NCBI Taxonomy: 231460

Afraegle paniculata (ncbi_taxid: 231460)

found 40 associated metabolites at species taxonomy rank level.

Ancestor: Afraegle

Child Taxonomies: none taxonomy data.

Marmesin

(2S)-2-(2-hydroxypropan-2-yl)-2,3-dihydrofuro[3,2-g]chromen-7-one

C14H14O4 (246.0892)


Marmesin is a member of psoralens and a tertiary alcohol. 2-(2-Hydroxypropan-2-yl)-2,3-dihydrofuro[3,2-g]chromen-7-one is a natural product found in Zanthoxylum beecheyanum, Zanthoxylum arnottianum, and other organisms with data available. Nodakenetin is found in wild celery. Nodakenetin is a constituent of Angelica species Constituent of Angelica subspecies Nodakenetin is found in wild celery. (+)-marmesin is a marmesin. It is an enantiomer of a nodakenetin. Marmesin is a natural product found in Coronilla scorpioides, Clausena dunniana, and other organisms with data available. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. (+)-Marmesin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=13849-08-6 (retrieved 2024-09-04) (CAS RN: 13849-08-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Scoparone

6,7-dimethoxychromen-2-one

C11H10O4 (206.0579)


Scoparone is a member of the class of coumarins that is esculetin in which the two hydroxy groups at positions 6 and 7 are replaced by methoxy groups. It is a major constituent of the Chinese herbal medicine Yin Chen Hao, and exhibits a variety of pharmacological activities such as anti-inflammatory, anti-allergic, and anti-tumor activities. It has a role as a plant metabolite, an anti-inflammatory agent, an antilipemic drug, an immunosuppressive agent, an antihypertensive agent and an anti-allergic agent. It is a member of coumarins and an aromatic ether. It is functionally related to an esculetin. Scoparone is a natural product found in Haplophyllum ramosissimum, Haplophyllum thesioides, and other organisms with data available. A member of the class of coumarins that is esculetin in which the two hydroxy groups at positions 6 and 7 are replaced by methoxy groups. It is a major constituent of the Chinese herbal medicine Yin Chen Hao, and exhibits a variety of pharmacological activities such as anti-inflammatory, anti-allergic, and anti-tumor activities. D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics Scoparone is found in anise. Scoparone is found in several citrus oil D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Found in several citrus oils Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1]. Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1].

   

Imperatorin

InChI=1/C16H14O4/c1-10(2)5-7-19-16-14-12(6-8-18-14)9-11-3-4-13(17)20-15(11)16/h3-6,8-9H,7H2,1-2H

C16H14O4 (270.0892)


Imperatorin is a member of the class of psoralens that is psoralen substituted by a prenyloxy group at position 8. Isolated from Angelica dahurica and Angelica koreana, it acts as a acetylcholinesterase inhibitor. It has a role as an EC 3.1.1.7 (acetylcholinesterase) inhibitor and a metabolite. Imperatorin is a natural product found in Allium wallichii, Ammi visnaga, and other organisms with data available. Imperatorin is found in anise. Imperatorin is present in Aegle marmelos (bael fruit) and seeds of Pastinaca sativa (parsnip).Imperatorin is a furocoumarin and a phytochemical that has been isolated from Urena lobata L. (Malvaceae). It is biosynthesized from umbelliferone, a coumarin derivative.Imperatorin has been shown to exhibit anti-hypertrophic and anti-convulsant functions (A7784, A7785).Imperatorin belongs to the family of Furanocoumarins. These are polycyclic aromatic compounds containing a furan ring fused to a coumarin moeity. See also: Angelica Dahurica Root (part of); Aegle marmelos fruit (part of); Ammi majus seed (part of) ... View More ... Imperatorin is found in anise. Imperatorin is present in Aegle marmelos (bael fruit) and seeds of Pastinaca sativa (parsnip).Imperatorin is a furocoumarin and a phytochemical that has been isolated from Urena lobata L. (Malvaceae). It is biosynthesized from umbelliferone, a coumarin derivative A member of the class of psoralens that is psoralen substituted by a prenyloxy group at position 8. Isolated from Angelica dahurica and Angelica koreana, it acts as a acetylcholinesterase inhibitor. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Present in Aegle marmelos (bael fruit) and seeds of Pastinaca sativa (parsnip) INTERNAL_ID 2244; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2244 Imperatorin is an effective of NO synthesis inhibitor (IC50=9.2 μmol), which also is a BChE inhibitor (IC50=31.4 μmol). Imperatorin is a weak agonist of TRPV1 with EC50 of 12.6±3.2 μM. Imperatorin is an effective of NO synthesis inhibitor (IC50=9.2 μmol), which also is a BChE inhibitor (IC50=31.4 μmol). Imperatorin is a weak agonist of TRPV1 with EC50 of 12.6±3.2 μM.

   

Aesculin

7-hydroxy-6-[3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-chromen-2-one hydrate;Esculin Sesquihydrate

C15H16O9 (340.0794)


Esculin is a hydroxycoumarin that is the 6-O-beta-D-glucoside of esculetin. It has a role as an antioxidant and a metabolite. It is a beta-D-glucoside and a hydroxycoumarin. It is functionally related to an esculetin. Esculin is found in barley. Vitamin C2 is generally considered a bioflavanoid, related to vitamin P esculin is a glucoside that naturally occurs in the horse chestnut (Aesculus hippocastanum), California Buckeye (Aesculus californica) and in daphnin (the dark green resin of Daphne mezereum). Esculin belongs to the family of Glycosyl Compounds. These are carbohydrate derivatives in which a sugar group is bonded through its anmoeric carbonA to another group via a C-, S-,N-,O-, or Se- glycosidic bond. Esculin is a natural product found in Ficus septica, Gardenia jasminoides, and other organisms with data available. A derivative of COUMARIN with molecular formula C15H16O9. See also: Horse Chestnut (part of); Aesculus hippocastanum bark (part of). Aesculin is found in barley. Vitamin C2 is generally considered a bioflavanoid, related to vitamin P Aesculin is a glucoside that naturally occurs in the horse chestnut (Aesculus hippocastanum), California Buckeye (Aesculus californica) and in daphnin (the dark green resin of Daphne mezereum) Vitamin C2 is generally considered a bioflavanoid, related to vitamin P A hydroxycoumarin that is the 6-O-beta-D-glucoside of esculetin. Acquisition and generation of the data is financially supported in part by CREST/JST. Esculin, a fluorescent coumarin glucoside, is an active ingredient of ash bark[1]. Esculin ameliorates cognitive impairment in experimental diabetic nephropathy (DN), and exerts anti?oxidative stress and anti?inflammatory effects, via the MAPK signaling pathway[2]. Esculin, a fluorescent coumarin glucoside, is an active ingredient of ash bark[1]. Esculin ameliorates cognitive impairment in experimental diabetic nephropathy (DN), and exerts anti?oxidative stress and anti?inflammatory effects, via the MAPK signaling pathway[2].

   

Methoxsalen

Methoxsalen, United States Pharmacopeia (USP) Reference Standard

C12H8O4 (216.0423)


8-methoxypsoralen is an odorless white to cream-colored crystalline solid. Bitter taste followed by tingling sensation. (NTP, 1992) Methoxsalen is a member of the class of psoralens that is 7H-furo[3,2-g]chromen-7-one in which the 9 position is substituted by a methoxy group. It is a constituent of the fruits of Ammi majus. Like other psoralens, trioxsalen causes photosensitization of the skin. It is administered topically or orally in conjunction with UV-A for phototherapy treatment of vitiligo and severe psoriasis. It has a role as a dermatologic drug, an antineoplastic agent, a photosensitizing agent, a cross-linking reagent and a plant metabolite. It is a member of psoralens and an aromatic ether. It is functionally related to a psoralen. A naturally occurring furocoumarin compound found in several species of plants, including Psoralea corylifolia. It is a photoactive substance that forms DNA adducts in the presence of ultraviolet A irradiation. Methoxsalen is a Photoactivated Radical Generator and Psoralen. The mechanism of action of methoxsalen is as a Photoabsorption. The physiologic effect of methoxsalen is by means of Photosensitizing Activity. Methoxsalen is a natural product found in Ammi visnaga, Zanthoxylum mayu, and other organisms with data available. Methoxsalen is a naturally occurring substance isolated from the seeds of the plant Ammi majus with photoactivating properties. As a member of the family of compounds known as psoralens or furocoumarins, methoxsalens exact mechanism of action is unknown; upon photoactivation, methoxsalen has been observed to bind covalently to and crosslink DNA. (NCI04) Methoxsalen is only found in individuals that have used or taken this drug. It is a naturally occurring furocoumarin compound found in several species of plants, including Psoralea corylifolia. It is a photoactive substance that forms DNA adducts in the presence of ultraviolet A irradiation. After activation Methoxsalen binds preferentially to the guanine and cytosine moieties of DNA, leading to cross-linking of DNA, thus inhibiting DNA synthesis and function. A naturally occurring furocoumarin compound found in several species of plants, including Psoralea corylifolia. It is a photoactive substance that forms DNA ADDUCTS in the presence of ultraviolet A irradiation. See also: Angelica archangelica root (part of); Ammi majus seed (part of); Angelica keiskei top (part of) ... View More ... Methoxsalen, also known as oxsoralen or 8-methoxypsoralen, belongs to the class of organic compounds known as 8-methoxypsoralens. These are psoralens containing a methoxy group attached at the C8 position of the psoralen group. Methoxsalen is a drug which is used for the treatment of psoriasis and vitiligo. Methoxsalen is a bitter tasting compound. Methoxsalen is found, on average, in the highest concentration within a few different foods, such as parsnips, parsley, and celery stalks and in a lower concentration in wild carrots, carrots, and fennels. Methoxsalen has also been detected, but not quantified, in several different foods, such as figs, green vegetables, corianders, dills, and fruits. Methoxsalen is a potentially toxic compound. A member of the class of psoralens that is 7H-furo[3,2-g]chromen-7-one in which the 9 position is substituted by a methoxy group. It is a constituent of the fruits of Ammi majus. Like other psoralens, trioxsalen causes photosensitization of the skin. It is administered topically or orally in conjunction with UV-A for phototherapy treatment of vitiligo and severe psoriasis. Present in celery, especies the outer leaves, and other common grocery vegetables. Implicated in photodermatitis among grocery workers. Isolated from Aegle marmelos (bael) D - Dermatologicals > D05 - Antipsoriatics > D05B - Antipsoriatics for systemic use > D05BA - Psoralens for systemic use D - Dermatologicals > D05 - Antipsoriatics > D05A - Antipsoriatics for topical use > D05AD - Psoralens for topical use D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent C1420 - Photosensitizing Agent D003879 - Dermatologic Agents [Raw Data] CBA87_Xanthotoxin_pos_20eV.txt [Raw Data] CBA87_Xanthotoxin_pos_30eV.txt [Raw Data] CBA87_Xanthotoxin_pos_40eV.txt [Raw Data] CBA87_Xanthotoxin_pos_10eV.txt [Raw Data] CBA87_Xanthotoxin_pos_50eV.txt Methoxsalen (8-Methoxypsoralen) is a furanocoumarin compound used in psoralen, used in studies of psoriasis, eczema, vitiligo and some sun-exposed cutaneous lymphomas, and is a P450 inhibitor. Methoxsalen (8-Methoxypsoralen) is a furanocoumarin compound used in psoralen, used in studies of psoriasis, eczema, vitiligo and some sun-exposed cutaneous lymphomas, and is a P450 inhibitor.

   

Nodakenetic

7H-Furo[3,2g][1]-benzopyran-7-one, (-2,3-dihydro-2-(1-hydroxy-1-hydroxymethylethyl)-, (R)

C14H14O4 (246.0892)


Nodakenetic, also known as (-)-marmesin or marmesin, (R)-isomer, is a member of the class of compounds known as psoralens. Psoralens are organic compounds containing a psoralen moiety, which consists of a furan fused to a chromenone to for 7H-furo[3,2-g]chromen-7-one. Nodakenetic is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Nodakenetic can be found in wild celery, which makes nodakenetic a potential biomarker for the consumption of this food product. Nodakenetin is a marmesin with R-configuration. It has a role as a plant metabolite, a rat metabolite and a xenobiotic metabolite. It is an enantiomer of a (+)-marmesin. Nodakenetin is a natural product found in Zanthoxylum beecheyanum, Melicope barbigera, and other organisms with data available. Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2]. Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2]. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity.

   

Glycoprotein-phospho-D-mannose

(2S,3S,4R,5R)-2,3,4,5,6-Pentahydroxyhexanal

C6H12O6 (180.0634)


Glycoprotein-phospho-D-mannose, also known as (2S,3S,4R,5R)-2,3,4,5,6-Pentahydroxyhexanal or Mannose homopolymer, is classified as a member of the Hexoses. Hexoses are monosaccharides in which the sugar unit is a is a six-carbon containing moeity. Glycoprotein-phospho-D-mannose is considered to be soluble (in water) and acidic

   

Hydroquinone

Hydroquinone, lead (2+) salt (2:1)

C6H6O2 (110.0368)


Hydroquinone, also benzene-1,4-diol, is an aromatic organic compound which is a type of phenol, having the chemical formula C6H4(OH)2. Its chemical structure has two hydroxyl groups bonded to a benzene ring in a para position. Hydroquinone is commonly used as a biomarker for benzene exposure. The presence of hydroquinone in normal individuals stems mainly from direct dietary ingestion, catabolism of tyrosine and other substrates by gut bacteria, ingestion of arbutin containing foods, cigarette smoking, and the use of some over-the-counter medicines. Hydroquinone is a white granular solid at room temperature and pressure. The hydroxyl groups of hydroquinone are quite weakly acidic. Hydroquinone can lose an H+ from one of the hydroxyls to form a monophenolate ion or lose an H+ from both to form a diphenolate ion. Hydroquinone has a variety of uses principally associated with its action as a reducing agent which is soluble in water. It is a major component in most photographic developers where, with the compound Metol, it reduces silver halides to elemental silver. [HMDB]. Hydroquinone is found in many foods, some of which are kai-lan, agar, red bell pepper, and jostaberry. Hydroquinone, also known as benzene-1,4-diol, is an aromatic organic compound which is a type of phenol, having the chemical formula C6H4(OH)2. Its chemical structure has two hydroxyl groups bonded to a benzene ring in a para position. Hydroquinone is commonly used as a biomarker for benzene exposure. The presence of hydroquinone in normal individuals stems mainly from direct dietary ingestion, catabolism of tyrosine and other substrates by gut bacteria, ingestion of arbutin-containing foods, cigarette smoking, and the use of some over-the-counter medicines. Hydroquinone is a white granular solid at room temperature and pressure. The hydroxyl groups of hydroquinone are quite weakly acidic. Hydroquinone can lose an H+ from one of the hydroxyls to form a monophenolate ion or lose an H+ from both to form a diphenolate ion. Hydroquinone has a variety of uses principally associated with its action as a reducing agent which is soluble in water. It is a major component of most photographic developers where, with the compound Metol, it reduces silver halides to elemental silver. D020011 - Protective Agents > D011837 - Radiation-Protective Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D009153 - Mutagens D - Dermatologicals

   

L-Arabinose

(2S,3R,4S,5S)-oxane-2,3,4,5-tetrol

C5H10O5 (150.0528)


L-Arabinose (CAS: 5328-37-0) belongs to the class of compounds known as aldopentoses. An aldopentose is a monosaccharide containing five carbon atoms, including an aldehyde (CHO) functional group. Arabinose gets its name from gum arabic, from which it was first isolate. Most saccharides found in nature are in the "D"-form, however, L-arabinose is in fact more common than D-arabinose. L-arabinose is found in nature as a component of biopolymers such as hemicellulose and pectin. L-arabinose is found in all organisms from bacteria to plants to animals. Arabinose is the second most abundant pentose in lignocellulosic biomass after xylose. There are two different arabinose utilization pathways in nature: bacterial and fungal. The bacterial pathway converts arabinose into xylulose-5-P via ribulose-5-P using three enzymes (L-arabinose isomerase, L-ribulokinase, and L-ribulose-5-P 4-epimerase) after which it enters the pentose phosphate pathway for ethanol production. The fungal pathway converts arabinose into L-arabinitol by aldose reductase (AR) or XR, L-xylulose by L-arabinitol 4-dehydrogenase (LAD), xylitol by L-xylulose reductase (LXR), D-xylulose by xylulose dehydrogenase (XDH), and D-xylulose-5-P by xylulose kinase (XK), and lastly enters the nonoxidative pentose phosphate pathway for further metabolism. Arabinose has a sweet taste and is one of the most abundant components released by complete hydrolysis of non-starch polysaccharides (NSP) of vegetable origin. Although widely present in nature, L-arabinose is rarely used in food production or food flavoring, and its physiological effects in vivo have received little attention. L-arabinose is known to selectively inhibit intestinal sucrase activity in a non-competitive manner. Sucrase is the enzyme that breaks down sucrose into glucose and fructose in the small intestine. As a result, L-arabinose suppresses plasma glucose increase due to sucrose ingestion. The presence of arabinose in urine may indicate overgrowth of intestinal yeast such as Candida albicans or other yeast/fungus species. L-arabinose is also a microbial metabolite found in, and produced by, Mycobacterium (PMID: 16232643). In a rare case of two autistic brothers that were not associated with any known metabolic disease, it was found the median value for L-arabinose in their urine samples was 179 umol/mmol creatinine, nearly six times greater than normal children (PMID: 11238761, 8931641, 1390604, 7628083). COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Flavouring agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

L-Arabinose

(3R,4S,5S)-oxane-2,3,4,5-tetrol

C5H10O5 (150.0528)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials A L-arabinopyranose with a beta-configuration at the anomeric position. Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Arabinose is an endogenous metabolite. Arabinose is an endogenous metabolite. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion.

   

D-Altrose

(2R,3S,4S,5R)-2,3,4,5,6-pentahydroxyhexanal

C6H12O6 (180.0634)


D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents D-Allose is an endogenous metabolite. D-Allose is an endogenous metabolite.

   

Auraptene

2H-1-BENZOPYRAN-2-ONE, 7-(((2E)-3,7-DIMETHYL-2,6-OCTADIEN-1-YL)OXY)-

C19H22O3 (298.1569)


Auraptene is a member of the class of coumarins that is umbelliferone in which the phenolic hydrogen has been replaced by a geranyl group. Ii is isolated from several edible fruits and vegetables and exhibits a variety of therapeutic properties. It has a role as a plant metabolite, an antineoplastic agent, an apoptosis inducer, a dopaminergic agent, a neuroprotective agent, an antihypertensive agent, a gamma-secretase modulator, a vulnerary, an EC 2.7.11.24 (mitogen-activated protein kinase) inhibitor, a PPARalpha agonist, a gastrointestinal drug, a matrix metalloproteinase inhibitor, an antioxidant and a hepatoprotective agent. It is a member of coumarins and a monoterpenoid. It is functionally related to an umbelliferone. Auraptene is a natural product found in Clausena anisum-olens, Geijera parviflora, and other organisms with data available. Auraptene is found in citrus. Auraptene is isolated from Citrus aurantium (Seville orange) and bael fruit (Aegle marmelos) Auraptene is a natural bioactive monoterpene coumarin ether. It was first isolated from members of the genus Citrus. Auraptene has shown a remarkable effect in the prevention of degenerative diseases. Many studies have reported the effect of auraptene as a chemopreventative agent against cancers of liver, skin, tongue, esophagus, and colon in rodent models. The effect in humans is not yet known A member of the class of coumarins that is umbelliferone in which the phenolic hydrogen has been replaced by a geranyl group. Ii is isolated from several edible fruits and vegetables and exhibits a variety of therapeutic properties. Isolated from Citrus aurantium (Seville orange) and bael fruit (Aegle marmelos) Auraptene is the most abundant naturally occurring geranyloxycoumarin. Auraptene decreases the secretion of matrix metalloproteinase 2 (MMP-2) as well as key inflammatory mediators, including IL-6, IL-8, and chemokine (C-C motif) ligand-5(CCL5)[1]. Auraptene is the most abundant naturally occurring geranyloxycoumarin. Auraptene decreases the secretion of matrix metalloproteinase 2 (MMP-2) as well as key inflammatory mediators, including IL-6, IL-8, and chemokine (C-C motif) ligand-5(CCL5)[1].

   

7-(3,7-Dimethylocta-2,6-dienoxy)-1-benzopyran-2-one

7-[(3,7-dimethylocta-2,6-dien-1-yl)oxy]-2H-chromen-2-one

C19H22O3 (298.1569)


   

Heraclenin

9-{[(2S)-3,3-dimethyloxiran-2-yl]methoxy}-7H-furo[3,2-g]chromen-7-one

C16H14O5 (286.0841)


Heraclenin is a member of the class of compounds known as psoralens. Psoralens are organic compounds containing a psoralen moiety, which consists of a furan fused to a chromenone to for 7H-furo[3,2-g]chromen-7-one. Heraclenin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Heraclenin can be found in carrot, lemon, and wild carrot, which makes heraclenin a potential biomarker for the consumption of these food products.

   

dextrose

Isobar: glucose,fructose,mannose,galactose

C6H12O6 (180.0634)


COVID info from COVID-19 Disease Map, PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS alpha-D-glucose is an endogenous metabolite. alpha-D-glucose is an endogenous metabolite.

   

Glucuronate

(2S,3S,4S,5R)-2,3,4,5-tetrahydroxy-6-oxohexanoic acid

C6H10O7 (194.0427)


A sugar acid formed by the oxidation of the C-6 carbon of GLUCOSE. In addition to being a key intermediate metabolite of the uronic acid pathway, glucuronic acid also plays a role in the detoxification of certain drugs and toxins by conjugating with them to form GLUCURONIDES. Glucuronic acid, an important derivative of glucose, serves several key biological functions: Detoxification: Glucuronic acid plays a crucial role in the detoxification process within the liver. It conjugates with various toxins, drugs, and bilirubin (a breakdown product of heme) to form water-soluble glucuronides. This conjugation process enhances the elimination of these substances from the body. Glycosaminoglycan Synthesis: It is a precursor for the synthesis of glycosaminoglycans (GAGs), such as hyaluronic acid, chondroitin sulfate, and dermatan sulfate. These GAGs are important components of connective tissues, providing structural support and contributing to tissue hydration and lubrication. Ascorbic Acid (Vitamin C) Synthesis: In some animals, glucuronic acid is involved in the synthesis of ascorbic acid, an essential vitamin. Bile Acid Synthesis: Glucuronic acid is also involved in the synthesis of certain bile acids, which are crucial for the digestion and absorption of dietary fats. Metabolism of Steroids and Xenobiotics: It participates in the metabolism of steroids and various xenobiotics (foreign substances), aiding in their elimination from the body. Cell Signaling: Glucuronic acid-containing compounds, like GAGs, can interact with cell surface receptors and influence cell signaling pathways, impacting processes like cell growth, adhesion, and migration. DL-Glucuronic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=576-37-4 (retrieved 2024-07-01) (CAS RN: 576-37-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

aurapten

7-(3,7-Dimethyl-2,6-octadienyl)oxy-2H-1-benzopyran-2-one, 9CI

C19H22O3 (298.1569)


Auraptene is the most abundant naturally occurring geranyloxycoumarin. Auraptene decreases the secretion of matrix metalloproteinase 2 (MMP-2) as well as key inflammatory mediators, including IL-6, IL-8, and chemokine (C-C motif) ligand-5(CCL5)[1]. Auraptene is the most abundant naturally occurring geranyloxycoumarin. Auraptene decreases the secretion of matrix metalloproteinase 2 (MMP-2) as well as key inflammatory mediators, including IL-6, IL-8, and chemokine (C-C motif) ligand-5(CCL5)[1].

   

Esculin

Esculetin-O-glucoside

C15H16O9 (340.0794)


Origin: Plant; Formula(Parent): C15H16O9; Bottle Name:Esculin sesquihydrate; PRIME Parent Name:6,7-Dihydroxycoumarin-6-glucoside; PRIME in-house No.:V0125, Coumarins relative retention time with respect to 9-anthracene Carboxylic Acid is 0.391 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.385 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.384 Esculin, a fluorescent coumarin glucoside, is an active ingredient of ash bark[1]. Esculin ameliorates cognitive impairment in experimental diabetic nephropathy (DN), and exerts anti?oxidative stress and anti?inflammatory effects, via the MAPK signaling pathway[2]. Esculin, a fluorescent coumarin glucoside, is an active ingredient of ash bark[1]. Esculin ameliorates cognitive impairment in experimental diabetic nephropathy (DN), and exerts anti?oxidative stress and anti?inflammatory effects, via the MAPK signaling pathway[2].

   

Xanthotoxin

9-methoxy-7H-furo[3,2-g]chromen-7-one

C12H8O4 (216.0423)


   

Imperatorin

Imperatorin

C16H14O4 (270.0892)


Imperatorin is an effective of NO synthesis inhibitor (IC50=9.2 μmol), which also is a BChE inhibitor (IC50=31.4 μmol). Imperatorin is a weak agonist of TRPV1 with EC50 of 12.6±3.2 μM. Imperatorin is an effective of NO synthesis inhibitor (IC50=9.2 μmol), which also is a BChE inhibitor (IC50=31.4 μmol). Imperatorin is a weak agonist of TRPV1 with EC50 of 12.6±3.2 μM.

   

Xylose

(+/-)-Arabinose; DL-Arabinose; dl-Arabinose

C5H10O5 (150.0528)


2,3,4,5-tetrahydroxypentanal is a pentose, a polyol and a hydroxyaldehyde. DL-Arabinose is a natural product found in Arabidopsis thaliana, Streptomyces hainanensis, and other organisms with data available. Citrus Pectin is dietary fiber source, extracted from rind of citrus fruits, and used as a gelling agent. High molecular weight polysaccharides present in the cell walls of all plants. Pectins cement cell walls together. They are used as emulsifiers and stabilizers in the food industry. They have been tried for a variety of therapeutic uses including as antidiarrheals, where they are now generally considered ineffective, and in the treatment of hypercholesterolemia. D000074385 - Food Ingredients > D005503 - Food Additives > D010368 - Pectins Arabinose is an endogenous metabolite. Arabinose is an endogenous metabolite. DL-Xylose is an intermediate of organic synthesis. DL-Xylose is an intermediate of organic synthesis. D-Lyxose is an endogenous metabolite. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion. L-Xylose (L-(-)-Xylose) is the levo-isomer of Xylose. Xylose is classified as a?monosaccharide?of the?aldopentose?type[1]. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose.

   

Scoparone

6,7-dimethoxycoumarin

C11H10O4 (206.0579)


Annotation level-1 D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1]. Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1].

   

Methoxsalen

8-Methoxypsoralen

C12H8O4 (216.0423)


D - Dermatologicals > D05 - Antipsoriatics > D05B - Antipsoriatics for systemic use > D05BA - Psoralens for systemic use D - Dermatologicals > D05 - Antipsoriatics > D05A - Antipsoriatics for topical use > D05AD - Psoralens for topical use D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent relative retention time with respect to 9-anthracene Carboxylic Acid is 0.910 C1420 - Photosensitizing Agent D003879 - Dermatologic Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.909 Methoxsalen (8-Methoxypsoralen) is a furanocoumarin compound used in psoralen, used in studies of psoriasis, eczema, vitiligo and some sun-exposed cutaneous lymphomas, and is a P450 inhibitor. Methoxsalen (8-Methoxypsoralen) is a furanocoumarin compound used in psoralen, used in studies of psoriasis, eczema, vitiligo and some sun-exposed cutaneous lymphomas, and is a P450 inhibitor.

   

Hydroquinone

(4-hydroxyphenyl)oxidanesulfonic acid

C6H6O2 (110.0368)


A benzenediol comprising benzene core carrying two hydroxy substituents para to each other. Hydroquinone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=123-31-9 (retrieved 2024-07-16) (CAS RN: 123-31-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

dextrose

alpha-D-Glucose

C6H12O6 (180.0634)


COVID info from COVID-19 Disease Map, PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS alpha-D-glucose is an endogenous metabolite. alpha-D-glucose is an endogenous metabolite.

   

Auraptene

2H-1-Benzopyran-2-one, 7-((3,7-dimethyl-2,6-octadienyl)oxy)-, (E)-

C19H22O3 (298.1569)


Origin: Plant, Coumarins Auraptene is the most abundant naturally occurring geranyloxycoumarin. Auraptene decreases the secretion of matrix metalloproteinase 2 (MMP-2) as well as key inflammatory mediators, including IL-6, IL-8, and chemokine (C-C motif) ligand-5(CCL5)[1]. Auraptene is the most abundant naturally occurring geranyloxycoumarin. Auraptene decreases the secretion of matrix metalloproteinase 2 (MMP-2) as well as key inflammatory mediators, including IL-6, IL-8, and chemokine (C-C motif) ligand-5(CCL5)[1].

   

Heraclenin

Heraclenin

C16H14O5 (286.0841)


Origin: Plant, Coumarins Heraclenin, a natural furanocoumarin, significantly inhibits T cell receptor-mediated proliferation in human primary T cells in a concentration-dependent manner by targeting nuclear factor of activated T-cells (NFAT)[1]. Heraclenin, a natural furanocoumarin, significantly inhibits T cell receptor-mediated proliferation in human primary T cells in a concentration-dependent manner by targeting nuclear factor of activated T-cells (NFAT)[1].

   

L-(+)-Ribose

(2R,3S,4S)-2,3,4,5-tetrahydroxypentanal

C5H10O5 (150.0528)


Arabinose is an endogenous metabolite. Arabinose is an endogenous metabolite. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion. L-(+)-Arabinose selectively inhibits intestinal sucrase activity in a noncompetitive manner and suppresses the plasma glucose increase due to sucrose ingestion.

   

Artra

InChI=1\C6H6O2\c7-5-1-2-6(8)4-3-5\h1-4,7-8

C6H6O2 (110.0368)


D020011 - Protective Agents > D011837 - Radiation-Protective Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D009153 - Mutagens D - Dermatologicals

   

Ammidin

InChI=1\C16H14O4\c1-10(2)5-7-19-16-14-12(6-8-18-14)9-11-3-4-13(17)20-15(11)16\h3-6,8-9H,7H2,1-2H

C16H14O4 (270.0892)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Imperatorin is an effective of NO synthesis inhibitor (IC50=9.2 μmol), which also is a BChE inhibitor (IC50=31.4 μmol). Imperatorin is a weak agonist of TRPV1 with EC50 of 12.6±3.2 μM. Imperatorin is an effective of NO synthesis inhibitor (IC50=9.2 μmol), which also is a BChE inhibitor (IC50=31.4 μmol). Imperatorin is a weak agonist of TRPV1 with EC50 of 12.6±3.2 μM.

   

Marmesin

7H-Furo[3,2g][1]-benzopyran-7-one, (-2,3-dihydro-2-(1-hydroxy-1-hydroxymethylethyl)-, (R)

C14H14O4 (246.0892)


Nodakenetin is a marmesin with R-configuration. It has a role as a plant metabolite, a rat metabolite and a xenobiotic metabolite. It is an enantiomer of a (+)-marmesin. Nodakenetin is a natural product found in Zanthoxylum beecheyanum, Melicope barbigera, and other organisms with data available. A marmesin with R-configuration. (+)-marmesin is a marmesin. It is an enantiomer of a nodakenetin. Marmesin is a natural product found in Coronilla scorpioides, Clausena dunniana, and other organisms with data available. Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2]. Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2]. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity.

   

Uvadex

5-Benzofuranacrylic acid, 6-hydroxy-7-methoxy-, .delta.-lactone

C12H8O4 (216.0423)


D - Dermatologicals > D05 - Antipsoriatics > D05B - Antipsoriatics for systemic use > D05BA - Psoralens for systemic use D - Dermatologicals > D05 - Antipsoriatics > D05A - Antipsoriatics for topical use > D05AD - Psoralens for topical use D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent C1420 - Photosensitizing Agent D003879 - Dermatologic Agents Methoxsalen (8-Methoxypsoralen) is a furanocoumarin compound used in psoralen, used in studies of psoriasis, eczema, vitiligo and some sun-exposed cutaneous lymphomas, and is a P450 inhibitor. Methoxsalen (8-Methoxypsoralen) is a furanocoumarin compound used in psoralen, used in studies of psoriasis, eczema, vitiligo and some sun-exposed cutaneous lymphomas, and is a P450 inhibitor.

   

Scoparon

5-18-03-00204 (Beilstein Handbook Reference)

C11H10O4 (206.0579)


D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1]. Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1].

   

CHEBI:17118

(2R,3S,4S,5R)-2,3,4,5,6-pentahydroxyhexanal

C6H12O6 (180.0634)


   

Escosyl

7-hydroxy-6-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-2-chromenone

C15H16O9 (340.0794)


Esculin, a fluorescent coumarin glucoside, is an active ingredient of ash bark[1]. Esculin ameliorates cognitive impairment in experimental diabetic nephropathy (DN), and exerts anti?oxidative stress and anti?inflammatory effects, via the MAPK signaling pathway[2]. Esculin, a fluorescent coumarin glucoside, is an active ingredient of ash bark[1]. Esculin ameliorates cognitive impairment in experimental diabetic nephropathy (DN), and exerts anti?oxidative stress and anti?inflammatory effects, via the MAPK signaling pathway[2].

   

Marmesine

7H-Furo[3,2g][1]-benzopyran-7-one, (-2,3-dihydro-2-(1-hydroxy-1-hydroxymethylethyl)-, (R)

C14H14O4 (246.0892)


Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2]. Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2].

   

(2R,3S,4S,5R)-2,3,4,5,6-pentahydroxyhexanal

(2R,3S,4S,5R)-2,3,4,5,6-pentahydroxyhexanal

C6H12O6 (180.0634)


   

aldehydo-D-galactose

aldehydo-D-galactose

C6H12O6 (180.0634)


   

(1r,3ar,3br,7s,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3ar,3br,7s,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C29H50O (414.3861)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.3861)