Glycoprotein-phospho-D-mannose (BioDeep_00000003227)
Main id: BioDeep_00000398101
Secondary id: BioDeep_00000861637, BioDeep_00001868346, BioDeep_00001894506
human metabolite natural product
代谢物信息卡片
化学式: C6H12O6 (180.0634)
中文名称: DL-甘露糖
谱图信息:
最多检出来源 Homo sapiens(plant) 34.54%
分子结构信息
SMILES: C(C(C(C(C(C=O)O)O)O)O)O
InChI: InChI=1S/C6H12O6/c7-1-3(9)5(11)6(12)4(10)2-8/h1,3-6,8-12H,2H2/t3-,4+,5+,6-/m0/s1
描述信息
Glycoprotein-phospho-D-mannose, also known as (2S,3S,4R,5R)-2,3,4,5,6-Pentahydroxyhexanal or Mannose homopolymer, is classified as a member of the Hexoses. Hexoses are monosaccharides in which the sugar unit is a is a six-carbon containing moeity. Glycoprotein-phospho-D-mannose is considered to be soluble (in water) and acidic
同义名列表
数据库引用编号
26 个数据库交叉引用编号
- ChEBI: CHEBI:37675
- ChEBI: CHEBI:17118
- KEGG: C01582
- PubChem: 3037556
- PubChem: 161658
- PubChem: 24749
- HMDB: HMDB0062473
- Metlin: METLIN348
- DrugBank: DB11735
- DrugBank: DB12907
- MeSH: Galactose
- MeSH: Mannose
- MetaCyc: CPD-15373
- CAS: 287100-74-7
- CAS: 31103-86-3
- CAS: 30142-85-9
- CAS: 26566-61-0
- CAS: 19217-07-3
- CAS: 6038-51-3
- PMhub: MS000008540
- ChEBI: CHEBI:28061
- PubChem: 4738
- KNApSAcK: C00019681
- NIKKAJI: J4.597G
- KNApSAcK: 28061
- LOTUS: LTS0276202
分类词条
相关代谢途径
Reactome(9)
PlantCyc(0)
代谢反应
328 个相关的代谢反应过程信息。
Reactome(69)
- Digestion and absorption:
H2O + limit dextrin ⟶ Glc + Mal + maltotriose
- Digestion:
H2O + limit dextrin ⟶ Glc + Mal + maltotriose
- Digestion of dietary carbohydrate:
H2O + limit dextrin ⟶ Glc + Mal + maltotriose
- Digestion and absorption:
H2O + limit dextrin ⟶ Glc + Mal + maltotriose
- Digestion:
H2O + limit dextrin ⟶ Glc + Mal + maltotriose
- Digestion of dietary carbohydrate:
H2O + limit dextrin ⟶ Glc + Mal + maltotriose
- Digestion and absorption:
H2O ⟶ Mal + maltotriose
- Digestion:
H2O ⟶ Mal + maltotriose
- Digestion of dietary carbohydrate:
H2O ⟶ Mal + maltotriose
- Digestion and absorption:
H2O ⟶ Mal + maltotriose
- Digestion:
H2O ⟶ Mal + maltotriose
- Digestion of dietary carbohydrate:
H2O ⟶ Mal + maltotriose
- Digestion and absorption:
CHEST + H2O ⟶ CHOL + LCFAs
- Digestion:
CHEST + H2O ⟶ CHOL + LCFAs
- Digestion of dietary carbohydrate:
H2O ⟶ Mal + maltotriose
- Digestion and absorption:
CHEST + H2O ⟶ CHOL + LCFAs
- Digestion:
CHEST + H2O ⟶ CHOL + LCFAs
- Digestion of dietary carbohydrate:
H2O ⟶ Mal + maltotriose
- Digestion and absorption:
CHEST + H2O ⟶ CHOL + LCFAs
- Digestion:
CHEST + H2O ⟶ CHOL + LCFAs
- Digestion of dietary carbohydrate:
H2O ⟶ Mal + maltotriose
- Digestion and absorption:
CHEST + H2O ⟶ CHOL + LCFAs
- Digestion:
CHEST + H2O ⟶ CHOL + LCFAs
- Digestion of dietary carbohydrate:
H2O ⟶ Mal + maltotriose
- Digestion and absorption:
CHEST + H2O ⟶ CHOL + LCFAs
- Digestion:
CHEST + H2O ⟶ CHOL + LCFAs
- Digestion of dietary carbohydrate:
H2O ⟶ Mal + maltotriose
- Digestion and absorption:
CHEST + H2O ⟶ CHOL + LCFAs
- Digestion:
CHEST + H2O ⟶ CHOL + LCFAs
- Digestion of dietary carbohydrate:
H2O ⟶ Mal + maltotriose
- Digestion and absorption:
CHEST + H2O ⟶ CHOL + LCFAs
- Digestion:
CHEST + H2O ⟶ CHOL + LCFAs
- Digestion of dietary carbohydrate:
H2O ⟶ Mal + maltotriose
- Digestion and absorption:
CHEST + H2O ⟶ CHOL + LCFAs
- Digestion:
CHEST + H2O ⟶ CHOL + LCFAs
- Digestion of dietary carbohydrate:
H2O ⟶ Mal + maltotriose
- Digestion and absorption:
CHEST + H2O ⟶ CHOL + LCFAs
- Digestion:
CHEST + H2O ⟶ CHOL + LCFAs
- Digestion of dietary carbohydrate:
H2O ⟶ Mal + maltotriose
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Galactose catabolism:
UDP-Gal ⟶ UDP-Glc
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Galactose catabolism:
ATP + Gal ⟶ ADP + Gal1P
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Galactose catabolism:
ATP + Gal ⟶ ADP + Gal1P
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Galactose catabolism:
ATP + Gal ⟶ ADP + Gal1P
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Galactose catabolism:
ATP + Gal ⟶ ADP + Gal1P
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Galactose catabolism:
ATP + Gal ⟶ ADP + Gal1P
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Galactose catabolism:
ATP + Gal ⟶ ADP + Gal1P
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Carbohydrate metabolism:
ATP + PYR + carbon dioxide ⟶ ADP + OAA + Pi
- Galactose catabolism:
ATP + Gal ⟶ ADP + Gal1P
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Galactose catabolism:
ATP + Gal ⟶ ADP + Gal1P
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Galactose catabolism:
ATP + Gal ⟶ ADP + Gal1P
BioCyc(8)
- GDP-mannose metabolism:
ATP + D-mannose ⟶ ADP + D-mannose 6-phosphate + H+
- mannitol degradation II:
D-mannitol + NAD+ ⟶ aldehydo-D-mannose + H+ + NADH
- mannitol degradation II:
ATP + D-mannose ⟶ ADP + D-mannose 6-phosphate + H+
- mannitol degradation II:
ATP + D-mannose ⟶ ADP + D-mannose 6-phosphate + H+
- GDP-mannose biosynthesis:
ATP + D-mannose ⟶ ADP + D-mannose 6-phosphate + H+
- mannogen metabolism:
[mannose β-1,2]n+1-mannose ⟶ D-mannose + [mannose β-1,2]n-mannose
- superpathway of central carbon metabolism:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- GDP-mannose metabolism:
ATP + D-mannose ⟶ ADP + D-mannose 6-phosphate + H+
WikiPathways(0)
Plant Reactome(231)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Galactose degradation II:
ATP + Gal ⟶ ADP + Gal1P
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
ATP + beta-D-glucose ⟶ ADP + H+ + beta-D-glucose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Galactose degradation II:
ATP + Gal ⟶ ADP + Gal1P
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
ATP + beta-D-glucose ⟶ ADP + H+ + beta-D-glucose-6-phosphate
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Galactose degradation II:
Fru + UDP-Glc ⟶ Suc + UDP
INOH(0)
PlantCyc(20)
- mannitol degradation II:
D-mannitol + NAD+ ⟶ aldehydo-D-mannose + H+ + NADH
- mannitol degradation II:
D-mannitol + NAD+ ⟶ aldehydo-D-mannose + H+ + NADH
- mannitol degradation II:
aldehydo-D-mannose ⟶ D-mannopyranose
- mannitol degradation II:
D-mannitol + NAD+ ⟶ aldehydo-D-mannose + H+ + NADH
- mannitol degradation II:
aldehydo-D-mannose ⟶ D-mannopyranose
- mannitol degradation II:
D-mannitol + NAD+ ⟶ aldehydo-D-mannose + H+ + NADH
- mannitol degradation II:
aldehydo-D-mannose ⟶ D-mannopyranose
- mannitol degradation II:
D-mannitol + NAD+ ⟶ aldehydo-D-mannose + H+ + NADH
- mannitol degradation II:
D-mannitol + NAD+ ⟶ aldehydo-D-mannose + H+ + NADH
- mannitol degradation II:
aldehydo-D-mannose ⟶ D-mannopyranose
- mannitol degradation II:
aldehydo-D-mannose ⟶ D-mannopyranose
- mannitol degradation II:
D-mannitol + NAD+ ⟶ aldehydo-D-mannose + H+ + NADH
- mannitol degradation II:
D-mannitol + NAD+ ⟶ aldehydo-D-mannose + H+ + NADH
- mannitol degradation II:
aldehydo-D-mannose ⟶ D-mannopyranose
- mannitol degradation II:
aldehydo-D-mannose ⟶ D-mannopyranose
- mannitol degradation II:
aldehydo-D-mannose ⟶ D-mannopyranose
- mannitol degradation II:
D-mannitol + NAD+ ⟶ aldehydo-D-mannose + H+ + NADH
- mannitol degradation II:
aldehydo-D-mannose ⟶ D-mannopyranose
- mannitol degradation II:
D-mannitol + NAD+ ⟶ aldehydo-D-mannose + H+ + NADH
- mannitol degradation II:
D-mannitol + NAD+ ⟶ aldehydo-D-mannose + H+ + NADH
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
120 个相关的物种来源信息
- 182998 - Acanthospermum: LTS0276202
- 182999 - Acanthospermum hispidum: 10.1016/0378-8741(90)90067-4
- 182999 - Acanthospermum hispidum: LTS0276202
- 240008 - Aerva: LTS0276202
- 231460 - Afraegle paniculata: 10.1039/JR9610005234
- 4678 - Allium: LTS0276202
- 4681 - Allium ampeloprasum: 10.1515/ZNB-1967-0633
- 130426 - Allium chinense: 10.1016/J.CARBPOL.2014.10.019
- 130426 - Allium chinense: LTS0276202
- 166816 - Allium obliquum: 10.1515/ZNB-1967-0633
- 166816 - Allium obliquum: LTS0276202
- 25641 - Aloe: 10.1007/BF02975367
- 25641 - Aloe: LTS0276202
- 3563 - Amaranthaceae: LTS0276202
- 4668 - Amaryllidaceae: LTS0276202
- 4037 - Apiaceae: LTS0276202
- 661339 - Aronia melanocarpa: 10.1111/J.1365-2621.1988.TB13577.X
- 107450 - Ascochyta medicaginicola: 10.1371/JOURNAL.PONE.0206641
- 40552 - Asparagaceae: LTS0276202
- 4686 - Asparagus officinalis: 10.1021/JA02215A010
- 51383 - Asphodelaceae: LTS0276202
- 4210 - Asteraceae: LTS0276202
- 2 - Bacteria: LTS0276202
- 243967 - Bryonia alba: 10.1056/NEJM186707250762502
- 3820 - Cajanus: LTS0276202
- 3821 - Cajanus cajan: 10.1002/JSFA.2740500106
- 3821 - Cajanus cajan: LTS0276202
- 3481 - Cannabaceae: LTS0276202
- 3482 - Cannabis: LTS0276202
- 3483 - Cannabis sativa: 10.1021/NP50008A001
- 3483 - Cannabis sativa: LTS0276202
- 3055 - Chlamydomonas reinhardtii: 10.1111/TPJ.12747
- 3166 - Chlorophyceae: LTS0276202
- 3041 - Chlorophyta: LTS0276202
- 86864 - Codonopsis pilosula: 10.1248/BPB.31.1860
- 3781 - Crassulaceae: LTS0276202
- 3650 - Cucurbitaceae: LTS0276202
- 312560 - Cuphea appendiculata: 10.1055/S-2006-959585
- 4038 - Daucus: LTS0276202
- 4039 - Daucus carota: 10.1016/0008-6215(84)85339-2
- 4039 - Daucus carota: LTS0276202
- 2759 - Eukaryota: LTS0276202
- 3803 - Fabaceae: LTS0276202
- 4232 - Helianthus annuus: 10.1021/JF60197A017
- 1937595 - Himatanthus articulatus: 10.1590/1809-4392200331110
- 9606 - Homo sapiens: -
- 99291 - Hovenia: LTS0276202
- 99292 - Hovenia dulcis: 10.1016/0378-8741(90)90067-4
- 99292 - Hovenia dulcis: LTS0276202
- 162809 - Inga: LTS0276202
- 486084 - Inga spectabilis: 10.1016/0378-8741(90)90067-4
- 486084 - Inga spectabilis: LTS0276202
- 13579 - Juncus effusus: 10.1007/BF00567064
- 141317 - Justicia adhatoda: 10.1016/S0031-9422(00)83845-5
- 3326 - Larix laricina: 10.1139/V60-037
- 48042 - Levisticum officinale: 10.1248/YAKUSHI1947.110.10_746
- 4447 - Liliopsida: LTS0276202
- 82327 - Lilium pumilum: 10.1016/0031-9422(89)80363-2
- 1218746 - Lilium tenuifolium: 10.1016/0031-9422(89)80363-2
- 3398 - Magnoliopsida: LTS0276202
- 47085 - Medicago lupulina: 10.5586/ASBP.1984.048
- 4146 - Olea europaea: 10.1016/S0308-8146(00)00268-5
- 265230 - Oligomeris linifolia: 10.1016/J.BSE.2013.03.020
- 40717 - Paeonia peregrina:
- 235861 - Parmotrema cetratum: 10.1016/0031-9422(93)85345-R
- 159421 - Passiflora foetida: 10.1021/NP50019A012
- 196582 - Passiflora oerstedii: 10.1021/NP50015A025
- 5076 - Penicillium chrysogenum: 10.1016/S0021-9673(01)98382-7
- 3885 - Phaseolus vulgaris: 10.1515/BCHM2.1910.68.2.93
- 3888 - Pisum sativum: 10.1080/10826079608006294
- 3888 - Pisum sativum: 10.1515/BCHM2.1910.68.2.93
- 4544 - Poa: LTS0276202
- 1504338 - Poa huecu: 10.1021/NP50052A040
- 1504338 - Poa huecu: LTS0276202
- 4479 - Poaceae: LTS0276202
- 16195 - Polygonatum: LTS0276202
- 157169 - Ramalina fraxinea: 10.5586/ASBP.1979.002
- 99300 - Rehmannia glutinosa:
- 3608 - Rhamnaceae: LTS0276202
- 202994 - Rhodiola: LTS0276202
- 202995 - Rhodiola algida: 10.1007/BF00567883
- 202995 - Rhodiola algida: LTS0276202
- 4547 - Saccharum officinarum: 10.1016/S0021-9673(01)88498-3
- 3086 - Scenedesmaceae: LTS0276202
- 3087 - Scenedesmus: LTS0276202
- 104103 - Scenedesmus acutus: LTS0276202
- 190522 - Siraitia: LTS0276202
- 190515 - Siraitia grosvenorii: 10.1016/0378-8741(90)90067-4
- 190515 - Siraitia grosvenorii: LTS0276202
- 1883 - Streptomyces: 10.3390/MICROORGANISMS7090360
- 1883 - Streptomyces: 10.3390/MOLECULES22091396
- 1883 - Streptomyces: LTS0276202
- 68174 - Streptomyces anthocyanicus:
- 1911 - Streptomyces griseus: LTS0276202
- 1911 - Streptomyces griseus: NA
- 402648 - Streptomyces hainanensis:
- 1912 - Streptomyces hygroscopicus:
- 1912 - Streptomyces hygroscopicus: 10.3390/MICROORGANISMS7090360
- 1912 - Streptomyces hygroscopicus: 10.3390/MOLECULES22091396
- 1912 - Streptomyces hygroscopicus: LTS0276202
- 1916 - Streptomyces lividans:
- 2315329 - Streptomyces sporangiiformans:
- 2315329 - Streptomyces sporangiiformans: 10.3390/MICROORGANISMS7090360
- 2315329 - Streptomyces sporangiiformans: 10.3390/MOLECULES22091396
- 2315329 - Streptomyces sporangiiformans: LTS0276202
- 2062 - Streptomycetaceae: LTS0276202
- 35493 - Streptophyta: LTS0276202
- 20019 - Symplocaceae: LTS0276202
- 55372 - Symplocos: LTS0276202
- 98319 - Symplocos tinctoria: 10.1016/0378-8741(90)90067-4
- 98319 - Symplocos tinctoria: LTS0276202
- 189786 - Tamarix aphylla: 10.1055/S-0028-1099548
- 56539 - Telekia speciosa: 10.1007/BF00633415
- 91192 - Tetradesmus: LTS0276202
- 3088 - Tetradesmus obliquus: LTS0276202
- 2019959 - Thymus transcaucasicus: 10.1007/BF00575075
- 58023 - Tracheophyta: LTS0276202
- 767879 - Vachellia tortuosa: 10.1016/S0031-9422(97)00478-0
- 115715 - Vigna subterranea: 10.1016/S0308-8146(99)00186-7
- 33090 - Viridiplantae: LTS0276202
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Sanjay Singh Rawat, Shital Sandhya, Ashverya Laxmi. Complex genetic interaction between glucose sensor HXK1 and E3 SUMO ligase SIZ1 in regulating plant morphogenesis.
Plant signaling & behavior.
2024 Dec; 19(1):2341506. doi:
10.1080/15592324.2024.2341506
. [PMID: 38607960] - Shubha Sharma, Seema Chaurasia, Sandeep Dinday, Gaurav Srivastava, Anamika Singh, Chandan Singh Chanotiya, Sumit Ghosh. High-level biosynthesis of enantiopure germacrene D in yeast.
Applied microbiology and biotechnology.
2024 Dec; 108(1):50. doi:
10.1007/s00253-023-12885-7
. [PMID: 38183482] - Zhilan Hu, Ya Long, Xiangyue Li, Zhiqin Jia, Mingyan Wang, Xuemei Huang, Xiaolan Yu. Effects of asiaticoside on the model of gestational diabetes mellitus in HTR-8/svneo cells via PI3K/AKT pathway.
Journal of obstetrics and gynaecology : the journal of the Institute of Obstetrics and Gynaecology.
2024 Dec; 44(1):2350761. doi:
10.1080/01443615.2024.2350761
. [PMID: 38785148] - Shiya Huang, Xueqian Huang, Xiaohui Wen, Xuehong Liu, Hongxia Ma, Linling Xie, Yishu Wang, Shanjia Liu, Yongge Guan, Kunyin Li. Enhanced glycolysis in the myometrium with ectopic endometrium of patients with adenomyosis: a preliminary study.
Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology.
2024 Dec; 40(1):2332411. doi:
10.1080/09513590.2024.2332411
. [PMID: 38537663] - Carlo Barnaba, David G Broadbent, Emily G Kaminsky, Gloria I Perez, Jens C Schmidt. AMPK regulates phagophore-to-autophagosome maturation.
The Journal of cell biology.
2024 Aug; 223(8):. doi:
10.1083/jcb.202309145
. [PMID: 38775785] - Wiktoria Waszczuk, Joanna Czajkowska, Agata Dutkiewicz, Beata Klasa, Ewa Carolak, Adrianna Aleksandrowicz, Krzysztof Grzymajlo. It takes two to attach - endo-1,3-β-d-glucanase as a potential receptor of mannose-independent, FimH-dependent Salmonella Typhimurium binding to spinach leaves.
Food microbiology.
2024 Aug; 121(?):104519. doi:
10.1016/j.fm.2024.104519
. [PMID: 38637081] - C Gasser, J M Faurie, F Rul. Regulation of lactose, glucose and sucrose metabolisms in S. thermophilus.
Food microbiology.
2024 Aug; 121(?):104487. doi:
10.1016/j.fm.2024.104487
. [PMID: 38637064] - Martí Wilson-Verdugo, Brandon Bustos-García, Olga Adame-Guerrero, Jaqueline Hersch-González, Nallely Cano-Domínguez, Maribel Soto-Nava, Carlos A Acosta, Teresa Tusie-Luna, Santiago Avila-Rios, Lilia G Noriega, Victor J Valdes. Reversal of high-glucose-induced transcriptional and epigenetic memories through NRF2 pathway activation.
Life science alliance.
2024 Aug; 7(8):. doi:
10.26508/lsa.202302382
. [PMID: 38755006] - Román Cardona-Herrera, Tannia Alexandra Quiñones-Muñoz, Elena Franco-Robles, César Ozuna. Development of a tamarind-based functional beverage with partially-hydrolyzed agave syrup and the health effects of its consumption in C57BL/6 mice.
Food chemistry.
2024 Jul; 447(?):138935. doi:
10.1016/j.foodchem.2024.138935
. [PMID: 38461724] - Ping Li, Ruo-Lin Fang, Wen Wang, Xi-Xi Zeng, Tian Lan, Shi-Yu Liu, Yan-Jun Hu, Qing Shen, Si-Wei Wang, Yu-Hua Tong, Zhu-Jun Mao. Apigenin suppresses epithelial-mesenchymal transition in high glucose-induced retinal pigment epithelial cell by inhibiting CBP/p300-mediated histone acetylation.
Biochemical and biophysical research communications.
2024 Jul; 717(?):150061. doi:
10.1016/j.bbrc.2024.150061
. [PMID: 38718570] - Xi Mei, Yao Li, Jinlin Wu, Lumiu Liao, Di Lu, Ping Qiu, Hui-Lan Yang, Ming-Wei Tang, Xin-Ying Liang, Dongfang Liu. Dulaglutide restores endothelial progenitor cell levels in diabetic mice and mitigates high glucose-induced endothelial injury through SIRT1-mediated mitochondrial fission.
Biochemical and biophysical research communications.
2024 Jul; 716(?):150002. doi:
10.1016/j.bbrc.2024.150002
. [PMID: 38697011] - Kexin Sun, Yanyi Chen, Shijie Zheng, Wenjuan Wan, Ke Hu. Genipin ameliorates diabetic retinopathy via the HIF-1α and AGEs-RAGE pathways.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2024 Jul; 129(?):155596. doi:
10.1016/j.phymed.2024.155596
. [PMID: 38626646] - Dou Zu-Man, Zhang Yu-Long, Tang Chun-Yang, Liu Chuang, Fang Jia-Qin, Huang Qiang, Chen Chun, You Li-Jun, Tan Chin-Ping, Niu Hui, Fu Xiong. Construction of blackberry polysaccharide nano-selenium particles: Structure features and regulation effects of glucose/lipid metabolism in HepG2 cells.
Food research international (Ottawa, Ont.).
2024 Jul; 187(?):114428. doi:
10.1016/j.foodres.2024.114428
. [PMID: 38763678] - Sha Zhang, Ying-Feng Gao, Kai Zhang, Guo-Rong Deng, Guang-Xiang He, Ping-Ping Gao, Yi-Kang Yu, Yuan Yuan, Shu-Juan Xing, Na Zhao, Hong Zhang, Yong-Chang Di-Wu, Yi-Han Liu, Bing-Dong Sui, Zhe Li, Jing Ma, Chen-Xi Zheng. Integrating network pharmacology and experimental validation reveals therapeutic effects of D-mannose on NAFLD through mTOR suppression.
Biochemical and biophysical research communications.
2024 Jun; 715(?):149999. doi:
10.1016/j.bbrc.2024.149999
. [PMID: 38678787] - Junxi Liu, Liping Qu, Feifei Wang, Zaoju Mei, Xinlang Wu, Bo Wang, Haiyang Liu, Li He. A study on the anti-senescent effects of flavones derived from Prinsepia utilis Royle seed residue.
Journal of ethnopharmacology.
2024 Jun; 328(?):118021. doi:
10.1016/j.jep.2024.118021
. [PMID: 38492793] - Fuwei Wang, Yue Gao, Xin Li, Mengdi Luan, Xiaoyi Wang, Yanwen Zhao, Xianhui Zhou, Guozhen Du, Peng Wang, Chenglong Ye, Hui Guo. Changes in microbial composition explain the contrasting responses of glucose and lignin decomposition to soil acidification in an alpine grassland.
The Science of the total environment.
2024 Jun; 930(?):172671. doi:
10.1016/j.scitotenv.2024.172671
. [PMID: 38653407] - Guoqi Yu, Tingyu Luo, Yongjie Liu, Xiaona Huo, Chunbao Mo, Bo Huang, You Li, Liping Feng, Yan Sun, Jun Zhang, Zhiyong Zhang. Multi-omics reveal disturbance of glucose homeostasis in pregnant rats exposed to short-chain perfluorobutanesulfonic acid.
Ecotoxicology and environmental safety.
2024 Jun; 278(?):116402. doi:
10.1016/j.ecoenv.2024.116402
. [PMID: 38728940] - Shunxiao Zhang, Sheng Zhang, Yan Zhang, Hua Wang, Yue Chen, Hao Lu. Activation of NRF2 by epiberberine improves oxidative stress and insulin resistance in T2DM mice and IR-HepG2 cells in an AMPK dependent manner.
Journal of ethnopharmacology.
2024 Jun; 327(?):117931. doi:
10.1016/j.jep.2024.117931
. [PMID: 38382657] - Xuewen Wang, Jiachao Kang, Xuechan Li, Pingmin Wu, Yong Huang, Yongqiang Duan, Juan Feng, Jing Wang. Codonopsis pilosula water extract delays D-galactose-induced aging of the brain in mice by activating autophagy and regulating metabolism.
Journal of ethnopharmacology.
2024 Jun; 327(?):118016. doi:
10.1016/j.jep.2024.118016
. [PMID: 38462027] - Jie Lv, Meng Su, Yansong Wang, Juan Yang, Yanni Liang, Lin Chen, Liyan Lei. Yunvjian decoction mitigates hyperglycemia in rats induced by a high-fat diet and streptozotocin via reducing oxidative stress in pancreatic beta cells.
Journal of ethnopharmacology.
2024 Jun; 327(?):118045. doi:
10.1016/j.jep.2024.118045
. [PMID: 38479546] - Kristian Buch-Larsen, Linn Gillberg, Haboon Ismail Ahmed, Simone Diedrichsen Marstrand, Michael Andersson, Gerrit van Hall, Charlotte Brøns, Peter Schwarz. Postabsorptive and postprandial glucose and fat metabolism in postmenopausal women with breast cancer-Preliminary data after chemotherapy compared to healthy controls.
Nutrition (Burbank, Los Angeles County, Calif.).
2024 Jun; 122(?):112394. doi:
10.1016/j.nut.2024.112394
. [PMID: 38458062] - Kenchi Miyasaka, Ryuya Takada, Jianbo Wu, Shogo Takeda, Yoshiaki Manse, Toshio Morikawa, Hiroshi Shimoda. Hypoglycemic effects of mountain caviar extract and inhibitory mechanism of saponins, including momordin Ic, on glucose absorption.
Journal of natural medicines.
2024 Jun; 78(3):693-701. doi:
10.1007/s11418-024-01791-5
. [PMID: 38587581] - Qian Wang, Yingxin Zhao, Jinxin Song, Jiaojiao Niu, Yinuo Liu, Chunfang Chao. How halogenated aromatic compounds affect the electron supply and consumption in glucose supported denitrification?.
Water research.
2024 Jun; 256(?):121569. doi:
10.1016/j.watres.2024.121569
. [PMID: 38615604] - Samrin Kagdi, Sulayman A Lyons, Jacqueline L Beaudry. The interplay of glucose-dependent insulinotropic polypeptide in adipose tissue.
The Journal of endocrinology.
2024 Jun; 261(3):. doi:
10.1530/joe-23-0361
. [PMID: 38579777] - Shijun Wei, Yu Song, Zhengbin Li, Ai Liu, Yunfang Xie, Shang Gao, Hongbiao Shi, Ping Sun, Zekun Wang, Yecheng Jin, Wenjie Sun, Xi Li, Jiangxia Li, Qiji Liu. SMEK1 ablation promotes glucose uptake and improves obesity-related metabolic dysfunction via AMPK signaling pathway.
American journal of physiology. Endocrinology and metabolism.
2024 Jun; 326(6):E776-E790. doi:
10.1152/ajpendo.00387.2023
. [PMID: 38568153] - Arina V Martyshina, Anna G Sirotkina, Irina V Gosteva. Temporal multiscale modeling of biochemical regulatory networks: Calcium-regulated hepatocyte lipid and glucose metabolism.
Bio Systems.
2024 Jun; 240(?):105227. doi:
10.1016/j.biosystems.2024.105227
. [PMID: 38718915] - Bei-Bei Hu, Wen-Ting Yin, Heng-Bo Zhang, Zhuo-Qing Zhai, Hua-Min Liu, Xue-de Wang. The interaction between lipid oxidation and the Maillard reaction model of lysine-glucose on aroma formation in fragrant sesame oil.
Food research international (Ottawa, Ont.).
2024 Jun; 186(?):114397. doi:
10.1016/j.foodres.2024.114397
. [PMID: 38729739] - Ayako Wada-Katsumata, Coby Schal. Glucose aversion: a behavioral resistance mechanism in the German cockroach.
Current opinion in insect science.
2024 Jun; 63(?):101182. doi:
10.1016/j.cois.2024.101182
. [PMID: 38403065] - Shanshan Zheng, Na Zhao, Chuwen Feng, Jian Ma. Cell division cycle 42 attenuates high glucose-treated renal tubular epithelial cell apoptosis, fibrosis, and inflammation, but activates the PAK1/AKT pathway.
Clinical and experimental nephrology.
2024 Jun; 28(6):513-521. doi:
10.1007/s10157-024-02468-9
. [PMID: 38416339] - Marcel A Vieira-Lara, Barbara M Bakker. The paradox of fatty-acid β-oxidation in muscle insulin resistance: Metabolic control and muscle heterogeneity.
Biochimica et biophysica acta. Molecular basis of disease.
2024 Jun; 1870(5):167172. doi:
10.1016/j.bbadis.2024.167172
. [PMID: 38631409] - Alexandra N Schoen, Alyssa M Weinrauch, Ian A Bouyoucos, Jason R Treberg, W Gary Anderson. Hormonal effects on glucose and ketone metabolism in a perfused liver of an elasmobranch, the North Pacific spiny dogfish, Squalus suckleyi.
General and comparative endocrinology.
2024 Jun; 352(?):114514. doi:
10.1016/j.ygcen.2024.114514
. [PMID: 38582175] - Lan Luo, Lisha Lin, Sheng Huang, Yunxi Zhou, Shengmei Yang, Yan Zhu, Lanyan Zhang, Donghua Xiong, Yongsheng Wu, Mingyi Wu. Sensitive, precise fingerprint profiling for monosaccharide analysis of Bacillus Calmette-Guérin polysaccharide and nucleic acid isolates.
Carbohydrate research.
2024 Jun; 540(?):109124. doi:
10.1016/j.carres.2024.109124
. [PMID: 38701680] - Pengyun Wang, Baolong Zhao, Zhongtian Yin, Xin Gao, Mengyao Liu. Structure elucidation and anticancer activity of a heteropolysaccharide from white tea.
Carbohydrate polymers.
2024 Jun; 333(?):121976. doi:
10.1016/j.carbpol.2024.121976
. [PMID: 38494228] - Xuemin Zhang, Zhi Li, Mingqing Qian, Bingya Zhang, Hongxia Zhang, Li Wang, Hui Liu. Transcriptome and Metabolome analysis reveal HFPO-TA induced disorders of hepatic glucose and lipid metabolism in rat by interfering with PPAR signaling pathway.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2024 Jun; 188(?):114632. doi:
10.1016/j.fct.2024.114632
. [PMID: 38583503] - Cristina Matthewman, I M Krishnakumar, Andrew G Swick. Review: bioavailability and efficacy of 'free' curcuminoids from curcumagalactomannoside (CGM) curcumin formulation.
Nutrition research reviews.
2024 Jun; 37(1):14-31. doi:
10.1017/s0954422423000033
. [PMID: 36655498] - Xiaocheng Tian, Yuxing Li, Shaoteng Wang, Hui Zou, Qian Xiao, Baiquan Ma, Fengwang Ma, Mingjun Li. Glucose uptake from the rhizosphere mediated by MdDOF3-MdHT1.2 regulates drought resistance in apple.
Plant biotechnology journal.
2024 Jun; 22(6):1566-1581. doi:
10.1111/pbi.14287
. [PMID: 38205680] - João Paulo Lima de Oliveira, William Franco Carneiro, Kiara Cândido Duarte da Silva, Moises Silvestre de Azevedo Martins, Stefania Priscilla de Souza, Bárbara do Carmo Rodrigues Virote, Isaac Filipe Moreira Konig, Eduardo Valério de Barros Vilas Boas, Luis David Solis Murgas, Elisângela Elena Nunes Carvalho. Diet with different concentrations of lychee peel flour modulates oxidative stress parameters and antioxidant activity in zebrafish.
Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.
2024 Jun; 272(?):110964. doi:
10.1016/j.cbpb.2024.110964
. [PMID: 38431089] - M Ángeles Martínez-García, Alejandra Quintero-Tobar, Sara de Lope Quiñones, María Insenser, Elena Fernández-Durán, Héctor Francisco Escobar-Morreale, Manuel Luque-Ramírez. Obesity and polycystic ovary syndrome influence on intestinal permeability at fasting, and modify the effect of diverse macronutrients on the gut barrier.
Food research international (Ottawa, Ont.).
2024 Jun; 186(?):114338. doi:
10.1016/j.foodres.2024.114338
. [PMID: 38729719] - Prateek Jain. Climate-ready crops: Unveiling the molecular dynamics of CO2 and glucose in plant thermotolerance.
Plant physiology.
2024 May; 195(2):906-907. doi:
10.1093/plphys/kiae131
. [PMID: 38445755] - Jiao Wang, Qian Luo, Xiao Liang, Hua Liu, Changqi Wu, Hanmo Fang, Xuanbo Zhang, Shuting Ding, Jingquan Yu, Kai Shi. Glucose-G protein signaling plays a crucial role in tomato resilience to high temperature and elevated CO2.
Plant physiology.
2024 May; 195(2):1025-1037. doi:
10.1093/plphys/kiae136
. [PMID: 38447060] - Xu Yang, Junqi Zhang, Yanghao Li, Huiting Hu, Xiang Li, Tonghui Ma, Bo Zhang. Si-Ni-San promotes liver regeneration by maintaining hepatic oxidative equilibrium and glucose/lipid metabolism homeostasis.
Journal of ethnopharmacology.
2024 May; 326(?):117918. doi:
10.1016/j.jep.2024.117918
. [PMID: 38382654] - Yuan Liang, Chao Luo, Lijun Sun, Tiange Feng, Wenzhen Yin, Yunhua Zhang, Michael W Mulholland, Weizhen Zhang, Yue Yin. Reduction of specific enterocytes from loss of intestinal LGR4 improves lipid metabolism in mice.
Nature communications.
2024 May; 15(1):4393. doi:
10.1038/s41467-024-48622-5
. [PMID: 38782937] - Pauline de Zeeuw, Lucas Treps, Melissa García-Caballero, Ulrike Harjes, Joanna Kalucka, Carla De Legher, Katleen Brepoels, Kristel Peeters, Stefan Vinckier, Joris Souffreau, Ann Bouché, Federico Taverna, Jonas Dehairs, Ali Talebi, Bart Ghesquière, Johan Swinnen, Luc Schoonjans, Guy Eelen, Mieke Dewerchin, Peter Carmeliet. The gluconeogenesis enzyme PCK2 has a non-enzymatic role in proteostasis in endothelial cells.
Communications biology.
2024 May; 7(1):618. doi:
10.1038/s42003-024-06186-6
. [PMID: 38783087] - Alka Singh, Kandahalli Venkataranganayaka Abhilasha, Kathya R Acharya, Haibo Liu, Niraj K Nirala, Velayoudame Parthibane, Govind Kunduri, Thiruvaimozhi Abimannan, Jacob Tantalla, Lihua Julie Zhu, Jairaj K Acharya, Usha R Acharya. A nutrient responsive lipase mediates gut-brain communication to regulate insulin secretion in Drosophila.
Nature communications.
2024 May; 15(1):4410. doi:
10.1038/s41467-024-48851-8
. [PMID: 38782979] - Lu Sun, Hao Yin, Yu-Ting Li, Yun-Xiao Qiao, Jie Wang, Qing-Yi He, Zhen-Wei Xiao, Le Kuai, Yan-Wei Xiang. Shengjihuayu formula ameliorates the oxidative injury in human keratinocytes via blocking JNK/c-Jun/MMPs signaling pathway.
Journal of ethnopharmacology.
2024 May; 326(?):117938. doi:
10.1016/j.jep.2024.117938
. [PMID: 38395178] - Annika Wahlström, Ariel Brumbaugh, Wilhelm Sjöland, Lisa Olsson, Hao Wu, Marcus Henricsson, Annika Lundqvist, Kassem Makki, Stanley L Hazen, Göran Bergström, Hanns-Ulrich Marschall, Michael A Fischbach, Fredrik Bäckhed. Production of deoxycholic acid by low-abundant microbial species is associated with impaired glucose metabolism.
Nature communications.
2024 May; 15(1):4276. doi:
10.1038/s41467-024-48543-3
. [PMID: 38769296] - Yong-He Han, Yi-Xi Li, Xian Chen, Hong Zhang, Yong Zhang, Wei Li, Chen-Jing Liu, Yanshan Chen, Lena Q Ma. Arsenic-enhanced plant growth in As-hyperaccumulator Pteris vittata: Metabolomic investigations and molecular mechanisms.
The Science of the total environment.
2024 May; 926(?):171922. doi:
10.1016/j.scitotenv.2024.171922
. [PMID: 38522532] - Taigh Anderson, Hao Jiang, Aisling Ní Cheallaigh, Dennis Bengtsson, Stefan Oscarson, Chantelle Cairns, Frank St Michael, Andrew Cox, Michelle M Kuttel. Formation and immunological evaluation of Moraxella catarrhalis glycoconjugates based on synthetic oligosaccharides.
Carbohydrate polymers.
2024 May; 332(?):121928. doi:
10.1016/j.carbpol.2024.121928
. [PMID: 38431400] - Zhaoshuo Li, Mi Zhang, Lixia Yang, Ding Fan, Peng Zhang, Li Zhang, Jianqing Zhang, Zhigang Lu. Sophoricoside ameliorates cerebral ischemia-reperfusion injury dependent on activating AMPK.
European journal of pharmacology.
2024 May; 971(?):176439. doi:
10.1016/j.ejphar.2024.176439
. [PMID: 38401605] - Monika Kopeć, Karolina Beton-Mysur, Halina Abramczyk. Biochemical changes in lipid and protein metabolism caused by mannose-Raman spectroscopy studies.
The Analyst.
2024 May; 149(10):2942-2955. doi:
10.1039/d4an00128a
. [PMID: 38597575] - Sankar Maity, Somdev Pahari, Santanu Santra, Madhurima Jana. Interfacial Glucose to Regulate Hydrated Lipid Bilayer Properties: Influence of Concentrations.
Journal of chemical information and modeling.
2024 May; 64(9):3841-3854. doi:
10.1021/acs.jcim.3c01991
. [PMID: 38635679] - Fani Sereti, Maria Alexandri, Aikaterini Papadaki, Harris Papapostolou, Nikolaos Kopsahelis. Carotenoids production by Rhodosporidium paludigenum yeasts: Characterization of chemical composition, antioxidant and antimicrobial properties.
Journal of biotechnology.
2024 May; 386(?):52-63. doi:
10.1016/j.jbiotec.2024.03.011
. [PMID: 38548021] - Sourav Kundu, Sitara Ghosh, Bidya Dhar Sahu. Scopoletin alleviates high glucose-induced toxicity in human renal proximal tubular cells via inhibition of oxidative damage, epithelial-mesenchymal transition, and fibrogenesis.
Molecular biology reports.
2024 May; 51(1):620. doi:
10.1007/s11033-024-09579-2
. [PMID: 38709349] - I Stafeev, M Agareva, S Michurina, A Tomilova, E Shestakova, E Zubkova, M Sineokaya, E Ratner, M Menshikov, Ye Parfyonova, M Shestakova. Semaglutide 6-months therapy of type 2 diabetes mellitus restores adipose progenitors potential to develop metabolically active adipocytes.
European journal of pharmacology.
2024 May; 970(?):176476. doi:
10.1016/j.ejphar.2024.176476
. [PMID: 38493915] - Junjie Wang, Enhui Liao, Zixuan Ren, Qiong Wang, Zenglai Xu, Shufang Wu, Chaoguang Yu, Yunlong Yin. Extraction and In Vitro Skincare Effect Assessment of Polysaccharides Extract from the Roots of Abelmoschus manihot (L.).
Molecules (Basel, Switzerland).
2024 May; 29(9):. doi:
10.3390/molecules29092109
. [PMID: 38731598] - Yujeong Roh, Jieun Kim, Heejin Song, Ayun Seol, Taeryeol Kim, Eunseo Park, Kiho Park, Sujeong Lim, Suha Wang, Youngsuk Jung, Hyesung Kim, Yong Lim, Daeyoun Hwang. Impact of the Oral Administration of Polystyrene Microplastics on Hepatic Lipid, Glucose, and Amino Acid Metabolism in C57BL/6Korl and C57BL/6-Lepem1hwl/Korl Mice.
International journal of molecular sciences.
2024 May; 25(9):. doi:
10.3390/ijms25094964
. [PMID: 38732183] - Oliyad Jeilu, Erik Alexandersson, Eva Johansson, Addis Simachew, Amare Gessesse. A novel GH3-β-glucosidase from soda lake metagenomic libraries with desirable properties for biomass degradation.
Scientific reports.
2024 05; 14(1):10012. doi:
10.1038/s41598-024-60645-y
. [PMID: 38693138] - Xiaxia Cai, Zhuo Hu, Mingyuan Zhang, Qinyu Dang, Qian Yang, Xiaoyan Zhao, Yandi Zhu, Yadi Zhang, Yuchen Wei, Haiqin Fang, Huanling Yu. Dosage-effect of selenium supplementation on blood glucose and oxidative stress in type 2 diabetes mellitus and normal mice.
Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS).
2024 May; 83(?):127410. doi:
10.1016/j.jtemb.2024.127410
. [PMID: 38377660] - Pengkui Xia, Ying Zheng, Li Sun, Wenxin Chen, Longchen Shang, Jing Li, Tao Hou, Bin Li. Regulation of glycose and lipid metabolism and application based on the colloidal nutrition science properties of konjac glucomannan: A comprehensive review.
Carbohydrate polymers.
2024 May; 331(?):121849. doi:
10.1016/j.carbpol.2024.121849
. [PMID: 38388033] - Maximilian Groß, Beate Dika, Elisabeth Loos, Lala Aliyeva-Schnorr, Holger B Deising. The galactose metabolism genes UGE1 and UGM1 are novel virulence factors of the maize anthracnose fungus Colletotrichum graminicola.
Molecular microbiology.
2024 05; 121(5):912-926. doi:
10.1111/mmi.15242
. [PMID: 38400525] - Mariló Olivares-Vicente, Noelia Sánchez-Marzo, María Herranz-López, Vicente Micol. Analysis of Lemon Verbena Polyphenol Metabolome and Its Correlation with Oxidative Stress under Glucotoxic Conditions in Adipocyte.
Journal of agricultural and food chemistry.
2024 May; 72(17):9768-9781. doi:
10.1021/acs.jafc.3c06309
. [PMID: 38629896] - Sajad Malik, Shrirang Inamdar, Jhankar Acharya, Pranay Goel, Saroj Ghaskadbi. Characterization of palmitic acid toxicity induced insulin resistance in HepG2 cells.
Toxicology in vitro : an international journal published in association with BIBRA.
2024 May; 97(?):105802. doi:
10.1016/j.tiv.2024.105802
. [PMID: 38431059] - Zilu Cheng, Yixiong Chen, Bernd Schnabl, Huikuan Chu, Ling Yang. Bile acid and nonalcoholic steatohepatitis: Molecular insights and therapeutic targets.
Journal of advanced research.
2024 May; 59(?):173-187. doi:
10.1016/j.jare.2023.06.009
. [PMID: 37356804] - Thomas Rydal, Jesper Frandsen, Gisela Nadal-Rey, Mads Orla Albæk, Pedram Ramin. Bringing a scalable adaptive hybrid modeling framework closer to industrial use: Application on a multiscale fungal fermentation.
Biotechnology and bioengineering.
2024 May; 121(5):1609-1625. doi:
10.1002/bit.28670
. [PMID: 38454575] - Farimah Mohammadsadeghi, Mohsen Afsharmanesh, Mohammad Salarmoini, Mohammad Khajeh Bami. Effects of replacing Na selenite in laying hen feed with selenized glucose on production performance, egg quality, egg selenium content, microbial population, immunological response, antioxidant enzymes, and fatty acid composition.
Poultry science.
2024 May; 103(5):103615. doi:
10.1016/j.psj.2024.103615
. [PMID: 38503137] - Chintha Lankatillake, Tien Huynh, Daniel A Dias. Abrus precatorius Leaf Extract Stimulates Insulin-mediated Muscle Glucose Uptake: In vitro Studies and Phytochemical Analysis.
Planta medica.
2024 May; 90(5):388-396. doi:
10.1055/a-2281-0988
. [PMID: 38490239] - Piotr Pawlak, Paulina Lipinska, Ewa Sell-Kubiak, Arkadiusz Kajdasz, Natalia Derebecka, Ewelina Warzych. Energy metabolism disorders during in vitro maturation of bovine cumulus-oocyte complexes interfere with blastocyst quality and metabolism.
Developmental biology.
2024 May; 509(?):51-58. doi:
10.1016/j.ydbio.2024.02.004
. [PMID: 38342400] - J Michael Conlon, Bosede O Owolabi, Peter R Flatt, Yasser H A Abdel-Wahab. Amphibian host-defense peptides with potential for Type 2 diabetes therapy - an updated review.
Peptides.
2024 May; 175(?):171180. doi:
10.1016/j.peptides.2024.171180
. [PMID: 38401671] - Xiaoya Li, Yingying Su, Yiting Xu, Tingting Hu, Xuhong Lu, Jingjing Sun, Wenfei Li, Jian Zhou, Xiaojing Ma, Ying Yang, Yuqian Bao. Adipocyte-Specific Hnrnpa1 Knockout Aggravates Obesity-Induced Metabolic Dysfunction via Upregulation of CCL2.
Diabetes.
2024 May; 73(5):713-727. doi:
10.2337/db23-0609
. [PMID: 38320300] - A Berenice Aguilar-Guadarrama, Mónica Aideé Díaz-Román, Maribel Osorio-García, Myrna Déciga-Campos, María Yolanda Rios. Chemical Constituents from Agave applanata and Its Antihyperglycemic, Anti-inflammatory, and Antimicrobial Activities Associated with Its Tissue Repair Capability.
Planta medica.
2024 May; 90(5):397-410. doi:
10.1055/a-2270-5527
. [PMID: 38365219] - Gül Kaplan, Merih Beler, Ismail Ünal, Atakan Karagöz, Gizem Eğilmezer, Ünsal Veli Üstündağ, Derya Cansız, A Ata Alturfan, Ebru Emekli-Alturfan. Diethylhexyl phthalate exposure amplifies oxidant and inflammatory response in fetal hyperglycemia model predisposing insulin resistance in zebrafish embryos.
Toxicology and industrial health.
2024 May; 40(5):232-243. doi:
10.1177/07482337241238475
. [PMID: 38467557] - Anna Nakamura, Takamasa Kido, Yoshiko Seki, Machi Suka. Zinc deficiency affects insulin secretion and alters insulin-regulated metabolic signaling in rats.
Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS).
2024 May; 83(?):127375. doi:
10.1016/j.jtemb.2023.127375
. [PMID: 38184923] - P Kavya, M Gayathri. Phytochemical Profiling and Assessment of Antidiabetic Activity of Curcuma Angustifolia Rhizome Methanolic Extract: An In Vitro and In Silico Analysis.
Chemistry & biodiversity.
2024 May; 21(5):e202301788. doi:
10.1002/cbdv.202301788
. [PMID: 38484132] - Simon Okomo Aloo, SeonJu Park, Timilehin Martins Oyinloye, Deog-Hwan Oh. Rheological properties, biochemical changes, and potential health benefits of dehulled and defatted industrial hempseeds after fermentation.
Food chemistry.
2024 May; 439(?):138086. doi:
10.1016/j.foodchem.2023.138086
. [PMID: 38043281] - Jia Ying, Peipei Wang, Xiao Jin, Li Luo, Keshuang Lai, Jun Li. TGF-β1 Mediates the EndoMt in High Glucose-Treated Human Retinal Microvascular Endothelial Cells.
Seminars in ophthalmology.
2024 May; 39(4):312-319. doi:
10.1080/08820538.2023.2300806
. [PMID: 38192082] - Yuchao Guo, Houlin Mao, Danni Gong, Nuo Zhang, Dandan Gu, Emmanuel Sunday Okeke, Weiwei Feng, Yao Chen, Guanghua Mao, Ting Zhao, Liuqing Yang. Differential susceptibility of BRL cells with/without insulin resistance and the role of endoplasmic reticulum stress signaling pathway in response to acrylamide-exposure toxicity effects in vitro.
Toxicology.
2024 May; 504(?):153800. doi:
10.1016/j.tox.2024.153800
. [PMID: 38604440] - Margot Visse-Mansiaux, Leonard Shumbe, Yves Brostaux, Theodor Ballmer, Inga Smit, Brice Dupuis, Hervé Vanderschuren. Identification of potato varieties suitable for cold storage and reconditioning: A safer alternative to anti-sprouting chemicals for potato sprouting control.
Food research international (Ottawa, Ont.).
2024 May; 184(?):114249. doi:
10.1016/j.foodres.2024.114249
. [PMID: 38609227] - Vaileth Timira, Xing Chen, Peng Zhou, Junjun Wu, Tao Wang. Potential use of yeast protein in terms of biorefinery, functionality, and sustainability in food industry.
Comprehensive reviews in food science and food safety.
2024 05; 23(3):e13326. doi:
10.1111/1541-4337.13326
. [PMID: 38572572] - Dong-Gui Guo, Jun Zhu, Hui-Juan Wang, Bo-Wen Pan. Investigating the Effects and Mechanisms of Cyclomorusin on Osteoclasts in a High Glucose Environment.
Chemistry & biodiversity.
2024 May; 21(5):e202301741. doi:
10.1002/cbdv.202301741
. [PMID: 38477870] - Lucio Della Guardia, Livio Luzi, Roberto Codella. Muscle-UCP3 in the regulation of energy metabolism.
Mitochondrion.
2024 May; 76(?):101872. doi:
10.1016/j.mito.2024.101872
. [PMID: 38499130] - Xin-Yu Cao, Xinge Li, Feng Wang, Yichen Duan, Xingmei Wu, Guo-Qiang Lin, Meiyu Geng, Min Huang, Ping Tian, Shuai Tang, Dingding Gao. Identification of benzo[b]thiophene-1,1-dioxide derivatives as novel PHGDH covalent inhibitors.
Bioorganic chemistry.
2024 May; 146(?):107330. doi:
10.1016/j.bioorg.2024.107330
. [PMID: 38579615] - Huizhen Wei, Mengru Sun, Ruixuan Wang, Hairong Zeng, Bei Zhao, Shenyi Jin. Puerarin mitigated LPS-ATP or HG-primed endothelial cells damage and diabetes-associated cardiovascular disease via ROS-NLRP3 signalling.
Journal of cellular and molecular medicine.
2024 May; 28(10):e18239. doi:
10.1111/jcmm.18239
. [PMID: 38774996] - Katarzyna Skrypnik, Marcin Schmidt, Agnieszka Olejnik-Schmidt, Iskandar Azmy Harahap, Joanna Suliburska. Influence of supplementation with iron and probiotic bacteria Lactobacillus plantarum and Lactobacillus curvatus on selected parameters of inflammatory state in rats on a high-fat iron-deficient diet.
Journal of the science of food and agriculture.
2024 May; 104(7):4411-4424. doi:
10.1002/jsfa.13329
. [PMID: 38339838] - Na Kang, Zhenglin Ji, Yuxin Li, Ji Gao, Xinfeng Wu, Xiaoyang Zhang, Qinghui Duan, Can Zhu, Yue Xu, Luyao Wen, Xiaofei Shi, Wanli Liu. Metabolite-derived damage-associated molecular patterns in immunological diseases.
The FEBS journal.
2024 May; 291(10):2051-2067. doi:
10.1111/febs.16902
. [PMID: 37432883] - Melika Golmohamadi, Somayeh Hosseinpour-Niazi, Parto Hadaegh, Parvin Mirmiran, Fereidoun Azizi, Farzad Hadaegh. Association between dietary antioxidants intake and the risk of type 2 diabetes mellitus in a prospective cohort study: Tehran Lipid and Glucose Study.
The British journal of nutrition.
2024 Apr; 131(8):1452-1460. doi:
10.1017/s0007114523002854
. [PMID: 38116651] - Victoria C Kennedy, Cameron S Lynch, Amelia R Tanner, Quinton A Winger, Ahmed Gad, Paul J Rozance, Russell V Anthony. Fetal Hypoglycemia Induced by Placental SLC2A3-RNA Interference Alters Fetal Pancreas Development and Transcriptome at Mid-Gestation.
International journal of molecular sciences.
2024 Apr; 25(9):. doi:
10.3390/ijms25094780
. [PMID: 38731997] - Zheng Li, Alexandra N Kravchenko, Alison Cupples, Andrey K Guber, Yakov Kuzyakov, G Philip Robertson, Evgenia Blagodatskaya. Composition and metabolism of microbial communities in soil pores.
Nature communications.
2024 Apr; 15(1):3578. doi:
10.1038/s41467-024-47755-x
. [PMID: 38678028] - Abdur Rauf, Umer Rashid, Zafar Ali Shah, Anees Ahmed Khalil, Muhammad Shah, Tabussam Tufail, Gauhar Rehman, Abdur Rahman, Saima Naz, Abdulrahman Alsahammari, Metab Alharbi, Abdulmajeed Al-Shahrani, Dorota Formanowicz. Anti-inflammatory and anti-diabetic properties of indanone derivative isolated from Fernandoa adenophylla in vitro and in silico studies.
Scientific reports.
2024 04; 14(1):9624. doi:
10.1038/s41598-024-59703-2
. [PMID: 38671030] - Elena Serino, Daniela Rigano, Maurizio Bruno, Arianna Pastore, Mariano Stornaiuolo, Carmen Formisano, Orazio Taglialatela-Scafati. Glucose Uptake-Stimulating Metabolites from Aerial Parts of Centaurea sicula.
Journal of natural products.
2024 Apr; 87(4):1179-1186. doi:
10.1021/acs.jnatprod.4c00134
. [PMID: 38528772] - André Nguyen Dietzsch, Hadi Al-Hasani, Joachim Altschmied, Katharina Bottermann, Jana Brendler, Judith Haendeler, Susanne Horn, Isabell Kaczmarek, Antje Körner, Kerstin Krause, Kathrin Landgraf, Diana Le Duc, Laura Lehmann, Stefan Lehr, Stephanie Pick, Albert Ricken, Rene Schnorr, Angela Schulz, Martina Strnadová, Akhil Velluva, Heba Zabri, Torsten Schöneberg, Doreen Thor, Simone Prömel. Dysfunction of the adhesion G protein-coupled receptor latrophilin 1 (ADGRL1/LPHN1) increases the risk of obesity.
Signal transduction and targeted therapy.
2024 Apr; 9(1):103. doi:
10.1038/s41392-024-01810-7
. [PMID: 38664368] - Jiahong Chen, Lei Yang, Hehua Zhang, Junbin Ruan, Yuan Wang. Role of sugars in the apical hook development of Arabidopsis etiolated seedlings.
Plant cell reports.
2024 Apr; 43(5):131. doi:
10.1007/s00299-024-03217-8
. [PMID: 38656568] - Yueheng Tang, Yang Gao, Kexin Nie, Hongzhan Wang, Shen Chen, Hao Su, Wenya Huang, Hui Dong. Jiao-tai-wan and its effective component-berberine improve diabetes and depressive disorder through the cAMP/PKA/CREB signaling pathway.
Journal of ethnopharmacology.
2024 Apr; 324(?):117829. doi:
10.1016/j.jep.2024.117829
. [PMID: 38296172] - Linda Engström Ruud, Ferran Font-Gironès, Joanna Zajdel, Lara Kern, Júlia Teixidor-Deulofeu, Louise Mannerås-Holm, Alba Carreras, Barbara Becattini, Andreas Björefeldt, Eric Hanse, Henning Fenselau, Giovanni Solinas, Jens C Brüning, Thomas F Wunderlich, Fredrik Bäckhed, Johan Ruud. Activation of GFRAL+ neurons induces hypothermia and glucoregulatory responses associated with nausea and torpor.
Cell reports.
2024 Apr; 43(4):113960. doi:
10.1016/j.celrep.2024.113960
. [PMID: 38507407] - Styliani Panagiotou, Kia Wee Tan, Phuoc My Nguyen, Andreas Müller, Affiong Ika Oqua, Alejandra Tomas, Anna Wendt, Lena Eliasson, Anders Tengholm, Michele Solimena, Olof Idevall-Hagren. OSBP-mediated PI(4)P-cholesterol exchange at endoplasmic reticulum-secretory granule contact sites controls insulin secretion.
Cell reports.
2024 Apr; 43(4):113992. doi:
10.1016/j.celrep.2024.113992
. [PMID: 38536815] - Wanbao Yang, Wen Jiang, Wang Liao, Hui Yan, Weiqi Ai, Quan Pan, Wesley A Brashear, Yong Xu, Ling He, Shaodong Guo. An estrogen receptor α-derived peptide improves glucose homeostasis during obesity.
Nature communications.
2024 Apr; 15(1):3410. doi:
10.1038/s41467-024-47687-6
. [PMID: 38649684] - Yetong Xu, Chengyu Zhou, Minyue Zong, Junwei Zhu, Xutong Guo, Zhihong Sun. High-protein high-konjac glucomannan diets changed glucose and lipid metabolism by modulating colonic microflora and bile acid profiles in healthy mouse models.
Food & function.
2024 Apr; 15(8):4446-4461. doi:
10.1039/d4fo00159a
. [PMID: 38563504] - Vipawee Pichetkun, Hnin Ei Ei Khine, Suchada Srifa, Sasiwimon Nukulkit, Nitra Nuengchamnong, Supakarn Hansapaiboon, Rattaporn Saenmuangchin, Chatchai Chaotham, Chaisak Chansriniyom. Diverse effects of a Cyperus rotundus extract on glucose uptake in myotubes and adipocytes and its suppression on adipocyte maturation.
Scientific reports.
2024 04; 14(1):9018. doi:
10.1038/s41598-024-59357-0
. [PMID: 38641685] - Stanislav Jabinski, Wesley D M Rangel, Marek Kopáček, Veronika Jílková, Jan Jansa, Travis B Meador. Constraining activity and growth substrate of fungal decomposers via assimilation patterns of inorganic carbon and water into lipid biomarkers.
Applied and environmental microbiology.
2024 Apr; 90(4):e0206523. doi:
10.1128/aem.02065-23
. [PMID: 38527003] - Zhengzhong Luo, Zhenlong Du, Yixin Huang, Tao Zhou, Dan Wu, Xueping Yao, Liuhong Shen, Shumin Yu, Kang Yong, Baoning Wang, Suizhong Cao. Alterations in the gut microbiota and its metabolites contribute to metabolic maladaptation in dairy cows during the development of hyperketonemia.
mSystems.
2024 Apr; 9(4):e0002324. doi:
10.1128/msystems.00023-24
. [PMID: 38501812]