 - Indigofera schimperi: 10.1021/JF60189A002
- 138272 - Indigofera schimperi: LTS0113423
- 304104 - Iochroma: LTS0113423
- 304105 - Iochroma fuchsioides: 10.1021/NP50078A017
- 304105 - Iochroma fuchsioides: LTS0113423
- 3995 - Jatropha: LTS0113423
- 454931 - Jatropha gossypiifolia: 10.1016/0031-9422(71)85055-0
- 454931 - Jatropha gossypiifolia: 10.1016/S0031-9422(00)80544-0
- 454931 - Jatropha gossypiifolia: LTS0113423
- 13100 - Juniperus: LTS0113423
- 58039 - Juniperus communis: LTS0113423
- 244307 - Juniperus communis var. communis: 10.1016/S0021-9673(01)97854-9
- 244307 - Juniperus communis var. communis: LTS0113423
- 114265 - Juniperus occidentalis: 10.1016/S0021-9673(01)97854-9
- 114265 - Juniperus occidentalis: LTS0113423
- 466205 - Juniperus scopulorum: 10.1016/S0021-9673(01)97854-9
- 466205 - Juniperus scopulorum: LTS0113423
- 5653 - Kinetoplastea: LTS0113423
- 4136 - Lamiaceae: LTS0113423
- 87005 - Lantana: LTS0113423
- 126435 - Lantana camara: 10.1079/9781780642635.0298
- 126435 - Lantana camara: LTS0113423
- 147548 - Leotiomycetes: LTS0113423
- 4447 - Liliopsida: LTS0113423
- 8370 - Litoria: LTS0113423
- 681275 - Litoria verreauxii: 10.1038/SDATA.2018.33
- 681275 - Litoria verreauxii: LTS0113423
- 3963 - Loranthaceae: LTS0113423
- 60583 - Luidia: LTS0113423
- 72670 - Luidia ciliaris: 10.1021/NP50028A028
- 72670 - Luidia ciliaris: LTS0113423
- 60582 - Luidiidae: LTS0113423
- 3398 - Magnoliopsida: LTS0113423
- 3629 - Malvaceae: LTS0113423
- 40674 - Mammalia: LTS0113423
- 4619 - Marantaceae: LTS0113423
- 7608 - Marthasterias: LTS0113423
- 7609 - Marthasterias glacialis: 10.1021/NP50028A028
- 7609 - Marthasterias glacialis: LTS0113423
- 33208 - Metazoa: LTS0113423
- 3537 - Mirabilis: LTS0113423
- 3538 - Mirabilis jalapa: 10.1079/9781780642635.0298
- 3538 - Mirabilis jalapa: LTS0113423
- 6447 - Mollusca: LTS0113423
- 3487 - Moraceae: LTS0113423
- 5193 - Morchella: LTS0113423
- 60347 - Morchella angusticeps: 10.1021/JF60199A047
- 60347 - Morchella angusticeps: LTS0113423
- 62754 - Morchella crassipes: 10.1021/JF60199A047
- 62754 - Morchella crassipes: LTS0113423
- 1579548 - Morchella deliciosa: 10.1021/JF60199A047
- 1579548 - Morchella deliciosa: LTS0113423
- 39407 - Morchella esculenta: 10.1021/JF60199A047
- 39407 - Morchella esculenta: LTS0113423
- 5192 - Morchellaceae: LTS0113423
- 168074 - Murdannia: LTS0113423
- 428249 - Murdannia nudiflora: 10.1016/0305-1978(86)90092-X
- 428249 - Murdannia nudiflora: LTS0113423
- 10066 - Muridae: LTS0113423
- 10088 - Mus: LTS0113423
- 10090 - Mus musculus: LTS0113423
- 10090 - Mus musculus: NA
- 4640 - Musa: LTS0113423
- 89151 - Musa × paradisiaca: 10.1016/0305-1978(86)90092-X
- 4637 - Musaceae: LTS0113423
- 37240 - Myxotrichaceae: LTS0113423
- 78133 - Myxotrichum: 10.1016/0305-1978(86)90092-X
- 78133 - Myxotrichum: LTS0113423
- 57632 - Neptunea: LTS0113423
- 167137 - Neptunea antiqua: 10.1016/0041-0101(89)90038-X
- 167137 - Neptunea antiqua: LTS0113423
- 4085 - Nicotiana: LTS0113423
- 4097 - Nicotiana tabacum: 10.1007/BF02660305
- 4097 - Nicotiana tabacum: LTS0113423
- 3536 - Nyctaginaceae: LTS0113423
- 42451 - Onchidiidae: LTS0113423
- 69681 - Onchidium: 10.1016/0305-1978(86)90092-X
- 69681 - Onchidium: LTS0113423
- 45173 - Oncidium: 10.1016/0305-1978(86)90092-X
- 45173 - Oncidium: LTS0113423
- 3881 - Onobrychis: LTS0113423
- 1441993 - Onobrychis kachetica: 10.1007/BF00565728
- 1441993 - Onobrychis kachetica: LTS0113423
- 106975 - Opuntia: LTS0113423
- 371859 - Opuntia ficus-indica: 10.1055/S-1999-14037
- 371859 - Opuntia ficus-indica: LTS0113423
- 4747 - Orchidaceae: LTS0113423
- 91896 - Orobanchaceae: LTS0113423
- 4053 - Panax: LTS0113423
- 4054 - Panax ginseng: 10.1021/JF00093A051
- 4054 - Panax ginseng: LTS0113423
- 4724 - Pandanaceae: LTS0113423
- 4725 - Pandanus: LTS0113423
- 1165086 - Pandanus odorifer: 10.1016/0305-1978(86)90092-X
- 1165086 - Pandanus odorifer: LTS0113423
- 7688 - Parastichopus: LTS0113423
- 1497336 - Parastichopus regalis: 10.1021/NP50028A028
- 1497336 - Parastichopus regalis: LTS0113423
- 59064 - Peliosanthes: LTS0113423
- 148715 - Pentaclethra: LTS0113423
- 148716 - Pentaclethra macrophylla: 10.1007/BF02666050
- 148716 - Pentaclethra macrophylla: LTS0113423
- 147549 - Pezizomycetes: LTS0113423
- 862241 - Physalacriaceae: LTS0113423
- 3328 - Picea: LTS0113423
- 3330 - Picea glauca: 10.1016/S0021-9673(01)97854-9
- 3330 - Picea glauca: LTS0113423
- 3335 - Picea mariana: 10.1016/S0021-9673(01)97854-9
- 3335 - Picea mariana: LTS0113423
- 3331 - Picea pungens: 10.1016/S0021-9673(01)97854-9
- 3331 - Picea pungens: LTS0113423
- 3318 - Pinaceae: LTS0113423
- 58019 - Pinopsida: LTS0113423
- 3337 - Pinus: LTS0113423
- 3339 - Pinus contorta: 10.1016/S0021-9673(01)97854-9
- 3339 - Pinus contorta: LTS0113423
- 77912 - Pinus densiflora: 10.1248/YAKUSHI1947.107.4_279
- 77912 - Pinus densiflora: LTS0113423
- 55062 - Pinus ponderosa: 10.1016/S0021-9673(01)97854-9
- 55062 - Pinus ponderosa: 10.1034/J.1399-3054.1990.790104.X
- 55062 - Pinus ponderosa: LTS0113423
- 3887 - Pisum: LTS0113423
- 3888 - Pisum sativum: 10.1007/BF00574236
- 3888 - Pisum sativum: 10.1016/S0031-9422(00)85399-6
- 3888 - Pisum sativum: LTS0113423
- 208194 - Pisum sativum subsp. sativum: 10.1007/BF00574236
- 208194 - Pisum sativum subsp. sativum: LTS0113423
- 33090 - Plants: -
- 36657 - Pluteaceae: LTS0113423
- 21861 - Pogostemon: LTS0113423
- 28511 - Pogostemon cablin: 10.1021/JF304466T
- 28511 - Pogostemon cablin: LTS0113423
- 16367 - Pontederiaceae: LTS0113423
- 3754 - Prunus: LTS0113423
- 3758 - Prunus domestica: 10.1021/JF00017A016
- 3758 - Prunus domestica: LTS0113423
- 42385 - Pseudocnus: LTS0113423
- 135621 - Pseudomonadaceae: LTS0113423
- 286 - Pseudomonas: LTS0113423
- 287 - Pseudomonas aeruginosa: LTS0113423
- 303 - Pseudomonas putida: LTS0113423
- 3356 - Pseudotsuga: LTS0113423
- 3357 - Pseudotsuga menziesii: 10.1016/S0021-9673(01)97854-9
- 3357 - Pseudotsuga menziesii: LTS0113423
- 71950 - Psilocybe: LTS0113423
- 3889 - Psophocarpus: LTS0113423
- 3891 - Psophocarpus tetragonolobus: 10.1111/J.1365-2621.1985.TB10514.X
- 3891 - Psophocarpus tetragonolobus: LTS0113423
- 5296 - Puccinia: LTS0113423
- 5297 - Puccinia graminis: 10.1139/V60-033
- 5297 - Puccinia graminis: LTS0113423
- 5262 - Pucciniaceae: LTS0113423
- 162484 - Pucciniomycetes: LTS0113423
- 46332 - Rhynchospora: LTS0113423
- 906937 - Rhynchospora colorata: 10.1016/0305-1978(86)90092-X
- 906937 - Rhynchospora colorata: LTS0113423
- 2872799 - Ripariosida: LTS0113423
- 108447 - Ripariosida hermaphrodita: LTS0113423
- 3764 - Rosa: LTS0113423
- 3745 - Rosaceae: LTS0113423
- 24966 - Rubiaceae: LTS0113423
- 13659 - Ruellia: LTS0113423
- 441035 - Ruellia tuberosa: 10.1079/9781780642635.0298
- 441035 - Ruellia tuberosa: LTS0113423
- 4891 - Saccharomycetes: LTS0113423
- 4450 - Sagittaria: LTS0113423
- 4451 - Sagittaria sagittifolia: 10.1016/0305-1978(86)90092-X
- 4451 - Sagittaria sagittifolia: LTS0113423
- 590 - Salmonella: LTS0113423
- 28901 - Salmonella enterica: 10.1039/C3MB25598K
- 28901 - Salmonella enterica: LTS0113423
- 3958 - Santalaceae: LTS0113423
- 41364 - Scolopendra: LTS0113423
- 55038 - Scolopendra subspinipes: 10.1515/BCHM2.1962.328.1.266
- 55038 - Scolopendra subspinipes: LTS0113423
- 41363 - Scolopendridae: LTS0113423
- 53922 - Senna: LTS0113423
- 346985 - Senna obtusifolia: 10.1021/JF00102A014
- 346985 - Senna obtusifolia: LTS0113423
- 77655 - Sida: LTS0113423
- 108447 - Sida hermaphrodita: 10.1007/BF00607552
- 92921 - Silybum Marianum: -
- 4070 - Solanaceae: LTS0113423
- 147550 - Sordariomycetes: LTS0113423
- 35916 - Spermacoce: LTS0113423
- 2491924 - Spermacoce pusilla: 10.4268/CJCMM20120313
- 2491924 - Spermacoce pusilla: LTS0113423
- 90964 - Staphylococcaceae: LTS0113423
- 1279 - Staphylococcus: LTS0113423
- 1280 - Staphylococcus aureus: LTS0113423
- 13273 - Stellaria: LTS0113423
- 13274 - Stellaria media: 10.1007/S10600-010-9710-6
- 13274 - Stellaria media: LTS0113423
- 7687 - Stichopodidae: LTS0113423
- 55493 - Stratiotes: LTS0113423
- 55494 - Stratiotes aloides: 10.1021/NP800769G
- 55494 - Stratiotes aloides: LTS0113423
- 35493 - Streptophyta: LTS0113423
- 40562 - Strophariaceae: LTS0113423
- 46108 - Suaeda: LTS0113423
- 224153 - Suaeda aegyptiaca: 10.4197/SCI.16-1.4
- 224153 - Suaeda aegyptiaca: LTS0113423
- 1735025 - Suaeda nudiflora: 10.1002/JPS.3030350906
- 1735025 - Suaeda nudiflora: LTS0113423
- 39241 - Swertia: LTS0113423
- 166611 - Swertia angustifolia: LTS0113423
- 1460260 - Swertia angustifolia var. pulchella: 10.1055/S-0028-1097323
- 1460260 - Swertia angustifolia var. pulchella: LTS0113423
- 44981 - Tacca: LTS0113423
- 2487666 - Tacca cristata: 10.1016/0305-1978(86)90092-X
- 2487666 - Tacca cristata: LTS0113423
- 167567 - Tacca integrifolia: 10.1016/0305-1978(86)90092-X
- 167567 - Tacca integrifolia: LTS0113423
- 1898022 - Taccaceae: LTS0113423
- 56538 - Telekia: LTS0113423
- 56539 - Telekia speciosa: 10.1007/BF00633415
- 56539 - Telekia speciosa: LTS0113423
- 49990 - Thymus: LTS0113423
- 2019959 - Thymus transcaucasicus: 10.1007/BF00575075
- 2019959 - Thymus transcaucasicus: LTS0113423
- 58023 - Tracheophyta: LTS0113423
- 4741 - Tradescantia: LTS0113423
- 428268 - Tradescantia spathacea: 10.1016/0305-1978(86)90092-X
- 428268 - Tradescantia spathacea: LTS0113423
- 709071 - Treculia: LTS0113423
- 709072 - Treculia africana: 10.1007/BF02666050
- 709072 - Treculia africana: LTS0113423
- 5690 - Trypanosoma: LTS0113423
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 5691 - Trypanosoma brucei: LTS0113423
- 5654 - Trypanosomatidae: LTS0113423
- 3358 - Tsuga: LTS0113423
- 3359 - Tsuga heterophylla: 10.1016/S0021-9673(01)97854-9
- 3359 - Tsuga heterophylla: LTS0113423
- 19952 - Valeriana: LTS0113423
- 19953 - Valeriana officinalis: 10.1055/S-2006-959538
- 19953 - Valeriana officinalis: LTS0113423
- 19944 - Valerianaceae: LTS0113423
- 21910 - Verbenaceae: LTS0113423
- 44607 - Verpa: LTS0113423
- 44609 - Verpa bohemica: 10.1021/JF60199A047
- 44609 - Verpa bohemica: LTS0113423
- 157791 - Vigna Radiata: -
- 33090 - Viridiplantae: LTS0113423
- 1003255 - Viscaceae: LTS0113423
- 3971 - Viscum: LTS0113423
- 3972 - Viscum album: 10.1515/BCHM2.1960.322.1.273
- 3972 - Viscum album: LTS0113423
- 36658 - Volvariella: LTS0113423
- 36659 - Volvariella volvacea: LTS0113423
- 4642 - Zingiberaceae: LTS0113423
- 9606 - 人: -
- 33090 - 天竺黄: -
- 33090 - 水飞蓟: -
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Ai-Ai Chou, Chung-Hui Lin, Yen-Chen Chang, Hui-Wen Chang, Yi-Chen Lin, Chia-Chen Pi, Yao-Ming Kan, Hao-Fen Chuang, Hui-Wen Chen. Antiviral activity of Vigna radiata extract against feline coronavirus in vitro.
The veterinary quarterly.
2024 Dec; 44(1):1-13. doi:
10.1080/01652176.2024.2349665
. [PMID: 38712855] - Mihaly Mezei, Rauf Latif, Terry F Davies. The full-length TSH receptor is stabilized by TSH ligand.
Journal of molecular graphics & modelling.
2024 06; 129(?):108725. doi:
10.1016/j.jmgm.2024.108725
. [PMID: 38373379] - Lin Chen, Xin Wang, Yi Zou, Man-Cheng Tang. Genome Mining of a Fungal Polyketide Synthase-Nonribosomal Peptide Synthetase Hybrid Megasynthetase Pathway to Synthesize a Phytotoxic N-Acyl Amino Acid.
Organic letters.
2024 May; 26(17):3597-3601. doi:
10.1021/acs.orglett.4c01039
. [PMID: 38661293] - Yuguo Niu, Xiaoming Hu, Yali Song, Cunchuan Wang, Peixiang Luo, Shihong Ni, Fuxin Jiao, Ju Qiu, Weihong Jiang, Sheng Yang, Jun Chen, Rui Huang, Haizhou Jiang, Shanghai Chen, Qiwei Zhai, Jia Xiao, Feifan Guo. Blautia Coccoides is a Newly Identified Bacterium Increased by Leucine Deprivation and has a Novel Function in Improving Metabolic Disorders.
Advanced science (Weinheim, Baden-Wurttemberg, Germany).
2024 May; 11(18):e2309255. doi:
10.1002/advs.202309255
. [PMID: 38429906] - David M Goldman, Cassandra B Warbeck, Micaela C Karlsen. Completely Plant-Based Diets That Meet Energy Requirements for Resistance Training Can Supply Enough Protein and Leucine to Maximize Hypertrophy and Strength in Male Bodybuilders: A Modeling Study.
Nutrients.
2024 Apr; 16(8):. doi:
10.3390/nu16081122
. [PMID: 38674813] - Shu Zhang, Yuqin Huang, Changbing Zheng, Liyi Wang, Yanbing Zhou, Wentao Chen, Yehui Duan, Tizhong Shan. Leucine improves the growth performance, carcass traits, and lipid nutritional quality of pork in Shaziling pigs.
Meat science.
2024 Apr; 210(?):109435. doi:
10.1016/j.meatsci.2024.109435
. [PMID: 38246121] - Yujing Sun, Fan Liu, Mengzhu Zeng, Xinjie Zhang, Ying Cui, Zhaodan Chen, Lei Wang, Yuanpeng Xu, Jinbin Wu, Shengya Guo, Xian Dong, Suomeng Dong, Yan Wang, Yuanchao Wang. The ETI-dependent receptor-like kinase 1 positively regulates effector-triggered immunity by stabilizing NLR-required for cell death 4 in Nicotiana benthamiana.
The New phytologist.
2024 Apr; 242(2):576-591. doi:
10.1111/nph.19596
. [PMID: 38362937] - Xuewen Xu, Wei Wang, Yujiao Du, Ziyi Wang, Xueli Liu, Ming Tan, Xiaojian Lin, Jun Xu, Congxi Cai, Xiaohua Qi, Qiang Xu, Aimin Wei, Haipeng Fu, Shengli Du, Sally A Mackenzie, Yuhui Wang, Xuehao Chen, Xiaodong Yang. A single-nucleotide substitution in the leucine-rich-repeat-only gene CsLRR1 confers powdery mildew resistance in cucumber.
Plant communications.
2024 Mar; 5(3):100774. doi:
10.1016/j.xplc.2023.100774
. [PMID: 38018036] - María A Muñoz-Vargas, Jorge Taboada, Salvador González-Gordo, José M Palma, Francisco J Corpas. Characterization of leucine aminopeptidase (LAP) activity in sweet pepper fruits during ripening and its inhibition by nitration and reducing events.
Plant cell reports.
2024 Mar; 43(4):92. doi:
10.1007/s00299-024-03179-x
. [PMID: 38466441] - Vandana Sekhar, Houssine Ikhlef, Alexandra Bunea, Viet S Nguyen, Johan Joo, Mukund P Tantak, Holly Moots, Otto Phanstiel. The Development of LAT1 Efflux Agonists as Mechanistic Probes of Cellular Amino Acid Stress.
Biomolecules.
2024 Mar; 14(3):. doi:
10.3390/biom14030326
. [PMID: 38540746] - Shujin Wang, Yinying Han, Ruimin Liu, Mengqian Hou, Dietbert Neumann, Jun Zhang, Fang Wang, Yumeng Li, Xueya Zhao, Francesco Schianchi, Chao Dai, Lizhong Liu, Miranda Nabben, Jan F C Glatz, Xin Wu, Xifeng Lu, Xi Li, Joost J F P Luiken. Glycolysis-Mediated Activation of v-ATPase by Nicotinamide Mononucleotide Ameliorates Lipid-Induced Cardiomyopathy by Repressing the CD36-TLR4 Axis.
Circulation research.
2024 03; 134(5):505-525. doi:
10.1161/circresaha.123.322910
. [PMID: 38422177] - Yen-Hua Huang, Zhihao Jiang, Qingdan Du, Kuok Yap, Aurélien Bigot, Quentin Kaas, Conan K Wang, David J Craik. Scanning mutagenesis identifies residues that improve the long-term stability and insecticidal activity of cyclotide kalata B1.
The Journal of biological chemistry.
2024 Mar; 300(3):105682. doi:
10.1016/j.jbc.2024.105682
. [PMID: 38272233] - Yulin Yang, Shushu Wang, Chunxiang Sheng, Jialin Tan, Junmin Chen, Tianjiao Li, Xiaoqin Ma, Haipeng Sun, Xiao Wang, Libin Zhou. Branched-chain amino acid catabolic defect promotes α-cell proliferation via activating mTOR signaling.
Molecular and cellular endocrinology.
2024 Mar; 582(?):112143. doi:
10.1016/j.mce.2023.112143
. [PMID: 38158148] - Sarathadevi Rajendran, Patrick Silcock, Phil Bremer. Volatile Organic Compounds (VOCs) Produced by Levilactobacillus brevis WLP672 Fermentation in Defined Media Supplemented with Different Amino Acids.
Molecules (Basel, Switzerland).
2024 Feb; 29(4):. doi:
10.3390/molecules29040753
. [PMID: 38398505] - Philippe J M Pinckaers, Michelle E G Weijzen, Lisanne H P Houben, Antoine H Zorenc, Imre W K Kouw, Lisette C P G M de Groot, Lex B Verdijk, Tim Snijders, Luc J C van Loon. The muscle protein synthetic response following corn protein ingestion does not differ from milk protein in healthy, young adults.
Amino acids.
2024 Feb; 56(1):8. doi:
10.1007/s00726-023-03377-z
. [PMID: 38315260] - Xiangyu Zhang, Divya Kapoor, Se-Jin Jeong, Alan Fappi, Jeremiah Stitham, Vasavi Shabrish, Ismail Sergin, Eman Yousif, Astrid Rodriguez-Velez, Yu-Sheng Yeh, Arick Park, Arif Yurdagul, Oren Rom, Slava Epelman, Joel D Schilling, Marco Sardiello, Abhinav Diwan, Jaehyung Cho, Nathan O Stitziel, Ali Javaheri, Irfan J Lodhi, Bettina Mittendorfer, Babak Razani. Identification of a leucine-mediated threshold effect governing macrophage mTOR signalling and cardiovascular risk.
Nature metabolism.
2024 Feb; 6(2):359-377. doi:
10.1038/s42255-024-00984-2
. [PMID: 38409323] - Ayelen M Blanco, Femilarani Antomagesh, Sara Comesaña, Jose L Soengas, Mathilakath M Vijayan. Chronic cortisol-stimulation enhances hypothalamus-specific enrichment of metabolites in the rainbow trout brain.
American journal of physiology. Endocrinology and metabolism.
2024 Jan; ?(?):. doi:
10.1152/ajpendo.00410.2023
. [PMID: 38294699] - Qiu-Hua Gu, Hao Xu, Xin Cao, Xi Cheng, Jun-Ya Jia, Tie-Kun Yan. The protease inhibitor E64d might attenuate the development of experimental anti-glomerular basement membrane disease through regulating the activation of Th1 cells.
International immunopharmacology.
2024 Jan; 129(?):111594. doi:
10.1016/j.intimp.2024.111594
. [PMID: 38295547] - Jingwen Zhang, Mengtian Han, Shu Wang, Ruixia Wu, Qipeng Zhao, Meihua Chen, Yongmao Yang, Jing Zhang, Xianli Meng, Yi Zhang, Zhang Wang. Study on the anti-mitochondrial apoptosis mechanism of Erigeron breviscapus injection based on UPLC-Q-TOF-MS metabolomics and molecular docking in rats with cerebral ischemia-reperfusion injury.
Journal of ethnopharmacology.
2024 Jan; 319(Pt 2):117310. doi:
10.1016/j.jep.2023.117310
. [PMID: 37827296] - Bruce R Hoar, Holly B Ernest, Laura N L Johnson, Melanie E F LaCava, Douglas J Sandidge, Ken Gerow, Michelle R Mousel, Nathan L Galloway, William Swain, Jennifer L Malmberg. Ecology and Chronic Wasting Disease Epidemiology Shape Prion Protein Gene Variation in Rocky Mountain Elk (Cervus elaphus nelsoni).
Journal of wildlife diseases.
2024 Jan; ?(?):. doi:
10.7589/jwd-d-23-00062
. [PMID: 38287919] - Yuting Deng, Mengsi Hu, Shufang Huang, Nian Fu. Molecular mechanism and therapeutic significance of essential amino acids in metabolically associated fatty liver disease.
The Journal of nutritional biochemistry.
2024 Jan; 126(?):109581. doi:
10.1016/j.jnutbio.2024.109581
. [PMID: 38219809] - Anna Szuba-Trznadel, Anna Jama-Rodzeńska, Bernard Gałka, Rafał Ramut, Zygmunt Król, Daniel Jarki, Dragana Latković. The impact of the distribution method for struvite (Crystal Green) on the chemical composition of soybean and their utility in animal nutrition.
Scientific reports.
2024 01; 14(1):1093. doi:
10.1038/s41598-024-51625-3
. [PMID: 38212440] - Hui Yang, Yan-Ru Liu, Zhong-Xing Song, Zhi-Shu Tang, Ai-Ling Jia, Ming-Geng Wang, Jin-Ao Duan. Study on the underlying mechanism of Poria in intervention of arrhythmia zebrafish by integrating metabolomics and network pharmacology.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2024 Jan; 122(?):155143. doi:
10.1016/j.phymed.2023.155143
. [PMID: 37890443] - Peter Lüth, Henry Sila Nzioki, Claire Sands Baker, David Chandler Sands. A microbial bioherbicide for Striga hermonthica control: production, development, and effectiveness of a seed coating agent.
Pest management science.
2024 Jan; 80(1):149-155. doi:
10.1002/ps.7522
. [PMID: 37139834] - Sergej Nadalin, Lena Zatković, Vjekoslav Peitl, Dalibor Karlović, Maja Vilibić, Ante Silić, Sanja Dević Pavlić, Alena Buretić-Tomljanović. An association between PPARα-L162V polymorphism and increased plasma LDL cholesterol levels after risperidone treatment.
Prostaglandins, leukotrienes, and essential fatty acids.
2024 Jan; 200(?):102604. doi:
10.1016/j.plefa.2023.102604
. [PMID: 38113727] - Haonan Yu, Yaorong Niu, Xinyu Lei, Chunlin Xie, Xianghua Yan. Multi-Omics Analysis Reveals Sphingomyelin Accumulation, Glycerolipids Loss, and Disorders of Lipid Metabolism Regulated by Leucine Deprivation in the Liver of Mice.
Molecular nutrition & food research.
2024 Jan; 68(2):e2300567. doi:
10.1002/mnfr.202300567
. [PMID: 38059795] - Jinxia Wu, Zhenchang Li, Hongwei Zhu, Yajie Chang, Quanquan Li, Jing Chen, Guiping Shen, Jianghua Feng. Childhood overweight and obesity: age stratification contributes to the differences in metabolic characteristics.
Obesity (Silver Spring, Md.).
2023 Dec; ?(?):. doi:
10.1002/oby.23964
. [PMID: 38112246] - Fanglei Xue, Zhen Zhao, Shuying Gu, Meixin Chen, Jing Xu, Xuegang Luo, Jingen Li, Chaoguang Tian. The transcriptional factor Clr-5 is involved in cellulose degradation through regulation of amino acid metabolism in Neurospora crassa.
BMC biotechnology.
2023 11; 23(1):50. doi:
10.1186/s12896-023-00823-4
. [PMID: 38031036] - Boyoung Kim, Wenjia Yu, Haseong Kim, Qian Dong, Sera Choi, Maxim Prokchorchick, Alberto P Macho, Kee Hoon Sohn, Cécile Segonzac. A plasma membrane nucleotide-binding leucine-rich repeat receptor mediates the recognition of the Ralstonia pseudosolanacearum effector RipY in Nicotiana benthamiana.
Plant communications.
2023 Nov; 4(6):100640. doi:
10.1016/j.xplc.2023.100640
. [PMID: 37349986] - Xinbo Zhou, Junjie Zhang, Jian Shen, Baojing Cheng, Chongpeng Bi, Qingquan Ma. Branched-chain amino acid modulation of lipid metabolism, gluconeogenesis, and inflammation in a finishing pig model: targeting leucine and valine.
Food & function.
2023 Nov; 14(22):10119-10134. doi:
10.1039/d3fo03899h
. [PMID: 37882496] - Ya-Chi Kang, Shyi-Dong Yeh, Tsung-Chi Chen. Leucine 127 of cucurbit chlorotic yellows virus P22 is crucial for its RNA silencing suppression activity and pathogenicity.
Phytopathology.
2023 Nov; ?(?):. doi:
10.1094/phyto-07-23-0227-r
. [PMID: 37913633] - Jiangtao Huang, Jintao Li, Yong Ning, Yalun Ren, Yuexin Shao, Huawen Zhang, Xueyang Zong, Huaiping Shi. Enhancement of PPARα-Inhibited Leucine Metabolism-Stimulated β-Casein Synthesis and Fatty Acid Synthesis in Primary Bovine Mammary Epithelial Cells.
Journal of agricultural and food chemistry.
2023 Nov; 71(43):16184-16193. doi:
10.1021/acs.jafc.3c00712
. [PMID: 37853551] - Haixiang Yu, Xuelian Wu, Jiahui Liang, Ziying Han, Yuansong Xiao, Hao Du, Yihua Liu, Jian Guo, Futian Peng. Genome-wide identification of nucleotide-binding domain leucine-rich repeat (NLR) genes and their association with green peach aphid (Myzus persicae) resistance in peach.
BMC plant biology.
2023 Oct; 23(1):513. doi:
10.1186/s12870-023-04474-7
. [PMID: 37880593] - Jarrett Man, T A Harrington, Kyra Lally, Madelaine E Bartlett. Asymmetric Evolution of Protein Domains in the Leucine-Rich Repeat Receptor-Like Kinase Family of Plant Signaling Proteins.
Molecular biology and evolution.
2023 Oct; 40(10):. doi:
10.1093/molbev/msad220
. [PMID: 37787619] - Junrey C Amas, Philipp E Bayer, Wei Hong Tan, Soodeh Tirnaz, William J W Thomas, David Edwards, Jacqueline Batley. Comparative pangenome analyses provide insights into the evolution of Brassica rapa resistance gene analogues (RGAs).
Plant biotechnology journal.
2023 10; 21(10):2100-2112. doi:
10.1111/pbi.14116
. [PMID: 37431308] - Khong-Sam Chia, Philip Carella. Taking the lead: NLR immune receptor N-terminal domains execute plant immune responses.
The New phytologist.
2023 10; 240(2):496-501. doi:
10.1111/nph.19170
. [PMID: 37525357] - Haibin Jiang, Yeqiang Xia, Sicong Zhang, Zhichao Zhang, Hui Feng, Qi Zhang, Xi Chen, Junhua Xiao, Sen Yang, Mengzhu Zeng, Zhaodan Chen, Haibing Ouyang, Xinyi He, Guangzheng Sun, Jinbin Wu, Suomeng Dong, Wenwu Ye, Zhenchuan Ma, Yan Wang, Yuanchao Wang. The CAP superfamily protein PsCAP1 secreted by Phytophthora triggers immune responses in Nicotiana benthamiana through a leucine-rich repeat receptor-like protein.
The New phytologist.
2023 10; 240(2):784-801. doi:
10.1111/nph.19194
. [PMID: 37615219] - Jason S Shapiro, Hsiang-Chun Chang, Yuki Tatekoshi, Zibo Zhao, Zohra Sattar Waxali, Bong Jin Hong, Haimei Chen, Justin A Geier, Elizabeth T Bartom, Adam De Jesus, Farnaz K Nejad, Amir Mahmoodzadeh, Tatsuya Sato, Lucia Ramos-Alonso, Antonia Maria Romero, Maria Teresa Martinez-Pastor, Shang-Chuan Jiang, Shiv K Sah-Teli, Liming Li, David Bentrem, Gary Lopaschuk, Issam Ben-Sahra, Thomas V O'Halloran, Ali Shilatifard, Sergi Puig, Joy Bergelson, Peppi Koivunen, Hossein Ardehali. Iron drives anabolic metabolism through active histone demethylation and mTORC1.
Nature cell biology.
2023 Oct; 25(10):1478-1494. doi:
10.1038/s41556-023-01225-6
. [PMID: 37749225] - Emma E Crean, Merle Bilstein-Schloemer, Takaki Maekawa, Paul Schulze-Lefert, Isabel M L Saur. A dominant-negative avirulence effector of the barley powdery mildew fungus provides mechanistic insight into barley MLA immune receptor activation.
Journal of experimental botany.
2023 09; 74(18):5854-5869. doi:
10.1093/jxb/erad285
. [PMID: 37474129] - Maïlys Piau, Corinne Schmitt-Keichinger. The Hypersensitive Response to Plant Viruses.
Viruses.
2023 09; 15(10):. doi:
10.3390/v15102000
. [PMID: 37896777] - Marta Vazquez-Vilar, Asun Fernandez-Del-Carmen, Victor Garcia-Carpintero, Margit Drapal, Silvia Presa, Dorotea Ricci, Gianfranco Diretto, José Luis Rambla, Rafael Fernandez-Muñoz, Ana Espinosa-Ruiz, Paul D Fraser, Cathie Martin, Antonio Granell, Diego Orzaez. Dually biofortified cisgenic tomatoes with increased flavonoids and branched-chain amino acids content.
Plant biotechnology journal.
2023 Sep; ?(?):. doi:
10.1111/pbi.14163
. [PMID: 37749961] - Seungyoun Jung, Sarah Silva, Cher M Dallal, Erin LeBlanc, Kenneth Paris, John Shepherd, Linda G Snetselaar, Linda Van Horn, Yuji Zhang, Joanne F Dorgan. Untargeted serum metabolomic profiles and breast density in young women.
Cancer causes & control : CCC.
2023 Sep; ?(?):. doi:
10.1007/s10552-023-01793-w
. [PMID: 37737303] - Jiashen Cai, Crystal Chun Yuen Chong, Ching Yu Cheng, Cynthia Ciwei Lim, Charumathi Sabanayagam. Circulating metabolites and cardiovascular disease in Asians with chronic kidney disease.
Cardiorenal medicine.
2023 Sep; ?(?):. doi:
10.1159/000533741
. [PMID: 37669626] - Alexander Förderer, Jiorgos Kourelis. NLR immune receptors: structure and function in plant disease resistance.
Biochemical Society transactions.
2023 08; 51(4):1473-1483. doi:
10.1042/bst20221087
. [PMID: 37602488] - Hao-Long He, Guo-Shan Zhang, Shan-Feng Xiao, Hong-Hua Liu, Huan Zhong, Xiao-Rong Chang, Qiong Liu, Mi Liu. [Effects of moxibustion at "Tianshu"(ST25) and "Shangjuxu" (ST37) on colonic metabolites and inflammatory factors in rats with Crohn's disease].
Zhen ci yan jiu = Acupuncture research.
2023 Aug; 48(8):736-45. doi:
10.13702/j.1000?0607.20221276
. [PMID: 37614131] - Alessandre C Crispim, Shirley M A Crispim, Jéssica R Rocha, Jeferson S Ursulino, Roberto R Sobrinho, Viviane A Porto, Edson S Bento, Antônio E G Santana, Luiz C Caetano. Light effects on Lasiodiplodia theobromae metabolome cultured in vitro.
Metabolomics : Official journal of the Metabolomic Society.
2023 08; 19(8):75. doi:
10.1007/s11306-023-02041-7
. [PMID: 37580624] - Xiaoyu Liu, Haruna Matsumoto, Tianxing Lv, Chengfang Zhan, Hongda Fang, Qianqian Pan, Haorong Xu, Xiaoyan Fan, Tianyi Chu, Sunlu Chen, Kun Qiao, Youning Ma, Li Sun, Qiangwei Wang, Mengcen Wang. Phyllosphere microbiome induces host metabolic defence against rice false-smut disease.
Nature microbiology.
2023 08; 8(8):1419-1433. doi:
10.1038/s41564-023-01379-x
. [PMID: 37142774] - Peter Schröder, Bang-Yu Hsu, Nora Gutsche, Jana Barbro Winkler, Boris Hedtke, Bernhard Grimm, Claus Schwechheimer. B-GATA factors are required to repress high-light stress responses in Marchantia polymorpha and Arabidopsis thaliana.
Plant, cell & environment.
2023 08; 46(8):2376-2390. doi:
10.1111/pce.14629
. [PMID: 37254806] - Xiaoqiu Wu, Zhangying Wang, Xiaoxiao Liu, Zhiyong Gao, Zhaowu Li. Constitutive expression of nucleotide-binding and leucine-rich repeat gene AtRPS2 enhanced drought and salt tolerance in rice.
Journal of plant physiology.
2023 Aug; 287(?):154048. doi:
10.1016/j.jplph.2023.154048
. [PMID: 37399697] - Ling-Na Chen, Pei-Tong Dou, Yong-Kun Chen, Han-Qi Yang. Mutant IAA21 genes from Dendrocalamus sinicus Chia et J. L. Sun inhibit stem and root growth in transgenic tobacco by interacting with ARF5.
Plant physiology and biochemistry : PPB.
2023 Aug; 201(?):107827. doi:
10.1016/j.plaphy.2023.107827
. [PMID: 37329689] - Kaili Zhu, Changcheng Zhang, Xiaoping Wu, Shangyu Liu, Xueyi Zhao, Ding Yuan, Haixia Zhao. [The mechanism of microcystin leucine-arginine (MC-LR)-induced injury of Sertoli cell immune response and biological behavior].
Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology.
2023 Aug; 39(8):753-758. doi:
. [PMID: 37515343]
- Ashish Sarode, Priyal Patel, Natalia Vargas-Montoya, Ayed Allawzi, Alisa Zhilin-Roth, Saswata Karmakar, Lianne Boeglin, Hongfeng Deng, Shrirang Karve, Frank DeRosa. Inhalable dry powder product (DPP) of mRNA lipid nanoparticles (LNPs) for pulmonary delivery.
Drug delivery and translational research.
2023 Aug; ?(?):. doi:
10.1007/s13346-023-01402-y
. [PMID: 37526881] - Shuai-Shuai Zhang, Lei Li, Ying Wu, Zong-Mei Wu, Can Kong, Li-Li Hong, Si Zhang, Xin-Li Lin, Hou-Wen Lin, Shu-Ping Wang. LC-MS-Guided Isolation of Cyanogripeptides A-C, Cyclolipopeptides with β-Methyl-Leucine Residues, from an Actinoalloteichus cyanogriseus LHW52806.
Journal of natural products.
2023 07; 86(7):1708-1714. doi:
10.1021/acs.jnatprod.3c00127
. [PMID: 37317791] - Joel T Steyer, Richard B Todd. Branched-chain amino acid biosynthesis in fungi.
Essays in biochemistry.
2023 Jul; ?(?):. doi:
10.1042/ebc20230003
. [PMID: 37455545] - Selda Ayça Altıncık, Didem Yıldırımçakar, Esin Avcı, Bayram Özhan, İlknur Girişgen, Selçuk Yüksel. Plasma leucine-rich α-2-glycoprotein 1 - a novel marker of diabetic kidney disease in children and adolescents with type 1 diabetes mellitus?.
Pediatric nephrology (Berlin, Germany).
2023 Jul; ?(?):. doi:
10.1007/s00467-023-06019-4
. [PMID: 37401956] - Soohyun Oh, Sejun Kim, Hyo-Jeong Park, Myung-Shin Kim, Min-Ki Seo, Chih-Hang Wu, Hyun-Ah Lee, Hyun-Soon Kim, Sophien Kamoun, Doil Choi. Nucleotide-binding leucine-rich repeat network underlies nonhost resistance of pepper against the Irish potato famine pathogen Phytophthora infestans.
Plant biotechnology journal.
2023 07; 21(7):1361-1372. doi:
10.1111/pbi.14039
. [PMID: 36912620] - Qi Wang, Zhenning Wu, Huan Xiang, Yuzhi Zhou, Xuemei Qin, Junsheng Tian. Revealing the role of leucine in improving the social avoidance behavior of depression through a combination of untargeted and targeted metabolomics.
Food & function.
2023 Jun; ?(?):. doi:
10.1039/d3fo01876h
. [PMID: 37358784] - Koushik Roy, Koushik Das, Eva Petraskova, Antonin Kouba. Protein from whole-body crayfish homogenate may be a high supplier of leucine or branched-chain amino acids - A call for validation on genus Procambarus sp.
Food chemistry.
2023 Jun; 427(?):136728. doi:
10.1016/j.foodchem.2023.136728
. [PMID: 37393634] - Sara Ahmed, Mai Mansour, Rania A H Ishak, Nahed D Mortada. Customizable Resveratrol Spray-dried Micro-composites for Inhalation as a Promising Contender for Treatment of Idiopathic Pulmonary Fibrosis.
International journal of pharmaceutics.
2023 Jun; ?(?):123117. doi:
10.1016/j.ijpharm.2023.123117
. [PMID: 37315636] - Shefali R Bijwadia, Christiana J Raymond-Pope, Alec M Basten, Mason T Lentz, Thomas J Lillquist, Jarrod A Call, Sarah M Greising. Exploring skeletal muscle tolerance and whole-body metabolic effects of FDA-approved drugs in a volumetric muscle loss model.
Physiological reports.
2023 06; 11(12):e15756. doi:
10.14814/phy2.15756
. [PMID: 37332022] - Jianping Guo, Huiying Wang, Wei Guan, Qin Guo, Jing Wang, Jing Yang, Yaxin Peng, Junhan Shan, Mingyang Gao, Shaojie Shi, Xinxin Shangguan, Bingfang Liu, Shengli Jing, Jing Zhang, Chunxue Xu, Jin Huang, Weiwei Rao, Xiaohong Zheng, Di Wu, Cong Zhou, Bo Du, Rongzhi Chen, Lili Zhu, Yuxian Zhu, Linda L Walling, Qifa Zhang, Guangcun He. A tripartite rheostat controls self-regulated host plant resistance to insects.
Nature.
2023 Jun; 618(7966):799-807. doi:
10.1038/s41586-023-06197-z
. [PMID: 37316670] - Francina J Dijk, Zandrie Hofman, Yvette C Luiking, Matthew J W Furber, Justin D Roberts, Ardy van Helvoort, Miriam van Dijk. Muscle Protein Synthesis with a Hybrid Dairy and Plant-Based Protein Blend (P4) Is Equal to Whey Protein in a Murine Ageing Model after Fasting.
Nutrients.
2023 May; 15(11):. doi:
10.3390/nu15112569
. [PMID: 37299532] - Norio Matsushima, Dashdavaa Batkhishig, Purevjav Enkhbayar, Robert H Kretsinger. A Dual Leucine-Rich Repeat In Proteins From The Eukaryotic Sar Group.
Protein and peptide letters.
2023 May; ?(?):. doi:
10.2174/0929866530666230519160439
. [PMID: 37211850] - Yuchen Sun, Bo Sun, Xuesong Han, Anshan Shan, Qingquan Ma. Leucine supplementation ameliorates early life "programming" of obesity in rats.
Diabetes.
2023 May; ?(?):. doi:
10.2337/db22-0862
. [PMID: 37196349] - Andrei Z Damyanovich, Lisa Avery, James R Staples, K Wayne Marshall. 1H NMR Metabolic Profiling of Synovial Fluid from Patients with Anterior Cruciate Ligament Tears and Hemarthrosis.
Osteoarthritis and cartilage.
2023 May; ?(?):. doi:
10.1016/j.joca.2023.03.016
. [PMID: 37146959] - Chihiro Furumizu, Reidunn Birgitta Aalen. Peptide signaling through leucine-rich repeat receptor kinases: insight into land plant evolution.
The New phytologist.
2023 05; 238(3):977-982. doi:
10.1111/nph.18827
. [PMID: 36811171] - Chuan Chen, Yaqi Zhao, Girma Tabor, Huiqin Nian, Joanie Phillips, Petra Wolters, Qin Yang, Peter Balint-Kurti. A leucine-rich repeat receptor kinase gene confers quantitative susceptibility to maize southern leaf blight.
The New phytologist.
2023 05; 238(3):1182-1197. doi:
10.1111/nph.18781
. [PMID: 36721267] - Lei Song, Yating Zhou, Yuxia Zhai, Xiangxiang Huo, Mengying Chen, Hong Shi, Yingli Yu, Yue Zhang, Kun Zhou. Sub-chronic toxicity of an aqueous extract of Epimedium sagittatum (Sieb. Et Zucc.) Maxim. in rats.
Drug and chemical toxicology.
2023 May; 46(3):451-461. doi:
10.1080/01480545.2022.2050749
. [PMID: 35287533] - Julia T Tanzo, Veronica L Li, Amanda L Wiggenhorn, Maria Dolores Moya-Garzon, Wei Wei, Xuchao Lyu, Wentao Dong, Usman A Tahir, Zsu-Zsu Chen, Daniel E Cruz, Shuliang Deng, Xu Shi, Shuning Zheng, Yan Guo, Mario Sims, Monther Abu-Remaileh, James G Wilson, Robert E Gerszten, Jonathan Z Long, Mark D Benson. CYP4F2 is a human-specific determinant of circulating N-acyl amino acid levels.
The Journal of biological chemistry.
2023 Apr; ?(?):104764. doi:
10.1016/j.jbc.2023.104764
. [PMID: 37121548] - Juhae Kim, Juyoung Kim, Young Hye Kwon. Leucine supplementation in maternal high-fat diet alleviated adiposity and glucose intolerance of adult mice offspring fed a postweaning high-fat diet.
Lipids in health and disease.
2023 Apr; 22(1):50. doi:
10.1186/s12944-023-01812-4
. [PMID: 37061742] - Dandan Wang, Hong He, Cong Wei. Cellular and potential molecular mechanisms underlying transovarial transmission of the obligate symbiont Sulcia in cicadas.
Environmental microbiology.
2023 04; 25(4):836-852. doi:
10.1111/1462-2920.16310
. [PMID: 36515176] - Yingchao Sun, Xiaojie Wang, Feiyang Liu, Haoyu Guo, Jianfeng Wang, Zetong Wei, Zhensheng Kang, Chunlei Tang. A Leucine-Rich Repeat Receptor-like Kinase TaBIR1 Contributes to Wheat Resistance against Puccinia striiformis f. sp. tritici.
International journal of molecular sciences.
2023 Mar; 24(7):. doi:
10.3390/ijms24076438
. [PMID: 37047410] - Parisa Mansouri Rad, Leila Rahbarnia, Azam Safary, Azizeh ShadiDizaji, Zahra Maani. The Synthetic Antimicrobial Peptide Derived From Melittin Displays Low Toxicity and Anti-infectious Properties.
Probiotics and antimicrobial proteins.
2023 Mar; ?(?):. doi:
10.1007/s12602-023-10066-6
. [PMID: 36988897] - Qian Zhang, Yongquan Li, Linghui Li, Yushan Cheng, Fangkun Yu, Rui Li, Shuguang Hou. Impact of Solid-State Properties on the Aerosolization Performance of Spray-Dried Curcumin Powders.
AAPS PharmSciTech.
2023 Mar; 24(3):78. doi:
10.1208/s12249-023-02536-5
. [PMID: 36918500] - Glenda Alquicer, Emad Ibrahim, Midatharahally N Maruthi, Jiban Kumar Kundu. Identifying Putative Resistance Genes for Barley Yellow Dwarf Virus-PAV in Wheat and Barley.
Viruses.
2023 03; 15(3):. doi:
10.3390/v15030716
. [PMID: 36992425] - Neeraj Kumar Verma, Rikeshwer Prasad Dewangan, Munesh Kumar Harioudh, Jimut Kanti Ghosh. Introduction of a β-leucine residue instead of leucine9 and glycine10 residues in Temporin L for improved cell selectivity, stability and activity against planktonic and biofilm of methicillin resistant S. aureus.
Bioorganic chemistry.
2023 Feb; 134(?):106440. doi:
10.1016/j.bioorg.2023.106440
. [PMID: 36870201] - Jawahar Singh, Praveen Kumar Verma. Role of Nod factor receptors and its allies involved in nitrogen fixation.
Planta.
2023 Feb; 257(3):54. doi:
10.1007/s00425-023-04090-7
. [PMID: 36780015] - Yifeng Shi, Xiyue Bao, Xiaopan Song, Yuyang Liu, Yuxiang Li, Xianming Chen, Xiaoping Hu. The LRR-RLK Protein TaSERK1 Positively Regulates High-temperature Seedling Plant Resistance to Puccinia striiformis f. sp. tritici through Interacting with TaDJA7.
Phytopathology.
2023 Feb; ?(?):. doi:
10.1094/phyto-11-22-0429-r
. [PMID: 36774558] - Hongyan Zhang, Shupei Wang, Lanhua Yi, Kaifang Zeng. Tryptophan enhances biocontrol efficacy of Metschnikowia citriensis FL01 against postharvest fungal diseases of citrus fruit by increasing pulcherriminic acid production.
International journal of food microbiology.
2023 Feb; 386(?):110013. doi:
10.1016/j.ijfoodmicro.2022.110013
. [PMID: 36436410] - Mélia Bonnamy, Agnès Pinel-Galzi, Lucille Gorgues, Véronique Chalvon, Eugénie Hébrard, Sophie Chéron, Tràng Hiếu Nguyen, Nils Poulicard, François Sabot, Hélène Pidon, Antony Champion, Stella Césari, Thomas Kroj, Laurence Albar. Rapid evolution of an RNA virus to escape recognition by a rice nucleotide-binding and leucine-rich repeat domain immune receptor.
The New phytologist.
2023 02; 237(3):900-913. doi:
10.1111/nph.18532
. [PMID: 36229931] - Marina Martín-Dacal, Patricia Fernández-Calvo, Pedro Jiménez-Sandoval, Gemma López, María Garrido-Arandía, Diego Rebaque, Irene Del Hierro, Diego José Berlanga, Miguel Ángel Torres, Varun Kumar, Hugo Mélida, Luis F Pacios, Julia Santiago, Antonio Molina. Arabidopsis immune responses triggered by cellulose- and mixed-linked glucan-derived oligosaccharides require a group of leucine-rich repeat malectin receptor kinases.
The Plant journal : for cell and molecular biology.
2023 Feb; 113(4):833-850. doi:
10.1111/tpj.16088
. [PMID: 36582174] - Enrica Saponara, Carlos Penno, Vanessa Orsini, Zhong-Yi Wang, Audrey Fischer, Alexandra Aebi, Meztli L Matadamas-Guzman, Virginie Brun, Benoit Fischer, Margaret Brousseau, Peter O'Donnell, Jonathan Turner, Alexandra Graff Meyer, Laura Bollepalli, Giovanni d'Ario, Guglielmo Roma, Walter Carbone, Stefano Annunziato, Michael Obrecht, Nicolau Beckmann, Chandra Saravanan, Arnaud Osmont, Philipp Tropberger, Shola M Richards, Christel Genoud, Svenja Ley, Iwona Ksiazek, Florian Nigsch, Luigi M Terracciano, Heiko S Schadt, Tewis Bouwmeester, Jan S Tchorz, Heinz Ruffner. Loss of Hepatic Leucine-Rich Repeat-Containing G-Protein Coupled Receptors 4 and 5 Promotes Nonalcoholic Fatty Liver Disease.
The American journal of pathology.
2023 02; 193(2):161-181. doi:
10.1016/j.ajpath.2022.10.008
. [PMID: 36410420] - Zhou Zhenghua, J I Jianbin, Wang Hongxia, Yan Lin, Kang Hongchang. Qingchi San treats ulcerative colitis in mice by inhibiting the nuclear factor-kappa B signaling pathway and Nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 inflammasome formation.
Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan.
2023 02; 43(1):68-77. doi:
10.19852/j.cnki.jtcm.20220928.001
. [PMID: 36639997] - Haiwen Chen, Jintao Cheng, Yuan Huang, Qiusheng Kong, Zhilong Bie. Comparative analysis of sugar, acid, and volatile compounds in CPPU-treated and honeybee-pollinated melon fruits during different developmental stages.
Food chemistry.
2023 Feb; 401(?):134072. doi:
10.1016/j.foodchem.2022.134072
. [PMID: 36108381] - P Chen, H Wu, T Bian, L Yang, H Jiang. Prodigiosin improves acute lung injury in a rat model of rheumatoid arthritis via down-regulating the nuclear factor kappaB/nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 signaling pathway.
Journal of physiology and pharmacology : an official journal of the Polish Physiological Society.
2023 Feb; 74(1):. doi:
10.26402/jpp.2023.10.05
. [PMID: 37245232] - Fauziahanim Zakaria, Muhammad Tayyab Akhtar, Wan Ibrahim Wan Norhamidah, Abu Bakar Noraini, Azira Muhamad, Shamarina Shohaimi, Maulidiani, Hafandi Ahmad, Intan Safinar Ismail, Nor Hadiani Ismail, Khozirah Shaari. Centella asiatica (L.) Urb. Extract ameliorates branched-chain amino acid (BCAA) metabolism in acute reserpine-induced stress zebrafish model via 1H Nuclear Magnetic Resonance (NMR)-based metabolomics approach.
Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.
2023 Feb; 264(?):109501. doi:
10.1016/j.cbpc.2022.109501
. [PMID: 36336330] - L H Kan, X Xu, Y M Chen, X M Wang, J L Li, F H Shen. [Correlation between intestinal and respiratory flora and their metabolites in a rat pneumoconiosis model].
Zhonghua lao dong wei sheng zhi ye bing za zhi = Zhonghua laodong weisheng zhiyebing zazhi = Chinese journal of industrial hygiene and occupational diseases.
2023 Jan; 41(1):21-30. doi:
10.3760/cma.j.cn121094-20211011-00495
. [PMID: 36725290] - Dingliang Zhang, Zongyu Gao, He Zhang, Yizhou Yang, Xinxin Yang, Xiaofei Zhao, Hailong Guo, Ugrappa Nagalakshmi, Dawei Li, Savithramma P Dinesh-Kumar, Yongliang Zhang. The MAPK-Alfin-like 7 module negatively regulates ROS scavenging genes to promote NLR-mediated immunity.
Proceedings of the National Academy of Sciences of the United States of America.
2023 Jan; 120(3):e2214750120. doi:
10.1073/pnas.2214750120
. [PMID: 36623197] - Jolanta Bugajska, Joanna Berska, Małgorzata Wójcik, Krystyna Sztefko. Amino acid profile in overweight and obese prepubertal children - can simple biochemical tests help in the early prevention of associated comorbidities?.
Frontiers in endocrinology.
2023; 14(?):1274011. doi:
10.3389/fendo.2023.1274011
. [PMID: 37964971] - Jing Chen, Yanxiao Zhao, Xuanjie Luo, Hao Hong, Tongqing Yang, Shen Huang, Chunli Wang, Hongyu Chen, Xin Qian, Mingfeng Feng, Zhengqiang Chen, Yongxin Dong, Zhenchuan Ma, Jia Li, Min Zhu, Sheng Yang He, Savithramma P Dinesh-Kumar, Xiaorong Tao. NLR surveillance of pathogen interference with hormone receptors induces immunity.
Nature.
2023 01; 613(7942):145-152. doi:
10.1038/s41586-022-05529-9
. [PMID: 36517600] - Kanako Takahashi, Luying Chen, Misa Sayama, Mian Wu, Mariko Kato Hayashi, Tomohiko Irie, Tomohiko Ohwada, Kaoru Sato. Leucine 434 is essential for docosahexaenoic acid-induced augmentation of L-glutamate transporter current.
The Journal of biological chemistry.
2023 01; 299(1):102793. doi:
10.1016/j.jbc.2022.102793
. [PMID: 36509140] - Yujin He, Yonghui Hu, Mei Yuan, Weiwei Xu, Yaqin Du, Jinguo Liu. Prognostic and therapeutic implication of m6A methylation in Crohn disease.
Medicine.
2022 Dec; 101(51):e32399. doi:
10.1097/md.0000000000032399
. [PMID: 36595818] - Elena de Marco Castro, Giacomo Valli, Caroline Buffière, Christelle Guillet, Brian Mullen, Jedd Pratt, Katy Horner, Susanne Naumann-Gola, Stephanie Bader-Mittermaier, Matteo Paganini, Giuseppe De Vito, Helen M Roche, Dominique Dardevet. Peripheral Amino Acid Appearance Is Lower Following Plant Protein Fibre Products, Compared to Whey Protein and Fibre Ingestion, in Healthy Older Adults despite Optimised Amino Acid Profile.
Nutrients.
2022 Dec; 15(1):. doi:
10.3390/nu15010035
. [PMID: 36615694] - Mang-Mang Wang, Yang-Yang Huang, Wen-Bin Liu, Kang Xiao, Xi Wang, Hui-Xing Guo, Yi-Lin Zhang, Jing-Wei Fan, Xiang-Fei Li, Guang-Zhen Jiang. Interactive effects of dietary leucine and isoleucine affect amino acid profile and metabolism through AKT/TOR signaling pathways in blunt snout bream (Megalobrama amblycephala).
Fish physiology and biochemistry.
2022 Dec; ?(?):. doi:
10.1007/s10695-022-01161-6
. [PMID: 36525145] - Kun Chen, Zuqi Shi, Shengwei Zhang, Yanxin Wang, Xue Xia, Yan Jiang, Sadia Gull, Lin Chen, Hui Guo, Tingkai Wu, Hongyu Zhang, Jinglan Liu, Weiwen Kong. Methylation and expression of rice NLR genes after low temperature stress.
Gene.
2022 Dec; 845(?):146830. doi:
10.1016/j.gene.2022.146830
. [PMID: 35995119] - He Wang, Yanqing Han, Caijuan Wu, Baojun Zhang, Yaofei Zhao, Jiao Zhu, Yuanhuai Han, Jianming Wang. Comparative transcriptome profiling of resistant and susceptible foxtail millet responses to Sclerospora graminicola infection.
BMC plant biology.
2022 Dec; 22(1):567. doi:
10.1186/s12870-022-03963-5
. [PMID: 36471245] - Naveenkumar Athiyannan, Peng Zhang, Robert McIntosh, Soma Chakraborty, Timothy Hewitt, Dhara Bhatt, Kerrie Forrest, Narayana Upadhyaya, Burkard Steuernagel, Sanu Arora, Julio Huerta, Mathew Hayden, Brande B H Wulff, Michael Ayliffe, Lee T Hickey, Evans Lagudah, Sambasivam Periyannan. Haplotype variants of the stripe rust resistance gene Yr28 in Aegilops tauschii.
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik.
2022 Dec; 135(12):4327-4336. doi:
10.1007/s00122-022-04221-w
. [PMID: 36173416] - L A Kovalchuk, V A Mishchenko, L V Chernaya, V P Snit'ko, V N Bolshakov. Assessment of Seasonal Variability of the Spectrum of Free Amino Acids in the Blood Plasma of the Boreal Bat Species (Myotis dasycneme Boie, 1825) of the Ural Fauna.
Doklady. Biochemistry and biophysics.
2022 Dec; 507(1):268-272. doi:
10.1134/s1607672922060060
. [PMID: 36786984] - Maria T Creighton, Dugassa Nemie-Feyissa, Nabeela Zaman, Sverre S Johansen, Hege Dysjaland, Behzad Heidari, Cathrine Lillo. Loss of LEUCINE CARBOXYL METHYLTRANSFERASE 1 interferes with metal homeostasis in Arabidopsis and enhances susceptibility to environmental stresses.
Journal of plant physiology.
2022 Dec; 279(?):153843. doi:
10.1016/j.jplph.2022.153843
. [PMID: 36265226]