NCBI Taxonomy: 93760

Cola acuminata (ncbi_taxid: 93760)

found 52 associated metabolites at species taxonomy rank level.

Ancestor: Cola

Child Taxonomies: none taxonomy data.

Epicatechin

(2R,3R)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C15H14O6 (290.0790344)


Epicatechin is an antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. Catechin is a tannin peculiar to green and white tea because the black tea oxidation process reduces catechins in black tea. Catechin is a powerful, water soluble polyphenol and antioxidant that is easily oxidized. Several thousand types are available in the plant world. As many as two thousand are known to have a flavon structure and are called flavonoids. Catechin is one of them. Green tea is manufactured from fresh, unfermented tea leaves; the oxidation of catechins is minimal, and hence they are able to serve as antioxidants. Researchers believe that catechin is effective because it easily sticks to proteins, blocking bacteria from adhering to cell walls and disrupting their ability to destroy them. Viruses have hooks on their surfaces and can attach to cell walls. The catechin in green tea prevents viruses from adhering and causing harm. Catechin reacts with toxins created by harmful bacteria (many of which belong to the protein family) and harmful metals such as lead, mercury, chrome, and cadmium. From its NMR espectra, there is a doubt on 2 and 3 atoms configuration. It seems to be that they are in trans position. Epicatechin, also known as (+)-cyanidanol-3 or 2,3-cis-epicatechin, is a member of the class of compounds known as catechins. Catechins are compounds containing a catechin moiety, which is a 3,4-dihydro-2-chromene-3,5.7-tiol. Thus, epicatechin is considered to be a flavonoid lipid molecule. Epicatechin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Epicatechin can be found in cashew nut, which makes epicatechin a potential biomarker for the consumption of this food product. Epicatechin can be found primarily in blood, feces, and urine, as well as throughout most human tissues. Epicatechin is a flavan-3-ol, a type of natural phenol and antioxidant. It is a plant secondary metabolite. It belongs to the group of flavan-3-ols (or simply flavanols), part of the chemical family of flavonoids . (-)-epicatechin is a catechin with (2R,3R)-configuration. It has a role as an antioxidant. It is a polyphenol and a catechin. It is an enantiomer of a (+)-epicatechin. Epicatechin has been used in trials studying the treatment of Pre-diabetes. (-)-Epicatechin is a natural product found in Visnea mocanera, Litsea rotundifolia, and other organisms with data available. An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. See also: Crofelemer (monomer of); Bilberry (part of); Cats Claw (part of) ... View More ... A catechin with (2R,3R)-configuration. [Raw Data] CB030_(-)-Epicatechin_pos_20eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_50eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_40eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_10eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_30eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_neg_50eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_30eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_10eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_40eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_20eV_000009.txt Epicatechin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=490-46-0 (retrieved 2024-07-09) (CAS RN: 490-46-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB. (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB. (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB. (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB.

   

Catechin

(2R,3S)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C15H14O6 (290.0790344)


Catechin, also known as cyanidanol or catechuic acid, belongs to the class of organic compounds known as catechins. Catechins are compounds containing a catechin moiety, which is a 3,4-dihydro-2-chromene-3,5.7-tiol. Catechin also belongs to the group of compounds known as flavan-3-ols (or simply flavanols), part of the chemical family of flavonoids. Catechin is one of the 4 catechin known diastereoisomers. Two of the isomers are in trans configuration and are called catechin and the other two are in cis configuration and are called epicatechin. The most common catechin isomer is the (+)-catechin. The other stereoisomer is (-)-catechin or ent-catechin. The most common epicatechin isomer is (-)-epicatechin. Catechin is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Catechin is a bitter tasting compound and is associated with the bitterness in tea. Catechin is a plant secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. Catechin is an antioxidant flavonoid, occurring especially in woody plants as both Catechin and (-)-Catechin (cis) forms. Outside of the human body, Catechin is found, on average, in the highest concentration in foods, such as blackcurrants (Ribes nigrum), evergreen blackberries (Rubus laciniatus), and blackberries (Rubus) and in a lower concentration in dills (Anethum graveolens), hot chocolates, and medlars (Mespilus germanica). Catechin has also been detected, but not quantified in, several different foods, such as rice (Oryza sativa), apple ciders, peanuts (Arachis hypogaea), fruit juices, and red teas. This could make catechin a potential biomarker for the consumption of these foods. Based on a literature review a significant number of articles have been published on Catechin. (+)-catechin is the (+)-enantiomer of catechin and a polyphenolic antioxidant plant metabolite. It has a role as an antioxidant and a plant metabolite. It is an enantiomer of a (-)-catechin. An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. Cianidanol is a natural product found in Visnea mocanera, Salacia chinensis, and other organisms with data available. Catechin is a metabolite found in or produced by Saccharomyces cerevisiae. An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. See also: Gallocatechin (related); Crofelemer (monomer of); Bilberry (part of) ... View More ... Present in red wine. Widespread in plants; found in a variety of foodstuffs especies apricots, broad beans, cherries, chocolate, grapes, nectarines, red wine, rhubarb, strawberries and tea The (+)-enantiomer of catechin and a polyphenolic antioxidant plant metabolite. Catechin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=154-23-4 (retrieved 2024-07-12) (CAS RN: 154-23-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (±)-Catechin (rel-Cianidanol) is the racemate of Catechin. (±)-Catechin has two steric forms of (+)-Catechin and its enantiomer (-)-Catechin. (+)-Catechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Anticancer, anti-obesity, antidiabetic, anticardiovascular, anti-infectious, hepatoprotective, and neuroprotective effects[1]. (±)-Catechin (rel-Cianidanol) is the racemate of Catechin. (±)-Catechin has two steric forms of (+)-Catechin and its enantiomer (-)-Catechin. (+)-Catechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Anticancer, anti-obesity, antidiabetic, anticardiovascular, anti-infectious, hepatoprotective, and neuroprotective effects[1]. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM.

   

Caffeine

1,3,7-trimethyl-2,3,6,7-tetrahydro-1H-purine-2,6-dione

C8H10N4O2 (194.080372)


Caffeine is a methyl xanthine alkaloid that is also classified as a purine. Formally, caffeine belongs to the class of organic compounds known as xanthines. These are purine derivatives with a ketone group conjugated at carbons 2 and 6 of the purine moiety. Caffeine is chemically related to the adenine and guanine bases of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). It is found in the seeds, nuts, or leaves of a number of plants native to Africa, East Asia and South America and helps to protect them against predator insects and to prevent germination of nearby seeds. The most well-known source of caffeine is the coffee bean. Caffeine is the most widely consumed psychostimulant drug in the world. 85\\\% of American adults consumed some form of caffeine daily, consuming 164 mg on average. Caffeine is mostly is consumed in the form of coffee. Caffeine is a central nervous system stimulant that reduces fatigue and drowsiness. At normal doses, caffeine has variable effects on learning and memory, but it generally improves reaction time, wakefulness, concentration, and motor coordination. Caffeine is a proven ergogenic aid in humans. Caffeine improves athletic performance in aerobic (especially endurance sports) and anaerobic conditions. Moderate doses of caffeine (around 5 mg/kg) can improve sprint performance, cycling and running time trial performance, endurance and cycling power output (PMID: 32551869). At intake levels associated with coffee consumption, caffeine appears to exert most of its biological effects through the antagonism of the A1 and A2A subtypes of the adenosine receptor. Adenosine is an endogenous neuromodulator with mostly inhibitory effects, and adenosine antagonism by caffeine results in effects that are generally stimulatory. Some physiological effects associated with caffeine administration include central nervous system stimulation, acute elevation of blood pressure, increased metabolic rate, and diuresis. A number of in vitro and in vivo studies have demonstrated that caffeine modulates both innate and adaptive immune responses. For instance, studies indicate that caffeine and its major metabolite paraxanthine suppress neutrophil and monocyte chemotaxis, and also suppress production of the pro-inflammatory cytokine tumor necrosis factor (TNF) alpha from human blood. Caffeine has also been reported to suppress human lymphocyte function as indicated by reduced T-cell proliferation and impaired production of Th1 (interleukin [IL]-2 and interferon [IFN]-gamma), Th2 (IL-4, IL-5) and Th3 (IL-10) cytokines. Studies also indicate that caffeine suppresses antibody production. The evidence suggests that at least some of the immunomodulatory actions of caffeine are mediated via inhibition of cyclic adenosine monophosphate (cAMP)-phosphodiesterase (PDE), and consequential increase in intracellular cAMP concentrations. Overall, these studies indicate that caffeine, like other members of the methylxanthine family, is largely anti-inflammatory in nature, and based on the pharmacokinetics of caffeine, many of its immunomodulatory effects occur at concentrations that are relevant to normal human consumption. (PMID: 16540173). Caffeine is rapidly and almost completely absorbed in the stomach and small intestine and distributed to all tissues, including the brain. Caffeine metabolism occurs primarily in the liver, where the activity of the cytochrome P450 isoform CYP1A2 accounts for almost 95\\\% of the primary metabolism of caffeine. CYP1A2-catalyzed 3-demethylation of caffeine results in the formation of 1,7-dimethylxanthine (paraxanthine). Paraxanthine may be demethylated by CYP1A2 to form 1-methylxanthine, which may be oxidized to 1-methyluric acid by xanthine oxidase. Paraxanthine may also be hydroxylated by CYP2A6 to form 1,7-dimethyluric acid, or acetylated by N-acetyltransferase 2 (NAT2) to form 5-acetylamino-6-formylamino-3-methyluracil, an unstable compound that may be deformylated nonenzymatically to form ... Caffeine appears as odorless white powder or white glistening needles, usually melted together. Bitter taste. Solutions in water are neutral to litmus. Odorless. (NTP, 1992) Caffeine is a trimethylxanthine in which the three methyl groups are located at positions 1, 3, and 7. A purine alkaloid that occurs naturally in tea and coffee. It has a role as a central nervous system stimulant, an EC 3.1.4.* (phosphoric diester hydrolase) inhibitor, an adenosine receptor antagonist, an EC 2.7.11.1 (non-specific serine/threonine protein kinase) inhibitor, a ryanodine receptor agonist, a fungal metabolite, an adenosine A2A receptor antagonist, a psychotropic drug, a diuretic, a food additive, an adjuvant, a plant metabolite, an environmental contaminant, a xenobiotic, a human blood serum metabolite, a mouse metabolite, a geroprotector and a mutagen. It is a purine alkaloid and a trimethylxanthine. Caffeine is a drug of the methylxanthine class used for a variety of purposes, including certain respiratory conditions of the premature newborn, pain relief, and to combat drowsiness. Caffeine is similar in chemical structure to [Theophylline] and [Theobromine]. It can be sourced from coffee beans, but also occurs naturally in various teas and cacao beans, which are different than coffee beans. Caffeine is also used in a variety of cosmetic products and can be administered topically, orally, by inhalation, or by injection. The caffeine citrate injection, used for apnea of the premature newborn, was initially approved by the FDA in 1999. According to an article from 2017, more than 15 million babies are born prematurely worldwide. This correlates to about 1 in 10 births. Premature birth can lead to apnea and bronchopulmonary dysplasia, a condition that interferes with lung development and may eventually cause asthma or early onset emphysema in those born prematurely. Caffeine is beneficial in preventing and treating apnea and bronchopulmonary dysplasia in newborns, improving the quality of life of premature infants. Caffeine is a Central Nervous System Stimulant and Methylxanthine. The physiologic effect of caffeine is by means of Central Nervous System Stimulation. Caffeine is xanthine alkaloid that occurs naturally in seeds, leaves and fruit of several plants and trees that acts as a natural pesticide. Caffeine is a major component of coffee, tea and chocolate and in humans acts as a central nervous system (CNS) stimulant. Consumption of caffeine, even in high doses, has not been associated with elevations in serum enzyme elevations or instances of clinically apparent liver injury. Caffeine is a natural product found in Mus musculus, Herrania cuatrecasana, and other organisms with data available. Caffeine is a methylxanthine alkaloid found in the seeds, nuts, or leaves of a number of plants native to South America and East Asia that is structurally related to adenosine and acts primarily as an adenosine receptor antagonist with psychotropic and anti-inflammatory activities. Upon ingestion, caffeine binds to adenosine receptors in the central nervous system (CNS), which inhibits adenosine binding. This inhibits the adenosine-mediated downregulation of CNS activity; thus, stimulating the activity of the medullary, vagal, vasomotor, and respiratory centers in the brain. This agent also promotes neurotransmitter release that further stimulates the CNS. The anti-inflammatory effects of caffeine are due the nonselective competitive inhibition of phosphodiesterases (PDEs). Inhibition of PDEs raises the intracellular concentration of cyclic AMP (cAMP), activates protein kinase A, and inhibits leukotriene synthesis, which leads to reduced inflammation and innate immunity. Caffeine is the most widely consumed psychostimulant drug in the world that mostly is consumed in the form of coffee. Whether caffeine and/or coffee consumption contribute to the development of cardiovascular disease (CVD), the single leading cause of death in the US, is uncle... Component of coffee beans (Coffea arabica), many other Coffea subspecies, chocolate (Theobroma cacao), tea (Camellia thea), kolanut (Cola acuminata) and several other Cola subspecies and several other plants. It is used in many cola-type beverages as a flavour enhancer. Caffeine is found in many foods, some of which are black cabbage, canola, jerusalem artichoke, and yellow bell pepper. A trimethylxanthine in which the three methyl groups are located at positions 1, 3, and 7. A purine alkaloid that occurs naturally in tea and coffee. [Raw Data] CBA01_Caffeine_pos_50eV.txt [Raw Data] CBA01_Caffeine_pos_20eV.txt [Raw Data] CBA01_Caffeine_pos_40eV.txt [Raw Data] CBA01_Caffeine_pos_10eV.txt [Raw Data] CBA01_Caffeine_pos_30eV.txt Caffeine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-08-2 (retrieved 2024-06-29) (CAS RN: 58-08-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Procyanidin B2

(2R,3R)-2-(3,4-dihydroxyphenyl)-8-[(2R,3R,4R)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-4-yl]-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C30H26O12 (578.1424196)


Procyanidin B2 is a proanthocyanidin consisting of two molecules of (-)-epicatechin joined by a bond between positions 4 and 8 in a beta-configuration. Procyanidin B2 can be found in Cinchona pubescens (Chinchona, in the rind, bark and cortex), in Cinnamomum verum (Ceylon cinnamon, in the rind, bark and cortex), in Crataegus monogyna (Common hawthorn, in the flower and blossom), in Uncaria guianensis (Cats claw, in the root), in Vitis vinifera (Common grape vine, in the leaf), in Litchi chinensis (litchi, in the pericarp), in the apple, in Ecdysanthera utilis and in red wine. It has a role as a metabolite and an antioxidant. It is a hydroxyflavan, a proanthocyanidin, a biflavonoid and a polyphenol. It is functionally related to a (-)-epicatechin. Procyanidin B2 is a natural product found in Begonia fagifolia, Saraca asoca, and other organisms with data available. See also: Cocoa (part of); Primula veris flower (part of). A proanthocyanidin consisting of two molecules of (-)-epicatechin joined by a bond between positions 4 and 8 in a beta-configuration. Procyanidin B2 can be found in Cinchona pubescens (Chinchona, in the rind, bark and cortex), in Cinnamomum verum (Ceylon cinnamon, in the rind, bark and cortex), in Crataegus monogyna (Common hawthorn, in the flower and blossom), in Uncaria guianensis (Cats claw, in the root), in Vitis vinifera (Common grape vine, in the leaf), in Litchi chinensis (litchi, in the pericarp), in the apple, in Ecdysanthera utilis and in red wine. Present in red wine. Procyanidin B2 is found in many foods, some of which are alcoholic beverages, sherry, bilberry, and yellow zucchini. Procyanidin B2 is found in alcoholic beverages. Procyanidin B2 is present in red wine. Procyanidin B2 is a natural flavonoid, with anti-cancer, antioxidant activities. Procyanidin B2 is a natural flavonoid, with anti-cancer, antioxidant activities.

   

Theobromine

3,7-dimethylpurine-2,6-dione

C7H8N4O2 (180.0647228)


Theobromine is an odorless white crystalline powder. Bitter taste. pH (saturated solution in water): 5.5-7. (NTP, 1992) Theobromine, also known as xantheose, is the principal alkaloid of Theobroma cacao (cacao plant).[4] Theobromine is slightly water-soluble (330 mg/L) with a bitter taste.[5] In industry, theobromine is used as an additive and precursor to some cosmetics.[4] It is found in chocolate, as well as in a number of other foods, including tea (Camellia sinensis), some American hollies (yaupon and guayusa) and the kola nut. It is a white or colourless solid, but commercial samples can appear yellowish.[5] Theobromine is a dimethylxanthine having the two methyl groups located at positions 3 and 7. A purine alkaloid derived from the cacao plant, it is found in chocolate, as well as in a number of other foods, and is a vasodilator, diuretic and heart stimulator. It has a role as an adenosine receptor antagonist, a food component, a plant metabolite, a human blood serum metabolite, a mouse metabolite, a vasodilator agent and a bronchodilator agent. Theobromine (3,7-dimethylxanthine) is the principle alkaloid in Theobroma cacao (the cacao bean) and other plants. A xanthine alkaloid that is used as a bronchodilator and as a vasodilator. It has a weaker diuretic activity than theophylline and is also a less powerful stimulant of smooth muscle. It has practically no stimulant effect on the central nervous system. It was formerly used as a diuretic and in the treatment of angina pectoris and hypertension. (From Martindale, The Extra Pharmacopoeia, 30th ed, pp1318-9) Theobromine is a natural product found in Theobroma grandiflorum, Theobroma mammosum, and other organisms with data available. 3,7-Dimethylxanthine. The principle alkaloid in Theobroma cacao (the cacao bean) and other plants. A xanthine alkaloid that is used as a bronchodilator and as a vasodilator. It has a weaker diuretic activity than THEOPHYLLINE and is also a less powerful stimulant of smooth muscle. It has practically no stimulant effect on the central nervous system. It was formerly used as a diuretic and in the treatment of angina pectoris and hypertension. (From Martindale, The Extra Pharmacopoeia, 30th ed, pp1318-9) See also: Paullinia cupana seed (part of). Theobromine, or 3,7-Dimethylxanthine, is the principle alkaloid in Theobroma cacao (the cacao bean) and other plants. A xanthine alkaloid that is used as a bronchodilator and as a vasodilator. It has a weaker diuretic activity than theophylline and is also a less powerful stimulant of smooth muscle. It has practically no stimulant effect on the central nervous system. It was formerly used as a diuretic and in the treatment of angina pectoris and hypertension. Theobromine is a bitter alkaloid of the methylxanthine family, which also includes the similar compounds theophylline and caffeine. Despite its name, the compound contains no bromine. Theobromine is derived from Theobroma, the genus of the cacao tree, which is composed of the Greek roots theo ("God") and broma ("food"), meaning "food of the gods". It is the primary alkaloid found in cocoa and chocolate, and is one of the causes for chocolates mood-elevating effects. The amount found in chocolate is small enough that chocolate can be safely consumed by humans in large quantities, but animals that metabolize theobromine more slowly, such as cats and dogs, can easily consume enough chocolate to cause chocolate poisoning. Theobromine is a stimulant frequently confused with caffeine. Theobromine has very different effects on the human body from caffeine; it is a mild, lasting stimulant with a mood improving effect, whereas caffeine has a strong, immediate effect and increases stress. In medicine, it is used as a diuretic, vasodilator, and myocardial stimulant. There is a possible association between prostate cancer and theobromine. Theobromine is a contributing factor in acid reflux because it relaxes the esophageal sphincter muscle, allowing stomach acid access to the esophagus. A dimethylxanthine having the two methyl groups located at positions 3 and 7. A purine alkaloid derived from the cacao plant, it is found in chocolate, as well as in a number of other foods, and is a vasodilator, diuretic and heart stimulator. Constituent of tea leaves (Camellia thea), cocoa Theobroma cacao, cola nut (Cola acuminata) and guarana (Paullinia cupana); flavouring ingredient with a bitter taste Biosynthesis Theobromine is a purine alkaloid derived from xanthosine, a nucleoside. Cleavage of the ribose and N-methylation yields 7-methylxanthosine. 7-Methylxanthosine in turn is the precursor to theobromine, which in turn is the precursor to caffeine.[24] Even without dietary intake, theobromine may occur in the body as it is a product of the human metabolism of caffeine, which is metabolised in the liver into 12\% theobromine, 4\% theophylline, and 84\% paraxanthine.[25] In the liver, theobromine is metabolized into xanthine and subsequently into methyluric acid.[26] Important enzymes include CYP1A2 and CYP2E1.[27] The elimination half life of theobromine is between 6 and 8 hours.[1][2] Unlike caffeine, which is highly water-soluble, theobromine is only slightly water-soluble and is more fat soluble, and thus peaks more slowly in the blood. While caffeine peaks after only 30 minutes, theobromine requires 2–3 hours to peak.[28] The primary mechanism of action for theobromine inside the body is inhibition of adenosine receptors.[5] Its effect as a phosphodiesterase inhibitor[29] is thought to be small.[5]

   

procyanidin B2

(2S,3S)-2-(3,4-dihydroxyphenyl)-8-[(2R,3R,4R)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-chroman-4-yl]chromane-3,5,7-triol

C30H26O12 (578.1424196)


Annotation level-1 Acquisition and generation of the data is financially supported in part by CREST/JST. Procyanidin B2 is a natural flavonoid, with anti-cancer, antioxidant activities. Procyanidin B2 is a natural flavonoid, with anti-cancer, antioxidant activities.

   

2-(3,4-Dihydroxyphenyl)chroman-3,5,7-triol

2-(3,4-Dihydroxyphenyl)chroman-3,5,7-triol

C15H14O6 (290.0790344)


   

Procyanidin B1

(2R,3S)-2-(3,4-dihydroxyphenyl)-8-[(2R,3R,4R)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-4-yl]-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C30H26O12 (578.1424196)


Procyanidin B1 is a proanthocyanidin consisting of (-)-epicatechin and (+)-catechin units joined by a bond between positions 4 and 8 respectively in a beta-configuration.. Procyanidin B1 can be found in Cinnamomum verum (Ceylon cinnamon, in the rind, bark or cortex), in Uncaria guianensis (cats claw, in the root), and in Vitis vinifera (common grape vine, in the leaf) or in peach. It has a role as a metabolite, an EC 3.4.21.5 (thrombin) inhibitor and an anti-inflammatory agent. It is a hydroxyflavan, a proanthocyanidin, a biflavonoid and a polyphenol. It is functionally related to a (-)-epicatechin and a (+)-catechin. Procyanidin B1 is a natural product found in Quercus miyagii, Saraca asoca, and other organisms with data available. See also: Garcinia mangostana fruit rind (part of); Maritime Pine (part of). A proanthocyanidin consisting of (-)-epicatechin and (+)-catechin units joined by a bond between positions 4 and 8 respectively in a beta-configuration.. Procyanidin B1 can be found in Cinnamomum verum (Ceylon cinnamon, in the rind, bark or cortex), in Uncaria guianensis (cats claw, in the root), and in Vitis vinifera (common grape vine, in the leaf) or in peach. Present in red wine. Procyanidin B1 is found in many foods, some of which are common bean, green bell pepper, common hazelnut, and guava. Procyanidin B1 is found in alcoholic beverages. Procyanidin B1 is present in red win Procyanidin B1 is a polyphenolic flavonoid isolated from commonly eaten fruits, binds to TLR4/MD-2 complex, and has anti-inflammatory activity. Procyanidin B1 is a polyphenolic flavonoid isolated from commonly eaten fruits, binds to TLR4/MD-2 complex, and has anti-inflammatory activity.

   

Caffeine

Caffeine

C8H10N4O2 (194.080372)


N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BC - Xanthine derivatives D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058914 - Purinergic Antagonists D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant CONFIDENCE standard compound; EAWAG_UCHEM_ID 303 EAWAG_UCHEM_ID 303; CONFIDENCE standard compound D - Dermatologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Procyanidin B1

(2R,3R,4R)-2-(3,4-dihydroxyphenyl)-4-[(2R,3S)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-chroman-8-yl]chroman-3,5,7-triol

C30H26O12 (578.1424196)


Annotation level-2 Acquisition and generation of the data is financially supported in part by CREST/JST. Procyanidin B1 is a polyphenolic flavonoid isolated from commonly eaten fruits, binds to TLR4/MD-2 complex, and has anti-inflammatory activity. Procyanidin B1 is a polyphenolic flavonoid isolated from commonly eaten fruits, binds to TLR4/MD-2 complex, and has anti-inflammatory activity.

   

Catechin

(+)-Catechin Hydrate

C15H14O6 (290.0790344)


Annotation level-1 Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM.

   

Caffeine

Caffeine

C8H10N4O2 (194.080372)


CONFIDENCE standard compound; INTERNAL_ID 1199; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5866; ORIGINAL_PRECURSOR_SCAN_NO 5861 N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BC - Xanthine derivatives D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058914 - Purinergic Antagonists D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D - Dermatologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 1199; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5880; ORIGINAL_PRECURSOR_SCAN_NO 5879 CONFIDENCE standard compound; INTERNAL_ID 1199; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5893; ORIGINAL_PRECURSOR_SCAN_NO 5892 CONFIDENCE standard compound; INTERNAL_ID 1199; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5916; ORIGINAL_PRECURSOR_SCAN_NO 5911 CONFIDENCE standard compound; INTERNAL_ID 1199; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5923; ORIGINAL_PRECURSOR_SCAN_NO 5921 CONFIDENCE standard compound; INTERNAL_ID 1199; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5924; ORIGINAL_PRECURSOR_SCAN_NO 5922 CONFIDENCE standard compound; INTERNAL_ID 2766 MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; RYYVLZVUVIJVGH-UHFFFAOYSA-N_STSL_0030_Caffeine_0500fmol_180410_S2_LC02_MS02_97; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1079 CONFIDENCE standard compound; INTERNAL_ID 50 CONFIDENCE standard compound; INTERNAL_ID 8666 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.568 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.560 CONFIDENCE standard compound; INTERNAL_ID 4089 IPB_RECORD: 3001; CONFIDENCE confident structure

   

theobromine

theobromine

C7H8N4O2 (180.0647228)


R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03D - Other systemic drugs for obstructive airway diseases > R03DA - Xanthines C - Cardiovascular system > C03 - Diuretics > C03B - Low-ceiling diuretics, excl. thiazides > C03BD - Xanthine derivatives D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; YAPQBXQYLJRXSA-UHFFFAOYSA-N_STSL_0032_Theobromine_8000fmol_180416_S2_LC02_MS02_45; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.367 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.359

   

(+/-)-Catechin

2-(3,4-Dihydroxyphenyl)chroman-3,5,7-triol

C15H14O6 (290.0790344)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.345 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.348 (±)-Catechin (rel-Cianidanol) is the racemate of Catechin. (±)-Catechin has two steric forms of (+)-Catechin and its enantiomer (-)-Catechin. (+)-Catechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Anticancer, anti-obesity, antidiabetic, anticardiovascular, anti-infectious, hepatoprotective, and neuroprotective effects[1]. (±)-Catechin (rel-Cianidanol) is the racemate of Catechin. (±)-Catechin has two steric forms of (+)-Catechin and its enantiomer (-)-Catechin. (+)-Catechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Anticancer, anti-obesity, antidiabetic, anticardiovascular, anti-infectious, hepatoprotective, and neuroprotective effects[1].

   

Catechol

(+)-Catechin Hydrate

C15H14O6 (290.0790344)


Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM.

   

KB-53

2H-1-Benzopyran-3,5,7-triol, 2-(3,4-dihydroxyphenyl)-3,4-dihydro-, (2R-trans)-

C15H14O6 (290.0790344)


Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM.

   

teina

InChI=1\C8H10N4O2\c1-10-4-9-6-5(10)7(13)12(3)8(14)11(6)2\h4H,1-3H

C8H10N4O2 (194.080372)


N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BC - Xanthine derivatives D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058914 - Purinergic Antagonists D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D - Dermatologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Thesal

1H-purine-2,6-dione,3,7-dihydro-3,7- dimethyl- (9CI)

C7H8N4O2 (180.0647228)


R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03D - Other systemic drugs for obstructive airway diseases > R03DA - Xanthines C - Cardiovascular system > C03 - Diuretics > C03B - Low-ceiling diuretics, excl. thiazides > C03BD - Xanthine derivatives D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

(2r,3r,4r)-2-(3,4-dihydroxyphenyl)-4-[(2r,3s)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

(2r,3r,4r)-2-(3,4-dihydroxyphenyl)-4-[(2r,3s)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

C30H26O12 (578.1424196)


   

2-(3,4-dihydroxyphenyl)-4-[2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

2-(3,4-dihydroxyphenyl)-4-[2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

C30H26O12 (578.1424196)


   

(2r,3r,4r)-2-(3,4-dihydroxyphenyl)-4-[(2r,3r)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

(2r,3r,4r)-2-(3,4-dihydroxyphenyl)-4-[(2r,3r)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

C30H26O12 (578.1424196)