Hesperetin 7-neohesperidoside
Neohesperidin is a flavanone glycoside that is hesperitin having an 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety attached to the 7-hydroxy group. It has a role as an antineoplastic agent and a plant metabolite. It is a neohesperidoside, a disaccharide derivative, a dihydroxyflavanone, a member of 3-hydroxyflavanones, a monomethoxyflavanone, a flavanone glycoside and a member of 4-methoxyflavanones. It is functionally related to a hesperetin. (S)-7-(((2-O-6-Deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl)oxy)-2,3-dihydro-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-4H-1-benzopyran-4-one is a natural product found in Citrus medica, Arabidopsis thaliana, and other organisms with data available. Constituent of Seville orange peel (Citrus aurantium) and other Citrus subspecies Very bitter flavouring agent. Hesperetin 7-neohesperidoside is found in many foods, some of which are grapefruit/pummelo hybrid, pummelo, citrus, and grapefruit. Hesperetin 7-neohesperidoside is found in citrus. Hesperetin 7-neohesperidoside is a constituent of Seville orange peel (Citrus aurantium) and other Citrus species Very bitter flavouring agent Neohesperidin is a flavonoid compound found in high amounts in citrus fruits with anti-oxidant and anti-inflammatory effects. Neohesperidin is a flavonoid compound found in high amounts in citrus fruits with anti-oxidant and anti-inflammatory effects.
Phillyrin
Forsythin is a lignan and a glycoside. Phillyrin is a natural product found in Forsythia suspensa, Phillyrea latifolia, and other organisms with data available. Annotation level-1 2-[4-[3-(3,4-Dimethoxyphenyl)-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-6-yl]-2-methoxyphenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol is a natural product found in Pteris semipinnata with data available. Phillyrin is isolated from Forsythia suspensa Vahl (Oleaceae), has antibacterial and anti-inflammatory activities. Phillyrin has potential inductive effects on rat CYP1A2 and CYP2D1 activities, without affecting CYP2C11 and CYP3A1/2 activities[1]. Phillyrin has anti-influenza A virus activities[2]. Phillyrin is isolated from Forsythia suspensa Vahl (Oleaceae), has antibacterial and anti-inflammatory activities. Phillyrin has potential inductive effects on rat CYP1A2 and CYP2D1 activities, without affecting CYP2C11 and CYP3A1/2 activities[1]. Phillyrin has anti-influenza A virus activities[2].
Albiflorin
Albiflorin is a monoterpene glycoside with formula C23H28O11, originally isolated from the roots of Paeonia lactiflora. It has a role as a plant metabolite and a neuroprotective agent. It is a benzoate ester, a gamma-lactone, a beta-D-glucoside, a monoterpene glycoside, a secondary alcohol and a bridged compound. Albiflorin is a natural product found in Paeonia lactiflora, Paeonia delavayi, and other organisms with data available. A monoterpene glycoside with formula C23H28O11, originally isolated from the roots of Paeonia lactiflora. Albiflorin, a major constituent contained in peony root, is a monoterpene glycoside with neuroprotective effects. Albiflorin also has anti-inflammatory, antioxidant and antinociceptive effects[1][2]. Albiflorin, a major constituent contained in peony root, is a monoterpene glycoside with neuroprotective effects. Albiflorin also has anti-inflammatory, antioxidant and antinociceptive effects[1][2].
Curcumenol
Curcumenol is a sesquiterpenoid. (3S,3aS,6R,8aS)-3,8-Dimethyl-5-(propan-2-ylidene)-2,3,4,5,6,8a-hexahydro-1H-3a,6-epoxyazulen-6-ol is a natural product found in Curcuma longa and Curcuma phaeocaulis with data available. D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065692 - Cytochrome P-450 CYP3A Inhibitors 4-Epicurcumenol is a constituent of rhizomes of Curcuma zedoaria (zedoary). Curcumenol ((+)-Curcumenol) is a potent CYP3A4 inhibitor with an IC50 of 12.6 μM, which is one of constituents in the plants of medicinally important genus of Curcuma zedoaria, with neuroprotection, anti-inflammatory, anti-tumor and hepatoprotective activities. Curcumenol ((+)-Curcumenol) suppresses Akt-mediated NF-κB activation and p38 MAPK signaling pathway in LPS-stimulated BV-2 microglial cells[1][2]. Curcumenol ((+)-Curcumenol) is a potent CYP3A4 inhibitor with an IC50 of 12.6 μM, which is one of constituents in the plants of medicinally important genus of Curcuma zedoaria, with neuroprotection, anti-inflammatory, anti-tumor and hepatoprotective activities. Curcumenol ((+)-Curcumenol) suppresses Akt-mediated NF-κB activation and p38 MAPK signaling pathway in LPS-stimulated BV-2 microglial cells[1][2].
Curdione
Curdione is a germacrane sesquiterpenoid. Germacr-1(10)-ene-5,8-dione is a natural product found in Curcuma aromatica, Curcuma wenyujin, and other organisms with data available. Curdione is found in turmeric. Curdione is a constituent of Curcuma zedoaria (zedoary) Constituent of Curcuma zedoaria (zedoary). Curdione is found in turmeric. Curdione, one of the major sesquiterpene compounds from Curcuma zedoaria, has been shown to exhibit multiple bioactive properties. IC50 value: 60–80 μM Target: In vitro: The study of the influence of curdione on the hemorheological changes in blood stasis model rats and thrombolysis in vitro showed that curdione only possessed thrombolytic effect in dose of 0.235 g·L-1 and 2.35 g·L-1, but has not the notable activity of thrombolysis [1]. The effects of curdione on human platelet aggregation induced by thrombin (0.3 U/ml) were tested in vitro. Curdione preferentially inhibited PAF- and thrombin- induced platelet aggregation in a concentration-dependent manner (IC50: 60–80 μM), whereas much higher concentrations of curdione were required to inhibit platelet aggregation induced by ADP and AA. Curdione also inhibited P-selectin expression in PAF-activated platelets. Moreover, curdione caused an increase in cAMP levels and attenuated intracellular Ca2+ mobilization in PAF-activated platelets. In vivo: Curdione showed significant antithrombotic activity [2]. Curdione, one of the major sesquiterpene compounds from Curcuma zedoaria, has been shown to exhibit multiple bioactive properties. IC50 value: 60–80 μM Target: In vitro: The study of the influence of curdione on the hemorheological changes in blood stasis model rats and thrombolysis in vitro showed that curdione only possessed thrombolytic effect in dose of 0.235 g·L-1 and 2.35 g·L-1, but has not the notable activity of thrombolysis [1]. The effects of curdione on human platelet aggregation induced by thrombin (0.3 U/ml) were tested in vitro. Curdione preferentially inhibited PAF- and thrombin- induced platelet aggregation in a concentration-dependent manner (IC50: 60–80 μM), whereas much higher concentrations of curdione were required to inhibit platelet aggregation induced by ADP and AA. Curdione also inhibited P-selectin expression in PAF-activated platelets. Moreover, curdione caused an increase in cAMP levels and attenuated intracellular Ca2+ mobilization in PAF-activated platelets. In vivo: Curdione showed significant antithrombotic activity [2].
Atractydin
Atractylodin is a member of furans. Atractylodin is a natural product found in Atractylodes japonica, Atractylodes macrocephala, and other organisms with data available. Atractylodin (Atractydin) is an active component of the essential oil contained in the rhizomes of Atractylodes lancea and A. chinensis. Atractylodin is natural insecticide and is active against Tribolium castaneum[1][2]. Atractylodin is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Atractylodin (Atractydin) is an active component of the essential oil contained in the rhizomes of Atractylodes lancea and A. chinensis. Atractylodin is natural insecticide and is active against Tribolium castaneum[1][2]. Atractylodin is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
K-Strophanthidin
Strophanthidin is a 3beta-hydroxy steroid, a 14beta-hydroxy steroid, a 5beta-hydroxy steroid, a 19-oxo steroid, a member of cardenolides and a steroid aldehyde. It is functionally related to a 5beta-cardanolide. Strophanthidin is a natural product found in Crossosoma bigelovii, Adonis aestivalis, and other organisms with data available. 3 beta,5,14-Trihydroxy-19-oxo-5 beta-card-20(22)-enolide. The aglycone cardioactive agent isolated from Strophanthus Kombe, S. gratus and other species; it is a very toxic material formerly used as digitalis. Synonyms: Apocymarin; Corchorin; Cynotoxin; Corchorgenin. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins Strophanthidin is a naturally available cardiac glycoside[1]. Strophanthidin 0.1 and 1 nmol/L increases and 1~100 μmol/L inhibits the Na+/K+-ATPase activities, but Strophanthidin 10 and 100 nmol/L does not affect Na+/K+-ATPase activities in cardiac sarcolemmal[2]. Strophanthidin increases both diastolic and systolic intracellular Ca2+ concentration[3]. Strophanthidin is a naturally available cardiac glycoside[1]. Strophanthidin 0.1 and 1 nmol/L increases and 1~100 μmol/L inhibits the Na+/K+-ATPase activities, but Strophanthidin 10 and 100 nmol/L does not affect Na+/K+-ATPase activities in cardiac sarcolemmal[2]. Strophanthidin increases both diastolic and systolic intracellular Ca2+ concentration[3].
Pantothenic acid
(R)-pantothenic acid is a pantothenic acid having R-configuration. It has a role as an antidote to curare poisoning, a human blood serum metabolite and a geroprotector. It is a vitamin B5 and a pantothenic acid. It is a conjugate acid of a (R)-pantothenate. Pantothenic acid, also called pantothenate or vitamin B5 (a B vitamin), is a water-soluble vitamin discovered by Roger J. Williams in 1919. For many animals, pantothenic acid is an essential nutrient as it is required to synthesize coenzyme-A (CoA), as well as to synthesize and metabolize proteins, carbohydrates, and fats. Pantothenic acid is the amide between pantoic acid and β-alanine and commonly found as its alcohol analog, the provitamin panthenol, and as calcium pantothenate. Small quantities of pantothenic acid are found in nearly every food, with high amounts in whole-grain cereals, legumes, eggs, meat, royal jelly, avocado, and yogurt. Pantothenic acid is an ingredient in some hair and skin care products. Only the dextrorotatory (D) isomer of pantothenic acid possesses biological activity. while the levorotatory (L) form may antagonize the effects of the dextrorotatory isomer. Pantothenic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Pantothenic acid is a natural product found in Chlamydomonas reinhardtii, Arabidopsis thaliana, and other organisms with data available. Pantothenic Acid is a water-soluble vitamin ubiquitously found in plants and animal tissues with antioxidant property. Vitamin B5 is a component of coenzyme A (CoA) and a part of the vitamin B2 complex. Vitamin B5 is a growth factor and is essential for various metabolic functions, including the metabolism of carbohydrates, proteins, and fatty acids. This vitamin is also involved in the synthesis of cholesterol, lipids, neurotransmitters, steroid hormones, and hemoglobin. (R)-Pantothenic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A butyryl-beta-alanine that can also be viewed as pantoic acid complexed with BETA ALANINE. It is incorporated into COENZYME A and protects cells against peroxidative damage by increasing the level of GLUTATHIONE. See also: Broccoli (part of). Pantothenic acid, also called vitamin B5, is a water-soluble vitamin required to sustain life. Pantothenic acid is needed to form coenzyme-A (CoA), and is thus critical in the metabolism and synthesis of carbohydrates, proteins, and fats. Its name is derived from the Greek pantothen meaning "from everywhere" and small quantities of pantothenic acid are found in nearly every food, with high amounts in whole grain cereals, legumes, eggs, meat, and royal jelly. Pantothenic acid is classified as a member of the secondary alcohols. Secondary alcohols are compounds containing a secondary alcohol functional group, with the general structure HOC(R)(R) (R,R=alkyl, aryl). Pantothenic acid is considered to be soluble (in water) and acidic. (r)-pantothenate, also known as (+)-pantothenic acid or vitamin b5, is a member of the class of compounds known as secondary alcohols. Secondary alcohols are compounds containing a secondary alcohol functional group, with the general structure HOC(R)(R) (R,R=alkyl, aryl) (r)-pantothenate is soluble (in water) and a weakly acidic compound (based on its pKa). (r)-pantothenate can be found in a number of food items such as spirulina, nance, cereals and cereal products, and sparkleberry, which makes (r)-pantothenate a potential biomarker for the consumption of these food products (r)-pantothenate can be found primarily in blood and urine (r)-pantothenate exists in all eukaryotes, ranging from yeast to humans. D018977 - Micronutrients > D014815 - Vitamins A pantothenic acid having R-configuration. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID P032; [MS2] KO009182 KEIO_ID P032; [MS3] KO009183 KEIO_ID P032 D-Pantothenic acid (Pantothenate) is an essential trace nutrient that functions as the obligate precursor of coenzyme A (CoA). D-Pantothenic acid plays key roles in myriad biological processes, including many that regulate carbohydrate, lipid, protein, and nucleic acid metabolism[1]. D-Pantothenic acid (Pantothenate) is an essential trace nutrient that functions as the obligate precursor of coenzyme A (CoA). D-Pantothenic acid plays key roles in myriad biological processes, including many that regulate carbohydrate, lipid, protein, and nucleic acid metabolism[1].
5-Sulfosalicylic acid
5-Sulfosalicylic acid is a derivative of salicylic acid, a common anti-inflammatory drug.Sulfosalicylic acid is used in urine tests to determine urine protein content. The chemical causes the precipitation of dissolved proteins, which is measured from the degree of turbidity. It is also used for integral colour anodizing. -Wikipedia [HMDB] 5-Sulfosalicylic acid is a derivative of salicylic acid, a common anti-inflammatory drug. Sulfosalicylic acid is used in urine tests to determine urine protein content. The chemical causes the precipitation of dissolved proteins, which is measured from the degree of turbidity. It is also used for integral colour anodizing. -Wikipedia. D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic
Etomidate
Etomidate is only found in individuals that have used or taken this drug. It is an midazole derivative anesthetic and hypnotic with little effect on blood gases, ventilation, or the cardiovascular system. It has been proposed as an induction anesthetic. [PubChem]Etomidate binds at a distinct binding site associated with a Cl- ionopore at the GABAA receptor, increasing the duration of time for which the Cl- ionopore is open. The post-synaptic inhibitory effect of GABA in the thalamus is, therefore, prolonged. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
Protoporphyrin IX
Protoporphyrins are tetrapyrroles containing 4 methyl, 2 propionic, and 2 vinyl side chains. Protoporphyrin is produced by oxidation of the methylene bridge of protoporphyrinogen. Protoporphyrin IX is the only naturally occurring isomer; it is an intermediate in heme biosynthesis, combining with ferrous iron to form protoheme IX, the heme prosthetic group of hemoglobin. Protoporphyrin IX is created by the enzyme protoporphyrinogen oxidase. The enzyme ferrochelatase converts it into heme. Protoporphyrin IX naturally occurs in small amounts in feces. Protoporphyrin IX is also responsible for the brown pigment (ooporphyrin) of birds eggs. Protoporphyrin IX is used as a branch point in the biosynthetic pathway leading to heme (by insertion of iron) and chlorophylls (by insertion of Mg and further side-chain transformation). Protoporphyrin IX can be used to treat liver disorders, mainly as the sodium salt. Under certain conditions, protoporphyrin IX can act as a neurotoxin, a phototoxin, and a metabotoxin. A neurotoxin causes damage to nerve cells and nerve tissues. A phototoxin causes cell damage upon exposure to light. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of porphyrins are associated with porphyrias such as porphyria variegate, acute intermittent porphyria, and hereditary coproporphyria (HCP). In particular, it is accumulated and excreted excessively in the feces in acute intermittent porphyria, protoporphyria, and variegate porphyria. There are several types of porphyrias (most are inherited). Hepatic porphyrias are characterized by acute neurological attacks (seizures, psychosis, extreme back and abdominal pain, and an acute polyneuropathy), while the erythropoietic forms present with skin problems (usually a light-sensitive blistering rash and increased hair growth). The neurotoxicity of porphyrins may be due to their selective interactions with tubulin, which disrupt microtubule formation and cause neural malformations (PMID: 3441503). obtained by demetallation of Haemin, occurs in small amounts in faeces. Brown pigment (Ooporphyrin) of birds eggs. Isolated from Atolla wyvillei (CCD). Protoporphyrin is found in red beetroot. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents COVID info from COVID-19 Disease Map C1420 - Photosensitizing Agent D003879 - Dermatologic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Protoporphyrin IX is the final intermediate in the heme biosynthetic pathway. Protoporphyrin IX is the final intermediate in the heme biosynthetic pathway.
Disopyramide
A class I anti-arrhythmic agent (one that interferes directly with the depolarization of the cardiac membrane and thus serves as a membrane-stabilizing agent) with a depressant action on the heart similar to that of guanidine. It also possesses some anticholinergic and local anesthetic properties. [PubChem] C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BA - Antiarrhythmics, class ia D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker
4,4'-Diphenylmethane diisocyanate
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Picloram
CONFIDENCE standard compound; INTERNAL_ID 227; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2943; ORIGINAL_PRECURSOR_SCAN_NO 2939 CONFIDENCE standard compound; INTERNAL_ID 227; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2946; ORIGINAL_PRECURSOR_SCAN_NO 2942 CONFIDENCE standard compound; INTERNAL_ID 227; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2930; ORIGINAL_PRECURSOR_SCAN_NO 2927 CONFIDENCE standard compound; INTERNAL_ID 227; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3021; ORIGINAL_PRECURSOR_SCAN_NO 3019 CONFIDENCE standard compound; INTERNAL_ID 227; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2942; ORIGINAL_PRECURSOR_SCAN_NO 2939 CONFIDENCE standard compound; INTERNAL_ID 227; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2945; ORIGINAL_PRECURSOR_SCAN_NO 2941 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
Nitrilotriacetic acid
D064449 - Sequestering Agents > D002614 - Chelating Agents
3,3'-Dimethylbenzidine
CONFIDENCE standard compound; INTERNAL_ID 2434
T2 Toxin
T2 Toxin is isolated from Fusarium species and Trichoderma lignorum. T2 Toxin is an important mycotoxin occurring naturally in various agricultural products. Isolated from Fusarium subspecies and Trichoderma lignorum. Important mycotoxin occurring naturally in various agricultural products D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins T-2 Toxin (T-2 Mycotoxin) is a toxic trichothecene mycotoxin produced by various Fusarium species in feedstuffs and cereal grains, LD50 values of T-2 Toxin in mice and rats are 5.2 and 1.5 mg/kg BWa,respectively [1]. T-2 Toxin (T-2 Mycotoxin) can be transformed into a variety of metabolite, the typical metabolites of T-2 toxin in animals are HT-2 toxin and T-2-triol, which are hydrolysates[1]. T-2 Toxin (T-2 Mycotoxin) is an inhibitor of protein synthesis resulting from binding peptidyltransferase, which is an integral part of the 60s ribosomal subunit. T-2 Toxin (T-2 Mycotoxin) inhibits the synthesis of DNA and RNA, interferes with the metabolism of membrane phospholipids, and increases the level of liver lipid peroxides[1]. T-2 Toxin (T-2 Mycotoxin) induces apoptosis in the immune system, gastrointestinal tissues, and fetal tissues[2].
Ginkgolide B
Ginkgolide B is found in fats and oils. Ginkgolide B is isolated from Ginkgo biloba (ginkgo). Isolated from Ginkgo biloba (ginkgo). Ginkgolide B is found in ginkgo nuts and fats and oils. D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents Ginkgolide B (BN-52021) is a terpenoid and one of the important active substances in Ginkgo leaves. Ginkgolide B (BN-52021) is a terpenoid and one of the important active substances in Ginkgo leaves.
2,4,6-Tribromophenol
2,4,6-Tribromophenol, also known as 2,4,6-TBP or bromol, belongs to the class of organic compounds known as p-bromophenols. These are bromophenols carrying a iodine at the C4 position of the benzene ring. 2,4,6-Tribromophenol has been detected, but not quantified, in a few different foods, such as crustaceans, fishes, and mollusks. This could make 2,4,6-tribromophenol a potential biomarker for the consumption of these foods. A bromophenol that is phenol in which the hydrogens at positions 2, 4 and 6 have been replaced by bromines. 2,4,6-Tribromophenol is a potentially toxic compound. CONFIDENCE standard compound; INTERNAL_ID 1310; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4940; ORIGINAL_PRECURSOR_SCAN_NO 4936 CONFIDENCE standard compound; INTERNAL_ID 1310; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4952; ORIGINAL_PRECURSOR_SCAN_NO 4950 CONFIDENCE standard compound; INTERNAL_ID 1310; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4925; ORIGINAL_PRECURSOR_SCAN_NO 4923 CONFIDENCE standard compound; INTERNAL_ID 1310; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4953; ORIGINAL_PRECURSOR_SCAN_NO 4951 CONFIDENCE standard compound; INTERNAL_ID 1310; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4957; ORIGINAL_PRECURSOR_SCAN_NO 4955 CONFIDENCE standard compound; INTERNAL_ID 1310; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4956; ORIGINAL_PRECURSOR_SCAN_NO 4953 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8167
Hexachlorophene
A chlorinated bisphenol antiseptic with a bacteriostatic action against Gram-positive organisms, but much less effective against Gram-negative organisms. It is mainly used in soaps and creams and is an ingredient of various preparations used for skin disorders. (From Martindale, The Extra Pharmacopoeia, 30th ed, p797) CONFIDENCE standard compound; INTERNAL_ID 1307; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5466; ORIGINAL_PRECURSOR_SCAN_NO 5464 CONFIDENCE standard compound; INTERNAL_ID 1307; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5477; ORIGINAL_PRECURSOR_SCAN_NO 5475 CONFIDENCE standard compound; INTERNAL_ID 1307; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5465; ORIGINAL_PRECURSOR_SCAN_NO 5464 CONFIDENCE standard compound; INTERNAL_ID 1307; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5448; ORIGINAL_PRECURSOR_SCAN_NO 5447 CONFIDENCE standard compound; INTERNAL_ID 1307; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5472; ORIGINAL_PRECURSOR_SCAN_NO 5470 CONFIDENCE standard compound; INTERNAL_ID 1307; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5445; ORIGINAL_PRECURSOR_SCAN_NO 5443 D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AE - Phenol and derivatives C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8355 D000890 - Anti-Infective Agents
1,2-Cyclohexanedione
1,2-Cyclohexanedione is a flavour material for foo 1,2-Cyclohexanedione is an endogenous metabolite.
Butylbenzene
Butylbenzene belongs to the family of Substituted Benzenes. These are aromatic compounds containing a benzene substituted at one or more positions.
Aminoacetone
Threonine dehydrogenase catalyzes the oxidation of threonine by NAD+ to glycine and acetyl-CoA, but when the ratio acetyl-CoA/CoA increases in nutritional deprivation (e.g., in diabetes) the enzyme produces aminoacetone (Chem. Res. Toxicol., 14 (9), 1323 -1329, 2001). Aminoacetone is thought to be a substrate for SSAO (semicarbazide-sensitive amine oxidase), leading to the production of the toxic product methylglyoxal (Journal of Chromatography B. Volume 824, Issues 1-2 , 25 September 2005, Pages 116-122 ). Threonine dehydrogenase catalyzes the oxidation of threonine by NAD+ to glycine and acetyl-CoA (5), but when the ratio acetyl-CoA/CoA increases in nutritional deprivation (e.g., in diabetes) the enzyme produces AA. (Chem. Res. Toxicol., 14 (9), 1323 -1329, 2001);
Coproporphyrinogen III
Coproporphyrinogen III is a porphyrin metabolite arising from heme synthesis. Porphyrins are pigments found in both animal and plant life. Coproporphyrinogen III is a tetrapyrrole dead-end product resulting from the spontaneous oxidation of the methylene bridges of coproporphyrinogen arising from heme synthesis. It is secreted in feces and urine. Coproporphyrinogen III is biosynthesized from the tetrapyrrole hydroxymethylbilane, which is converted by the action of uroporphyrinogen III synthase to uroporphyrinogen III. Uroporphyrinogen III is subsequently converted into coproporphyrinogen III through a series of four decarboxylations. Increased levels of coproporphyrinogens can indicate congenital erythropoietic porphyria or sideroblastic anemia, which are inherited disorders. Porphyria is a pathological state characterized by abnormalities of porphyrin metabolism and results in the excretion of large quantities of porphyrins in the urine and in extreme sensitivity to light. A large number of factors are capable of increasing porphyrin excretion, owing to different and multiple causes and etiologies: (1) the main site of the chronic hepatic porphyria disease process concentrates on the liver, (2) a functional and morphologic liver injury is almost regularly associated with this chronic porphyria, and (3) the toxic form due to occupational and environmental exposure takes mainly a subclinical course. Hepatic factors include disturbance in coproporphyrinogen metabolism, which results from inhibition of coproporphyrinogen oxidase as well as from the rapid loss and diminished utilization of coproporphyrinogen in the hepatocytes. This may also explain why coproporphyrin, its autoxidation product, predominates physiologically in the urine. Decreased biliary excretion of coproporphyrin leading to a compensatory urinary excretion. Therefore, the coproporphyrin ring isomer ratio (1:III) becomes a sensitive index for impaired liver function, intrahepatic cholestasis, and disturbed activity of hepatic uroporphyrinogen decarboxylase. In itself, secondary coproporphyrinuria is not associated with porphyria symptoms of a hepatologic-gastroenterologic, neurologic, or dermatologic order, even though coproporphyrinuria can occur with such symptoms (PMID: 3327428). Under certain conditions, coproporphyrinogen III can act as a phototoxin, a neurotoxin, and a metabotoxin. A phototoxin leads to cell damage upon exposure to light. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of porphyrins are associated with porphyrias such as porphyria variegate, acute intermittent porphyria, hereditary coproporphyria (HCP), congenital erythropoietic porphyria, and sideroblastic anemia. In particular, coproporphyrinogen III is accumulated and excreted excessively in the feces in acute intermittent porphyria, protoporphyria, and variegate porphyria. There are several types of porphyrias (most are inherited). Hepatic porphyrias are characterized by acute neurological attacks (seizures, psychosis, extreme back and abdominal pain, and an acute polyneuropathy), while the erythropoietic forms present with skin problems (usually a light-sensitive blistering rash and increased hair growth). The neurotoxicity of porphyrins may be due to their selective interactions with tubulin, which disrupt microtubule formation and cause neural malformations (PMID: 3441503). Coproporphyrinogen III oxidase is deficient in hereditary coproporphyria. These persons usually have enhanced excretion even in a subclinical state of the disease.(PubMed ID 14605502 ) [HMDB]. Coproporphyrinogen III is found in many foods, some of which are cucumber, climbing bean, horseradish, and pepper (c. frutescens). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Hydroxyacetone
Hydroxyacetone, also known as acetol or acetone alcohol, belongs to the class of organic compounds known as alpha-hydroxy ketones. These are organic compounds containing a carboxylic acid, and an amine group attached to the alpha carbon atom, relative to the C=O group. Hydroxyacetone exists in all living organisms, ranging from bacteria to humans. Hydroxyacetone is a sweet, caramel, and ethereal tasting compound. hydroxyacetone has been detected, but not quantified in several different foods, such as bog bilberries, cardoons, amaranths, black salsifies, and komatsuna. This could make hydroxyacetone a potential biomarker for the consumption of these foods. Hydroxyacetone is an intermediate in glycine, serine, and threonine metabolism. Present in beer, tobacco and honey Hydroxyacetone is an endogenous metabolite. Hydroxyacetone is an endogenous metabolite.
Deferoxamine
Deferoxamine is only found in individuals that have used or taken this drug. It is a natural product isolated from Streptomyces pilosus. It forms iron complexes and is used as a chelating agent, particularly in the mesylate form. [PubChem]Deferoxamine works in treating iron toxicity by binding trivalent (ferric) iron (for which it has a strong affinity), forming ferrioxamine, a stable complex which is eliminated via the kidneys. 100 mg of deferoxamine is capable of binding approximately 8.5 mg of trivalent (ferric) iron. Deferoxamine works in treating aluminum toxicity by binding to tissue-bound aluminum to form aluminoxamine, a stable, water-soluble complex. The formation of aluminoxamine increases blood concentrations of aluminum, resulting in an increased concentration gradient between the blood and dialysate, boosting the removal of aluminum during dialysis. 100 mg of deferoxamine is capable of binding approximately 4.1 mg of aluminum. V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AC - Iron chelating agents D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Deferoxamine (Deferoxamine B) is an iron chelator (binds to Fe(III) and many other metal cations), is widely used to reduce iron accumulation and deposition in tissues. Deferoxamine upregulates HIF-1α levels with good antioxidant activity. Deferoxamine also shows anti-proliferative activity, can induce apoptosis and autophagy in cancer cells. Deferoxamine can be used in studies of diabetes, neurodegenerative diseases as well as anti-cancer and anti-COVID-19[1][2][3][4][5].
1,2,3,4-Tetrachlorodibenzo-P-dioxin
D009676 - Noxae > D013723 - Teratogens > D000072317 - Polychlorinated Dibenzodioxins
Tetrabenazine
A drug formerly used as an antipsychotic but now used primarily in the treatment of various movement disorders including tardive dyskinesia. Tetrabenazine blocks uptake into adrenergic storage vesicles and has been used as a high affinity label for the vesicle transport system. [PubChem] D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators N - Nervous system Same as: D08575
Calcein AM
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes > D005452 - Fluoresceins D000970 - Antineoplastic Agents
Pyricarbate
C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Same as: D01396
5-(3-Methyl-1-triazeno)imidazole-4-carboxamide
D009676 - Noxae > D000477 - Alkylating Agents
Beryllium
Beryllium is a light-weight metallic element, which was first recognized as a lung hazard in Europe in the 1930s, shortly after its first production in modern industry. People exposed to beryllium compounds are at increased risk of developing beryllium sensitization and chronic beryllium disease (CBD). The chronic lung disease was first described among workers exposed to beryllium-containing materials used in the manufacture of fluorescent lamps. In primary production of beryllium metal, which was used in nuclear weapons components, physicians recognized severe dermatitis, reversible pneumonitis, and chronic granulomatous lung disease. Physiologically, this metal/element exists as an ion in the body. It is now recognized that the physicochemical properties of beryllium compounds may account for the differing clinical presentations in different industries. In primary production of beryllium metal, soluble salts are present and cause rashes in approximately one fourth of exposed workers and reversible acute pneumonitis in a smaller portion of the workforce. After heavy inhalation exposures, radiographic abnormalities evolve at approximately three weeks; resolution of symptoms and radiologic abnormalities away from exposure occur only after months, but symptoms recur immediately upon reexposure. The granulomatous nature of chronic beryllium disease is now known to be caused by cell-mediated sensitization to beryllium. Chronic beryllium disease (CBD) is a granulomatous lung disorder characterized by the accumulation of beryllium-specific CD4(+) T cells. Depending on genetic susceptibility and the nature of the exposure, CBD occurs in up to 20\\% of exposed workers. Genetic susceptibility has been associated with particular HLA-DP alleles, especially those possessing a negatively charged glutamic acid residue at the 69th position of the beta-chain. The mechanism for this association lies in the ability of these HLA-DP molecules to bind and present beryllium to pathogenic CD4(+) T cells. Large numbers of effector memory, beryllium-specific CD4(+) T cells are recruited to the lung of these subjects and secrete Th1-type cytokines upon beryllium recognition. The presence of circulating beryllium-specific CD4(+) T cells directly correlates with the severity of lymphocytic alveolitis. Since 1987, this biomarker of sensitization has enabled medical surveillance of beryllium-exposed workforces. Beryllium lymphocyte proliferation tests have been used to screen workers to detect sensitization, to characterize epidemiologically workplace risks for beryllium sensitization, and to evaluate the effectiveness of interventions intended to prevent sensitization. The most compelling real-world example of genetic testing for susceptibility to a workplace exposure involves those industries that process or fabricate beryllium. Under reasonable assumptions, the longitudinal positive predictive value of the HLA-DPB1-Glu69 marker of susceptibility to beryllium disease is 12\\%. Interpretive challenges further limit the utility of the test and may inadvertently suggest a false sense of safety among workers. Reduction in inhalation exposure to beryllium has not resulted in a concomitant reduction in the occurrence of beryllium sensitization or CBD, suggesting that continued prevalence may be due, in part, to unchecked skin exposure to beryllium-containing particles. (PMID: 17094767, 16697706, 16231190) [HMDB]. Beryllium is found in spinach. Beryllium is a light-weight metallic element, which was first recognized as a lung hazard in Europe in the 1930s, shortly after its first production in modern industry. People exposed to beryllium compounds are at increased risk of developing beryllium sensitization and chronic beryllium disease (CBD). The chronic lung disease was first described among workers exposed to beryllium-containing materials used in the manufacture of fluorescent lamps. In primary production of beryllium metal, which was used in nuclear weapons components, physicians recognized severe dermatitis, reversible pneumonitis, and chronic granulomatous lung disease. Physiologically, this metal/element exists as an ion in the body. It is now recognized that the physicochemical properties of beryllium compounds may account for the differing clinical presentations in different industries. In primary production of beryllium metal, soluble salts are present and cause rashes in approximately one fourth of exposed workers and reversible acute pneumonitis in a smaller portion of the workforce. After heavy inhalation exposures, radiographic abnormalities evolve at approximately three weeks; resolution of symptoms and radiologic abnormalities away from exposure occur only after months, but symptoms recur immediately upon reexposure. The granulomatous nature of chronic beryllium disease is now known to be caused by cell-mediated sensitization to beryllium. Chronic beryllium disease (CBD) is a granulomatous lung disorder characterized by the accumulation of beryllium-specific CD4(+) T cells. Depending on genetic susceptibility and the nature of the exposure, CBD occurs in up to 20\\% of exposed workers. Genetic susceptibility has been associated with particular HLA-DP alleles, especially those possessing a negatively charged glutamic acid residue at the 69th position of the beta-chain. The mechanism for this association lies in the ability of these HLA-DP molecules to bind and present beryllium to pathogenic CD4(+) T cells. Large numbers of effector memory, beryllium-specific CD4(+) T cells are recruited to the lung of these subjects and secrete Th1-type cytokines upon beryllium recognition. The presence of circulating beryllium-specific CD4(+) T cells directly correlates with the severity of lymphocytic alveolitis. Since 1987, this biomarker of sensitization has enabled medical surveillance of beryllium-exposed workforces. Beryllium lymphocyte proliferation tests have been used to screen workers to detect sensitization, to characterize epidemiologically workplace risks for beryllium sensitization, and to evaluate the effectiveness of interventions intended to prevent sensitization. The most compelling real-world example of genetic testing for susceptibility to a workplace exposure involves those industries that process or fabricate beryllium. Under reasonable assumptions, the longitudinal positive predictive value of the HLA-DPB1-Glu69 marker of susceptibility to beryllium disease is 12\\%. Interpretive challenges further limit the utility of the test and may inadvertently suggest a false sense of safety among workers. Reduction in inhalation exposure to beryllium has not resulted in a concomitant reduction in the occurrence of beryllium sensitization or CBD, suggesting that continued prevalence may be due, in part, to unchecked skin exposure to beryllium-containing particles. (PMID: 17094767, 16697706, 16231190).
Carthamin
Carthamin is found in fats and oils. Red pigment of flower petals of Carthamus tinctorius (safflower) Carthamin is a natural red pigment derived from safflower (Carthamus tinctorius), earlier known as carthamine. It is used as a dye and a food coloring. As a food additive, it is known as Natural Red 26 Red pigment of flower petals of Carthamus tinctorius (safflower)
manoalide
A sesterterpenoid isolated from the marine sponge Luffariella variabilis and which has been shown to exhibit inhibitory activity towards phospholipase A2. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents
3-[[(2S)-2,4-Dihydroxy-3,3-dimethylbutanoyl]amino]propanoic acid
Pantothenic acid is a water-soluble vitamin. For many animals, pantothenic acid is an essential nutrient. Only the dextrorotatory (D) isomer of pantothenic acid possesses biologic activity. The levorotatory (L) form may antagonize the effects of the dextrorotatory isomer. Pantothenic acid is found in many foods, some of which are cream substitute, yellow bell pepper, corn, and atlantic mackerel. D018977 - Micronutrients > D014815 - Vitamins D-Pantothenic acid (Pantothenate) is an essential trace nutrient that functions as the obligate precursor of coenzyme A (CoA). D-Pantothenic acid plays key roles in myriad biological processes, including many that regulate carbohydrate, lipid, protein, and nucleic acid metabolism[1]. D-Pantothenic acid (Pantothenate) is an essential trace nutrient that functions as the obligate precursor of coenzyme A (CoA). D-Pantothenic acid plays key roles in myriad biological processes, including many that regulate carbohydrate, lipid, protein, and nucleic acid metabolism[1].
Pantothenic Acid
D018977 - Micronutrients > D014815 - Vitamins D-Pantothenic acid (Pantothenate) is an essential trace nutrient that functions as the obligate precursor of coenzyme A (CoA). D-Pantothenic acid plays key roles in myriad biological processes, including many that regulate carbohydrate, lipid, protein, and nucleic acid metabolism[1]. D-Pantothenic acid (Pantothenate) is an essential trace nutrient that functions as the obligate precursor of coenzyme A (CoA). D-Pantothenic acid plays key roles in myriad biological processes, including many that regulate carbohydrate, lipid, protein, and nucleic acid metabolism[1].
Curdione
Curdione is a germacrane sesquiterpenoid. Germacr-1(10)-ene-5,8-dione is a natural product found in Curcuma aromatica, Curcuma wenyujin, and other organisms with data available. (3R,6E,10S)-6,10-Dimethyl-3-propan-2-ylcyclodec-6-ene-1,4-dione is a natural product found in Curcuma aromatica and Curcuma wenyujin with data available. Curdione, one of the major sesquiterpene compounds from Curcuma zedoaria, has been shown to exhibit multiple bioactive properties. IC50 value: 60–80 μM Target: In vitro: The study of the influence of curdione on the hemorheological changes in blood stasis model rats and thrombolysis in vitro showed that curdione only possessed thrombolytic effect in dose of 0.235 g·L-1 and 2.35 g·L-1, but has not the notable activity of thrombolysis [1]. The effects of curdione on human platelet aggregation induced by thrombin (0.3 U/ml) were tested in vitro. Curdione preferentially inhibited PAF- and thrombin- induced platelet aggregation in a concentration-dependent manner (IC50: 60–80 μM), whereas much higher concentrations of curdione were required to inhibit platelet aggregation induced by ADP and AA. Curdione also inhibited P-selectin expression in PAF-activated platelets. Moreover, curdione caused an increase in cAMP levels and attenuated intracellular Ca2+ mobilization in PAF-activated platelets. In vivo: Curdione showed significant antithrombotic activity [2]. Curdione, one of the major sesquiterpene compounds from Curcuma zedoaria, has been shown to exhibit multiple bioactive properties. IC50 value: 60–80 μM Target: In vitro: The study of the influence of curdione on the hemorheological changes in blood stasis model rats and thrombolysis in vitro showed that curdione only possessed thrombolytic effect in dose of 0.235 g·L-1 and 2.35 g·L-1, but has not the notable activity of thrombolysis [1]. The effects of curdione on human platelet aggregation induced by thrombin (0.3 U/ml) were tested in vitro. Curdione preferentially inhibited PAF- and thrombin- induced platelet aggregation in a concentration-dependent manner (IC50: 60–80 μM), whereas much higher concentrations of curdione were required to inhibit platelet aggregation induced by ADP and AA. Curdione also inhibited P-selectin expression in PAF-activated platelets. Moreover, curdione caused an increase in cAMP levels and attenuated intracellular Ca2+ mobilization in PAF-activated platelets. In vivo: Curdione showed significant antithrombotic activity [2].
Ginkgolide B
D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents Origin: Plant; SubCategory_DNP: Diterpenoids, Ginkgolide diterpenoids Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.734 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.729 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.731 Ginkgolide B (BN-52021) is a terpenoid and one of the important active substances in Ginkgo leaves. Ginkgolide B (BN-52021) is a terpenoid and one of the important active substances in Ginkgo leaves.
deferoxamine
V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AC - Iron chelating agents D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Deferoxamine (Deferoxamine B) is an iron chelator (binds to Fe(III) and many other metal cations), is widely used to reduce iron accumulation and deposition in tissues. Deferoxamine upregulates HIF-1α levels with good antioxidant activity. Deferoxamine also shows anti-proliferative activity, can induce apoptosis and autophagy in cancer cells. Deferoxamine can be used in studies of diabetes, neurodegenerative diseases as well as anti-cancer and anti-COVID-19[1][2][3][4][5].
Neohesperidin
Neohesperidin is a flavanone glycoside that is hesperitin having an 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety attached to the 7-hydroxy group. It has a role as an antineoplastic agent and a plant metabolite. It is a neohesperidoside, a disaccharide derivative, a dihydroxyflavanone, a member of 3-hydroxyflavanones, a monomethoxyflavanone, a flavanone glycoside and a member of 4-methoxyflavanones. It is functionally related to a hesperetin. (S)-7-(((2-O-6-Deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl)oxy)-2,3-dihydro-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-4H-1-benzopyran-4-one is a natural product found in Citrus medica, Arabidopsis thaliana, and other organisms with data available. A flavanone glycoside that is hesperitin having an 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety attached to the 7-hydroxy group. Neohesperidin is a flavonoid compound found in high amounts in citrus fruits with anti-oxidant and anti-inflammatory effects. Neohesperidin is a flavonoid compound found in high amounts in citrus fruits with anti-oxidant and anti-inflammatory effects.
hexachlorophene
D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AE - Phenol and derivatives C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents CONFIDENCE Identification confirmed with Reference Standard (Level 1); Source 402_8423_MSMS.txt
4β,15-Diacetoxy-8α-(3-methylbutyryloxy)-12,13-epoxytrichothec-9-en-3α-ol
D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins T-2 Toxin (T-2 Mycotoxin) is a toxic trichothecene mycotoxin produced by various Fusarium species in feedstuffs and cereal grains, LD50 values of T-2 Toxin in mice and rats are 5.2 and 1.5 mg/kg BWa,respectively [1]. T-2 Toxin (T-2 Mycotoxin) can be transformed into a variety of metabolite, the typical metabolites of T-2 toxin in animals are HT-2 toxin and T-2-triol, which are hydrolysates[1]. T-2 Toxin (T-2 Mycotoxin) is an inhibitor of protein synthesis resulting from binding peptidyltransferase, which is an integral part of the 60s ribosomal subunit. T-2 Toxin (T-2 Mycotoxin) inhibits the synthesis of DNA and RNA, interferes with the metabolism of membrane phospholipids, and increases the level of liver lipid peroxides[1]. T-2 Toxin (T-2 Mycotoxin) induces apoptosis in the immune system, gastrointestinal tissues, and fetal tissues[2]. T 2 Toxin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=21259-20-1 (retrieved 2024-09-06) (CAS RN: 21259-20-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Etomidate
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
disopyramide
C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BA - Antiarrhythmics, class ia D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker
pantothenate
CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2028; ORIGINAL_PRECURSOR_SCAN_NO 2025 D018977 - Micronutrients > D014815 - Vitamins CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2045; ORIGINAL_PRECURSOR_SCAN_NO 2043 CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2007; ORIGINAL_PRECURSOR_SCAN_NO 2005 CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2020; ORIGINAL_PRECURSOR_SCAN_NO 2018 CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2022; ORIGINAL_PRECURSOR_SCAN_NO 2020 CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2020; ORIGINAL_PRECURSOR_SCAN_NO 2018 CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4240; ORIGINAL_PRECURSOR_SCAN_NO 4238 CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4241; ORIGINAL_PRECURSOR_SCAN_NO 4239 CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4259; ORIGINAL_PRECURSOR_SCAN_NO 4257 CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4274; ORIGINAL_PRECURSOR_SCAN_NO 4273 CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4270; ORIGINAL_PRECURSOR_SCAN_NO 4268 CONFIDENCE standard compound; INTERNAL_ID 870; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4269; ORIGINAL_PRECURSOR_SCAN_NO 4266 D-Pantothenic acid (Pantothenate) is an essential trace nutrient that functions as the obligate precursor of coenzyme A (CoA). D-Pantothenic acid plays key roles in myriad biological processes, including many that regulate carbohydrate, lipid, protein, and nucleic acid metabolism[1]. D-Pantothenic acid (Pantothenate) is an essential trace nutrient that functions as the obligate precursor of coenzyme A (CoA). D-Pantothenic acid plays key roles in myriad biological processes, including many that regulate carbohydrate, lipid, protein, and nucleic acid metabolism[1].
2,4,6-tribromophenol
A bromophenol that is phenol in which the hydrogens at positions 2, 4 and 6 have been replaced by bromines. It is commonly used as a fungicide and in the preparation of flame retardants.
Phenylmercuric acetate
D010575 - Pesticides > D005659 - Fungicides, Industrial > D010663 - Phenylmercury Compounds D016573 - Agrochemicals
TETRABENAZINE
D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators N - Nervous system Same as: D08575
Pyricarbate
C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Same as: D01396
Atractylodin
Atractylodin (Atractydin) is an active component of the essential oil contained in the rhizomes of Atractylodes lancea and A. chinensis. Atractylodin is natural insecticide and is active against Tribolium castaneum[1][2]. Atractylodin is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Atractylodin (Atractydin) is an active component of the essential oil contained in the rhizomes of Atractylodes lancea and A. chinensis. Atractylodin is natural insecticide and is active against Tribolium castaneum[1][2]. Atractylodin is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
XS-89
D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins Strophanthidin is a naturally available cardiac glycoside[1]. Strophanthidin 0.1 and 1 nmol/L increases and 1~100 μmol/L inhibits the Na+/K+-ATPase activities, but Strophanthidin 10 and 100 nmol/L does not affect Na+/K+-ATPase activities in cardiac sarcolemmal[2]. Strophanthidin increases both diastolic and systolic intracellular Ca2+ concentration[3]. Strophanthidin is a naturally available cardiac glycoside[1]. Strophanthidin 0.1 and 1 nmol/L increases and 1~100 μmol/L inhibits the Na+/K+-ATPase activities, but Strophanthidin 10 and 100 nmol/L does not affect Na+/K+-ATPase activities in cardiac sarcolemmal[2]. Strophanthidin increases both diastolic and systolic intracellular Ca2+ concentration[3].
4,4-Diphenylmethane diisocyanate
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Protoporphyrin
A cyclic tetrapyrrole that consists of porphyrin bearing four methyl substituents at positions 3, 8, 13 and 17, two vinyl substituents at positions 7 and 12 and two 2-carboxyethyl substituents at positions 2 and 18. The parent of the class of protoporphyrins. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents COVID info from COVID-19 Disease Map C1420 - Photosensitizing Agent D003879 - Dermatologic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Protoporphyrin IX is the final intermediate in the heme biosynthetic pathway. Protoporphyrin IX is the final intermediate in the heme biosynthetic pathway.
coproporphyrinogen III
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
aminoacetone
A propanone consisting of acetone having an amino group at the 1-position.
NITRILOTRIACETIC ACID
D064449 - Sequestering Agents > D002614 - Chelating Agents
Phenylmercury acetate
D010575 - Pesticides > D005659 - Fungicides, Industrial > D010663 - Phenylmercury Compounds D016573 - Agrochemicals Same as: D05464
Sulfosalicylic Acid
D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic
1,2,3,4-TCDD
D009676 - Noxae > D013723 - Teratogens > D000072317 - Polychlorinated Dibenzodioxins
Calcein AM
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes > D005452 - Fluoresceins D000970 - Antineoplastic Agents