NCBI Taxonomy: 284363

Rheum australe (ncbi_taxid: 284363)

found 238 associated metabolites at species taxonomy rank level.

Ancestor: Rheum

Child Taxonomies: none taxonomy data.

Epicatechin

(2R,3R)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C15H14O6 (290.0790344)


Epicatechin is an antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. Catechin is a tannin peculiar to green and white tea because the black tea oxidation process reduces catechins in black tea. Catechin is a powerful, water soluble polyphenol and antioxidant that is easily oxidized. Several thousand types are available in the plant world. As many as two thousand are known to have a flavon structure and are called flavonoids. Catechin is one of them. Green tea is manufactured from fresh, unfermented tea leaves; the oxidation of catechins is minimal, and hence they are able to serve as antioxidants. Researchers believe that catechin is effective because it easily sticks to proteins, blocking bacteria from adhering to cell walls and disrupting their ability to destroy them. Viruses have hooks on their surfaces and can attach to cell walls. The catechin in green tea prevents viruses from adhering and causing harm. Catechin reacts with toxins created by harmful bacteria (many of which belong to the protein family) and harmful metals such as lead, mercury, chrome, and cadmium. From its NMR espectra, there is a doubt on 2 and 3 atoms configuration. It seems to be that they are in trans position. Epicatechin, also known as (+)-cyanidanol-3 or 2,3-cis-epicatechin, is a member of the class of compounds known as catechins. Catechins are compounds containing a catechin moiety, which is a 3,4-dihydro-2-chromene-3,5.7-tiol. Thus, epicatechin is considered to be a flavonoid lipid molecule. Epicatechin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Epicatechin can be found in cashew nut, which makes epicatechin a potential biomarker for the consumption of this food product. Epicatechin can be found primarily in blood, feces, and urine, as well as throughout most human tissues. Epicatechin is a flavan-3-ol, a type of natural phenol and antioxidant. It is a plant secondary metabolite. It belongs to the group of flavan-3-ols (or simply flavanols), part of the chemical family of flavonoids . (-)-epicatechin is a catechin with (2R,3R)-configuration. It has a role as an antioxidant. It is a polyphenol and a catechin. It is an enantiomer of a (+)-epicatechin. Epicatechin has been used in trials studying the treatment of Pre-diabetes. (-)-Epicatechin is a natural product found in Visnea mocanera, Litsea rotundifolia, and other organisms with data available. An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. See also: Crofelemer (monomer of); Bilberry (part of); Cats Claw (part of) ... View More ... A catechin with (2R,3R)-configuration. [Raw Data] CB030_(-)-Epicatechin_pos_20eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_50eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_40eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_10eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_30eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_neg_50eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_30eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_10eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_40eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_20eV_000009.txt Epicatechin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=490-46-0 (retrieved 2024-07-09) (CAS RN: 490-46-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB. (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB. (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB. (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB.

   

Parietin

1,8-Dihydroxy-3-methoxy-6-methylanthraquinone, Emodin-3-methyl ether

C16H12O5 (284.0684702)


Physcion is a dihydroxyanthraquinone that is 9,10-anthraquinone bearing hydroxy substituents at positions 1 and 8, a methoxy group at position 3, and a methyl group at position 6. It has been widely isolated and characterised from both terrestrial and marine sources. It has a role as an apoptosis inducer, an antineoplastic agent, a hepatoprotective agent, an anti-inflammatory agent, an antibacterial agent, an antifungal agent and a metabolite. It is functionally related to a 2-methylanthraquinone. Physcion is a natural product found in Rumex dentatus, Ageratina altissima, and other organisms with data available. See also: Reynoutria multiflora root (part of); Frangula purshiana Bark (part of). A dihydroxyanthraquinone that is 9,10-anthraquinone bearing hydroxy substituents at positions 1 and 8, a methoxy group at position 3, and a methyl group at position 6. It has been widely isolated and characterised from both terrestrial and marine sources. [Raw Data] CBA82_Physcion_pos_10eV.txt [Raw Data] CBA82_Physcion_pos_30eV.txt [Raw Data] CBA82_Physcion_pos_50eV.txt [Raw Data] CBA82_Physcion_pos_40eV.txt [Raw Data] CBA82_Physcion_pos_20eV.txt

   

Noreugenin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-2-methyl-

C10H8O4 (192.0422568)


Noreugenin is a member of the class of chromones in which the 1,4-benzopyrone skeleton is substituted with a methyl group at position 2 and with hydroxy groups at positions 5 and 7. A natural product, it is found in Pisonia aculeata. It has a role as a plant metabolite. It is a member of chromones and a member of resorcinols. It is a conjugate acid of a noreugenin(1-). Noreugenin is a natural product found in Crossosoma bigelovii, Schumanniophyton magnificum, and other organisms with data available. Noreugenin, also known as 5,7-dihydroxy-2-methyl-4h-1-benzopyran-4-one, is a member of the class of compounds known as chromones. Chromones are compounds containing a benzopyran-4-one moiety. Noreugenin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Noreugenin can be found in carrot and wild carrot, which makes noreugenin a potential biomarker for the consumption of these food products. Noreugenin, 5,7-dihydroxy-2-methyl-4H-chromen-4-one, is a new chromone from Aloe arborescens. (Amaryllidaceae)[1].

   

Emodin

1,3,8-trihydroxy-6-methyl-anthracene-9,10-dione;3-METHYL-1,6,8-TRIHYDROXYANTHRAQUINONE

C15H10O5 (270.052821)


Emodin appears as orange needles or powder. (NTP, 1992) Emodin is a trihydroxyanthraquinone that is 9,10-anthraquinone which is substituted by hydroxy groups at positions 1, 3, and 8 and by a methyl group at position 6. It is present in the roots and barks of numerous plants (particularly rhubarb and buckthorn), moulds, and lichens. It is an active ingredient of various Chinese herbs. It has a role as a tyrosine kinase inhibitor, an antineoplastic agent, a laxative and a plant metabolite. It is functionally related to an emodin anthrone. It is a conjugate acid of an emodin(1-). Emodin has been investigated for the treatment of Polycystic Kidney. Emodin is a natural product found in Rumex dentatus, Rhamnus davurica, and other organisms with data available. Emodin is found in dock. Emodin is present in Cascara sagrada.Emodin is a purgative resin from rhubarb, Polygonum cuspidatum, the buckthorn and Japanese Knotweed (Fallopia japonica). The term may also refer to any one of a series of principles isomeric with the emodin of rhubarb. (Wikipedia) Emodin has been shown to exhibit anti-inflammatory, signalling, antibiotic, muscle building and anti-angiogenic functions (A3049, A7853, A7854, A7855, A7857). Purgative anthraquinone found in several plants, especially RHAMNUS PURSHIANA. It was formerly used as a laxative, but is now used mainly as a tool in toxicity studies. See also: Reynoutria multiflora root (part of); Frangula purshiana Bark (part of). A trihydroxyanthraquinone that is 9,10-anthraquinone which is substituted by hydroxy groups at positions 1, 3, and 8 and by a methyl group at position 6. It is present in the roots and barks of numerous plants (particularly rhubarb and buckthorn), moulds, and lichens. It is an active ingredient of various Chinese herbs. Emodin is found in dock. Emodin is present in Cascara sagrada.Emodin is a purgative resin from rhubarb, Polygonum cuspidatum, the buckthorn and Japanese Knotweed (Fallopia japonica). The term may also refer to any one of a series of principles isomeric with the emodin of rhubarb. (Wikipedia C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors D005765 - Gastrointestinal Agents > D002400 - Cathartics Present in Cascara sagrada CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8540; ORIGINAL_PRECURSOR_SCAN_NO 8539 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8561; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5082; ORIGINAL_PRECURSOR_SCAN_NO 5079 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8572; ORIGINAL_PRECURSOR_SCAN_NO 8570 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5104; ORIGINAL_PRECURSOR_SCAN_NO 5099 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8558; ORIGINAL_PRECURSOR_SCAN_NO 8556 ORIGINAL_PRECURSOR_SCAN_NO 5094; CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5097 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8554; ORIGINAL_PRECURSOR_SCAN_NO 8550 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5096; ORIGINAL_PRECURSOR_SCAN_NO 5093 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8556; ORIGINAL_PRECURSOR_SCAN_NO 8554 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5090; ORIGINAL_PRECURSOR_SCAN_NO 5089 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5085; ORIGINAL_PRECURSOR_SCAN_NO 5082 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5097; ORIGINAL_PRECURSOR_SCAN_NO 5094 [Raw Data] CB029_Emodin_pos_50eV_CB000015.txt [Raw Data] CB029_Emodin_pos_10eV_CB000015.txt [Raw Data] CB029_Emodin_pos_20eV_CB000015.txt [Raw Data] CB029_Emodin_pos_30eV_CB000015.txt [Raw Data] CB029_Emodin_pos_40eV_CB000015.txt [Raw Data] CB029_Emodin_neg_50eV_000008.txt [Raw Data] CB029_Emodin_neg_20eV_000008.txt [Raw Data] CB029_Emodin_neg_40eV_000008.txt [Raw Data] CB029_Emodin_neg_30eV_000008.txt [Raw Data] CB029_Emodin_neg_10eV_000008.txt CONFIDENCE standard compound; ML_ID 38 Emodin (Frangula emodin), an anthraquinone derivative, is an anti-SARS-CoV compound. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 (ACE2) interaction[1]. Emodin inhibits casein kinase-2 (CK2). Anti-inflammatory and anticancer effects[2]. Emodin is a potent selective 11β-HSD1 inhibitor with the IC50 of 186 and 86 nM for human and mouse 11β-HSD1, respectively. Emodin ameliorates metabolic disorder in diet-induced obese mice[3]. Emodin (Frangula emodin), an anthraquinone derivative, is an anti-SARS-CoV compound. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 (ACE2) interaction[1]. Emodin inhibits casein kinase-2 (CK2). Anti-inflammatory and anticancer effects[2]. Emodin is a potent selective 11β-HSD1 inhibitor with the IC50 of 186 and 86 nM for human and mouse 11β-HSD1, respectively. Emodin ameliorates metabolic disorder in diet-induced obese mice[3].

   

Aloeemodin

InChI=1/C15H10O5/c16-6-7-4-9-13(11(18)5-7)15(20)12-8(14(9)19)2-1-3-10(12)17/h1-5,16-18H,6H

C15H10O5 (270.052821)


Aloe emodin is a dihydroxyanthraquinone that is chrysazin carrying a hydroxymethyl group at position 3. It has been isolated from plant species of the genus Aloe. It has a role as an antineoplastic agent and a plant metabolite. It is a dihydroxyanthraquinone and an aromatic primary alcohol. It is functionally related to a chrysazin. Aloe-emodin is a natural product found in Rhamnus davurica, Aloe succotrina, and other organisms with data available. See also: Frangula purshiana Bark (part of). Aloeemodin is found in green vegetables. Aloeemodin is found in aloes, also bark of cascara sagrada Rhamnus purshiana, Chinese rhubarb Rheum palmatum and Rheum undulatum (rhubarb).Aloe emodin is an anthraquinone present in aloe latex, an exudate from the aloe plant. It has a strong stimulant-laxative action. (Wikipedia A dihydroxyanthraquinone that is chrysazin carrying a hydroxymethyl group at position 3. It has been isolated from plant species of the genus Aloe. CONFIDENCE standard compound; INTERNAL_ID 1086; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5097; ORIGINAL_PRECURSOR_SCAN_NO 5094 CONFIDENCE standard compound; INTERNAL_ID 1086; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8556; ORIGINAL_PRECURSOR_SCAN_NO 8554 CONFIDENCE standard compound; INTERNAL_ID 1086; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8561; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 1086; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8572; ORIGINAL_PRECURSOR_SCAN_NO 8570 CONFIDENCE standard compound; INTERNAL_ID 1086; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5090; ORIGINAL_PRECURSOR_SCAN_NO 5089 CONFIDENCE standard compound; INTERNAL_ID 1086; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5096; ORIGINAL_PRECURSOR_SCAN_NO 5093 CONFIDENCE standard compound; INTERNAL_ID 1086; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5085; ORIGINAL_PRECURSOR_SCAN_NO 5082 CONFIDENCE standard compound; INTERNAL_ID 1086; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8558; ORIGINAL_PRECURSOR_SCAN_NO 8556 CONFIDENCE standard compound; INTERNAL_ID 1086; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8554; ORIGINAL_PRECURSOR_SCAN_NO 8550 CONFIDENCE standard compound; INTERNAL_ID 1086; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5082; ORIGINAL_PRECURSOR_SCAN_NO 5079 CONFIDENCE standard compound; INTERNAL_ID 1086; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5104; ORIGINAL_PRECURSOR_SCAN_NO 5099 CONFIDENCE standard compound; INTERNAL_ID 1086; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8540; ORIGINAL_PRECURSOR_SCAN_NO 8539 Aloe emodin is a hydroxyanthraquinone extracted from aloe leaves and has been shown to have anti-tumor activity in vitro and in vivo. Aloe emodin is a hydroxyanthraquinone extracted from aloe leaves and has been shown to have anti-tumor activity in vitro and in vivo.

   

Rhein

4,5-dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxylic acid

C15H8O6 (284.0320868)


Rhein appears as yellow needles (from methanol) or yellow-brown powder. (NTP, 1992) Rhein is a dihydroxyanthraquinone. Rhein is an anthraquinone metabolite of rheinanthrone and senna glycoside is present in many medicinal plants including Rheum palmatum, Cassia tora, Polygonum multiflorum, and Aloe barbadensis. It is known to have hepatoprotective, nephroprotective, anti-cancer, anti-inflammatory, and several other protective effects. Rhein is a natural product found in Cassia renigera, Rheum compactum, and other organisms with data available. Present in Rheum palmatum (Chinese rhubarb). Rhein is found in dock, green vegetables, and garden rhubarb. Rhein is found in dock. Rhein is present in Rheum palmatum (Chinese rhubarb D004791 - Enzyme Inhibitors KEIO_ID R037

   

Chrysophanol

1,8-DIHYDROXY-3-METHYL-9,10-DIHYDROANTHRACENE-9,10-DIONE

C15H10O4 (254.057906)


Chrysophanic acid appears as golden yellow plates or brown powder. Melting point 196 °C. Slightly soluble in water. Pale yellow aqueous solutions turn red on addition of alkali. Solutions in concentrated sulfuric acid are red. (NTP, 1992) Chrysophanol is a trihydroxyanthraquinone that is chrysazin with a methyl substituent at C-3. It has been isolated from Aloe vera and exhibits antiviral and anti-inflammatory activity. It has a role as an antiviral agent, an anti-inflammatory agent and a plant metabolite. It is functionally related to a chrysazin. Chrysophanol is a natural product found in Rumex dentatus, Ageratina altissima, and other organisms with data available. See also: Frangula purshiana Bark (part of). A trihydroxyanthraquinone that is chrysazin with a methyl substituent at C-3. It has been isolated from Aloe vera and exhibits antiviral and anti-inflammatory activity. Constituent of Rumex, Rheum subspecies Chrysophanol is found in dock, garden rhubarb, and sorrel. Chrysophanol is found in dock. Chrysophanol is a constituent of Rumex, Rheum species D009676 - Noxae > D009153 - Mutagens Chrysophanol (Chrysophanic acid) is a natural anthraquinone, which inhibits EGF-induced phosphorylation of EGFR and suppresses activation of AKT and mTOR/p70S6K. Chrysophanol (Chrysophanic acid) is a natural anthraquinone, which inhibits EGF-induced phosphorylation of EGFR and suppresses activation of AKT and mTOR/p70S6K.

   

Rose oxide (cis)

(2S,3R,4S,5S,6R)-2-{3-hydroxy-5-[(e)-2-(3-hydroxy-4-methoxyphenyl)ethenyl]phenoxy}-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C21H24O9 (420.14202539999997)


Rhapontin (Rhaponiticin), a component of rhubarb (Rheum officinale Baill), induces apoptosis resulting in suppression of proliferation of human stomach cancer KATO III cells[1]. Rhapontin (Rhaponiticin), a component of rhubarb (Rheum officinale Baill), induces apoptosis resulting in suppression of proliferation of human stomach cancer KATO III cells[1].

   

Chrysophanein

1-hydroxy-3-methyl-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-9,10-dihydroanthracene-9,10-dione

C21H20O9 (416.110727)


Isolated from Rheum, Rumex subspecies Chrysophanein is found in green vegetables and garden rhubarb. Chrysophanein is found in garden rhubarb. Chrysophanein is isolated from Rheum, Rumex species. Chrysophanol 8-O-glucoside, from the roots of Rumex acetosa, shows moderate elastase inhibition activity[1]. Chrysophanol 8-O-glucoside, from the roots of Rumex acetosa, shows moderate elastase inhibition activity[1].

   

Physcion 8-gentiobioside

1-hydroxy-3-methoxy-6-methyl-8-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-9,10-dihydroanthracene-9,10-dione

C28H32O15 (608.1741122)


Physcion 8-gentiobioside is a constituent of seeds of sicklepod (Cassia torosa) Constituent of seeds of sicklepod (Cassia torosa)

   

Physcion 8-glucoside

1-Hydroxy-3-methoxy-6-methyl-8-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)anthracene-9,10-dione

C22H22O10 (446.1212912)


Physcion 8-glucoside is an anthraquinone. Physcion 8-glucoside is a natural product found in Rheum palmatum, Rheum australe, and Senna obtusifolia with data available.

   

trans-Isoasarone

(Z)-1-(2,4,5-Trimethoxyphenyl)-1-propene

C12H16O3 (208.1099386)


Beta-asarone is a major ingredient of Acorus tatarinowii Schott, penetrates blood brain barrier, with the properties of immunosuppression, central nervous system inhibition, sedation, and hypothermy. Beta-asarone protects against Parkinson’s disease[1]. Beta-asarone is a major ingredient of Acorus tatarinowii Schott, penetrates blood brain barrier, with the properties of immunosuppression, central nervous system inhibition, sedation, and hypothermy. Beta-asarone protects against Parkinson’s disease[1].

   

Cascaroside C

1-hydroxy-3-methyl-10-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-9,10-dihydroanthracen-9-one

C27H32O13 (564.1842822)


Cascaroside D is from cascara sagrada (Rhamnus purshiana) bark From cascara sagrada (Rhamnus purshiana) bark

   
   

Rheochrysin

1-Hydroxy-6-methoxy-3-methyl-8-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)anthracene-9,10-dione

C22H22O10 (446.1212912)


Rheochrysin is an anthraquinone. Rheochrysin is a natural product found in Selaginella delicatula, Rheum australe, and other organisms with data available. Rheochrysin is found in green vegetables. Rheochrysin occurs in root of Rheum sp Occurs in root of Rheum subspecies Rheochrysin is found in green vegetables. Physcion 8-O-β-D-glucopyranosideis an anthraquinone compound isolated from Rumex japonicus Houtt. Physcion 8-O-β-D-glucopyranoside exerts anti-inflammatory and anti-cancer properties, can be for common malignancy cancer research[1].

   

Rhapontigenin

1-(3,5-Dihydroxyphenyl)-2-(3-hydroxy-4-methoxyphenyl)ethylene

C15H14O4 (258.0892044)


Rhapontigenin is found in garden rhubarb. Rhapontigenin is isolated from rhizomes of Rheum undulatum (rhubarb) 4-Guanidinobutanoate is a normal metabolite present in low concentrations. Patients with hyperargininemia have an arginase deficiency which leads to blockade of the urea cycle in the last step with several clinical symptoms. Owing to the arginase deficiency this patients accumulate arginine which leads eventually to epileptogenic guanidino compounds (PMID 7752905 Isolated from rhizomes of Rheum undulatum (rhubarb) Rhapontigenin is a natural analog of resveratrol with anticancer, antioxidant, antifungal and antibacterial activities. Rhapontigenin is amechanism-based, potent and selective cytochrome P450 1A1?inactivator (IC50 ?= 400 nM). Rhapontigenin exhibits 400-fold and 23-fold selectivity for P450 1A1 over P450 1A2 and P450 1B1, respectively[1]. Rhapontigenin is a natural analog of resveratrol with anticancer, antioxidant, antifungal and antibacterial activities. Rhapontigenin is amechanism-based, potent and selective cytochrome P450 1A1?inactivator (IC50 ?= 400 nM). Rhapontigenin exhibits 400-fold and 23-fold selectivity for P450 1A1 over P450 1A2 and P450 1B1, respectively[1].

   

Pulmatin

8-hydroxy-3-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-9,10-dihydroanthracene-9,10-dione

C21H20O9 (416.110727)


Constituent of Rheum palmatum (Turkey rhubarb). Pulmatin is found in green vegetables and garden rhubarb. Pulmatin is found in garden rhubarb. Pulmatin is a constituent of Rheum palmatum (Turkey rhubarb)

   

Torachrysone 8-glucoside

1-(1-hydroxy-6-methoxy-3-methyl-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}naphthalen-2-yl)ethan-1-one

C20H24O9 (408.14202539999997)


Torachrysone 8-glucoside is found in garden rhubarb. Torachrysone 8-glucoside is isolated from Rhei rhizoma. Isolated from Rhei rhizoma. Torachrysone 8-glucoside is found in green vegetables and garden rhubarb. Torachrysone-8-O-b-D-glucoside could be isolated from root of Polygonum multiflorum. Torachrysone-8-O-b-D-glucoside increases the proliferation of DPCs (dermal papilla cells)[1]. Torachrysone-8-O-b-D-glucoside could be isolated from root of Polygonum multiflorum. Torachrysone-8-O-b-D-glucoside increases the proliferation of DPCs (dermal papilla cells)[1].

   

Chrysophanol 8-gentiobioside

1-hydroxy-3-methyl-8-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-9,10-dihydroanthracene-9,10-dione

C27H30O14 (578.163548)


Chrysophanol 8-gentiobioside is found in coffee and coffee products. Chrysophanol 8-gentiobioside is a constituent of the seeds of Cassia tora (charota). Constituent of the seeds of Cassia tora (charota). Chrysophanol 8-gentiobioside is found in coffee and coffee products, herbs and spices, and pulses.

   

(2S,3R,4S,5S,6R)-2-[3-Hydroxy-5-[2-(3-hydroxy-4-methoxyphenyl)ethenyl]phenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

(2S,3R,4S,5S,6R)-2-[3-Hydroxy-5-[2-(3-hydroxy-4-methoxyphenyl)ethenyl]phenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C21H24O9 (420.14202539999997)


   

1,2,4-Trimethoxy-5-propenylbenzene

1,2,4-trimethoxy-5-(prop-1-en-1-yl)benzene

C12H16O3 (208.1099386)


Beta-asarone is a major ingredient of Acorus tatarinowii Schott, penetrates blood brain barrier, with the properties of immunosuppression, central nervous system inhibition, sedation, and hypothermy. Beta-asarone protects against Parkinson’s disease[1]. Beta-asarone is a major ingredient of Acorus tatarinowii Schott, penetrates blood brain barrier, with the properties of immunosuppression, central nervous system inhibition, sedation, and hypothermy. Beta-asarone protects against Parkinson’s disease[1].

   

Marsupsin

2,6-dihydroxy-2-[(4-hydroxyphenyl)methyl]-4-methoxy-2,3-dihydro-1-benzofuran-3-one

C16H14O6 (302.0790344)


   

Physcion 8-glucoside

1-hydroxy-3-methoxy-6-methyl-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-9,10-dihydroanthracene-9,10-dione

C22H22O10 (446.1212912)


Physcion 8-glucoside is a member of the class of compounds known as anthraquinones. Anthraquinones are organic compounds containing either anthracene-9,10-quinone, 1,4-anthraquinone, or 1,2-anthraquinone. Physcion 8-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Physcion 8-glucoside can be found in garden rhubarb, which makes physcion 8-glucoside a potential biomarker for the consumption of this food product.

   

Pulmatin

1-hydroxy-3-methyl-8-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]anthracene-9,10-dione

C21H20O9 (416.110727)


Chrysophanol 8-O-beta-D-glucoside is a beta-D-glucoside in which the aglycone species is chrysophanol, the glycosidic linkage being to the hydroxy group at C-8. It is a beta-D-glucoside and a monohydroxyanthraquinone. It is functionally related to a chrysophanol. Pulmatin is a natural product found in Selaginella delicatula, Rheum palmatum, and other organisms with data available. Chrysophanol 8-O-glucoside, from the roots of Rumex acetosa, shows moderate elastase inhibition activity[1]. Chrysophanol 8-O-glucoside, from the roots of Rumex acetosa, shows moderate elastase inhibition activity[1].

   

Rhaponticin

(2S,3R,4S,5S,6R)-2-[3-hydroxy-5-[(E)-2-(3-hydroxy-4-methoxy-phenyl)vinyl]phenoxy]-6-(hydroxymethyl)tetrahydropyran-3,4,5-triol

C21H24O9 (420.14202539999997)


Trans-rhaponticin is a rhaponticin in which the double bond adopts a trans-configuration. It possesses a range of pharmacological activities including antitumour, antiinflammatory, antilipemic and neuroprotective activities. It has a role as an anti-inflammatory agent, a plant metabolite, a neuroprotective agent, an EC 2.3.1.85 (fatty acid synthase) inhibitor, an antineoplastic agent, an apoptosis inducer, an angiogenesis inhibitor, a hypoglycemic agent, an anti-allergic agent and an antilipemic drug. Rhapontin is a natural product found in Rheum compactum, Rheum hotaoense, and other organisms with data available. A rhaponticin in which the double bond adopts a trans-configuration. It possesses a range of pharmacological activities including antitumour, antiinflammatory, antilipemic and neuroprotective activities. Rhapontin (Rhaponiticin), a component of rhubarb (Rheum officinale Baill), induces apoptosis resulting in suppression of proliferation of human stomach cancer KATO III cells[1]. Rhapontin (Rhaponiticin), a component of rhubarb (Rheum officinale Baill), induces apoptosis resulting in suppression of proliferation of human stomach cancer KATO III cells[1].

   

Rhapontigenin

trans-1-(3,5-Dihydroxyphenyl)-2-(3-hydroxy-4-methoxyphenyl)ethylene

C15H14O4 (258.0892044)


Rhapontigenin is a stilbenoid. Rhapontigenin is a natural product found in Rheum undulatum, Gnetum hainanense, and other organisms with data available. Rhapontigenin is a natural analog of resveratrol with anticancer, antioxidant, antifungal and antibacterial activities. Rhapontigenin is amechanism-based, potent and selective cytochrome P450 1A1?inactivator (IC50 ?= 400 nM). Rhapontigenin exhibits 400-fold and 23-fold selectivity for P450 1A1 over P450 1A2 and P450 1B1, respectively[1]. Rhapontigenin is a natural analog of resveratrol with anticancer, antioxidant, antifungal and antibacterial activities. Rhapontigenin is amechanism-based, potent and selective cytochrome P450 1A1?inactivator (IC50 ?= 400 nM). Rhapontigenin exhibits 400-fold and 23-fold selectivity for P450 1A1 over P450 1A2 and P450 1B1, respectively[1].

   

physcion

9,10-Anthracenedione, 1,8-dihydroxy-3-methoxy-6-methyl- (9CI)

C16H12O5 (284.0684702)


Physcion, also known as emodin monomethyl ether or parienin, is a member of the class of compounds known as anthraquinones. Anthraquinones are organic compounds containing either anthracene-9,10-quinone, 1,4-anthraquinone, or 1,2-anthraquinone. Physcion is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Physcion can be synthesized from 2-methylanthraquinone. Physcion can also be synthesized into torososide B and physcion 8-gentiobioside. Physcion can be found in common sage, garden rhubarb, and sorrel, which makes physcion a potential biomarker for the consumption of these food products. Physcion has also been shown to protect lichens against UV-B light, at high altitudes in Alpine regions. The UV-B light stimulates production of parietin and the parietin protects the lichens from damage. Lichens in arctic regions such as Svarlbard retain this capability though they do not encounter damaging levels of UV-B, a capability that could help protect the lichens in case of Ozone layer thinning .

   

4-Methoxyresveratrol

5-[2-(4-methoxyphenyl)vinyl]benzene-1,3-diol;(E)-5-(4-Methoxystyryl)benzene-1,3-diol

C15H14O3 (242.0942894)


5-[2-(4-methoxyphenyl)ethenyl]benzene-1,3-diol is a stilbenoid. (E)-5-(4-Methoxystyryl)benzene-1,3-diol is a natural product found in Alpinia hainanensis, Rheum undulatum, and other organisms with data available. 4'-Methoxyresveratrol (4'-O-Methylresveratrol) is a polyphenol derived from Dipterocarpaceae, with antiandrogenic, antifungal and anti-inflammatory activities. 4'-Methoxyresveratrol alleviates AGE-induced inflammation through suppressing RAGE-mediated MAPK/NF-κB signaling pathway and NLRP3 inflammasome activation[1]. 4'-Methoxyresveratrol (4'-O-Methylresveratrol) is a polyphenol derived from Dipterocarpaceae, with antiandrogenic, antifungal and anti-inflammatory activities. 4'-Methoxyresveratrol alleviates AGE-induced inflammation through suppressing RAGE-mediated MAPK/NF-κB signaling pathway and NLRP3 inflammasome activation[1].

   

Carpusin

2,6-Dihydroxy-2- (4-hydroxybenzyl) -4-methoxybenzofuran-3 (2H) -one

C16H14O6 (302.0790344)


   

Maesopsin

2,4,6-Trihydroxy-2- [ (4-hydroxyphenyl) methyl ] benzofuran-3 (2H) -one

C15H12O6 (288.06338519999997)


   

5-[2-(4-methoxyphenyl)ethenyl]benzene-1,3-diol

5-[2-(4-methoxyphenyl)ethenyl]benzene-1,3-diol

C15H14O3 (242.0942894)


   

Mesopsin

2,4,6-Trihydroxy-2-[(4-hydroxyphenyl)methyl]-1-benzofuran-3(2H)-one

C15H12O6 (288.06338519999997)


Maesopsin is a member of aurones. Maesopsin is a natural product found in Alphitonia whitei, Rheum nanum, and Hovenia trichocarpa with data available.

   

Torachrysone8-O-glucoside

1-(1-Hydroxy-6-methoxy-3-methyl-8-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)naphthalen-2-yl)ethanone

C20H24O9 (408.14202539999997)


Torachrysone 8-O-Glucoside is a natural product found in Rheum palmatum, Rheum undulatum, and other organisms with data available. Torachrysone-8-O-b-D-glucoside could be isolated from root of Polygonum multiflorum. Torachrysone-8-O-b-D-glucoside increases the proliferation of DPCs (dermal papilla cells)[1]. Torachrysone-8-O-b-D-glucoside could be isolated from root of Polygonum multiflorum. Torachrysone-8-O-b-D-glucoside increases the proliferation of DPCs (dermal papilla cells)[1].

   

Rhein

2-Anthracenecarboxylic acid, 9,10-dihydro-4,5-dihydroxy-9,10-dioxo-

C15H8O6 (284.0320868)


D004791 - Enzyme Inhibitors relative retention time with respect to 9-anthracene Carboxylic Acid is 1.164 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.166

   

Chrysophanic acid

Chrysophanic acid

C15H10O4 (254.057906)


relative retention time with respect to 9-anthracene Carboxylic Acid is 1.321 D009676 - Noxae > D009153 - Mutagens relative retention time with respect to 9-anthracene Carboxylic Acid is 1.322 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.318 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.324 Chrysophanol (Chrysophanic acid) is a natural anthraquinone, which inhibits EGF-induced phosphorylation of EGFR and suppresses activation of AKT and mTOR/p70S6K. Chrysophanol (Chrysophanic acid) is a natural anthraquinone, which inhibits EGF-induced phosphorylation of EGFR and suppresses activation of AKT and mTOR/p70S6K.

   

Emodin

9,10-Anthracenedione, 1,3,8-trihydroxy-6-methyl- (9CI)

C15H10O5 (270.052821)


C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors D005765 - Gastrointestinal Agents > D002400 - Cathartics CONFIDENCE isolated standard relative retention time with respect to 9-anthracene Carboxylic Acid is 1.288 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.291 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.286 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.293 Emodin (Frangula emodin), an anthraquinone derivative, is an anti-SARS-CoV compound. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 (ACE2) interaction[1]. Emodin inhibits casein kinase-2 (CK2). Anti-inflammatory and anticancer effects[2]. Emodin is a potent selective 11β-HSD1 inhibitor with the IC50 of 186 and 86 nM for human and mouse 11β-HSD1, respectively. Emodin ameliorates metabolic disorder in diet-induced obese mice[3]. Emodin (Frangula emodin), an anthraquinone derivative, is an anti-SARS-CoV compound. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 (ACE2) interaction[1]. Emodin inhibits casein kinase-2 (CK2). Anti-inflammatory and anticancer effects[2]. Emodin is a potent selective 11β-HSD1 inhibitor with the IC50 of 186 and 86 nM for human and mouse 11β-HSD1, respectively. Emodin ameliorates metabolic disorder in diet-induced obese mice[3].

   
   

Catechol

(+)-Catechin Hydrate

C15H14O6 (290.0790344)


Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM.

   

Rhapontin

Rhapontin

C21H24O9 (420.14202539999997)


Rhapontin is a member of the class of compounds known as stilbene glycosides. Stilbene glycosides are compounds structurally characterized by the presence of a carbohydrate moiety glycosidically linked to the stilbene skeleton. Rhapontin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Rhapontin can be found in garden rhubarb, which makes rhapontin a potential biomarker for the consumption of this food product. Rhapontin has beneficial effects on diabetic mice, and in vitro results suggest it may be relevant to Alzheimers disease with an action on beta amyloid . Rhapontin (Rhaponiticin), a component of rhubarb (Rheum officinale Baill), induces apoptosis resulting in suppression of proliferation of human stomach cancer KATO III cells[1]. Rhapontin (Rhaponiticin), a component of rhubarb (Rheum officinale Baill), induces apoptosis resulting in suppression of proliferation of human stomach cancer KATO III cells[1].

   

Torachrysone 8-glucoside

1-(1-hydroxy-6-methoxy-3-methyl-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}naphthalen-2-yl)ethan-1-one

C20H24O9 (408.14202539999997)


Torachrysone-8-O-b-D-glucoside could be isolated from root of Polygonum multiflorum. Torachrysone-8-O-b-D-glucoside increases the proliferation of DPCs (dermal papilla cells)[1]. Torachrysone-8-O-b-D-glucoside could be isolated from root of Polygonum multiflorum. Torachrysone-8-O-b-D-glucoside increases the proliferation of DPCs (dermal papilla cells)[1].

   

Chrysophanol 8-gentiobioside

1-hydroxy-3-methyl-8-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-9,10-dihydroanthracene-9,10-dione

C27H30O14 (578.163548)


   

Aloeemodin

InChI=1\C15H10O5\c16-6-7-4-9-13(11(18)5-7)15(20)12-8(14(9)19)2-1-3-10(12)17\h1-5,16-18H,6H

C15H10O5 (270.052821)


Aloe emodin is a hydroxyanthraquinone extracted from aloe leaves and has been shown to have anti-tumor activity in vitro and in vivo. Aloe emodin is a hydroxyanthraquinone extracted from aloe leaves and has been shown to have anti-tumor activity in vitro and in vivo.

   

Crysophanol

Chrysophanic acid (1,8-dihydroxy-3-methylanthraquinone)

C15H10O4 (254.057906)


D009676 - Noxae > D009153 - Mutagens Chrysophanol (Chrysophanic acid) is a natural anthraquinone, which inhibits EGF-induced phosphorylation of EGFR and suppresses activation of AKT and mTOR/p70S6K. Chrysophanol (Chrysophanic acid) is a natural anthraquinone, which inhibits EGF-induced phosphorylation of EGFR and suppresses activation of AKT and mTOR/p70S6K.

   

Rheochrysin

1-hydroxy-6-methoxy-3-methyl-8-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]anthracene-9,10-dione

C22H22O10 (446.1212912)


Physcion 8-O-β-D-glucopyranosideis an anthraquinone compound isolated from Rumex japonicus Houtt. Physcion 8-O-β-D-glucopyranoside exerts anti-inflammatory and anti-cancer properties, can be for common malignancy cancer research[1].

   

Noreugenin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-2-methyl-

C10H8O4 (192.0422568)


Noreugenin is a member of the class of chromones in which the 1,4-benzopyrone skeleton is substituted with a methyl group at position 2 and with hydroxy groups at positions 5 and 7. A natural product, it is found in Pisonia aculeata. It has a role as a plant metabolite. It is a member of chromones and a member of resorcinols. It is a conjugate acid of a noreugenin(1-). Noreugenin is a natural product found in Crossosoma bigelovii, Schumanniophyton magnificum, and other organisms with data available. A member of the class of chromones in which the 1,4-benzopyrone skeleton is substituted with a methyl group at position 2 and with hydroxy groups at positions 5 and 7. A natural product, it is found in Pisonia aculeata. Noreugenin, 5,7-dihydroxy-2-methyl-4H-chromen-4-one, is a new chromone from Aloe arborescens. (Amaryllidaceae)[1].

   

{3,4,5-trihydroxy-6-[(8-hydroxy-6-methyl-9,10-dioxoanthracen-1-yl)oxy]oxan-2-yl}methyl acetate

{3,4,5-trihydroxy-6-[(8-hydroxy-6-methyl-9,10-dioxoanthracen-1-yl)oxy]oxan-2-yl}methyl acetate

C23H22O10 (458.1212912)


   

1,8,10-trihydroxy-3-methyl-10-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]anthracen-9-one

1,8,10-trihydroxy-3-methyl-10-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]anthracen-9-one

C21H22O9 (418.1263762)


   

(10r)-1-hydroxy-3-methyl-10-[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-{[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-10h-anthracen-9-one

(10r)-1-hydroxy-3-methyl-10-[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-{[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-10h-anthracen-9-one

C27H32O13 (564.1842822)


   

(9r)-4,5-dihydroxy-2-methyl-10-oxo-9h-anthracen-9-yl octacosanoate

(9r)-4,5-dihydroxy-2-methyl-10-oxo-9h-anthracen-9-yl octacosanoate

C43H66O5 (662.4909986)


   

1,10-dihydroxy-3-methyl-8,10-bis({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})anthracen-9-one

1,10-dihydroxy-3-methyl-8,10-bis({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})anthracen-9-one

C27H32O15 (596.1741122)


   

1-(1-hydroxy-6-methoxy-3-methyl-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}naphthalen-2-yl)ethanone

1-(1-hydroxy-6-methoxy-3-methyl-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}naphthalen-2-yl)ethanone

C20H24O9 (408.14202539999997)


   

(10s)-1,3,8,10-tetrahydroxy-6-(hydroxymethyl)-10-(octadecyloxy)anthracen-9-one

(10s)-1,3,8,10-tetrahydroxy-6-(hydroxymethyl)-10-(octadecyloxy)anthracen-9-one

C33H48O7 (556.3399858)


   

[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-[(8-hydroxy-6-methyl-9,10-dioxoanthracen-1-yl)oxy]oxan-2-yl]methyl acetate

[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-[(8-hydroxy-6-methyl-9,10-dioxoanthracen-1-yl)oxy]oxan-2-yl]methyl acetate

C23H22O10 (458.1212912)


   

(9s)-4,5-dihydroxy-2-methyl-10-oxo-9h-anthracen-9-yl octacosanoate

(9s)-4,5-dihydroxy-2-methyl-10-oxo-9h-anthracen-9-yl octacosanoate

C43H66O5 (662.4909986)


   

(10r)-1,10-dihydroxy-3-methyl-10-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}anthracen-9-one

(10r)-1,10-dihydroxy-3-methyl-10-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}anthracen-9-one

C27H32O14 (580.1791972)


   

1-hydroxy-3-methoxy-6-methyl-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}anthracene-9,10-dione

1-hydroxy-3-methoxy-6-methyl-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}anthracene-9,10-dione

C28H32O15 (608.1741122)


   

1,8,10-trihydroxy-3-methyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}anthracen-9-one

1,8,10-trihydroxy-3-methyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}anthracen-9-one

C21H22O10 (434.1212912)


   

(5-hydroxy-7-methyl-9,10-dioxo-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}anthracen-2-yl)oxidanesulfonic acid

(5-hydroxy-7-methyl-9,10-dioxo-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}anthracen-2-yl)oxidanesulfonic acid

C21H20O13S (512.062459)


   

emodin 1-o-β-d-glucoside

emodin 1-o-β-d-glucoside

C21H20O10 (432.105642)


   

(10r)-1,8,10-trihydroxy-3-methyl-10-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]anthracen-9-one

(10r)-1,8,10-trihydroxy-3-methyl-10-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]anthracen-9-one

C21H22O9 (418.1263762)


   

1-hydroxy-3-methyl-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}anthracene-9,10-dione

1-hydroxy-3-methyl-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}anthracene-9,10-dione

C27H30O14 (578.163548)


   

(10s)-1,10-dihydroxy-3-methyl-10-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}anthracen-9-one

(10s)-1,10-dihydroxy-3-methyl-10-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}anthracen-9-one

C27H32O14 (580.1791972)


   

1,3,8,10-tetrahydroxy-6-(hydroxymethyl)-10-(octadecyloxy)anthracen-9-one

1,3,8,10-tetrahydroxy-6-(hydroxymethyl)-10-(octadecyloxy)anthracen-9-one

C33H48O7 (556.3399858)


   

8,10-dihydroxy-3-methyl-1,10-bis({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})anthracen-9-one

8,10-dihydroxy-3-methyl-1,10-bis({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})anthracen-9-one

C27H32O15 (596.1741122)


   

(5-hydroxy-7-methyl-9,10-dioxo-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}anthracen-2-yl)oxidanesulfonic acid

(5-hydroxy-7-methyl-9,10-dioxo-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}anthracen-2-yl)oxidanesulfonic acid

C21H20O13S (512.062459)


   

4,5-dihydroxy-2-methoxy-7-methyl-10-oxo-9h-anthracen-9-yl octadec-9-enoate

4,5-dihydroxy-2-methoxy-7-methyl-10-oxo-9h-anthracen-9-yl octadec-9-enoate

C34H46O6 (550.3294215999999)


   

4,5-dihydroxy-2-methyl-10-oxo-9h-anthracen-9-yl octacosanoate

4,5-dihydroxy-2-methyl-10-oxo-9h-anthracen-9-yl octacosanoate

C43H66O5 (662.4909986)


   

4,5-dihydroxy-2-methoxy-7-methyl-10-oxo-9h-anthracen-9-yl (9e)-octadec-9-enoate

4,5-dihydroxy-2-methoxy-7-methyl-10-oxo-9h-anthracen-9-yl (9e)-octadec-9-enoate

C34H46O6 (550.3294215999999)


   

(2r)-2,4,6-trihydroxy-2-[(4-hydroxyphenyl)methyl]-1-benzofuran-3-one

(2r)-2,4,6-trihydroxy-2-[(4-hydroxyphenyl)methyl]-1-benzofuran-3-one

C15H12O6 (288.06338519999997)


   

4,5-dihydroxy-2-methyl-10-oxo-9h-anthracen-9-yl (9e)-octadec-9-enoate

4,5-dihydroxy-2-methyl-10-oxo-9h-anthracen-9-yl (9e)-octadec-9-enoate

C33H44O5 (520.3188574)


   

2-{3-hydroxy-5-[2-(4-methoxyphenyl)ethenyl]phenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{3-hydroxy-5-[2-(4-methoxyphenyl)ethenyl]phenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C21H24O8 (404.1471104)


   

3-(docosyloxy)-1,8-dihydroxy-6-methylanthracene-9,10-dione

3-(docosyloxy)-1,8-dihydroxy-6-methylanthracene-9,10-dione

C37H54O5 (578.3971034)


   

1-hydroxy-3-methyl-8,10-bis({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})-10h-anthracen-9-one

1-hydroxy-3-methyl-8,10-bis({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})-10h-anthracen-9-one

C27H32O14 (580.1791972)


   

(10s)-1,10-dihydroxy-3-methyl-8,10-bis({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})anthracen-9-one

(10s)-1,10-dihydroxy-3-methyl-8,10-bis({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})anthracen-9-one

C27H32O15 (596.1741122)


   

(10r)-8,10-dihydroxy-3-methyl-1,10-bis({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})anthracen-9-one

(10r)-8,10-dihydroxy-3-methyl-1,10-bis({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})anthracen-9-one

C27H32O15 (596.1741122)


   

(2s,3s,4s,5s,6s)-2-{3-hydroxy-5-[(1e)-2-(3-hydroxy-4-methoxyphenyl)ethenyl]phenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3s,4s,5s,6s)-2-{3-hydroxy-5-[(1e)-2-(3-hydroxy-4-methoxyphenyl)ethenyl]phenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C21H24O9 (420.14202539999997)


   

(2s)-2,6-dihydroxy-2-[(4-hydroxyphenyl)methyl]-4-methoxy-1-benzofuran-3-one

(2s)-2,6-dihydroxy-2-[(4-hydroxyphenyl)methyl]-4-methoxy-1-benzofuran-3-one

C16H14O6 (302.0790344)


   

dihydroxy methylchromone

dihydroxy methylchromone

C10H8O4 (192.0422568)


   

(9s)-4,5-dihydroxy-2-methoxy-7-methyl-10-oxo-9h-anthracen-9-yl (9z)-octadec-9-enoate

(9s)-4,5-dihydroxy-2-methoxy-7-methyl-10-oxo-9h-anthracen-9-yl (9z)-octadec-9-enoate

C34H46O6 (550.3294215999999)


   

(9r)-4,5-dihydroxy-2-methoxy-7-methyl-10-oxo-9h-anthracen-9-yl (9e)-octadec-9-enoate

(9r)-4,5-dihydroxy-2-methoxy-7-methyl-10-oxo-9h-anthracen-9-yl (9e)-octadec-9-enoate

C34H46O6 (550.3294215999999)


   

(10s)-1-hydroxy-3-methyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-10h-anthracen-9-one

(10s)-1-hydroxy-3-methyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-10h-anthracen-9-one

C27H32O14 (580.1791972)


   

(10r)-1,8,10-trihydroxy-3-methyl-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}anthracen-9-one

(10r)-1,8,10-trihydroxy-3-methyl-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}anthracen-9-one

C21H22O10 (434.1212912)


   

(2s,3r,4s,5s,6r)-2-{3-hydroxy-5-[(1e)-2-(4-methoxyphenyl)ethenyl]phenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{3-hydroxy-5-[(1e)-2-(4-methoxyphenyl)ethenyl]phenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C21H24O8 (404.1471104)


   

(10r)-1-hydroxy-3-methyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-10h-anthracen-9-one

(10r)-1-hydroxy-3-methyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-10h-anthracen-9-one

C27H32O14 (580.1791972)


   

(10r)-1,10-dihydroxy-3-methyl-8,10-bis({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})anthracen-9-one

(10r)-1,10-dihydroxy-3-methyl-8,10-bis({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})anthracen-9-one

C27H32O15 (596.1741122)