Scopoletin

7-hydroxy-6-methoxy-2H-chromen-2-one

C10H8O4 (192.0423)


Scopoletin is a hydroxycoumarin that is umbelliferone bearing a methoxy substituent at position 6. It has a role as a plant growth regulator and a plant metabolite. It is functionally related to an umbelliferone. Scopoletin is a natural product found in Ficus auriculata, Haplophyllum cappadocicum, and other organisms with data available. Scopoletin is a coumarin compound found in several plants including those in the genus Scopolia and the genus Brunfelsia, as well as chicory (Cichorium), redstem wormwood (Artemisia scoparia), stinging nettle (Urtica dioica), passion flower (Passiflora), noni (Morinda citrifolia fruit) and European black nightshade (Solanum nigrum) that is comprised of umbelliferone with a methoxy group substituent at position 6. Scopoletin is used to standardize and establish pharmacokinetic properties for products derived from the plants that produce it, such as noni extract. Although the mechanism(s) of action have not yet been established, this agent has potential antineoplastic, antidopaminergic, antioxidant, anti-inflammatory and anticholinesterase effects. Plant growth factor derived from the root of Scopolia carniolica or Scopolia japonica. See also: Arnica montana Flower (part of); Lycium barbarum fruit (part of); Viburnum opulus root (part of). Isolated from Angelica acutiloba (Dong Dang Gui). Scopoletin is found in many foods, some of which are lambsquarters, lemon, sunflower, and sherry. Scopoletin is found in anise. Scopoletin is isolated from Angelica acutiloba (Dong Dang Gui A hydroxycoumarin that is umbelliferone bearing a methoxy substituent at position 6. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA72_Scopoletin_pos_20eV.txt [Raw Data] CBA72_Scopoletin_pos_40eV.txt [Raw Data] CBA72_Scopoletin_neg_30eV.txt [Raw Data] CBA72_Scopoletin_neg_50eV.txt [Raw Data] CBA72_Scopoletin_pos_50eV.txt [Raw Data] CBA72_Scopoletin_pos_10eV.txt [Raw Data] CBA72_Scopoletin_neg_40eV.txt [Raw Data] CBA72_Scopoletin_neg_10eV.txt [Raw Data] CBA72_Scopoletin_pos_30eV.txt [Raw Data] CBA72_Scopoletin_neg_20eV.txt Scopoletin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=92-61-5 (retrieved 2024-07-12) (CAS RN: 92-61-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Scopoletin is an inhibitor of acetylcholinesterase (AChE). Scopoletin is an inhibitor of acetylcholinesterase (AChE).

   

Isoalantolactone

Naphtho(2,3-b)furan-2(3H)-one, decahydro-8a-methyl-3,5-bis(methylene)-, (3aR-(3a alpha,4a alpha,8a beta,9a alpha))-

C15H20O2 (232.1463)


Isoalantolactone is a sesquiterpene lactone of the eudesmanolide group. It has been isolated from Inula helenium. It has a role as an apoptosis inducer, an antifungal agent and a plant metabolite. It is a sesquiterpene lactone and a eudesmane sesquiterpenoid. Isoalantolactone is a natural product found in Eupatorium cannabinum, Critonia quadrangularis, and other organisms with data available. Isoalantolactone is found in herbs and spices. Isoalantolactone is a constituent of the essential oil of Inula helenium (elecampane) Constituent of the essential oil of Inula helenium (elecampane). Isoalantolactone is found in herbs and spices. Isoalantolactone is an apoptosis inducer, which also acts as an alkylating agent. Isoalantolactone is an apoptosis inducer, which also acts as an alkylating agent.

   

Scoparone

6,7-dimethoxychromen-2-one

C11H10O4 (206.0579)


Scoparone is a member of the class of coumarins that is esculetin in which the two hydroxy groups at positions 6 and 7 are replaced by methoxy groups. It is a major constituent of the Chinese herbal medicine Yin Chen Hao, and exhibits a variety of pharmacological activities such as anti-inflammatory, anti-allergic, and anti-tumor activities. It has a role as a plant metabolite, an anti-inflammatory agent, an antilipemic drug, an immunosuppressive agent, an antihypertensive agent and an anti-allergic agent. It is a member of coumarins and an aromatic ether. It is functionally related to an esculetin. Scoparone is a natural product found in Haplophyllum ramosissimum, Haplophyllum thesioides, and other organisms with data available. A member of the class of coumarins that is esculetin in which the two hydroxy groups at positions 6 and 7 are replaced by methoxy groups. It is a major constituent of the Chinese herbal medicine Yin Chen Hao, and exhibits a variety of pharmacological activities such as anti-inflammatory, anti-allergic, and anti-tumor activities. D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics Scoparone is found in anise. Scoparone is found in several citrus oil D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Found in several citrus oils Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1]. Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1].

   

Pinocembrin

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-phenyl-, (S)-(-)-

C15H12O4 (256.0736)


Pinocembrin is a dihydroxyflavanone in which the two hydroxy groups are located at positions 5 and 7. A natural product found in Piper sarmentosum and Cryptocarya chartacea. It has a role as an antioxidant, an antineoplastic agent, a vasodilator agent, a neuroprotective agent and a metabolite. It is a dihydroxyflavanone and a (2S)-flavan-4-one. Pinocembrin is a natural product found in Prunus leveilleana, Alpinia rafflesiana, and other organisms with data available. Pinocembrin is found in mexican oregano and is isolated from many plants including food plants. Pinocembrin belongs to the family of flavanones. These are compounds containing a flavan-3-one moiety, which structure is characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. A dihydroxyflavanone in which the two hydroxy groups are located at positions 5 and 7. A natural product found in Piper sarmentosum and Cryptocarya chartacea. Isolated from many plants including food plants. (S)-Pinocembrin is found in mexican oregano and pine nut. (±)-Pinocembrin ((±)-5,7-Dihydroxyflavanone) is a GPR120 ligand able to promote wound healing in HaCaT cell line[1]. (±)-Pinocembrin ((±)-5,7-Dihydroxyflavanone) is a GPR120 ligand able to promote wound healing in HaCaT cell line[1]. Pinocembrin ((+)-Pinocoembrin) is a flavonoid found in propolis, acts as a competitive inhibitor of histidine decarboxylase, and is an effective anti-allergic agent, with antioxidant, antimicrobial and anti-inflammatory properties[1]. Pinocembrin ((+)-Pinocoembrin) is a flavonoid found in propolis, acts as a competitive inhibitor of histidine decarboxylase, and is an effective anti-allergic agent, with antioxidant, antimicrobial and anti-inflammatory properties[1].

   

Eriodictyol

(S) -2- (3,4-Dihydroxyphenyl) -2,3-dihydro-5,7-dihydroxy-4H-1-benzopyran-4-one

C15H12O6 (288.0634)


Eriodictyol, also known as 3,4,5,7-tetrahydroxyflavanone or 2,3-dihydroluteolin, belongs to the class of organic compounds known as flavanones. Flavanones are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. Thus, eriodictyol is considered to be a flavonoid lipid molecule. Outside of the human body, eriodictyol has been detected, but not quantified in, several different foods, such as common oregano, common thymes, parsley, sweet basils, and tarragons. This could make eriodictyol a potential biomarker for the consumption of these foods. Eriodictyol is a compound isolated from Eriodictyon californicum and can be used in medicine as an expectorant. BioTransformer predicts that eriodictiol is a product of luteolin metabolism via a flavonoid-c-ring-reduction reaction catalyzed by an unspecified-gut microbiota enzyme (PMID: 30612223). Eriodictyol, also known as 5735-tetrahydroxyflavanone, is a member of the class of compounds known as flavanones. Flavanones are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. Eriodictyol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Eriodictyol can be found in a number of food items such as rowal, grape, cardamom, and lemon balm, which makes eriodictyol a potential biomarker for the consumption of these food products. Eriodictyol is a bitter-masking flavanone, a flavonoid extracted from yerba santa (Eriodictyon californicum), a plant native to North America. Eriodictyol is one of the four flavanones identified in this plant as having taste-modifying properties, the other three being homoeriodictyol, its sodium salt, and sterubin . Eriodictyol is a tetrahydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 7, 3 and 4 respectively. It is a tetrahydroxyflavanone and a member of 3-hydroxyflavanones. Eriodictyol is a natural product found in Eupatorium album, Eupatorium hyssopifolium, and other organisms with data available. A tetrahydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 7, 3 and 4 respectively. Acquisition and generation of the data is financially supported in part by CREST/JST. Eriodictyol is a flavonoid isolated from the Chinese herb, with antioxidant and anti-inflammatory activity. Eriodictyol induces Nrf2 signaling pathway. Eriodictyol is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 18 nM. Eriodictyol is a flavonoid isolated from the Chinese herb, with antioxidant and anti-inflammatory activity. Eriodictyol induces Nrf2 signaling pathway. Eriodictyol is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 18 nM.

   

8-Prenylnaringenin

4H-1-BENZOPYRAN-4-ONE, 2,3-DIHYDRO-5,7-DIHYDROXY-2-(4-HYDROXYPHENYL)-8-(3-METHYL-2-BUTEN-1-YL)-, (2S)-

C20H20O5 (340.1311)


Sophoraflavanone B is a trihydroxyflavanone that is (S)-naringenin having a prenyl group at position 8. It has a role as a platelet aggregation inhibitor and a plant metabolite. It is a trihydroxyflavanone, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. It is a conjugate acid of a sophoraflavanone B(1-). 8-Prenylnaringenin is a natural product found in Macaranga conifera, Macaranga denticulata, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens A trihydroxyflavanone that is (S)-naringenin having a prenyl group at position 8. INTERNAL_ID 2299; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2299

   

Beta-eudesmol

2-Naphthalenemethanol, 1,2.alpha.,3,4,4a,5,6,7,8,8a.alpha.-decahydro-.alpha.,.alpha.,4a.beta.-trimethyl-8-methylene-

C15H26O (222.1984)


Beta-eudesmol is a carbobicyclic compound that is trans-decalin substituted at positions 2, 4a, and 8 by 2-hydroxypropan-2-yl, methyl and methylidene groups, respectively (the 2R,4aR,8aS-diastereoisomer). It has a role as a volatile oil component. It is a carbobicyclic compound, a tertiary alcohol and a eudesmane sesquiterpenoid. beta-Eudesmol is a natural product found in Rhododendron calostrotum, Rhododendron lepidotum, and other organisms with data available. See also: Arctium lappa Root (part of); Cannabis sativa subsp. indica top (part of); Pterocarpus marsupium wood (part of). A carbobicyclic compound that is trans-decalin substituted at positions 2, 4a, and 8 by 2-hydroxypropan-2-yl, methyl and methylidene groups, respectively (the 2R,4aR,8aS-diastereoisomer). Beta-Eudesmol is a natural oxygenated sesquiterpene, activates hTRPA1, with an EC50 of 32.5 μM. Beta-Eudesmol increases appetite through TRPA1[1]. Beta-Eudesmol is a natural oxygenated sesquiterpene, activates hTRPA1, with an EC50 of 32.5 μM. Beta-Eudesmol increases appetite through TRPA1[1].

   

Alantolactone

Naphtho(2,3-b)furan-2(3H)-one, 3a,5,6,7,8,8a,9,9a-octahydro-5,8a-dimethyl-3-methylene-, (3aR-(3a alpha,5beta,8a beta,9a alpha))-

C15H20O2 (232.1463)


Alantolactone is a sesquiterpene lactone that is 3a,5,6,7,8,8a,9,9a-octahydronaphtho[2,3-b]furan-2-one bearing two methyl substituents at positions 5 and 8a as well as a methylidene substituent at position 3. It has a role as a plant metabolite, an apoptosis inducer and an antineoplastic agent. It is a sesquiterpene lactone, a naphthofuran and an olefinic compound. Alantolactone is a natural product found in Eupatorium cannabinum, Pentanema britannicum, and other organisms with data available. Alantolactone is found in herbs and spices. Alantolactone is a constituent of Inula helenium (elecampane) Constituent of Inula helenium (elecampane). Alantolactone is found in herbs and spices. Alantolactone is a selective STAT3 inhibitor, with potent anticancer activity. Alantolactone induces apoptosis in cancer[1][2][3]. Alantolactone is a selective STAT3 inhibitor, with potent anticancer activity. Alantolactone induces apoptosis in cancer[1][2][3].

   

Polylimonene

1-Methyl-4-(1-methylethenyl)-or 1-methyl-4-isopropenyl-cyclohex-1-ene

C10H16 (136.1252)


Dipentene appears as a colorless liquid with an odor of lemon. Flash point 113 °F. Density about 7.2 lb /gal and insoluble in water. Hence floats on water. Vapors heavier than air. Used as a solvent for rosin, waxes, rubber; as a dispersing agent for oils, resins, paints, lacquers, varnishes, and in floor waxes and furniture polishes. Limonene is a monoterpene that is cyclohex-1-ene substituted by a methyl group at position 1 and a prop-1-en-2-yl group at position 4 respectively. It has a role as a human metabolite. It is a cycloalkene and a p-menthadiene. Limonene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. Limonene, (+/-)- is a racemic mixture of limonene, a natural cyclic monoterpene and major component of the oil extracted from citrus rind with chemo-preventive and antitumor activities. The metabolites of DL-limonene, perillic acid, dihydroperillic acid, uroterpenol and limonene 1,2-diol are suggested to inhibit tumor growth through inhibition of p21-dependent signaling, induce apoptosis via the induction of the transforming growth factor beta-signaling pathway, inhibit post-translational modification of signal transduction proteins, result in G1 cell cycle arrest as well as cause differential expression of cell cycle- and apoptosis-related genes. Limonene is a metabolite found in or produced by Saccharomyces cerevisiae. A naturally-occurring class of MONOTERPENES which occur as a clear colorless liquid at room temperature. Limonene is the major component in the oil of oranges which has many uses, including as flavor and fragrance. It is recognized as safe in food by the Food and Drug Administration (FDA). See also: Cannabis sativa subsp. indica top (part of); Larrea tridentata whole (part of). Constituent of many essential oils. (±)-Limonene is found in many foods, some of which are common oregano, nutmeg, herbs and spices, and summer savory. Dipentene is found in carrot. Dipentene is a constituent of many essential oils

   

beta-Myrcene

InChI=1/C10H16/c1-5-10(4)8-6-7-9(2)3/h5,7H,1,4,6,8H2,2-3H

C10H16 (136.1252)


7-Methyl-3-methylene-1,6-octadiene, also known as beta-Myrcene or myrcene is an acyclic monoterpene. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids. beta-Myrcene is a significant component of the essential oil of several plants, including allspice, bay, cannabis, hops, houttuynia, lemon grass, mango, myrcia, verbena, west indian bay tree, and cardamom. It is also the main component of wild thyme, the leaves of which contain up to 40\\\\% by weight of myrcene. Industrially, it is produced mainly semi-synthetically from myrcia, from which it gets its name. Myrcene has been detected as a volatile component in cannabis plant samples (PMID:26657499 ) and its essential oils (PMID:6991645 ). beta-Myrcene is the most abundant monoterpene in Cannabis and it has analgesic, anti-inflammatory, antibiotic, and antimutagenic activities. beta-Myrcene is a flavouring agent and it is used in the perfumery industry. It has a pleasant odor but is rarely used directly. It is a key intermediate in the production of several fragrances such as menthol, citral, citronellol, citronellal, geraniol, nerol, and linalool. Myrcene, [liquid] appears as a yellow oily liquid with a pleasant odor. Flash point below 200 °F. Insoluble in water and less dense than water. Beta-myrcene is a monoterpene that is octa-1,6-diene bearing methylene and methyl substituents at positions 3 and 7 respectively. It has a role as a plant metabolite, an anti-inflammatory agent, an anabolic agent, a fragrance, a flavouring agent and a volatile oil component. Myrcene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. 7-Methyl-3-methylene-1,6-octadiene is found in allspice. 7-Methyl-3-methylene-1,6-octadiene is found in many essential oils, e.g. hop oil. 7-Methyl-3-methylene-1,6-octadiene is a flavouring agent. Myrcene is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Caraway Oil (part of); Mandarin oil (part of); Juniper Berry Oil (part of) ... View More ... A monoterpene that is octa-1,6-diene bearing methylene and methyl substituents at positions 3 and 7 respectively. Found in many essential oils, e.g. hop oil. Flavouring agent Myrcene (β-Myrcene), an aromatic volatile compound, suppresses TNFα-induced NF-κB activity. Myrcene has anti-invasive effect[1][2]. Myrcene (β-Myrcene), an aromatic volatile compound, suppresses TNFα-induced NF-κB activity. Myrcene has anti-invasive effect[1][2].

   

(2S,4R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ol

Bicyclo(2.2.1)heptan-2-ol, 1,7,7-trimethyl-, endo-(.+/-.)-

C10H18O (154.1358)


Borneol appears as a white colored lump-solid with a sharp camphor-like odor. Burns readily. Slightly denser than water and insoluble in water. Used to make perfumes. Borneol is a bornane monoterpenoid that is 1,7,7-trimethylbicyclo[2.2.1]heptane substituted by a hydroxy group at position 2. It has a role as a volatile oil component and a metabolite. Isoborneol is a natural product found in Xylopia sericea, Eupatorium capillifolium, and other organisms with data available. Both Borneol and Isoborneol and their acetates and formates are used as flavouring agents. 2-Bornanol is found in turmeric. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2]. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2].

   

Pinobanksin

4H-1-BENZOPYRAN-4-ONE, 2,3-DIHYDRO-3,5,7-TRIHYDROXY-2-PHENYL-, (2R,3R)-

C15H12O5 (272.0685)


Pinobanksin is a trihydroxyflavanone in which the three hydroxy substituents are located at positions 3, 5 and 7. It has a role as an antimutagen, an antioxidant and a metabolite. It is a trihydroxyflavanone and a secondary alpha-hydroxy ketone. Pinobanksin is a natural product found in Populus koreana, Ozothamnus stirlingii, and other organisms with data available. Pinobanksin has apoptotic induction in a B-cell lymphoma cell line[1].

   

Caryophyllene alpha-oxide

[1R-(1R*,4R*,6R*,10S*)]- Caryophylene oxide Caryophyllene epoxide Caryophyllene oxyde Epoxycaryophyllene [1R-(1R*,4R*,6R*,10S*)]-4,12,12-trimethyl-9-methylene-5-oxatricyclo[8.2.0.04,6]dodecane <>-Caryophyllene epoxide <>-Caryophyllene oxide

C15H24O (220.1827)


Caryophyllene oxide is an epoxide. It has a role as a metabolite. Caryophyllene oxide is a natural product found in Xylopia emarginata, Eupatorium altissimum, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of). Caryophyllene alpha-oxide is a minor produced of epoxidn. of KGV69-V. Minor production of epoxidn. of KGV69-V Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1]. Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1].

   

Cirsimaritin

5-Hydroxy-2-(4-hydroxyphenyl)-6,7-dimethoxy-4H-chromen-4-one

C17H14O6 (314.079)


Cirsimaritin, also known as 4,5-dihydroxy-6,7-dimethoxyflavone or scrophulein, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, cirsimaritin is considered to be a flavonoid lipid molecule. Cirsimaritin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cirsimaritin can be found in a number of food items such as italian oregano, lemon verbena, winter savory, and rosemary, which makes cirsimaritin a potential biomarker for the consumption of these food products.

   

(Z)-3-Methyl-2-(2-pentenyl)-2-cyclopenten-1-one

2-Cyclopenten-1-one, 3-methyl-2-(2-pentenyl)-, (Z)- (8CI)

C11H16O (164.1201)


(Z)-3-Methyl-2-(2-pentenyl)-2-cyclopenten-1-one is found in citrus. (Z)-3-Methyl-2-(2-pentenyl)-2-cyclopenten-1-one occurs in peppermint oil, green tea and bergamot oranges (Citrus bergamia).Jasmone is a natural organic compound extracted from the volatile portion of the oil from jasmine flowers. It is a colorless to pale yellow liquid that has the odor of jasmine. Jasmone can exist in two isomeric forms with differing geometry around the pentenyl double bond, cis-jasmone and trans-jasmone. The natural extract contains only the cis form, while synthetic material is often a mixture containing both forms, with the cis form predominating. Both forms have similar odors and chemical properties. (Wikipedia Jasmone is a cyclic ketone. Jasmone is a natural product found in Lonicera japonica, Pulicaria arabica, and other organisms with data available. Occurs in peppermint oil, green tea and bergamot oranges (Citrus bergamia) Cis-Jasmone is a plant-derived natural product. Cis-Jasmone is constitutively released by many flowers and sometimes by leaves as an attractant for pollinators or as a chemical cue for host location by insect flower herbivores. Cis-Jasmone treatment of crop plants not only induces direct defense against herbivores, but also induces indirect defense by releasing VOCs that attract natural enemies[1]. Cis-Jasmone is a plant-derived natural product. Cis-Jasmone is constitutively released by many flowers and sometimes by leaves as an attractant for pollinators or as a chemical cue for host location by insect flower herbivores. Cis-Jasmone treatment of crop plants not only induces direct defense against herbivores, but also induces indirect defense by releasing VOCs that attract natural enemies[1].

   

Chrysin

5,7-Dihydroxyflavone

C15H10O4 (254.0579)


Chrysin is a dihydroxyflavone in which the two hydroxy groups are located at positions 5 and 7. It has a role as an anti-inflammatory agent, an antineoplastic agent, an antioxidant, a hepatoprotective agent, an EC 2.7.11.18 (myosin-light-chain kinase) inhibitor and a plant metabolite. It is a dihydroxyflavone and a 7-hydroxyflavonol. Chrysin is a natural product found in Scutellaria amoena, Lonicera japonica, and other organisms with data available. 5,7-Dihydroxyflavone is found in carrot. Chrysin is a naturally occurring flavone chemically extracted from the blue passion flower (Passiflora caerulea). Honeycomb also contains small amounts. It is also reported in Oroxylum indicum or Indian trumpetflower. (Wikipedia). Chrysin is a naturally occurring flavone chemically extracted from the blue passion flower (Passiflora caerulea). Honeycomb also contains small amounts. It is also reported in Oroxylum indicum or Indian trumpetflower. [Wikipedia]. Chrysin is found in many foods, some of which are sour cherry, carrot, wild carrot, and sweet orange. 5,7-Dihydroxyflavone is found in carrot. Chrysin is a naturally occurring flavone chemically extracted from the blue passion flower (Passiflora caerulea). Honeycomb also contains small amounts. It is also reported in Oroxylum indicum or Indian trumpetflower. (Wikipedia). A dihydroxyflavone in which the two hydroxy groups are located at positions 5 and 7. CONFIDENCE standard compound; INTERNAL_ID 804; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4420; ORIGINAL_PRECURSOR_SCAN_NO 4416 CONFIDENCE standard compound; INTERNAL_ID 804; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4423; ORIGINAL_PRECURSOR_SCAN_NO 4419 CONFIDENCE standard compound; INTERNAL_ID 804; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9217; ORIGINAL_PRECURSOR_SCAN_NO 9215 ORIGINAL_ACQUISITION_NO 4462; CONFIDENCE standard compound; INTERNAL_ID 804; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_PRECURSOR_SCAN_NO 4458 CONFIDENCE standard compound; INTERNAL_ID 804; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4462; ORIGINAL_PRECURSOR_SCAN_NO 4458 CONFIDENCE standard compound; INTERNAL_ID 804; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7989; ORIGINAL_PRECURSOR_SCAN_NO 7985 CONFIDENCE standard compound; INTERNAL_ID 804; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4441; ORIGINAL_PRECURSOR_SCAN_NO 4440 CONFIDENCE standard compound; INTERNAL_ID 804; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7956; ORIGINAL_PRECURSOR_SCAN_NO 7952 CONFIDENCE standard compound; INTERNAL_ID 804; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7917; ORIGINAL_PRECURSOR_SCAN_NO 7913 CONFIDENCE standard compound; INTERNAL_ID 804; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4472; ORIGINAL_PRECURSOR_SCAN_NO 4469 CONFIDENCE standard compound; INTERNAL_ID 804; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7978; ORIGINAL_PRECURSOR_SCAN_NO 7973 CONFIDENCE standard compound; INTERNAL_ID 804; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4441; ORIGINAL_PRECURSOR_SCAN_NO 4438 CONFIDENCE standard compound; INTERNAL_ID 804; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7907; ORIGINAL_PRECURSOR_SCAN_NO 7904 [Raw Data] CB007_Chrysin_pos_20eV_CB000007.txt [Raw Data] CB007_Chrysin_pos_30eV_CB000007.txt [Raw Data] CB007_Chrysin_pos_40eV_CB000007.txt [Raw Data] CB007_Chrysin_pos_10eV_CB000007.txt [Raw Data] CB007_Chrysin_pos_50eV_CB000007.txt [Raw Data] CB007_Chrysin_neg_10eV_000007.txt [Raw Data] CB007_Chrysin_neg_30eV_000007.txt [Raw Data] CB007_Chrysin_neg_40eV_000007.txt [Raw Data] CB007_Chrysin_neg_50eV_000007.txt [Raw Data] CB007_Chrysin_neg_20eV_000007.txt Chrysin is one of the most well known estrogen blockers. Chrysin is one of the most well known estrogen blockers.

   

Rhamnetin

3 3 4 5-tetrahydroxy-7-methoxyflavone

C16H12O7 (316.0583)


Acquisition and generation of the data is financially supported in part by CREST/JST. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1]. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1]. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1].

   

dinatin

Scutellarein 6-methyl ether

C16H12O6 (300.0634)


Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM.

   

3-O-Methylkaempferol

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-methoxy-4H-chromen-4-one

C16H12O6 (300.0634)


3-o-methylkaempferol, also known as 5,7,4-trihydroxy-3-methoxyflavone or isokaempferide, is a member of the class of compounds known as 3-o-methylated flavonoids. 3-o-methylated flavonoids are flavonoids with methoxy groups attached to the C3 atom of the flavonoid backbone. Thus, 3-o-methylkaempferol is considered to be a flavonoid lipid molecule. 3-o-methylkaempferol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 3-o-methylkaempferol can be found in common bean and coriander, which makes 3-o-methylkaempferol a potential biomarker for the consumption of these food products.

   

Encecalin

1-(7-Methoxy-2,2-dimethyl-2H-1-benzopyran-6-yl)ethanone

C14H16O3 (232.1099)


   

Camphene

3,3-Dimethyl-2-methylidenebicyclo[2.2.1]heptane

C10H16 (136.1252)


Camphene, also known as 2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane or 2,2-dimethyl-3-methylenenorbornane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Camphene is nearly insoluble in water but very soluble in common organic solvents. It volatilizes readily at room temperature and has a pungent smell. It exists as a flammable, white solid that has a minty, citrus, eucalyptus odor. It is produced industrially by catalytic isomerization of the more common alpha-pinene. Camphene is used in the preparation of fragrances and in food additives for flavouring. In the mid-19th century it was used as a fuel for lamps, but this was limited by its explosiveness. Camphene exists in all eukaryotes, ranging from yeast to plants to humans. Camphene can be found in a number of food items such as dill, carrots, caraway, hyssop, lemon, orange, nutmeg seed, parsley, sage, thyme, turmeric and fennel, which makes camphene a potential biomarker for the consumption of these food products. It is a minor constituent of many essential oils such as turpentine, cypress oil, camphor oil, citronella oil, neroli, ginger oil, and valerian. Camphene is one of several monoterpenes that are found in cannabis plants (PMID:6991645 ). Camphene, also known as 2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane or 2,2-dimethyl-3-methylenenorbornane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Camphene is a camphor, fir needle, and herbal tasting compound and can be found in a number of food items such as cardamom, yellow bell pepper, common thyme, and coriander, which makes camphene a potential biomarker for the consumption of these food products. Camphene can be found primarily in feces and saliva. Camphene exists in all eukaryotes, ranging from yeast to humans. Camphene is a bicyclic monoterpene. It is nearly insoluble in water, but very soluble in common organic solvents. It volatilizes readily at room temperature and has a pungent smell. It is a minor constituent of many essential oils such as turpentine, cypress oil, camphor oil, citronella oil, neroli, ginger oil, and valerian. It is produced industrially by catalytic isomerization of the more common alpha-pinene. Camphene is used in the preparation of fragrances and as a food additive for flavoring. Its mid-19th century use as a fuel for lamps was limited by its explosiveness .

   

Tremetone

Ethanone, 1-(2,3-dihydro-2-(1-methylethenyl)-5-benzofuranyl)-, (R)- (9CI)

C13H14O2 (202.0994)


   

Eupatoriochromene

Desmethylencecalin

C13H14O3 (218.0943)


   

beta-Caryophyllene

trans-(1R,9S)-4,11,11-Trimethyl-8-methylenebicyclo[7.2.0]undec-4-ene

C15H24 (204.1878)


beta-Caryophyllene, also known as caryophyllene or (−)-β-caryophyllene, is a natural bicyclic sesquiterpene that is a constituent of many essential oils including that of Syzygium aromaticum (cloves), Cannabis sativa, rosemary, and hops. It is usually found as a mixture with isocaryophyllene (the cis double bond isomer) and α-humulene (obsolete name: α-caryophyllene), a ring-opened isomer. beta-Caryophyllene is notable for having both a cyclobutane ring and a trans-double bond in a nine-membered ring, both rarities in nature (Wikipedia). beta-Caryophyllene is a sweet and dry tasting compound that can be found in a number of food items such as allspice, fig, pot marjoram, and roman camomile, which makes beta-caryophyllene a potential biomarker for the consumption of these food products. beta-Caryophyllene can be found in feces and saliva. (-)-Caryophyllene. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=87-44-5 (retrieved 2024-08-07) (CAS RN: 87-44-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.

   

alpha-eudesmol

2-(4a,8-dimethyl-2,3,4,5,6,8a-hexahydro-1H-naphthalen-2-yl)propan-2-ol

C15H26O (222.1984)


A eudesmane sesquiterpenoid in which the eudesmane skeleton carries a hydroxy substituent at C-11 and has a double bond between C-3 and C-4.

   

Glepidotin B

(2R) -3beta,5,7-Trihydroxy-2,3-dihydro-8- (3-methyl-2-butenyl) -2alpha-phenyl-4H-1-benzopyran-4-one

C20H20O5 (340.1311)


A trihydroxyflavanone that is (2S)-flavanone substituted by hydroxy groups at positions 3, 5 and 7 and a prenyl group at position 8 respectively.

   

(+)-alpha-Carene

(1R,6S)-3,7,7-trimethylbicyclo[4.1.0]hept-3-ene

C10H16 (136.1252)


(+)-alpha-Carene is found in herbs and spices. (+)-alpha-Carene is widespread plant product, found especially in turpentine oils (from Pinus species) and oil of galbanu Isolated from root oil of Kaempferia galanga. (-)-alpha-Carene is found in many foods, some of which are pummelo, cumin, herbs and spices, and sweet orange.

   

Axillarin

2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4H-1-benzopyran-4-one

C17H14O8 (346.0689)


   

piceol

InChI=1\C8H8O2\c1-6(9)7-2-4-8(10)5-3-7\h2-5,10H,1H

C8H8O2 (136.0524)


INTERNAL_ID 214; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3089; ORIGINAL_PRECURSOR_SCAN_NO 3087 CONFIDENCE standard compound; INTERNAL_ID 214; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3087; ORIGINAL_PRECURSOR_SCAN_NO 3084 CONFIDENCE standard compound; INTERNAL_ID 214; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3098; ORIGINAL_PRECURSOR_SCAN_NO 3095 CONFIDENCE standard compound; INTERNAL_ID 214; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3092; ORIGINAL_PRECURSOR_SCAN_NO 3090 CONFIDENCE standard compound; INTERNAL_ID 214; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3089; ORIGINAL_PRECURSOR_SCAN_NO 3087 CONFIDENCE standard compound; INTERNAL_ID 214; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3095; ORIGINAL_PRECURSOR_SCAN_NO 3093 INTERNAL_ID 214; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3092; ORIGINAL_PRECURSOR_SCAN_NO 3090 CONFIDENCE standard compound; INTERNAL_ID 214; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3160; ORIGINAL_PRECURSOR_SCAN_NO 3158 4-Hydroxyacetophenone (P-hydroxyacetophenone) is a key hepatoprotective and choleretic compound in Artemisia capillaris and A. morrisonensis, also has an anti-hepatitis B virus effect and anti-inflammatory effect[1]. 4-Hydroxyacetophenone (P-hydroxyacetophenone) is a key hepatoprotective and choleretic compound in Artemisia capillaris and A. morrisonensis, also has an anti-hepatitis B virus effect and anti-inflammatory effect[1].

   

Uncineol

10-epi-.gamma.-Eudesmol

C15H26O (222.1984)


   

germacrene C

(E,E,E)-1,7-Dimethyl-4-(1-methylethyl)-1,3,7-cyclodecatriene

C15H24 (204.1878)


   

gamma-Curcumene

.delta.-bisabolene

C15H24 (204.1878)


A sesquiterpene that is cyclohexa-1,3-diene which is substituted by a methyl group at position 1 and a 6-methylhept-5-en-2-yl group at position 4 (the R enantiomer).

   

Jaceidin

5,7-Dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,6-dimethoxy-4H-1-benzopyran-4-one, 9CI

C18H16O8 (360.0845)


Jaceidin is an ether and a member of flavonoids. Jaceidin is a natural product found in Centaurea bracteata, Pentanema britannicum, and other organisms with data available. Jaceidin is found in fruits. Jaceidin is found in buds of Prunus avium (wild cherry). Found in buds of Prunus avium (wild cherry)

   

skrofulein

Skrofulein;Scrophulein;5-hydroxy-2-(4-hydroxyphenyl)-6,7-dimethoxychromen-4-one

C17H14O6 (314.079)


Cirsimaritin is a dimethoxyflavone that is flavone substituted by methoxy groups at positions 6 and 7 and hydroxy groups at positions 5 and 4 respectively. It is a dimethoxyflavone and a dihydroxyflavone. It is functionally related to a flavone. Cirsimaritin is a natural product found in Achillea santolina, Schoenia cassiniana, and other organisms with data available. See also: Tangerine peel (part of).

   

alpha-Carene

Bicyclo(4.1.0)hept-3-ene, 3,7,7(or 4,7,7)-trimethyl-

C10H16 (136.1252)


Carene is a colorless liquid with a sweet, turpentine-like odor. Floats on water. (USCG, 1999) Car-3-ene is a monoterpene. It derives from a hydride of a carane. 3-Carene is a natural product found in Nepeta nepetella, Xylopia aromatica, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of). alpha-Carene is found in allspice. alpha-Carene is a flavouring ingredient.Carene, or delta-3-carene, is a bicyclic monoterpene which occurs naturally as a constituent of turpentine, with a content as high as 42\\% depending on the source. Carene has a sweet and pungent odor. It is not soluble in water, but miscible with fats and oils Flavouring ingredient

   

Oroxylin A

Oroxylin A

C16H12O5 (284.0685)


Oroxylin A is an active flavonoid compound with strong anti-cancer effects. Oroxylin A is an active flavonoid compound with strong anti-cancer effects. Oroxylin A inhibits the IL-6/STAT3 pathway and NF-κB signaling, inhibits cell proliferation and induces apoptosis. Oroxylin A inhibits colitis-related carcinogenesis[1][2][3][4][5]. Oroxylin A is an active flavonoid compound with strong anti-cancer effects.

   

trans-Jasmone

2-Cyclopenten-1-one, 3-methyl-2-(2-pentenyl)-, (e)- (8ci)

C11H16O (164.1201)


trans-Jasmone is found in spearmint. Jasmone is a natural organic compound extracted from the volatile portion of the oil from jasmine flowers. It is a colorless to pale yellow liquid that has the odor of jasmine. Jasmone can exist in two isomeric forms with differing geometry around the pentenyl double bond, cis-jasmone and trans-jasmone. The natural extract contains only the cis form, while synthetic material is often a mixture containing both forms, with the cis form predominating. Both forms have similar odors and chemical properties. (Wikipedia Jasmone is a natural organic compound extracted from the volatile portion of the oil from jasmine flowers. It is a colorless to pale yellow liquid that has the odor of jasmine. Jasmone can exist in two isomeric forms with differing geometry around the pentenyl double bond, cis-jasmone and trans-jasmone. The natural extract contains only the cis form, while synthetic material is often a mixture containing both forms, with the cis form predominating. Both forms have similar odors and chemical properties. trans-Jasmone is found in spearmint. Cis-Jasmone is a plant-derived natural product. Cis-Jasmone is constitutively released by many flowers and sometimes by leaves as an attractant for pollinators or as a chemical cue for host location by insect flower herbivores. Cis-Jasmone treatment of crop plants not only induces direct defense against herbivores, but also induces indirect defense by releasing VOCs that attract natural enemies[1]. Cis-Jasmone is a plant-derived natural product. Cis-Jasmone is constitutively released by many flowers and sometimes by leaves as an attractant for pollinators or as a chemical cue for host location by insect flower herbivores. Cis-Jasmone treatment of crop plants not only induces direct defense against herbivores, but also induces indirect defense by releasing VOCs that attract natural enemies[1].

   

(Z)-1,3-Tridecadiene-5,7,9,11-tetrayne

(3E)-trideca-1,3-dien-5,7,9,11-tetrayne

C13H8 (164.0626)


(z)-1,3-tridecadiene-5,7,9,11-tetrayne is a member of the class of compounds known as enynes. Enynes are hydrocarbons containing an alkene and an alkyne group (z)-1,3-tridecadiene-5,7,9,11-tetrayne can be found in fats and oils and herbs and spices, which makes (z)-1,3-tridecadiene-5,7,9,11-tetrayne a potential biomarker for the consumption of these food products. (Z)-1,3-Tridecadiene-5,7,9,11-tetrayne is found in fats and oils. (Z)-1,3-Tridecadiene-5,7,9,11-tetrayne is isolated from safflower (Carthamus tinctorius).

   

8-Prenylnaringenin

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-(3-methylbut-2-en-1-yl)-3,4-dihydro-2H-1-benzopyran-4-one

C20H20O5 (340.1311)


(s)-4,5,7-trihydroxy-8-prenylflavanone is a member of the class of compounds known as 8-prenylated flavanones. 8-prenylated flavanones are flavanones that features a C5-isoprenoid substituent at the 8-position. Thus, (s)-4,5,7-trihydroxy-8-prenylflavanone is considered to be a flavonoid lipid molecule (s)-4,5,7-trihydroxy-8-prenylflavanone is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (s)-4,5,7-trihydroxy-8-prenylflavanone can be found in beer, which makes (s)-4,5,7-trihydroxy-8-prenylflavanone a potential biomarker for the consumption of this food product.

   

Tremetone

1-[2-(prop-1-en-2-yl)-2,3-dihydro-1-benzofuran-5-yl]ethan-1-one

C13H14O2 (202.0994)


   

gamma-Eudesmol

2-(4a,8-dimethyl-1,2,3,4,4a,5,6,7-octahydronaphthalen-2-yl)propan-2-ol

C15H26O (222.1984)


Gamma-eudesmol, also known as gamma-eudesmol, is a member of the class of compounds known as eudesmane, isoeudesmane or cycloeudesmane sesquiterpenoids. Eudesmane, isoeudesmane or cycloeudesmane sesquiterpenoids are sesquiterpenoids with a structure based on the eudesmane skeleton. Gamma-eudesmol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Gamma-eudesmol is a sweet and waxy tasting compound and can be found in a number of food items such as rosemary, ginkgo nuts, mango, and common thyme, which makes gamma-eudesmol a potential biomarker for the consumption of these food products. Gamma-eudesmol, also known as γ-eudesmol, is a member of the class of compounds known as eudesmane, isoeudesmane or cycloeudesmane sesquiterpenoids. Eudesmane, isoeudesmane or cycloeudesmane sesquiterpenoids are sesquiterpenoids with a structure based on the eudesmane skeleton. Gamma-eudesmol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Gamma-eudesmol is a sweet and waxy tasting compound and can be found in a number of food items such as rosemary, ginkgo nuts, mango, and common thyme, which makes gamma-eudesmol a potential biomarker for the consumption of these food products.

   

3,3,6-trimethyl-1,5-heptadien-4-ol

3,3,6-trimethyl-1,5-heptadien-4-ol

C10H18O (154.1358)


Flavouring compound [Flavornet]

   

Oroxylin_A

4H-1-Benzopyran-4-one, 5,7-dihydroxy-6-methoxy-2-phenyl-

C16H12O5 (284.0685)


Oroxylin A is a dihydroxy- and monomethoxy-flavone in which the hydroxy groups are positioned at C-5 and C-7 and the methoxy group is at C-6. It has a role as an antineoplastic agent and an EC 1.14.13.39 (nitric oxide synthase) inhibitor. It is a monomethoxyflavone and a dihydroxyflavone. It is a conjugate acid of an oroxylin A(1-). Oroxylin A is a natural product found in Scutellaria likiangensis, Scutellaria amoena, and other organisms with data available. Oroxylin A is an active flavonoid compound with strong anti-cancer effects. Oroxylin A is an active flavonoid compound with strong anti-cancer effects. Oroxylin A inhibits the IL-6/STAT3 pathway and NF-κB signaling, inhibits cell proliferation and induces apoptosis. Oroxylin A inhibits colitis-related carcinogenesis[1][2][3][4][5]. Oroxylin A is an active flavonoid compound with strong anti-cancer effects.

   

Hispidulin

4H-1-Benzopyran-4-one, 5, 7-dihydroxy-2-(4-hydroxyphenyl)-6-methoxy-

C16H12O6 (300.0634)


Hispidulin is a monomethoxyflavone that is scutellarein methylated at position 6. It has a role as an apoptosis inducer, an anti-inflammatory agent, an antioxidant, an anticonvulsant, an antineoplastic agent and a plant metabolite. It is a trihydroxyflavone and a monomethoxyflavone. It is functionally related to a scutellarein. Hispidulin (4,5,7-trihydroxy-6-methoxyflavone) is a potent benzodiazepine (BZD) receptor ligand with positive allosteric properties. Hispidulin is a natural product found in Eupatorium cannabinum, Eupatorium perfoliatum, and other organisms with data available. See also: Arnica montana Flower (part of). A monomethoxyflavone that is scutellarein methylated at position 6. 6-methylscutellarein, also known as 4,5,7-trihydroxy-6-methoxyflavone or dinatin, is a member of the class of compounds known as 6-o-methylated flavonoids. 6-o-methylated flavonoids are flavonoids with methoxy groups attached to the C6 atom of the flavonoid backbone. Thus, 6-methylscutellarein is considered to be a flavonoid lipid molecule. 6-methylscutellarein is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 6-methylscutellarein can be found in a number of food items such as italian oregano, common sage, sunflower, and common thyme, which makes 6-methylscutellarein a potential biomarker for the consumption of these food products. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM.

   

Exiguaflavanone K

Exiguaflavanone K

C21H22O6 (370.1416)


   

8-Prenyleriodictyol

8-Prenyleriodictyol

C20H20O6 (356.126)


   
   
   

Ermanin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-3-methoxy-2-(4-methoxyphenyl)-

C17H14O6 (314.079)


3,4-dimethylkaempferol is a dimethoxyflavone that is kaempferol in which the hydroxy groups at position 3 and 4 have been replaced by methoxy groups. It is a component of bee glue and isolated from several plant species including Tanacetum microphyllum. It has a role as an anti-inflammatory agent, an antimycobacterial drug, an apoptosis inducer, an antineoplastic agent and a plant metabolite. It is a dihydroxyflavone and a dimethoxyflavone. It is functionally related to a kaempferol. Ermanin is a natural product found in Grindelia glutinosa, Grindelia hirsutula, and other organisms with data available. A dimethoxyflavone that is kaempferol in which the hydroxy groups at position 3 and 4 have been replaced by methoxy groups. It is a component of bee glue and isolated from several plant species including Tanacetum microphyllum.

   

β-Eudesmol

beta-Eudesmol

C15H26O (222.1984)


Beta-eudesmol, also known as beta-selinenol, is a member of the class of compounds known as eudesmane, isoeudesmane or cycloeudesmane sesquiterpenoids. Eudesmane, isoeudesmane or cycloeudesmane sesquiterpenoids are sesquiterpenoids with a structure based on the eudesmane skeleton. Beta-eudesmol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-eudesmol is a green and wood tasting compound and can be found in a number of food items such as common walnut, sweet basil, ginkgo nuts, and burdock, which makes beta-eudesmol a potential biomarker for the consumption of these food products. Beta-Eudesmol is a natural oxygenated sesquiterpene, activates hTRPA1, with an EC50 of 32.5 μM. Beta-Eudesmol increases appetite through TRPA1[1]. Beta-Eudesmol is a natural oxygenated sesquiterpene, activates hTRPA1, with an EC50 of 32.5 μM. Beta-Eudesmol increases appetite through TRPA1[1].

   

6-O-Methyleuparin

6-O-Methyleuparin

C14H14O3 (230.0943)


   

Methyl orsellinate

Methyl 2,4-dihydroxy-6-methylbenzoate

C9H10O4 (182.0579)


   

gamma-Eudesmol

gamma-Eudesmol

C15H26O (222.1984)


A eudesmane sesquiterpenoid in which the eudesmane skeleton carries a hydroxy substituent at C-11 and has a double bond between C-4 and C-5.

   

Oroxylin A

5,7-dihydroxy-6-methoxy-2-phenyl-4H-1-benzopyran-4-one

C16H12O5 (284.0685)


Oroxylin A is an active flavonoid compound with strong anti-cancer effects. Oroxylin A is an active flavonoid compound with strong anti-cancer effects. Oroxylin A inhibits the IL-6/STAT3 pathway and NF-κB signaling, inhibits cell proliferation and induces apoptosis. Oroxylin A inhibits colitis-related carcinogenesis[1][2][3][4][5]. Oroxylin A is an active flavonoid compound with strong anti-cancer effects.

   

Pinobanksin

(2R) -2,3-Dihydro-3beta,5,7-trihydroxy-2alpha-phenyl-4H-1-benzopyran-4-one

C15H12O5 (272.0685)


Pinobanksin is a trihydroxyflavanone in which the three hydroxy substituents are located at positions 3, 5 and 7. It has a role as an antimutagen, an antioxidant and a metabolite. It is a trihydroxyflavanone and a secondary alpha-hydroxy ketone. Pinobanksin is a natural product found in Populus koreana, Ozothamnus stirlingii, and other organisms with data available. A trihydroxyflavanone in which the three hydroxy substituents are located at positions 3, 5 and 7. Pinobanksin has apoptotic induction in a B-cell lymphoma cell line[1].

   

Axillarin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-

C17H14O8 (346.0689)


A dimethoxyflavone that is the 3,6-dimethyl ether derivative of quercetagetin. 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one, also known as 3,4,5,7-tetrahydroxy-3,6-dimethoxyflavone or 3,6-dimethoxyquercetagetin, is a member of the class of compounds known as 6-o-methylated flavonoids. 6-o-methylated flavonoids are flavonoids with methoxy groups attached to the C6 atom of the flavonoid backbone. Thus, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one is considered to be a flavonoid lipid molecule. 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one can be found in german camomile, which makes 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,6-dimethoxy-4h-chromen-4-one a potential biomarker for the consumption of this food product.

   

dinatin

4H-1-Benzopyran-4-one, 5, 7-dihydroxy-2-(4-hydroxyphenyl)-6-methoxy-

C16H12O6 (300.0634)


Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM.

   

Eriodictyol

(S) -2- (3,4-Dihydroxyphenyl) -2,3-dihydro-5,7-dihydroxy-4H-1-benzopyran-4-one

C15H12O6 (288.0634)


Constituent of the leaves and branches of Phyllanthus emblica (emblic). Eriodictyol 7-(6-coumaroylglucoside) is found in fruits. Annotation level-1 Eriodictyol is a flavonoid isolated from the Chinese herb, with antioxidant and anti-inflammatory activity. Eriodictyol induces Nrf2 signaling pathway. Eriodictyol is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 18 nM. Eriodictyol is a flavonoid isolated from the Chinese herb, with antioxidant and anti-inflammatory activity. Eriodictyol induces Nrf2 signaling pathway. Eriodictyol is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 18 nM.

   

Euparin

1-[6-hydroxy-2-(prop-1-en-2-yl)-1-benzofuran-5-yl]ethan-1-one

C13H12O3 (216.0786)


Euparin is a member of benzofurans. It has a role as a metabolite. Euparin is a natural product found in Eupatorium cannabinum, Liatris acidota, and other organisms with data available. A natural product found in Eupatorium cannabinum subspecies asiaticum.

   

Kumatakenin

5,4-dihydroxy-3,7-dimethoxyflavone

C17H14O6 (314.079)


   

Globulol

1,1,4,7-tetramethyl-decahydro-1H-cyclopropa[e]azulen-4-ol

C15H26O (222.1984)


D006133 - Growth Substances > D006131 - Growth Inhibitors

   

3,3,6-Trimethylhepta-1,5-dien-4-ol

3,3,6-Trimethylhepta-1,5-dien-4-ol

C10H18O (154.1358)


   

Ledol

(1aR,4R,4aS,7R,7aS,7bS)-1,1,4,7-tetramethyl-2,3,4a,5,6,7,7a,7b-octahydro-1aH-cyclopropa[e]azulen-4-ol

C15H26O (222.1984)


Ledol is a sesquiterpenoid. Ledol is a natural product found in Waitzia acuminata, Aloysia gratissima, and other organisms with data available. Constituent of Valeriana officinalis (valerian), Piper subspecies and others. Ledol is found in many foods, some of which are fats and oils, common sage, tea, and allspice. Ledol ((+)-Ledol) is an antifungal agent that can be isolated from the essential oil fractions of Rhododendron tomentosum. Ledol is also the expectorant and antitussive agent, which is simultaneously responsible for adverse reactions such as dizziness, nausea and vomiting[1]. Ledol ((+)-Ledol) is an antifungal agent that can be isolated from the essential oil fractions of Rhododendron tomentosum. Ledol is also the expectorant and antitussive agent, which is simultaneously responsible for adverse reactions such as dizziness, nausea and vomiting[1].

   

Carene

(+)-3-delta-Carene, primary pharmaceutical reference standard

C10H16 (136.1252)


(+)-car-3-ene is a car-3-ene (3,7,7-trimethylbicyclo[4.1.0]hept-3-ene) that has S configuration at position 1 and R configuration at position 6. It is an enantiomer of a (-)-car-3-ene. (+)-3-Carene is a natural product found in Molopospermum peloponnesiacum, Kippistia suaedifolia, and other organisms with data available.

   

pinocembrine

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-phenyl-, (2R)-

C15H12O4 (256.0736)


4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-phenyl-, (2R)- is a natural product found in Alpinia nutans, Alpinia zerumbet, and Boesenbergia rotunda with data available.

   

Pinocembrin

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-phenyl-, (S)-(-)-

C15H12O4 (256.0736)


(2s)-pinocembrin, also known as 5,7-dihydroxyflavanone or dihydrochrysin, is a member of the class of compounds known as flavanones. Flavanones are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. Thus, (2s)-pinocembrin is considered to be a flavonoid lipid molecule (2s)-pinocembrin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (2s)-pinocembrin can be found in a number of food items such as acorn, lentils, mulberry, and sorghum, which makes (2s)-pinocembrin a potential biomarker for the consumption of these food products. (s)-pinocembrin, also known as 5,7-dihydroxyflavanone or dihydrochrysin, is a member of the class of compounds known as flavanones. Flavanones are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3 (s)-pinocembrin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (s)-pinocembrin is a bitter tasting compound found in mexican oregano and tarragon, which makes (s)-pinocembrin a potential biomarker for the consumption of these food products. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.069 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.067 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.071 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.070 5,7-Dihydroxyflavanone is a natural product found in Pinus contorta var. latifolia, Piper nigrum, and other organisms with data available. (±)-Pinocembrin ((±)-5,7-Dihydroxyflavanone) is a GPR120 ligand able to promote wound healing in HaCaT cell line[1]. (±)-Pinocembrin ((±)-5,7-Dihydroxyflavanone) is a GPR120 ligand able to promote wound healing in HaCaT cell line[1]. Pinocembrin ((+)-Pinocoembrin) is a flavonoid found in propolis, acts as a competitive inhibitor of histidine decarboxylase, and is an effective anti-allergic agent, with antioxidant, antimicrobial and anti-inflammatory properties[1]. Pinocembrin ((+)-Pinocoembrin) is a flavonoid found in propolis, acts as a competitive inhibitor of histidine decarboxylase, and is an effective anti-allergic agent, with antioxidant, antimicrobial and anti-inflammatory properties[1].

   

Rhamnetin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy- (9CI)

C16H12O7 (316.0583)


Rhamnetin is a monomethoxyflavone that is quercetin methylated at position 7. It has a role as a metabolite, an antioxidant and an anti-inflammatory agent. It is a monomethoxyflavone and a tetrahydroxyflavone. It is functionally related to a quercetin. It is a conjugate acid of a rhamnetin-3-olate. Rhamnetin is a natural product found in Ageratina altissima, Ammannia auriculata, and other organisms with data available. A monomethoxyflavone that is quercetin methylated at position 7. 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one, also known as 7-methoxyquercetin or quercetin 7-methyl ether, is a member of the class of compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one is considered to be a flavonoid lipid molecule. 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one can be found in a number of food items such as tea, apple, sweet orange, and parsley, which makes 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one a potential biomarker for the consumption of these food products. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1]. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1]. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1].

   

Piceol

4-Hydroxyacetophenone (Acetaminophen Impurity E), Pharmaceutical Secondary Standards; Certified Reference Material

C8H8O2 (136.0524)


4-hydroxyacetophenone is a monohydroxyacetophenone carrying a hydroxy substituent at position 4. It has a role as a plant metabolite, a fungal metabolite and a mouse metabolite. 4-Hydroxyacetophenone is a natural product found in Ficus erecta var. beecheyana, Artemisia ordosica, and other organisms with data available. A monohydroxyacetophenone carrying a hydroxy substituent at position 4. 4-Hydroxyacetophenone (P-hydroxyacetophenone) is a key hepatoprotective and choleretic compound in Artemisia capillaris and A. morrisonensis, also has an anti-hepatitis B virus effect and anti-inflammatory effect[1]. 4-Hydroxyacetophenone (P-hydroxyacetophenone) is a key hepatoprotective and choleretic compound in Artemisia capillaris and A. morrisonensis, also has an anti-hepatitis B virus effect and anti-inflammatory effect[1].

   

Scopoletin

Scopoletin

C10H8O4 (192.0423)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.636 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.637 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.629 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.631 IPB_RECORD: 1582; CONFIDENCE confident structure Scopoletin is an inhibitor of acetylcholinesterase (AChE). Scopoletin is an inhibitor of acetylcholinesterase (AChE).

   

Scoparone

6,7-dimethoxycoumarin

C11H10O4 (206.0579)


Annotation level-1 D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1]. Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1].

   

Chrysin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-2-phenyl- (9CI)

C15H10O4 (254.0579)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.176 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.177 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.174 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.175 Chrysin is one of the most well known estrogen blockers. Chrysin is one of the most well known estrogen blockers.

   

Isoalantolactone

Isoalantolactone

C15H20O2 (232.1463)


relative retention time with respect to 9-anthracene Carboxylic Acid is 1.234 Isoalantolactone is an apoptosis inducer, which also acts as an alkylating agent. Isoalantolactone is an apoptosis inducer, which also acts as an alkylating agent.

   

Cirsimaritin

Cirsimaritin

C17H14O6 (314.079)


   

Isokaempferide

5,7,4-trihydroxy-3-methoxyflavone

C16H12O6 (300.0634)


   

Jaceidin

5,7,4-Trihydroxy-3,6,3-trimethoxyflavone

C18H16O8 (360.0845)


   

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-methoxy-4H-chromen-4-one

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-methoxy-4H-chromen-4-one

C16H12O6 (300.0634)


   

caryophyllene

(-)-beta-Caryophyllene

C15H24 (204.1878)


A beta-caryophyllene in which the stereocentre adjacent to the exocyclic double bond has S configuration while the remaining stereocentre has R configuration. It is the most commonly occurring form of beta-caryophyllene, occurring in many essential oils, particularly oil of cloves. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.

   

borneol

1,7,7-Trimethyl-(1R,2S,4R)-rel-bicyclo[2.2.1]heptan-2-ol

C10H18O (154.1358)


Flavouring agent. (±)-Borneol is found in many foods, some of which are pot marjoram, pepper (spice), saffron, and german camomile. Constituent of Curcuma aromatica and other plants. (+)-Borneol is found in nutmeg, herbs and spices, and ginger. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2]. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2].

   

(Z)-1,3-Tridecadiene-5,7,9,11-tetrayne

(3E)-trideca-1,3-dien-5,7,9,11-tetrayne

C13H8 (164.0626)


   

Viridiflorol

Viridiflorol

C15H26O (222.1984)


A carbotricyclic compound that is (1aS,4aR,7aR,7bR)-decahydro-1H-cyclopropa[e]azulene carrying four methyl substituents at positions 1, 1, 4 and 7 as well as a hydroxy substituent at position 4. It is a sesquiterpenoid isolated from several plant species and is a strong feeding deterrent for the melaleuca weevil that retards larval development. D006133 - Growth Substances > D006131 - Growth Inhibitors

   

Sophoraflavanone B

Sophoraflavanone B

C20H20O5 (340.1311)


   

2-[(2R,4aR,8R,8aR)-8-hydroxy-4a,8-dimethyl-1,2,3,4,5,6,7,8a-octahydronaphthalen-2-yl]prop-2-enoic acid

2-[(2R,4aR,8R,8aR)-8-hydroxy-4a,8-dimethyl-1,2,3,4,5,6,7,8a-octahydronaphthalen-2-yl]prop-2-enoic acid

C15H24O3 (252.1725)


   

473-15-4

InChI=1\C15H26O\c1-11-6-5-8-15(4)9-7-12(10-13(11)15)14(2,3)16\h12-13,16H,1,5-10H2,2-4H3\t12-,13+,15-\m1\s

C15H26O (222.1984)


Beta-Eudesmol is a natural oxygenated sesquiterpene, activates hTRPA1, with an EC50 of 32.5 μM. Beta-Eudesmol increases appetite through TRPA1[1]. Beta-Eudesmol is a natural oxygenated sesquiterpene, activates hTRPA1, with an EC50 of 32.5 μM. Beta-Eudesmol increases appetite through TRPA1[1].

   

Myrcene

InChI=1\C10H16\c1-5-10(4)8-6-7-9(2)3\h5,7H,1,4,6,8H2,2-3H

C10H16 (136.1252)


Myrcene (β-Myrcene), an aromatic volatile compound, suppresses TNFα-induced NF-κB activity. Myrcene has anti-invasive effect[1][2]. Myrcene (β-Myrcene), an aromatic volatile compound, suppresses TNFα-induced NF-κB activity. Myrcene has anti-invasive effect[1][2].

   

Oroxylin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-6-methoxy-2-phenyl-

C16H12O5 (284.0685)


Oroxylin A is an active flavonoid compound with strong anti-cancer effects. Oroxylin A is an active flavonoid compound with strong anti-cancer effects. Oroxylin A inhibits the IL-6/STAT3 pathway and NF-κB signaling, inhibits cell proliferation and induces apoptosis. Oroxylin A inhibits colitis-related carcinogenesis[1][2][3][4][5]. Oroxylin A is an active flavonoid compound with strong anti-cancer effects.

   

473-16-5

2-Naphthalenemethanol, 1,2,3,4,4a,5,6,8a-octahydro-alpha,alpha,4a,8-tetramethyl-, (2R,4aR,8aR)-

C15H26O (222.1984)


   

skrofulein

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxyphenyl)-6,7-dimethoxy-

C17H14O6 (314.079)


   

Jasmone

2-Cyclopenten-1-one, 3-methyl-2-(2-pentenyl)-, (Z)- (8CI)

C11H16O (164.1201)


Cis-Jasmone is a plant-derived natural product. Cis-Jasmone is constitutively released by many flowers and sometimes by leaves as an attractant for pollinators or as a chemical cue for host location by insect flower herbivores. Cis-Jasmone treatment of crop plants not only induces direct defense against herbivores, but also induces indirect defense by releasing VOCs that attract natural enemies[1]. Cis-Jasmone is a plant-derived natural product. Cis-Jasmone is constitutively released by many flowers and sometimes by leaves as an attractant for pollinators or as a chemical cue for host location by insect flower herbivores. Cis-Jasmone treatment of crop plants not only induces direct defense against herbivores, but also induces indirect defense by releasing VOCs that attract natural enemies[1].

   

AI3-31148

Naphtho[2,3-b]furan-2(3H)-one, decahydro-8a-methyl-3,5-bis(methylene)-, [3aR-(3a.alpha.,4a.alpha.,8a.beta.,9a.alpha.)]-

C15H20O2 (232.1463)


Isoalantolactone is an apoptosis inducer, which also acts as an alkylating agent. Isoalantolactone is an apoptosis inducer, which also acts as an alkylating agent.

   

Caryophyllene oxide

Caryophyllene alpha-oxide

C15H24O (220.1827)


Constituent of oil of cloves (Eugenia caryophyllata)and is) also in oils of Betula alba, Mentha piperita (peppermint) and others. Caryophyllene alpha-oxide is found in many foods, some of which are spearmint, cloves, ceylon cinnamon, and herbs and spices. Caryophyllene beta-oxide is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Caryophyllene beta-oxide is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Within the cell, caryophyllene beta-oxide is primarily located in the membrane (predicted from logP). It can also be found in the extracellular space. Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1]. Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1].

   

Isohelenin

Naphtho(2,3-b)furan-2(3H)-one, decahydro-8a-methyl-3,5-bis(methylene)-, (3aR-(3a alpha,4a alpha,8a beta,9a alpha))-

C15H20O2 (232.1463)


Isoalantolactone is a sesquiterpene lactone of the eudesmanolide group. It has been isolated from Inula helenium. It has a role as an apoptosis inducer, an antifungal agent and a plant metabolite. It is a sesquiterpene lactone and a eudesmane sesquiterpenoid. Isoalantolactone is a natural product found in Eupatorium cannabinum, Critonia quadrangularis, and other organisms with data available. A sesquiterpene lactone of the eudesmanolide group. It has been isolated from Inula helenium. Isoalantolactone is an apoptosis inducer, which also acts as an alkylating agent. Isoalantolactone is an apoptosis inducer, which also acts as an alkylating agent.

   

Borneol

Bicyclo(2.2.1)heptan-2-ol, 1,7,7-trimethyl-, endo-(.+/-.)-

C10H18O (154.1358)


Borneol appears as a white colored lump-solid with a sharp camphor-like odor. Burns readily. Slightly denser than water and insoluble in water. Used to make perfumes. Borneol is a bornane monoterpenoid that is 1,7,7-trimethylbicyclo[2.2.1]heptane substituted by a hydroxy group at position 2. It has a role as a volatile oil component and a metabolite. Isoborneol is a natural product found in Xylopia sericea, Eupatorium capillifolium, and other organisms with data available. A bornane monoterpenoid that is 1,7,7-trimethylbicyclo[2.2.1]heptane substituted by a hydroxy group at position 2. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2]. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2].

   

epoxide

[1R-(1R*,4R*,6R*,10S*)]- Caryophylene oxide Caryophyllene epoxide Caryophyllene oxyde Epoxycaryophyllene [1R-(1R*,4R*,6R*,10S*)]-4,12,12-trimethyl-9-methylene-5-oxatricyclo[8.2.0.04,6]dodecane <>-Caryophyllene epoxide <>-Caryophyllene oxide

C15H24O (220.1827)


Caryophyllene oxide is an epoxide. It has a role as a metabolite. Caryophyllene oxide is a natural product found in Xylopia emarginata, Eupatorium altissimum, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of). A natural product found in Cupania cinerea. Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1]. Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1].

   

(+)-Camphene

(+)-Camphene

C10H16 (136.1252)


A monoterpene with a bicyclic skeleton that is bicyclo[2.2.1]heptane substituted by geminal methyl groups at position 2 and a methylidene group at position 3. It is a widespread natural product found in many essential oils.

   

(5s)-5-icosyloxolan-2-one

(5s)-5-icosyloxolan-2-one

C24H46O2 (366.3498)


   

5-pentacosyloxolan-2-one

5-pentacosyloxolan-2-one

C29H56O2 (436.428)


   

2-(8-hydroxy-4a,8-dimethyl-octahydronaphthalen-2-yl)prop-2-enoic acid

2-(8-hydroxy-4a,8-dimethyl-octahydronaphthalen-2-yl)prop-2-enoic acid

C15H24O3 (252.1725)


   

8-hydroxy-6-methoxy-7-[(3-methylbut-2-en-1-yl)oxy]chromen-2-one

8-hydroxy-6-methoxy-7-[(3-methylbut-2-en-1-yl)oxy]chromen-2-one

C15H16O5 (276.0998)


   

6-(3-methoxy-3-oxoprop-1-en-2-yl)-8a-methyl-4-methylidene-octahydronaphthalen-1-yl 2-methylbut-2-enoate

6-(3-methoxy-3-oxoprop-1-en-2-yl)-8a-methyl-4-methylidene-octahydronaphthalen-1-yl 2-methylbut-2-enoate

C21H30O4 (346.2144)


   

(5s)-5-henicosyloxolan-2-one

(5s)-5-henicosyloxolan-2-one

C25H48O2 (380.3654)


   

1-(5-acetyl-6-hydroxy-1-benzofuran-2-yl)ethanone

1-(5-acetyl-6-hydroxy-1-benzofuran-2-yl)ethanone

C12H10O4 (218.0579)


   

(2s,4as,7r,8ar)-7-[(2r)-1-methoxy-1-oxopropan-2-yl]-4a-methyl-1-methylidene-octahydronaphthalen-2-yl (2e)-2-methylbut-2-enoate

(2s,4as,7r,8ar)-7-[(2r)-1-methoxy-1-oxopropan-2-yl]-4a-methyl-1-methylidene-octahydronaphthalen-2-yl (2e)-2-methylbut-2-enoate

C21H32O4 (348.23)


   

2-[(2s,8s,8ar)-8,8a-dimethyl-4-oxo-1,2,3,6,7,8-hexahydronaphthalen-2-yl]prop-2-enoic acid

2-[(2s,8s,8ar)-8,8a-dimethyl-4-oxo-1,2,3,6,7,8-hexahydronaphthalen-2-yl]prop-2-enoic acid

C15H20O3 (248.1412)


   

(2s,4as,7r,8ar)-7-[(2r)-1-methoxy-1-oxopropan-2-yl]-4a-methyl-1-methylidene-octahydronaphthalen-2-yl 3-methylbut-2-enoate

(2s,4as,7r,8ar)-7-[(2r)-1-methoxy-1-oxopropan-2-yl]-4a-methyl-1-methylidene-octahydronaphthalen-2-yl 3-methylbut-2-enoate

C21H32O4 (348.23)


   

1-[(2r)-6-methoxy-2-(prop-1-en-2-yl)-2,3-dihydro-1-benzofuran-5-yl]ethanone

1-[(2r)-6-methoxy-2-(prop-1-en-2-yl)-2,3-dihydro-1-benzofuran-5-yl]ethanone

C14H16O3 (232.1099)


   

(1r,1ar,4s,4as,7r,7as)-1-(hydroxymethyl)-1,4,7-trimethyl-octahydro-1ah-cyclopropa[e]azulen-4-ol

(1r,1ar,4s,4as,7r,7as)-1-(hydroxymethyl)-1,4,7-trimethyl-octahydro-1ah-cyclopropa[e]azulen-4-ol

C15H26O2 (238.1933)


   

5-methyl-10-methylidene-4-(3-oxobutyl)-8-oxatricyclo[5.3.0.0³,⁵]decan-9-one

5-methyl-10-methylidene-4-(3-oxobutyl)-8-oxatricyclo[5.3.0.0³,⁵]decan-9-one

C15H20O3 (248.1412)


   

(5s)-5-docosyloxolan-2-one

(5s)-5-docosyloxolan-2-one

C26H50O2 (394.3811)


   

(1r,4ar,7r,8ar)-7-(3-hydroxyprop-1-en-2-yl)-1,4a-dimethyl-octahydronaphthalen-1-ol

(1r,4ar,7r,8ar)-7-(3-hydroxyprop-1-en-2-yl)-1,4a-dimethyl-octahydronaphthalen-1-ol

C15H26O2 (238.1933)


   

(1r,3s,4s,5r,7r)-5-methyl-10-methylidene-4-(3-oxobutyl)-8-oxatricyclo[5.3.0.0³,⁵]decan-9-one

(1r,3s,4s,5r,7r)-5-methyl-10-methylidene-4-(3-oxobutyl)-8-oxatricyclo[5.3.0.0³,⁵]decan-9-one

C15H20O3 (248.1412)


   

1-(2,4-dihydroxyphenyl)-3-phenylprop-2-en-1-one

1-(2,4-dihydroxyphenyl)-3-phenylprop-2-en-1-one

C15H12O3 (240.0786)


   

methyl 3-[4-hydroxy-3,5-bis(3-methylbut-2-en-1-yl)phenyl]prop-2-enoate

methyl 3-[4-hydroxy-3,5-bis(3-methylbut-2-en-1-yl)phenyl]prop-2-enoate

C20H26O3 (314.1882)


   

3-[(17r)-17-hydroxy-17-[(2r,5r)-5-[(1r)-1-hydroxynonyl]oxolan-2-yl]heptadecyl]-5-methyl-5h-furan-2-one

3-[(17r)-17-hydroxy-17-[(2r,5r)-5-[(1r)-1-hydroxynonyl]oxolan-2-yl]heptadecyl]-5-methyl-5h-furan-2-one

C35H64O5 (564.4753)


   

5-hydroxy-5,8a-dimethyl-3-methylidene-octahydronaphtho[2,3-b]furan-2-one

5-hydroxy-5,8a-dimethyl-3-methylidene-octahydronaphtho[2,3-b]furan-2-one

C15H22O3 (250.1569)


   

3,5-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-7-methoxy-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

3,5-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-7-methoxy-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

C22H24O7 (400.1522)


   

6-methoxy-7-[(3-methylbut-2-en-1-yl)oxy]chromen-2-one

6-methoxy-7-[(3-methylbut-2-en-1-yl)oxy]chromen-2-one

C15H16O4 (260.1049)


   

7-(1-methoxy-1-oxopropan-2-yl)-4a-methyl-1-methylidene-octahydronaphthalen-2-yl 3-methylbut-2-enoate

7-(1-methoxy-1-oxopropan-2-yl)-4a-methyl-1-methylidene-octahydronaphthalen-2-yl 3-methylbut-2-enoate

C21H32O4 (348.23)


   

1-(3-hydroxyprop-1-en-2-yl)-3a,5a,5b,8,8,11a-hexamethyl-tetradecahydro-1h-cyclopenta[a]chrysen-9-one

1-(3-hydroxyprop-1-en-2-yl)-3a,5a,5b,8,8,11a-hexamethyl-tetradecahydro-1h-cyclopenta[a]chrysen-9-one

C30H48O2 (440.3654)


   

3,5,7-trihydroxy-2-(4-hydroxy-3-methoxyphenyl)-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

3,5,7-trihydroxy-2-(4-hydroxy-3-methoxyphenyl)-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

C21H22O7 (386.1365)


   

(2r,3r)-3,5-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-7-methoxy-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

(2r,3r)-3,5-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-7-methoxy-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

C22H24O7 (400.1522)


   

5-docosyloxolan-2-one

5-docosyloxolan-2-one

C26H50O2 (394.3811)


   

methyl (2e)-3-[4-hydroxy-3,5-bis(3-methylbut-2-en-1-yl)phenyl]prop-2-enoate

methyl (2e)-3-[4-hydroxy-3,5-bis(3-methylbut-2-en-1-yl)phenyl]prop-2-enoate

C20H26O3 (314.1882)


   

6-hydroxy-7-[(3-methylbut-2-en-1-yl)oxy]chromen-2-one

6-hydroxy-7-[(3-methylbut-2-en-1-yl)oxy]chromen-2-one

C14H14O4 (246.0892)


   

trideca-1,3,5-trien-7,9,11-triyne

trideca-1,3,5-trien-7,9,11-triyne

C13H10 (166.0782)


   

(3as,4ar,5r,8ar,9as)-5-hydroxy-5,8a-dimethyl-3-methylidene-octahydronaphtho[2,3-b]furan-2-one

(3as,4ar,5r,8ar,9as)-5-hydroxy-5,8a-dimethyl-3-methylidene-octahydronaphtho[2,3-b]furan-2-one

C15H22O3 (250.1569)


   

(2r,3r)-5,7-dihydroxy-2-(3-hydroxyphenyl)-4-oxo-2,3-dihydro-1-benzopyran-3-yl 2-methylpropanoate

(2r,3r)-5,7-dihydroxy-2-(3-hydroxyphenyl)-4-oxo-2,3-dihydro-1-benzopyran-3-yl 2-methylpropanoate

C19H18O7 (358.1052)


   

trideca-1,3-dien-5,7,9,11-tetrayne

trideca-1,3-dien-5,7,9,11-tetrayne

C13H8 (164.0626)


   

2-(8,8a-dimethyl-4-oxo-1,2,3,6,7,8-hexahydronaphthalen-2-yl)prop-2-enoic acid

2-(8,8a-dimethyl-4-oxo-1,2,3,6,7,8-hexahydronaphthalen-2-yl)prop-2-enoic acid

C15H20O3 (248.1412)


   

(2s,4as,7r,8ar)-7-[(2r)-1-methoxy-1-oxopropan-2-yl]-4a-methyl-1-methylidene-octahydronaphthalen-2-yl 2-methylpropanoate

(2s,4as,7r,8ar)-7-[(2r)-1-methoxy-1-oxopropan-2-yl]-4a-methyl-1-methylidene-octahydronaphthalen-2-yl 2-methylpropanoate

C20H32O4 (336.23)


   

(1r,1ar,4s,4as,7r,7as,7bs)-1-(hydroxymethyl)-1,4,7-trimethyl-octahydro-1ah-cyclopropa[e]azulen-4-ol

(1r,1ar,4s,4as,7r,7as,7bs)-1-(hydroxymethyl)-1,4,7-trimethyl-octahydro-1ah-cyclopropa[e]azulen-4-ol

C15H26O2 (238.1933)


   

(1ar,4r,4ar,7as,7bs)-1,1,4,7-tetramethyl-octahydro-1ah-cyclopropa[e]azulen-4-ol

(1ar,4r,4ar,7as,7bs)-1,1,4,7-tetramethyl-octahydro-1ah-cyclopropa[e]azulen-4-ol

C15H26O (222.1984)


   

methyl (2r)-2-[(2r,4as,7s,8ar)-7-hydroxy-4a-methyl-8-methylidene-octahydronaphthalen-2-yl]propanoate

methyl (2r)-2-[(2r,4as,7s,8ar)-7-hydroxy-4a-methyl-8-methylidene-octahydronaphthalen-2-yl]propanoate

C16H26O3 (266.1882)


   

(5s)-5-tricosyloxolan-2-one

(5s)-5-tricosyloxolan-2-one

C27H52O2 (408.3967)


   

(2s)-2-(3,4-dihydroxyphenyl)-7-hydroxy-8-[(2z)-4-hydroxy-3-methylbut-2-en-1-yl]-2,3-dihydro-1-benzopyran-4-one

(2s)-2-(3,4-dihydroxyphenyl)-7-hydroxy-8-[(2z)-4-hydroxy-3-methylbut-2-en-1-yl]-2,3-dihydro-1-benzopyran-4-one

C20H20O6 (356.126)


   

β-caryophyllene oxide

β-caryophyllene oxide

C15H24O (220.1827)


   

(1z,6z,8s)-8-isopropyl-1-methyl-5-methylidenecyclodeca-1,6-diene

(1z,6z,8s)-8-isopropyl-1-methyl-5-methylidenecyclodeca-1,6-diene

C15H24 (204.1878)


   

4-acetyl-2,6-bis(3-methylbut-2-en-1-yl)phenyl 2-methylbut-2-enoate

4-acetyl-2,6-bis(3-methylbut-2-en-1-yl)phenyl 2-methylbut-2-enoate

C23H30O3 (354.2195)


   

methyl (2r)-2-[(2r,4ar,8as)-4a-methyl-8-methylidene-octahydronaphthalen-2-yl]propanoate

methyl (2r)-2-[(2r,4ar,8as)-4a-methyl-8-methylidene-octahydronaphthalen-2-yl]propanoate

C16H26O2 (250.1933)


   

(2s)-2-(3,4-dihydroxyphenyl)-7-hydroxy-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

(2s)-2-(3,4-dihydroxyphenyl)-7-hydroxy-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

C20H20O5 (340.1311)


   

5-acetyl-2-(prop-1-en-2-yl)-2,3-dihydro-1-benzofuran-3-yl 2-methylbut-2-enoate

5-acetyl-2-(prop-1-en-2-yl)-2,3-dihydro-1-benzofuran-3-yl 2-methylbut-2-enoate

C18H20O4 (300.1362)


   

(2s,3s)-5-acetyl-2-(prop-1-en-2-yl)-2,3-dihydro-1-benzofuran-3-yl (2z)-2-methylbut-2-enoate

(2s,3s)-5-acetyl-2-(prop-1-en-2-yl)-2,3-dihydro-1-benzofuran-3-yl (2z)-2-methylbut-2-enoate

C18H20O4 (300.1362)


   

2-hydroxy-3-(icosanoyloxy)propyl docosanoate

2-hydroxy-3-(icosanoyloxy)propyl docosanoate

C45H88O5 (708.6631)


   

5,7-dihydroxy-2-(3-hydroxyphenyl)-4-oxo-2,3-dihydro-1-benzopyran-3-yl 2-methylpropanoate

5,7-dihydroxy-2-(3-hydroxyphenyl)-4-oxo-2,3-dihydro-1-benzopyran-3-yl 2-methylpropanoate

C19H18O7 (358.1052)


   

(2r)-5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

(2r)-5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

C21H22O6 (370.1416)


   

(2r,3s)-3,5,7-trihydroxy-6-(3-methylbut-2-en-1-yl)-2-phenyl-2,3-dihydro-1-benzopyran-4-one

(2r,3s)-3,5,7-trihydroxy-6-(3-methylbut-2-en-1-yl)-2-phenyl-2,3-dihydro-1-benzopyran-4-one

C20H20O5 (340.1311)


   

(5s)-5-pentacosyloxolan-2-one

(5s)-5-pentacosyloxolan-2-one

C29H56O2 (436.428)


   

methyl 2-(5-hydroxy-4a-methyl-8-methylidene-octahydronaphthalen-2-yl)prop-2-enoate

methyl 2-(5-hydroxy-4a-methyl-8-methylidene-octahydronaphthalen-2-yl)prop-2-enoate

C16H24O3 (264.1725)


   

(1s,4as,6r,8ar)-6-(3-methoxy-3-oxoprop-1-en-2-yl)-8a-methyl-4-methylidene-octahydronaphthalen-1-yl (2e)-2-methylbut-2-enoate

(1s,4as,6r,8ar)-6-(3-methoxy-3-oxoprop-1-en-2-yl)-8a-methyl-4-methylidene-octahydronaphthalen-1-yl (2e)-2-methylbut-2-enoate

C21H30O4 (346.2144)


   

2-(3,4-dihydroxyphenyl)-7-hydroxy-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

2-(3,4-dihydroxyphenyl)-7-hydroxy-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

C20H20O5 (340.1311)


   

1-(hydroxymethyl)-1,4,7-trimethyl-octahydro-1ah-cyclopropa[e]azulen-4-ol

1-(hydroxymethyl)-1,4,7-trimethyl-octahydro-1ah-cyclopropa[e]azulen-4-ol

C15H26O2 (238.1933)


   

methyl 2-(5-hydroxy-4a-methyl-8-methylidene-octahydronaphthalen-2-yl)propanoate

methyl 2-(5-hydroxy-4a-methyl-8-methylidene-octahydronaphthalen-2-yl)propanoate

C16H26O3 (266.1882)


   

methyl 3-[4-hydroxy-3-(3-methylbut-2-en-1-yl)phenyl]prop-2-enoate

methyl 3-[4-hydroxy-3-(3-methylbut-2-en-1-yl)phenyl]prop-2-enoate

C15H18O3 (246.1256)


   

1-[6-methoxy-2-(prop-1-en-2-yl)-2,3-dihydro-1-benzofuran-5-yl]ethanone

1-[6-methoxy-2-(prop-1-en-2-yl)-2,3-dihydro-1-benzofuran-5-yl]ethanone

C14H16O3 (232.1099)


   

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-6-[(2s,3s,4s,5s)-3,4,5-trihydroxyoxan-2-yl]chromen-4-one

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-6-[(2s,3s,4s,5s)-3,4,5-trihydroxyoxan-2-yl]chromen-4-one

C26H28O14 (564.1479)


   

(3ar,4ar,5s,8ar,9ar)-5-hydroxy-5,8a-dimethyl-3-methylidene-octahydronaphtho[2,3-b]furan-2-one

(3ar,4ar,5s,8ar,9ar)-5-hydroxy-5,8a-dimethyl-3-methylidene-octahydronaphtho[2,3-b]furan-2-one

C15H22O3 (250.1569)


   

(2s)-2-(3,4-dihydroxyphenyl)-5-hydroxy-8-[(2z)-4-hydroxy-3-methylbut-2-en-1-yl]-7-methoxy-2,3-dihydro-1-benzopyran-4-one

(2s)-2-(3,4-dihydroxyphenyl)-5-hydroxy-8-[(2z)-4-hydroxy-3-methylbut-2-en-1-yl]-7-methoxy-2,3-dihydro-1-benzopyran-4-one

C21H22O7 (386.1365)


   

methyl (2r)-2-[(2r,4as,7s,8ar)-4a-methyl-8-methylidene-7-[(3-phenylpropanoyl)oxy]-octahydronaphthalen-2-yl]propanoate

methyl (2r)-2-[(2r,4as,7s,8ar)-4a-methyl-8-methylidene-7-[(3-phenylpropanoyl)oxy]-octahydronaphthalen-2-yl]propanoate

C25H34O4 (398.2457)


   

(2r,3r)-3,5,7-trihydroxy-6-(3-methylbut-2-en-1-yl)-2-phenyl-2,3-dihydro-1-benzopyran-4-one

(2r,3r)-3,5,7-trihydroxy-6-(3-methylbut-2-en-1-yl)-2-phenyl-2,3-dihydro-1-benzopyran-4-one

C20H20O5 (340.1311)


   

(2s,4as,7r,8ar)-7-[(2r)-1-methoxy-1-oxopropan-2-yl]-4a-methyl-1-methylidene-octahydronaphthalen-2-yl (2z)-2-methylbut-2-enoate

(2s,4as,7r,8ar)-7-[(2r)-1-methoxy-1-oxopropan-2-yl]-4a-methyl-1-methylidene-octahydronaphthalen-2-yl (2z)-2-methylbut-2-enoate

C21H32O4 (348.23)


   

5-hexacosyloxolan-2-one

5-hexacosyloxolan-2-one

C30H58O2 (450.4437)


   

(3ar,4ar,5r,8ar,9ar)-5-hydroxy-5,8a-dimethyl-3-methylidene-octahydronaphtho[2,3-b]furan-2-one

(3ar,4ar,5r,8ar,9ar)-5-hydroxy-5,8a-dimethyl-3-methylidene-octahydronaphtho[2,3-b]furan-2-one

C15H22O3 (250.1569)


   

methyl 2-(4a-methyl-8-methylidene-octahydronaphthalen-2-yl)propanoate

methyl 2-(4a-methyl-8-methylidene-octahydronaphthalen-2-yl)propanoate

C16H26O2 (250.1933)


   

(2r,3r)-3,5,7-trihydroxy-2-(4-hydroxy-3-methoxyphenyl)-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

(2r,3r)-3,5,7-trihydroxy-2-(4-hydroxy-3-methoxyphenyl)-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

C21H22O7 (386.1365)


   
   

methyl 2-[(2r,4ar,8as)-4a-methyl-8-methylidene-5-oxo-hexahydro-1h-naphthalen-2-yl]prop-2-enoate

methyl 2-[(2r,4ar,8as)-4a-methyl-8-methylidene-5-oxo-hexahydro-1h-naphthalen-2-yl]prop-2-enoate

C16H22O3 (262.1569)


   

5-icosyloxolan-2-one

5-icosyloxolan-2-one

C24H46O2 (366.3498)


   

2-(3,4-dihydroxyphenyl)-5-hydroxy-7-methoxy-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

2-(3,4-dihydroxyphenyl)-5-hydroxy-7-methoxy-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

C21H22O6 (370.1416)


   

1-(5-acetyl-6-methoxy-1-benzofuran-2-yl)ethanone

1-(5-acetyl-6-methoxy-1-benzofuran-2-yl)ethanone

C13H12O4 (232.0736)


   

(2s)-2-[(2r,4ar,8as)-4a-methyl-8-methylidene-octahydronaphthalen-2-yl]propane-1,2-diol

(2s)-2-[(2r,4ar,8as)-4a-methyl-8-methylidene-octahydronaphthalen-2-yl]propane-1,2-diol

C15H26O2 (238.1933)


   

(2r)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

(2r)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

C20H20O6 (356.126)


   

(2s)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-methoxy-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

(2s)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-methoxy-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

C21H22O6 (370.1416)


   

(5s)-5-hexacosyloxolan-2-one

(5s)-5-hexacosyloxolan-2-one

C30H58O2 (450.4437)


   

2-(8,8a-dimethyl-4-oxo-octahydronaphthalen-2-yl)prop-2-enoic acid

2-(8,8a-dimethyl-4-oxo-octahydronaphthalen-2-yl)prop-2-enoic acid

C15H22O3 (250.1569)


   

4-acetyl-2,6-bis(3-methylbut-2-en-1-yl)phenyl (2e)-2-methylbut-2-enoate

4-acetyl-2,6-bis(3-methylbut-2-en-1-yl)phenyl (2e)-2-methylbut-2-enoate

C23H30O3 (354.2195)


   

4-isopropyl-1,7-dimethylcyclodeca-1,3,7-triene

4-isopropyl-1,7-dimethylcyclodeca-1,3,7-triene

C15H24 (204.1878)


   

1-(3-hydroxyprop-1-en-2-yl)-3a,5a,5b,8,8,11a-hexamethyl-hexadecahydrocyclopenta[a]chrysen-9-ol

1-(3-hydroxyprop-1-en-2-yl)-3a,5a,5b,8,8,11a-hexamethyl-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O2 (442.3811)


   

(3ar,4as,5s,8as,9ar)-5-hydroxy-5,8a-dimethyl-3-methylidene-octahydronaphtho[2,3-b]furan-2-one

(3ar,4as,5s,8as,9ar)-5-hydroxy-5,8a-dimethyl-3-methylidene-octahydronaphtho[2,3-b]furan-2-one

C15H22O3 (250.1569)