NCBI Taxonomy: 1640457

Trichilia catigua (ncbi_taxid: 1640457)

found 71 associated metabolites at species taxonomy rank level.

Ancestor: Trichilia

Child Taxonomies: none taxonomy data.

Epicatechin

(2R,3R)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C15H14O6 (290.0790344)


Epicatechin is an antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. Catechin is a tannin peculiar to green and white tea because the black tea oxidation process reduces catechins in black tea. Catechin is a powerful, water soluble polyphenol and antioxidant that is easily oxidized. Several thousand types are available in the plant world. As many as two thousand are known to have a flavon structure and are called flavonoids. Catechin is one of them. Green tea is manufactured from fresh, unfermented tea leaves; the oxidation of catechins is minimal, and hence they are able to serve as antioxidants. Researchers believe that catechin is effective because it easily sticks to proteins, blocking bacteria from adhering to cell walls and disrupting their ability to destroy them. Viruses have hooks on their surfaces and can attach to cell walls. The catechin in green tea prevents viruses from adhering and causing harm. Catechin reacts with toxins created by harmful bacteria (many of which belong to the protein family) and harmful metals such as lead, mercury, chrome, and cadmium. From its NMR espectra, there is a doubt on 2 and 3 atoms configuration. It seems to be that they are in trans position. Epicatechin, also known as (+)-cyanidanol-3 or 2,3-cis-epicatechin, is a member of the class of compounds known as catechins. Catechins are compounds containing a catechin moiety, which is a 3,4-dihydro-2-chromene-3,5.7-tiol. Thus, epicatechin is considered to be a flavonoid lipid molecule. Epicatechin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Epicatechin can be found in cashew nut, which makes epicatechin a potential biomarker for the consumption of this food product. Epicatechin can be found primarily in blood, feces, and urine, as well as throughout most human tissues. Epicatechin is a flavan-3-ol, a type of natural phenol and antioxidant. It is a plant secondary metabolite. It belongs to the group of flavan-3-ols (or simply flavanols), part of the chemical family of flavonoids . (-)-epicatechin is a catechin with (2R,3R)-configuration. It has a role as an antioxidant. It is a polyphenol and a catechin. It is an enantiomer of a (+)-epicatechin. Epicatechin has been used in trials studying the treatment of Pre-diabetes. (-)-Epicatechin is a natural product found in Visnea mocanera, Litsea rotundifolia, and other organisms with data available. An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. See also: Crofelemer (monomer of); Bilberry (part of); Cats Claw (part of) ... View More ... A catechin with (2R,3R)-configuration. [Raw Data] CB030_(-)-Epicatechin_pos_20eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_50eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_40eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_10eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_30eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_neg_50eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_30eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_10eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_40eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_20eV_000009.txt Epicatechin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=490-46-0 (retrieved 2024-07-09) (CAS RN: 490-46-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB. (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB. (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB. (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB.

   

Procyanidin B2

(2R,3R)-2-(3,4-dihydroxyphenyl)-8-[(2R,3R,4R)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-4-yl]-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C30H26O12 (578.1424196)


Procyanidin B2 is a proanthocyanidin consisting of two molecules of (-)-epicatechin joined by a bond between positions 4 and 8 in a beta-configuration. Procyanidin B2 can be found in Cinchona pubescens (Chinchona, in the rind, bark and cortex), in Cinnamomum verum (Ceylon cinnamon, in the rind, bark and cortex), in Crataegus monogyna (Common hawthorn, in the flower and blossom), in Uncaria guianensis (Cats claw, in the root), in Vitis vinifera (Common grape vine, in the leaf), in Litchi chinensis (litchi, in the pericarp), in the apple, in Ecdysanthera utilis and in red wine. It has a role as a metabolite and an antioxidant. It is a hydroxyflavan, a proanthocyanidin, a biflavonoid and a polyphenol. It is functionally related to a (-)-epicatechin. Procyanidin B2 is a natural product found in Begonia fagifolia, Saraca asoca, and other organisms with data available. See also: Cocoa (part of); Primula veris flower (part of). A proanthocyanidin consisting of two molecules of (-)-epicatechin joined by a bond between positions 4 and 8 in a beta-configuration. Procyanidin B2 can be found in Cinchona pubescens (Chinchona, in the rind, bark and cortex), in Cinnamomum verum (Ceylon cinnamon, in the rind, bark and cortex), in Crataegus monogyna (Common hawthorn, in the flower and blossom), in Uncaria guianensis (Cats claw, in the root), in Vitis vinifera (Common grape vine, in the leaf), in Litchi chinensis (litchi, in the pericarp), in the apple, in Ecdysanthera utilis and in red wine. Present in red wine. Procyanidin B2 is found in many foods, some of which are alcoholic beverages, sherry, bilberry, and yellow zucchini. Procyanidin B2 is found in alcoholic beverages. Procyanidin B2 is present in red wine. Procyanidin B2 is a natural flavonoid, with anti-cancer, antioxidant activities. Procyanidin B2 is a natural flavonoid, with anti-cancer, antioxidant activities.

   

procyanidin B2

(2S,3S)-2-(3,4-dihydroxyphenyl)-8-[(2R,3R,4R)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-chroman-4-yl]chromane-3,5,7-triol

C30H26O12 (578.1424196)


Annotation level-1 Acquisition and generation of the data is financially supported in part by CREST/JST. Procyanidin B2 is a natural flavonoid, with anti-cancer, antioxidant activities. Procyanidin B2 is a natural flavonoid, with anti-cancer, antioxidant activities.

   

Cinchonain Ib

(2R) -2alpha,10beta-Bis (3,4-dihydroxyphenyl) -3alpha,5-dihydroxy-3,4,9,10-tetrahydro-2H,8H-benzo [ 1,2-b:3,4-b ] dipyran-8-one

C24H20O9 (452.110727)


   

Procyanidin

(2R,3R)-2-(3,4-dihydroxyphenyl)-8-[(2R,3S,4S)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-4-yl]-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C30H26O12 (578.1424196)


Procyanidin B4 is a proanthocyanidin obtained by the condensation of (-)-epicatechin and (+)-catechin units. It has a role as an antioxidant, an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor and an antineoplastic agent. It is a proanthocyanidin and a hydroxyflavan. It is functionally related to a (-)-epicatechin and a (+)-catechin. Procyanidin B4 is a natural product found in Cinnamomum iners, Rosa henryi, and other organisms with data available. Procyanidins are a subclass of flavonoids found in commonly consumed foods such as red wine, chocolate, cranberry juice and apples and have gain attraction for their potential health benefits. Occurs in Rubus fruticosus (blackberry) and Rubus idaeus (raspberry). Procyanidin B4 is found in many foods, some of which are pear, bilberry, common wheat, and green bean. A proanthocyanidin obtained by the condensation of (-)-epicatechin and (+)-catechin units.

   

Arecatannin A1

2-(3,4-dihydroxyphenyl)-8-[2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-4-yl]-4-[2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-8-yl]-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C45H38O18 (866.2058048000001)


Arecatannin a1 is a member of the class of compounds known as biflavonoids and polyflavonoids. Biflavonoids and polyflavonoids are organic compounds containing at least two flavan/flavone units. These units are usually linked through CC or C-O-C bonds. Some examples include C2-O-C3, C2-O-C4, C3-C3, and C6-C8. Arecatannin a1 is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Arecatannin a1 can be found in common grape and grape wine, which makes arecatannin a1 a potential biomarker for the consumption of these food products.

   

Procyanidin C2

(2R,3S,4R)-2-(3,4-dihydroxyphenyl)-8-[(2R,3S,4S)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-4-yl]-4-[(2R,3S)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-8-yl]-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C45H38O18 (866.2058048000001)


Procyanidin c2, also known as C-(4,8)-C-(4,8)-C or procyanidin trimer c2, is a member of the class of compounds known as biflavonoids and polyflavonoids. Biflavonoids and polyflavonoids are organic compounds containing at least two flavan/flavone units. These units are usually linked through CC or C-O-C bonds. Some examples include C2-O-C3, C2-O-C4, C3-C3, and C6-C8. Procyanidin c2 is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Procyanidin c2 can be found in barley, beer, and common grape, which makes procyanidin c2 a potential biomarker for the consumption of these food products.

   

Catiguanin B

Catiguanin B

C25H22O10 (482.1212912)


An organic heterotetracyclic compound that is 3,4-dihydro-2H,12H-pyrano[2,3-a]xanthene substituted by a 3,4-dihydroxyphenyl group at position 2, hydroxy groups at positions 3, 5, 9 and 10 and a 2-methoxy-2-oxoethyl group at position 12 (the 2R,3R,12S stereoisomer). It is isolated from the barks of Trichilia catigua and exhibits antioxidant activity.

   

Catechol

(+)-Catechin Hydrate

C15H14O6 (290.0790344)


Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM.

   

Procyanidin B4

(4,8-Bi-2H-1-benzopyran)-3,3,5,5,7,7-hexol, 2,2-bis(3,4-dihydroxyphenyl)-3,34,4-tetrahydro-, (2R-(2alpha,3beta,4alpha(2R*,3R*)))-

C30H26O12 (578.1424196)


   

catiguanin A

catiguanin A

C25H22O10 (482.1212912)


An organic heterotetracyclic compound that is 3,4-dihydro-2H,12H-pyrano[2,3-a]xanthene substituted by a 3,4-dihydroxyphenyl group at position 2, hydroxy groups at positions 3, 5, 9 and 10 and a 2-methoxy-2-oxoethyl group at position 12 (the 2R,3R,12R stereoisomer). It is isolated from the barks of Trichilia catigua and exhibits antioxidant activity.

   

Procyanidin C2

Procyanidin C2

C45H38O18 (866.2058048000001)


A proanthocyanidin consisting of three (+)-catechin trimer joined by two successive (4alpha->8)-linkages.

   
   

4,14-bis(3,4-dihydroxyphenyl)-5,8-dihydroxy-3,11-dioxatricyclo[8.4.0.0²,⁷]tetradeca-1(10),2(7),8-trien-12-one

4,14-bis(3,4-dihydroxyphenyl)-5,8-dihydroxy-3,11-dioxatricyclo[8.4.0.0²,⁷]tetradeca-1(10),2(7),8-trien-12-one

C24H20O9 (452.110727)


   

(4r,5r,14r)-14-(3,4-dihydroxyphenyl)-5,8-dihydroxy-4-(3,4,5-trihydroxyphenyl)-3,11-dioxatricyclo[8.4.0.0²,⁷]tetradeca-1(10),2(7),8-trien-12-one

(4r,5r,14r)-14-(3,4-dihydroxyphenyl)-5,8-dihydroxy-4-(3,4,5-trihydroxyphenyl)-3,11-dioxatricyclo[8.4.0.0²,⁷]tetradeca-1(10),2(7),8-trien-12-one

C24H20O10 (468.105642)


   

(1s,8r,9r)-1,9-bis(3,4-dihydroxyphenyl)-6,8-dihydroxy-1h,2h,7h,8h,9h,10h-naphtho[2,1-b]pyran-3-one

(1s,8r,9r)-1,9-bis(3,4-dihydroxyphenyl)-6,8-dihydroxy-1h,2h,7h,8h,9h,10h-naphtho[2,1-b]pyran-3-one

C25H22O8 (450.1314612)


   

methyl 2-[(2s,3s,12s)-2-(3,4-dihydroxyphenyl)-3,5,9,10-tetrahydroxy-2,3,4,12-tetrahydro-1,7-dioxatetraphen-12-yl]acetate

methyl 2-[(2s,3s,12s)-2-(3,4-dihydroxyphenyl)-3,5,9,10-tetrahydroxy-2,3,4,12-tetrahydro-1,7-dioxatetraphen-12-yl]acetate

C25H22O10 (482.1212912)


   

(4r,5r,6s,14s)-4,14-bis(3,4-dihydroxyphenyl)-6-[(2r,3r)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-5,8-dihydroxy-3,11-dioxatricyclo[8.4.0.0²,⁷]tetradeca-1(10),2(7),8-trien-12-one

(4r,5r,6s,14s)-4,14-bis(3,4-dihydroxyphenyl)-6-[(2r,3r)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-5,8-dihydroxy-3,11-dioxatricyclo[8.4.0.0²,⁷]tetradeca-1(10),2(7),8-trien-12-one

C39H32O15 (740.1741122)


   

(4r,5r,6s,14r)-4,14-bis(3,4-dihydroxyphenyl)-6-[(2r,3r)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-5,8-dihydroxy-3,11-dioxatricyclo[8.4.0.0²,⁷]tetradeca-1(10),2(7),8-trien-12-one

(4r,5r,6s,14r)-4,14-bis(3,4-dihydroxyphenyl)-6-[(2r,3r)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-5,8-dihydroxy-3,11-dioxatricyclo[8.4.0.0²,⁷]tetradeca-1(10),2(7),8-trien-12-one

C39H32O15 (740.1741122)


   

(2r,3r,4s)-2-(3,4-dihydroxyphenyl)-8-[(2r,3r,4s)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-4-yl]-4-[(2r,3r)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

(2r,3r,4s)-2-(3,4-dihydroxyphenyl)-8-[(2r,3r,4s)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-4-yl]-4-[(2r,3r)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

C45H38O18 (866.2058048000001)


   

methyl 2-[(2s,3s,12r)-2-(3,4-dihydroxyphenyl)-3,5,9,10-tetrahydroxy-2,3,4,12-tetrahydro-1,7-dioxatetraphen-12-yl]acetate

methyl 2-[(2s,3s,12r)-2-(3,4-dihydroxyphenyl)-3,5,9,10-tetrahydroxy-2,3,4,12-tetrahydro-1,7-dioxatetraphen-12-yl]acetate

C25H22O10 (482.1212912)


   

(1r,8r,9r)-1,9-bis(3,4-dihydroxyphenyl)-6,8-dihydroxy-1h,2h,7h,8h,9h,10h-naphtho[2,1-b]pyran-3-one

(1r,8r,9r)-1,9-bis(3,4-dihydroxyphenyl)-6,8-dihydroxy-1h,2h,7h,8h,9h,10h-naphtho[2,1-b]pyran-3-one

C25H22O8 (450.1314612)


   

2-(3,4-dihydroxyphenyl)-4-[2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

2-(3,4-dihydroxyphenyl)-4-[2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

C30H26O12 (578.1424196)


   

(6r,12r,13r)-6,12-bis(3,4-dihydroxyphenyl)-8,13-dihydroxy-3,11-dioxatricyclo[8.4.0.0²,⁷]tetradeca-1,7,9-trien-4-one

(6r,12r,13r)-6,12-bis(3,4-dihydroxyphenyl)-8,13-dihydroxy-3,11-dioxatricyclo[8.4.0.0²,⁷]tetradeca-1,7,9-trien-4-one

C24H20O9 (452.110727)


   

6-(furan-3-yl)-17-hydroxy-1,7,11,15,15-pentamethyl-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadeca-12,16-diene-14,18-dione

6-(furan-3-yl)-17-hydroxy-1,7,11,15,15-pentamethyl-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadeca-12,16-diene-14,18-dione

C26H30O5 (422.209313)


   
   

(2r,3r,4r)-2-(3,4-dihydroxyphenyl)-4-[(2r,3r)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

(2r,3r,4r)-2-(3,4-dihydroxyphenyl)-4-[(2r,3r)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

C30H26O12 (578.1424196)


   

(2r,3s,4s)-2-(3,4-dihydroxyphenyl)-4-[(2r,3r)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

(2r,3s,4s)-2-(3,4-dihydroxyphenyl)-4-[(2r,3r)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

C30H26O12 (578.1424196)


   

4,14-bis(3,4-dihydroxyphenyl)-6-[2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-5,8-dihydroxy-3,11-dioxatricyclo[8.4.0.0²,⁷]tetradeca-1(10),2(7),8-trien-12-one

4,14-bis(3,4-dihydroxyphenyl)-6-[2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-5,8-dihydroxy-3,11-dioxatricyclo[8.4.0.0²,⁷]tetradeca-1(10),2(7),8-trien-12-one

C39H32O15 (740.1741122)


   

(2r,3r)-3,7-bis(acetyloxy)-2-[3,4-bis(acetyloxy)phenyl]-3,4-dihydro-2h-1-benzopyran-5-yl acetate

(2r,3r)-3,7-bis(acetyloxy)-2-[3,4-bis(acetyloxy)phenyl]-3,4-dihydro-2h-1-benzopyran-5-yl acetate

C25H24O11 (500.13185539999995)


   

(4s,5s,14r)-4,14-bis(3,4-dihydroxyphenyl)-5,8-dihydroxy-3,11-dioxatricyclo[8.4.0.0²,⁷]tetradeca-1(10),2(7),8-trien-12-one

(4s,5s,14r)-4,14-bis(3,4-dihydroxyphenyl)-5,8-dihydroxy-3,11-dioxatricyclo[8.4.0.0²,⁷]tetradeca-1(10),2(7),8-trien-12-one

C24H20O9 (452.110727)


   

methyl 2-[2-(3,4-dihydroxyphenyl)-3,5,9,10-tetrahydroxy-2,3,4,12-tetrahydro-1,7-dioxatetraphen-12-yl]acetate

methyl 2-[2-(3,4-dihydroxyphenyl)-3,5,9,10-tetrahydroxy-2,3,4,12-tetrahydro-1,7-dioxatetraphen-12-yl]acetate

C25H22O10 (482.1212912)


   

3,7-bis(acetyloxy)-2-[3,4-bis(acetyloxy)phenyl]-3,4-dihydro-2h-1-benzopyran-5-yl acetate

3,7-bis(acetyloxy)-2-[3,4-bis(acetyloxy)phenyl]-3,4-dihydro-2h-1-benzopyran-5-yl acetate

C25H24O11 (500.13185539999995)