NCBI Taxonomy: 38596
Ajuga reptans (ncbi_taxid: 38596)
found 432 associated metabolites at species taxonomy rank level.
Ancestor: Ajuga
Child Taxonomies: none taxonomy data.
Catechin
Catechin, also known as cyanidanol or catechuic acid, belongs to the class of organic compounds known as catechins. Catechins are compounds containing a catechin moiety, which is a 3,4-dihydro-2-chromene-3,5.7-tiol. Catechin also belongs to the group of compounds known as flavan-3-ols (or simply flavanols), part of the chemical family of flavonoids. Catechin is one of the 4 catechin known diastereoisomers. Two of the isomers are in trans configuration and are called catechin and the other two are in cis configuration and are called epicatechin. The most common catechin isomer is the (+)-catechin. The other stereoisomer is (-)-catechin or ent-catechin. The most common epicatechin isomer is (-)-epicatechin. Catechin is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Catechin is a bitter tasting compound and is associated with the bitterness in tea. Catechin is a plant secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. Catechin is an antioxidant flavonoid, occurring especially in woody plants as both Catechin and (-)-Catechin (cis) forms. Outside of the human body, Catechin is found, on average, in the highest concentration in foods, such as blackcurrants (Ribes nigrum), evergreen blackberries (Rubus laciniatus), and blackberries (Rubus) and in a lower concentration in dills (Anethum graveolens), hot chocolates, and medlars (Mespilus germanica). Catechin has also been detected, but not quantified in, several different foods, such as rice (Oryza sativa), apple ciders, peanuts (Arachis hypogaea), fruit juices, and red teas. This could make catechin a potential biomarker for the consumption of these foods. Based on a literature review a significant number of articles have been published on Catechin. (+)-catechin is the (+)-enantiomer of catechin and a polyphenolic antioxidant plant metabolite. It has a role as an antioxidant and a plant metabolite. It is an enantiomer of a (-)-catechin. An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. Cianidanol is a natural product found in Visnea mocanera, Salacia chinensis, and other organisms with data available. Catechin is a metabolite found in or produced by Saccharomyces cerevisiae. An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. See also: Gallocatechin (related); Crofelemer (monomer of); Bilberry (part of) ... View More ... Present in red wine. Widespread in plants; found in a variety of foodstuffs especies apricots, broad beans, cherries, chocolate, grapes, nectarines, red wine, rhubarb, strawberries and tea The (+)-enantiomer of catechin and a polyphenolic antioxidant plant metabolite. Catechin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=154-23-4 (retrieved 2024-07-12) (CAS RN: 154-23-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (±)-Catechin (rel-Cianidanol) is the racemate of Catechin. (±)-Catechin has two steric forms of (+)-Catechin and its enantiomer (-)-Catechin. (+)-Catechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Anticancer, anti-obesity, antidiabetic, anticardiovascular, anti-infectious, hepatoprotective, and neuroprotective effects[1]. (±)-Catechin (rel-Cianidanol) is the racemate of Catechin. (±)-Catechin has two steric forms of (+)-Catechin and its enantiomer (-)-Catechin. (+)-Catechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Anticancer, anti-obesity, antidiabetic, anticardiovascular, anti-infectious, hepatoprotective, and neuroprotective effects[1]. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM.
4-Hydroxycinnamic acid
4-Hydroxycinnamic acid, also known as p-Coumaric acid, is a coumaric acid in which the hydroxy substituent is located at C-4 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 4-coumarate. p-coumaric acid is an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers of coumaric acid: o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. p-Coumaric acid exists in two forms trans-p-coumaric acid and cis-p-coumaric acid. It is a crystalline solid that is slightly soluble in water, but very soluble in ethanol and diethyl ether. 4-Hydroxycinnamic acid belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. 4-Hydroxycinnamic acid exists in all living species, ranging from bacteria to humans. Outside of the human body, 4-Hydroxycinnamic acid is found, on average, in the highest concentration within a few different foods, such as pepper (Capsicum frutescens), pineapples, and sunflowers and in a lower concentration in spinachs, kiwis, and sweet oranges. 4-Hydroxycinnamic acid has also been detected, but not quantified in several different foods, such as wild rices, soursops, garden onions, hyssops, and avocado. 4-coumaric acid is a coumaric acid in which the hydroxy substituent is located at C-4 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 4-coumarate. 4-Hydroxycinnamic acid is a natural product found in Ficus septica, Visnea mocanera, and other organisms with data available. trans-4-Coumaric acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Galium aparine whole (part of); Lycium barbarum fruit (part of) ... View More ... Coumaric acid is a hydroxycinnamic acid, an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers, o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. p-Coumaric acid is found in many foods, some of which are garden onion, turmeric, green bell pepper, and common thyme. D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants The trans-isomer of 4-coumaric acid. D000890 - Anti-Infective Agents Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 168 KEIO_ID C024 p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively. p-Coumaric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7400-08-0 (retrieved 2024-09-04) (CAS RN: 7400-08-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Cyasteron
Cyasterone is a steroid lactone, a 21-hydroxy steroid, a 2beta-hydroxy steroid, a 3beta-hydroxy steroid, a 14alpha-hydroxy steroid, a 20-hydroxy steroid, a 6-oxo steroid and a phytoecdysteroid. Cyasterone is a natural product found in Ajuga decumbens, Ajuga iva, and other organisms with data available. Cyasterone, a natural EGFR inhibitor, mainly isolated from Ajuga decumbens Thunb (Labiatae). Cyasterone manifests anti-proliferation effect by induced apoptosis and cell cycle arrests. Cyasterone may serves as a therapeutic anti-tumor agent against human tumors[1]. Cyasterone, a natural EGFR inhibitor, mainly isolated from Ajuga decumbens Thunb (Labiatae). Cyasterone manifests anti-proliferation effect by induced apoptosis and cell cycle arrests. Cyasterone may serves as a therapeutic anti-tumor agent against human tumors[1].
Campesterol
Campesterol is a phytosterol, meaning it is a steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\\\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. -- Wikipedia. Campesterol is a member of phytosterols, a 3beta-sterol, a 3beta-hydroxy-Delta(5)-steroid and a C28-steroid. It has a role as a mouse metabolite. It derives from a hydride of a campestane. Campesterol is a natural product found in Haplophyllum bucharicum, Bugula neritina, and other organisms with data available. Campesterol is a steroid derivative that is the simplest sterol, characterized by the hydroxyl group in position C-3 of the steroid skeleton, and saturated bonds throughout the sterol structure, with the exception of the 5-6 double bond in the B ring. Campesterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=474-62-4 (retrieved 2024-07-01) (CAS RN: 474-62-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.
alpha-Tocopherol
Alpha-tocopherol is a pale yellow, viscous liquid. (NTP, 1992) (R,R,R)-alpha-tocopherol is an alpha-tocopherol that has R,R,R configuration. The naturally occurring stereoisomer of alpha-tocopherol, it is found particularly in sunflower and olive oils. It has a role as an antioxidant, a nutraceutical, an antiatherogenic agent, an EC 2.7.11.13 (protein kinase C) inhibitor, an anticoagulant, an immunomodulator, an antiviral agent, a micronutrient, an algal metabolite and a plant metabolite. It is an enantiomer of a (S,S,S)-alpha-tocopherol. In 1922, vitamin E was demonstrated to be an essential nutrient. Vitamin E is a term used to describe 8 different fat soluble tocopherols and tocotrienols, alpha-tocopherol being the most biologically active. Vitamin E acts as an antioxidant, protecting cell membranes from oxidative damage. The antioxidant effects are currently being researched for use in the treatment of diseases causing bone loss, cardiovascular diseases, diabetes mellitus and associated comorbidities, eye diseases, inflammatory diseases (including skin conditions), lipid disorders, neurological diseases, and radiation damage. Though this research is so far inconclusive, vitamin E remains a popular supplement and is generally considered safe by the FDA. Vitamin E is a natural product found in Monteverdia ilicifolia, Calea jamaicensis, and other organisms with data available. Alpha-Tocopherol is the orally bioavailable alpha form of the naturally-occurring fat-soluble vitamin E, with potent antioxidant and cytoprotective activities. Upon administration, alpha-tocopherol neutralizes free radicals, thereby protecting tissues and organs from oxidative damage. Alpha-tocopherol gets incorporated into biological membranes, prevents protein oxidation and inhibits lipid peroxidation, thereby maintaining cell membrane integrity and protecting the cell against damage. In addition, alpha-tocopherol inhibits the activity of protein kinase C (PKC) and PKC-mediated pathways. Alpha-tocopherol also modulates the expression of various genes, plays a key role in neurological function, inhibits platelet aggregation and enhances vasodilation. Compared with other forms of tocopherol, alpha-tocopherol is the most biologically active form and is the form that is preferentially absorbed and retained in the body. A generic descriptor for all tocopherols and tocotrienols that exhibit alpha-tocopherol activity. By virtue of the phenolic hydrogen on the 2H-1-benzopyran-6-ol nucleus, these compounds exhibit varying degree of antioxidant activity, depending on the site and number of methyl groups and the type of isoprenoids. See also: Alpha-Tocopherol Acetate (is active moiety of); Tocopherol (related); Vitamin E (related) ... View More ... alpha-Tocopherol is traditionally recognized as the most active form of vitamin E in humans and is a powerful biological antioxidant. The measurement of "vitamin E" activity in international units (IU) was based on fertility enhancement by the prevention of spontaneous abortions in pregnant rats relative to alpha-Tocopherol. Natural vitamin E exists in eight different forms or isomers: four tocopherols and four tocotrienols. In foods, the most abundant sources of vitamin E are vegetable oils such as palm oil, sunflower, corn, soybean, and olive oil. Nuts, sunflower seeds, and wheat germ are also good sources. Constituent of many vegetable oils such as soya and sunflower oils. Dietary supplement and nutrient. Nutriceutical with anticancer and antioxidant props. Added to fats and oils to prevent rancidity. The naturally-occurring tocopherol is a single stereoisomer; synthetic forms are a mixture of all eight possible isomers An alpha-tocopherol that has R,R,R configuration. The naturally occurring stereoisomer of alpha-tocopherol, it is found particularly in sunflower and olive oils. α-Tocopherol (alpha-tocopherol) is a type of vitamin E. Its E number is "E307". Vitamin E exists in eight different forms, four tocopherols and four tocotrienols. All feature a chromane ring, with a hydroxyl group that can donate a hydrogen atom to reduce free radicals and a hydrophobic side chain which allows for penetration into biological membranes. Compared to the others, α-tocopherol is preferentially absorbed and accumulated in humans. Vitamin E is found in a variety of tissues, being lipid-soluble, and taken up by the body in a wide variety of ways. The most prevalent form, α-tocopherol, is involved in molecular, cellular, biochemical processes closely related to overall lipoprotein and lipid homeostasis. Ongoing research is believed to be "critical for manipulation of vitamin E homeostasis in a variety of oxidative stress-related disease conditions in humans."[2] One of these disease conditions is the α-tocopherol role in the use by malaria parasites to protect themselves from the highly oxidative environment in erythrocytes.[3] DL-α-Tocopherol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=16826-11-2 (retrieved 2024-06-29) (CAS RN: 10191-41-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-alpha-Tocopherol is a synthetic vitamin E, with antioxidation effect. DL-alpha-Tocopherol protects human skin fibroblasts against the cytotoxic effect of UVB[1]. DL-alpha-Tocopherol is a synthetic vitamin E, with antioxidation effect. DL-alpha-Tocopherol protects human skin fibroblasts against the cytotoxic effect of UVB[1]. rel-α-Vitamin E (rel-D-α-Tocopherol) is a vitamin with antioxidant properties and also a mixture[1]. α-Vitamin E ((+)-α-Tocopherol), a naturally occurring vitamin E form, is a potent antioxidant[1][2]. α-Vitamin E ((+)-α-Tocopherol), a naturally occurring vitamin E form, is a potent antioxidant[1][2].
Crustecdysone
20-hydroxyecdysone is an ecdysteroid that is ecdysone substituted by a hydroxy group at position 20. It has a role as a plant metabolite and an animal metabolite. It is a 20-hydroxy steroid, an ecdysteroid, a 14alpha-hydroxy steroid, a 3beta-sterol, a 2beta-hydroxy steroid, a 22-hydroxy steroid, a 25-hydroxy steroid and a phytoecdysteroid. It is functionally related to an ecdysone. 20-Hydroxyecdysone is a natural product found in Asparagus filicinus, Trichobilharzia ocellata, and other organisms with data available. A steroid hormone that regulates the processes of MOLTING or ecdysis in insects. Ecdysterone is the 20-hydroxylated ECDYSONE. Crustecdysone is found in crustaceans. Crustecdysone is isolated from the marine crayfish Jasus lalandei in low yield (2 mg/ton D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones An ecdysteroid that is ecdysone substituted by a hydroxy group at position 20. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Crustecdysone (20-Hydroxyecdysone) is a naturally occurring ecdysteroid hormone isolated from Serratula coronata which controls the ecdysis (moulting) and metamorphosis of arthropods, it inhibits caspase activity and induces autophagy via the 20E nuclear receptor complex, EcR-USP[1]. Crustecdysone exhibits regulatory or protective roles in the cardiovascular system[2]. Crustecdysone is an active metabolite of Ecdysone (HY-N0179)[3]. Crustecdysone (20-Hydroxyecdysone) is a naturally occurring ecdysteroid hormone isolated from Serratula coronata which controls the ecdysis (moulting) and metamorphosis of arthropods, it inhibits caspase activity and induces autophagy via the 20E nuclear receptor complex, EcR-USP[1]. Crustecdysone exhibits regulatory or protective roles in the cardiovascular system[2]. Crustecdysone is an active metabolite of Ecdysone (HY-N0179)[3].
Cyanidin 3-glucoside
[C21H21O11]+ (449.10838160000003)
Cyanidin 3-glucoside, also known as chrysanthenin or cyanidin 3-glucoside chloride (CAS: 7084-24-4), belongs to the class of organic compounds known as pyranones and derivatives. Pyranones and derivatives are compounds containing a pyran ring which bears a ketone. Cyanidin 3-glucoside is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, cyanidin 3-glucoside is found, on average, in the highest concentration within a few different foods, such as black elderberries, rubus (blackberry, raspberry), and bilberries and in a lower concentration in redcurrants, strawberries, and sweet oranges. Cyanidin 3-glucoside has also been detected, but not quantified in, several different foods, such as common pea, peaches, Tartary buckwheats, soft-necked garlic, and fats and oils. This could make cyanidin 3-glucoside a potential biomarker for the consumption of these foods. Cyanidin (and its glycosides) is the most commonly occurring of the anthocyanins, a widespread group of pigments responsible for the red-blue colour of many fruits and vegetables (PMID: 14711454). BioTransformer predicts that cyanidin 3-glucoside is a product of cyanidin 3-sophoroside metabolism via a glycoside-hydrolysis reaction occurring in human gut microbiota and catalyzed by the EC.3.2.1.X enzyme (PMID: 30612223). Acquisition and generation of the data is financially supported in part by CREST/JST. Found in many plants and fruits, e.g. cherries, olives and grapes
Cholesterol
Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues and transported in the blood plasma of all animals. The name originates from the Greek chole- (bile) and stereos (solid), and the chemical suffix -ol for an alcohol. This is because researchers first identified cholesterol in solid form in gallstones in 1784. In the body, cholesterol can exist in either the free form or as an ester with a single fatty acid (of 10-20 carbons in length) covalently attached to the hydroxyl group at position 3 of the cholesterol ring. Due to the mechanism of synthesis, plasma cholesterol esters tend to contain relatively high proportions of polyunsaturated fatty acids. Most of the cholesterol consumed as a dietary lipid exists as cholesterol esters. Cholesterol esters have a lower solubility in water than cholesterol and are more hydrophobic. They are hydrolyzed by the pancreatic enzyme cholesterol esterase to produce cholesterol and free fatty acids. Cholesterol has vital structural roles in membranes and in lipid metabolism in general. It is a biosynthetic precursor of bile acids, vitamin D, and steroid hormones (glucocorticoids, estrogens, progesterones, androgens and aldosterone). In addition, it contributes to the development and functioning of the central nervous system, and it has major functions in signal transduction and sperm development. Cholesterol is a ubiquitous component of all animal tissues where much of it is located in the membranes, although it is not evenly distributed. The highest proportion of unesterified cholesterol is in the plasma membrane (roughly 30-50\\\\% of the lipid in the membrane or 60-80\\\\% of the cholesterol in the cell), while mitochondria and the endoplasmic reticulum have very low cholesterol contents. Cholesterol is also enriched in early and recycling endosomes, but not in late endosomes. The brain contains more cholesterol than any other organ where it comprises roughly a quarter of the total free cholesterol in the human body. Of all the organic constituents of blood, only glucose is present in a higher molar concentration than cholesterol. Cholesterol esters appear to be the preferred form for transport in plasma and as a biologically inert storage (de-toxified) form. They do not contribute to membranes but are packed into intracellular lipid particles. Cholesterol molecules (i.e. cholesterol esters) are transported throughout the body via lipoprotein particles. The largest lipoproteins, which primarily transport fats from the intestinal mucosa to the liver, are called chylomicrons. They carry mostly triglyceride fats and cholesterol that are from food, especially internal cholesterol secreted by the liver into the bile. In the liver, chylomicron particles give up triglycerides and some cholesterol. They are then converted into low-density lipoprotein (LDL) particles, which carry triglycerides and cholesterol on to other body cells. In healthy individuals, the LDL particles are large and relatively few in number. In contrast, large numbers of small LDL particles are strongly associated with promoting atheromatous disease within the arteries. (Lack of information on LDL particle number and size is one of the major problems of conventional lipid tests.). In conditions with elevated concentrations of oxidized LDL particles, especially small LDL particles, cholesterol promotes atheroma plaque deposits in the walls of arteries, a condition known as atherosclerosis, which is a major contributor to coronary heart disease and other forms of cardiovascular disease. There is a worldwide trend to believe that lower total cholesterol levels tend to correlate with lower atherosclerosis event rates (though some studies refute this idea). As a result, cholesterol has become a very large focus for the scientific community trying to determine the proper amount of cholesterol needed in a healthy diet. However, the primary association of atherosclerosis with c... Constituent either free or as esters, of fish liver oils, lard, dairy fats, egg yolk and bran Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].
ecdysone
A 6-oxo steroid that is 5beta-cholest-7-en-6-one substituted by hydroxy groups at positions 2, 3, 14, 22 and 25 respectively (the 2beta, 3beta, 22R stereoisomer). It is a steroid prohormone of the major insect moulting hormone 20-hydroxyecdysone. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Ecdysone, also known as molting hormone, belongs to pentahydroxy bile acids, alcohols and derivatives class of compounds. Those are bile acids, alcohols or derivatives bearing five hydroxyl groups. Thus, ecdysone is considered to be a sterol lipid molecule. Ecdysone is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Ecdysone can be synthesized from 5beta-cholestane. Ecdysone is also a parent compound for other transformation products, including but not limited to, (25R)-11alpha,20,26-trihydroxyecdysone, (24R)-11alpha,20,24-trihydroxyecdysone, and ecdysone 25-O-D-glucopyranoside. Ecdysone can be found in spinach, which makes ecdysone a potential biomarker for the consumption of this food product. Ecdysone is a steroidal prohormone of the major insect molting hormone 20-hydroxyecdysone, which is secreted from the prothoracic glands. Insect molting hormones (ecdysone and its homologues) are generally called ecdysteroids. Ecdysteroids act as moulting hormones of arthropods but also occur in other related phyla where they can play different roles. In Drosophila melanogaster, an increase in ecdysone concentration induces the expression of genes coding for proteins that the larva requires, and it causes chromosome puffs (sites of high expression) to form in polytene chromosomes. Recent findings in Chris Q. Doe lab have found a novel role of this hormone in regulating temporal gene transitions within neural stem cells. Ecdysone and other ecdysteroids also appear in many plants mostly as a protection agent (toxins or antifeedants) against herbivorous insects. These phytoecdysteroids have been reputed to have medicinal value and are part of herbal adaptogenic remedies like Cordyceps, yet an ecdysteroid precursor in plants has been shown to have cytotoxic properties. A pesticide sold with the name MIMIC has ecdysteroid activity, although its chemical structure has little resemblance to the ecdysteroids . Ecdysone (α-Ecdysone), a major steroid hormone in insects and herbs, triggers mineralocorticoid receptor (MR) activation and induces cellular apoptosis. Ecdysone plays essential roles in coordinating developmental transitions and homeostatic sleep regulation through its active metabolite 20-hydroxyecdysone (Crustecdysone; 20E; HY-N6979)[1][2].
Ajugalactone
Dihydrobrassicasterol
24-epicampesterol is a 3beta-sterol, a member of phytosterols, an ergostanoid, a 3beta-hydroxy-Delta(5)-steroid and a C28-steroid. 22,23-Dihydrobrassicasterol is a natural product found in Euphorbia fischeriana, Sambucus chinensis, and other organisms with data available. Occurs in Physalis peruviana (Cape gooseberry). Dihydrobrassicasterol is found in many foods, some of which are watermelon, muskmelon, fruits, and cucumber. Dihydrobrassicasterol is found in cucumber. Dihydrobrassicasterol occurs in Physalis peruviana (Cape gooseberry
Cyanidin 3-sophoroside 5-glucoside
Present in acylated form in red cabbage (Brassica oleracea), from the flowers of Pisum sativum and the leaves of Ipomoea batatas (sweet potato) [CCD]. Cyanidin 3-sophoroside 5-glucoside is found in many foods, some of which are cabbage, brassicas, common pea, and sweet potato. Cyanidin 3-sophoroside 5-glucoside is found in brassicas. Cyanidin 3-sophoroside 5-glucoside is present in acylated form in red cabbage (Brassica oleracea), from the flowers of Pisum sativum and the leaves of Ipomoea batatas (sweet potato) [CCD].
Cyasterone
Ecdysone
Polypodine B
Polypodine b belongs to hydroxy bile acids, alcohols and derivatives class of compounds. Those are bile acids, alcohols or derivatives bearing at least hydroxyl group. Polypodine b is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Polypodine b can be found in lambsquarters and spinach, which makes polypodine b a potential biomarker for the consumption of these food products.
harpagide
C15H24O10 (364.13694039999996)
Origin: Plant; SubCategory_DNP: Monoterpenoids, Harpagide monoterpenoids Harpagide is a class of iridoid glycoside isolated from Scrophularia ningpoensis and has antiparasitic activity, which exhibits good in vitro trypanocidal activities against African trypanosomes (T.b. rhodesiense) with an IC50 of 21 μg/mL. Harpagide exerts significant antileishmanial activity against L. donovani with an IC50 value of 2.0 μg/mL. Harpagide also possess significant anti-inflammatory activities[1][2]. Harpagide is a class of iridoid glycoside isolated from Scrophularia ningpoensis and has antiparasitic activity, which exhibits good in vitro trypanocidal activities against African trypanosomes (T.b. rhodesiense) with an IC50 of 21 μg/mL. Harpagide exerts significant antileishmanial activity against L. donovani with an IC50 value of 2.0 μg/mL. Harpagide also possess significant anti-inflammatory activities[1][2].
Catechin
Annotation level-1 Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM.
Cholesterol
A cholestanoid consisting of cholestane having a double bond at the 5,6-position as well as a 3beta-hydroxy group. Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].
Campesterol
Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.
VITAMIN E
Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE was 40 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. COVID info from COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants D018977 - Micronutrients > D014815 - Vitamins Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE was 15 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE was 20 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. DL-alpha-Tocopherol is a synthetic vitamin E, with antioxidation effect. DL-alpha-Tocopherol protects human skin fibroblasts against the cytotoxic effect of UVB[1]. DL-alpha-Tocopherol is a synthetic vitamin E, with antioxidation effect. DL-alpha-Tocopherol protects human skin fibroblasts against the cytotoxic effect of UVB[1]. rel-α-Vitamin E (rel-D-α-Tocopherol) is a vitamin with antioxidant properties and also a mixture[1]. α-Vitamin E ((+)-α-Tocopherol), a naturally occurring vitamin E form, is a potent antioxidant[1][2]. α-Vitamin E ((+)-α-Tocopherol), a naturally occurring vitamin E form, is a potent antioxidant[1][2].
Crustecdysone
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials SubCategory_DNP: : The sterols, Cholestanes Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Crustecdysone (20-Hydroxyecdysone) is a naturally occurring ecdysteroid hormone isolated from Serratula coronata which controls the ecdysis (moulting) and metamorphosis of arthropods, it inhibits caspase activity and induces autophagy via the 20E nuclear receptor complex, EcR-USP[1]. Crustecdysone exhibits regulatory or protective roles in the cardiovascular system[2]. Crustecdysone is an active metabolite of Ecdysone (HY-N0179)[3]. Crustecdysone (20-Hydroxyecdysone) is a naturally occurring ecdysteroid hormone isolated from Serratula coronata which controls the ecdysis (moulting) and metamorphosis of arthropods, it inhibits caspase activity and induces autophagy via the 20E nuclear receptor complex, EcR-USP[1]. Crustecdysone exhibits regulatory or protective roles in the cardiovascular system[2]. Crustecdysone is an active metabolite of Ecdysone (HY-N0179)[3].
KB-53
Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM.
Coumarate
D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants D000890 - Anti-Infective Agents p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively.
Lanol
Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].
CHEBI:19809
Ephanyl
COVID info from COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants D018977 - Micronutrients > D014815 - Vitamins Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS rel-α-Vitamin E (rel-D-α-Tocopherol) is a vitamin with antioxidant properties and also a mixture[1]. α-Vitamin E ((+)-α-Tocopherol), a naturally occurring vitamin E form, is a potent antioxidant[1][2]. α-Vitamin E ((+)-α-Tocopherol), a naturally occurring vitamin E form, is a potent antioxidant[1][2].
Cyanidin 3-glucoside
C21H21O11+ (449.10838160000003)
Cyanidin 3-glucoside, also known as chrysanthenin or cyanidin 3-glucoside chloride (CAS: 7084-24-4), belongs to the class of organic compounds known as pyranones and derivatives. Pyranones and derivatives are compounds containing a pyran ring which bears a ketone. Cyanidin 3-glucoside is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, cyanidin 3-glucoside is found, on average, in the highest concentration within a few different foods, such as black elderberries, rubus (blackberry, raspberry), and bilberries and in a lower concentration in redcurrants, strawberries, and sweet oranges. Cyanidin 3-glucoside has also been detected, but not quantified in, several different foods, such as common pea, peaches, Tartary buckwheats, soft-necked garlic, and fats and oils. This could make cyanidin 3-glucoside a potential biomarker for the consumption of these foods. Cyanidin (and its glycosides) is the most commonly occurring of the anthocyanins, a widespread group of pigments responsible for the red-blue colour of many fruits and vegetables (PMID: 14711454). BioTransformer predicts that cyanidin 3-glucoside is a product of cyanidin 3-sophoroside metabolism via a glycoside-hydrolysis reaction occurring in human gut microbiota and catalyzed by the EC.3.2.1.X enzyme (PMID: 30612223). Found in many plants and fruits, e.g. cherries, olives and grapes
2beta,3beta,5beta,14,20,22R,25-heptahydroxycholest-7-en-6-one
4a,5-dihydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-7-yl acetate
(1r,2s,3r,4ar,5s,6r,8s,8ar)-5-[(2s,3as,6as)-2h,3h,3ah,6ah-furo[2,3-b]furan-2-yl]-8-(acetyloxy)-8a-[(acetyloxy)methyl]-3-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-2-yl 2-methylpropanoate
(4as,7s,7ar)-4a,5-dihydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-7-yl acetate
4-{3-[(1s,5as,7r,8s,9ar,11ar)-3a,5a,7,8-tetrahydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-2,3-dihydroxybutyl}-3,5-dimethyloxolan-2-one
(4r,4ar,5s,6r,8s,8ar)-5-[(3ar,6as)-hexahydrofuro[2,3-b]furan-2-yl]-8-(acetyloxy)-8a-[(acetyloxy)methyl]-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-4-yl (2s)-2-methylbutanoate
8-(acetyloxy)-8a-[(acetyloxy)methyl]-5-{hexahydrofuro[2,3-b]furan-2-yl}-3-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-2-yl 2-methylpropanoate
1-[1-(4-ethyl-5-methyl-6-oxo-2,3-dihydropyran-2-yl)-1-hydroxyethyl]-3a,7-dihydroxy-9a,11a-dimethyl-1h,2h,3h,5ah,6h,7h,9h,9bh,10h-cyclopenta[a]phenanthrene-5,8,11-trione
(3z)-3-(2-hydroxyethylidene)-1-methyl-2-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)cyclopentyl acetate
4-(3-{3a,5a,7,8,11-pentahydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-3-hydroxy-2-oxobutyl)-3,5-dimethyloxolan-2-one
3-{[(2s,3s,4s,5s,6s)-4,5-dihydroxy-6-({[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)-3-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-({[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-7-hydroxy-5-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-(3,4,5-trihydroxyphenyl)-1λ⁴-chromen-1-ylium
(1r,2s,3r,4s,4ar,5s,6r,8s,8ar)-5-[(2s,3ar,6as)-hexahydrofuro[2,3-b]furan-2-yl]-3,8-bis(acetyloxy)-8a-[(acetyloxy)methyl]-4-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-2-yl (2s)-2-methylbutanoate
(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,3e,5s)-5-ethyl-6-methylhepta-3,6-dien-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol
(1s,3ar,5ar,7r,9ar,9br,11ar)-1-[(1r)-1-[(2r)-4-ethyl-5-methyl-6-oxo-2,3-dihydropyran-2-yl]-1-hydroxyethyl]-3a,7-dihydroxy-9a,11a-dimethyl-1h,2h,3h,5ah,6h,7h,9h,9bh,10h-cyclopenta[a]phenanthrene-5,8,11-trione
5-{[(2s,3s,4s,5r,6s)-6-{[(2-carboxyacetyl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl]oxy}-3-{[(2s,3r,4s,5r,6s)-4,5-dihydroxy-6-({[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-7-hydroxy-2-(3,4,5-trihydroxyphenyl)-1λ⁴-chromen-1-ylium
[C56H59O31]+ (1227.3040164000001)
8-(acetyloxy)-8a-[(acetyloxy)methyl]-5-{hexahydrofuro[2,3-b]furan-2-yl}-2-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-4-yl 2-methylbutanoate
(1s,3r,4r,4as,5r,7s,7as)-4,4a,5-trihydroxy-3-methoxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-hexahydrocyclopenta[c]pyran-7-yl acetate
(2r,3s,4r,5s,6s)-2-{[(1s,4ar,5r,7s,7ar)-4a,5,7-trihydroxy-7-methyl-1h,5h,6h,7ah-cyclopenta[c]pyran-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
C15H24O10 (364.13694039999996)
(1r,3as,5ar,7r,9ar,11ar)-1-[(3r)-3,6-dihydroxy-6-methylheptan-2-yl]-3a,7,8,8-tetrahydroxy-9a,11a-dimethyl-1h,2h,3h,5ah,6h,7h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one
(1r,2s,3r,4s,4ar,5s,6r,8s,8ar)-5-[(3ar,6as)-hexahydrofuro[2,3-b]furan-2-yl]-3,8-bis(acetyloxy)-8a-[(acetyloxy)methyl]-4-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-2-yl 2-methylbutanoate
(3-{[(2s,3s,4r,5r,6s)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2-(3,4-dihydroxyphenyl)-7-hydroxychromen-5-ylidene)[(1r,2r,3s,4r,5r)-2,3,4-trihydroxy-5-(hydroxymethyl)cyclohexyl]oxidanium
8-(acetyloxy)-8a-[(acetyloxy)methyl]-5-{hexahydrofuro[2,3-b]furan-2-yl}-2-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-4-yl 2-methylbut-2-enoate
3-{[(2s,5s)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,5s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-7-hydroxy-5-{[(2s,4s,5s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-(3,4,5-trihydroxyphenyl)-1λ⁴-chromen-1-ylium
2-{3a,7,8-trihydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-2,6-dihydroxy-6-methylheptan-3-yl acetate
(1r,2s,4r,4ar,5s,6r,8s,8ar)-5-[(2s,3as,6ar)-2h,3h,3ah,6ah-furo[2,3-b]furan-2-yl]-8-(acetyloxy)-8a-[(acetyloxy)methyl]-2-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-4-yl (2s)-2-methylbutanoate
(3s,4r,5s)-5-[(1r,2r)-2-[(1s,3as,5ar,7r,8s,9ar,9br,11ar)-3a,7,8-trihydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-1,2-dihydroxypropyl]-4-ethyl-4-hydroxy-3-methyloxolan-2-one
4-(3-{3a,5a,7,8,11-pentahydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-3-hydroxy-2-oxobutyl)-3-methyloxolan-2-one
(1r,2r,4ar,5s,6r,8s,8ar)-8-(acetyloxy)-8a-[(acetyloxy)methyl]-5,6-dimethyl-4-oxo-5-[2-(5-oxo-2h-furan-3-yl)ethyl]-hexahydrospiro[naphthalene-1,2'-oxiran]-2-yl (2r)-2-methylbutanoate
(1s,3ar,5ar,8s,9ar,9br,11ar)-1-[(1r)-1-[(2r)-4-ethyl-5-methyl-6-oxo-2,3-dihydropyran-2-yl]-1-hydroxyethyl]-3a,8-dihydroxy-9a,11a-dimethyl-1h,2h,3h,5ah,6h,8h,9h,9bh,10h-cyclopenta[a]phenanthrene-5,7,11-trione
(3r,4s,6r)-6-[(1r)-1-[(1s,3as,5ar,7r,8s,9ar,9br,11ar)-3a,7,8-trihydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-1-hydroxyethyl]-4-(2-hydroxyethyl)-3-methyloxan-2-one
(1r,2s,4ar,5s,6r,8s,8ar)-8-(acetyloxy)-8a-[(acetyloxy)methyl]-5,6-dimethyl-4-oxo-5-[2-(5-oxo-2h-furan-3-yl)ethyl]-hexahydrospiro[naphthalene-1,2'-oxiran]-2-yl (2s)-2-methylbutanoate
2-[8-(acetyloxy)-8a-[(acetyloxy)methyl]-2-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-5-yl]-1-(5-oxo-2h-furan-3-yl)ethyl 2-methylbutanoate
3a,8-dihydroxy-9a,11a-dimethyl-5-oxo-1-(2,3,6-trihydroxy-6-methylheptan-2-yl)-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl acetate
5-{2h,3h,3ah,6ah-furo[2,3-b]furan-2-yl}-8-(acetyloxy)-8a-[(acetyloxy)methyl]-2-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-4-yl 2-methylbutanoate
5-(2-{3a,7,8-trihydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-1,2-dihydroxypropyl)-4-ethyl-3-methyloxolan-2-one
(3s,4s,5r)-4-[(3r)-3-[(1s,3ar,5as,7r,8s,9ar,9br,11r,11as)-3a,5a,7,8,11-pentahydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-3-hydroxy-2-oxobutyl]-3,5-dimethyloxolan-2-one
4-(3-{3a,7,8,11-tetrahydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-3-hydroxy-2-oxobutyl)-3-methyloxolan-2-one
1-[1-(4-ethyl-5-methyl-6-oxo-2,3-dihydropyran-2-yl)-1-hydroxyethyl]-3a,7,8-trihydroxy-9a,11a-dimethyl-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h-cyclopenta[a]phenanthrene-5,11-dione
(3s,4s)-4-[(3r)-3-[(1s,3ar,5as,7r,8s,9ar,9br,11r,11as)-3a,5a,7,8,11-pentahydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-3-hydroxy-2-oxobutyl]-3-methyloxolan-2-one
(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,5s)-5,6-dimethylhept-6-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol
(1r,2s,4s,4ar,5s,6r,8s,8ar)-5-[(2s,3as,6ar)-hexahydrofuro[2,3-b]furan-2-yl]-8-(acetyloxy)-8a-[(acetyloxy)methyl]-2-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-4-yl (2r)-2-methylbutanoate
(3s,4s,5r)-4-[(2r,3r)-3-[(1s,3as,5as,7r,8s,9ar,9br,11ar)-3a,5a,7,8-tetrahydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-2,3-dihydroxybutyl]-3,5-dimethyloxolan-2-one
(1r,2s,3s,4s,4ar,5s,6r,8s,8ar)-5-[(3as,6as)-2h,3h,3ah,6ah-furo[2,3-b]furan-2-yl]-3,8-bis(acetyloxy)-2-hydroxy-5,6-dimethyl-4-{[(2e)-2-methylbut-2-en-1-yl]oxy}-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-8a-ylmethyl acetate
(2s,3r,4s,5s,6r)-2-{[(4bs,8s,8ar)-4-hydroxy-2-[(2s)-1-hydroxypropan-2-yl]-4b,8-dimethyl-8-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-5,6,7,8a,9,10-hexahydrophenanthren-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(1s,4as,7s,7as)-4a-hydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-7-yl acetate
6-(1-{3a,7,8-trihydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-1-hydroxyethyl)-4-(2-hydroxyethyl)-3-methyloxan-2-one
(1r,4ar,5s,6r,8s,8ar)-8-(acetyloxy)-8a-[(acetyloxy)methyl]-5,6-dimethyl-4-oxo-5-[2-(5-oxo-2h-furan-3-yl)ethyl]-hexahydrospiro[naphthalene-1,2'-oxiran]-2-yl (2s)-2-methylbutanoate
3a,5a,7,8-tetrahydroxy-9a,11a-dimethyl-1-(2,3,6-trihydroxy-6-methylheptan-2-yl)-1h,2h,3h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one
4-(3-{3a,5a,7,8-tetrahydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-2,3-dihydroxybutyl)-3-methyloxolan-2-one
3-{[(2s,3r,4s,5s,6s)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-7-hydroxy-5-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-(3,4,5-trihydroxyphenyl)-1λ⁴-chromen-1-ylium
3a,7,8-trihydroxy-9a,11a-dimethyl-1-(2,3,6-trihydroxy-6-methylheptan-2-yl)-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one
(3s,4s)-4-[(2r,3r)-3-[(1s,3as,5ar,7s,8s,9ar,9br,11ar)-3a,7,8-trihydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-2,3-dihydroxybutyl]-3-methyloxolan-2-one
(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,5s)-5-ethyl-6-methylhept-6-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol
(6r)-6-[(1r)-1-[(1s,3as,5ar,7r,8s,9ar,9br,11ar)-3a,7,8-trihydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-1-hydroxyethyl]-4-[(1r)-1-hydroxyethyl]-3-methyl-5,6-dihydropyran-2-one
(1s,3as,5ar,7s,8s,9ar,9br,11ar)-3a,7,8-trihydroxy-9a,11a-dimethyl-1-[(2r,3r)-2,3,6-trihydroxy-6-methylheptan-2-yl]-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one
(1s)-2-[(1r,2s,4ar,5s,6r,8s,8ar)-8-(acetyloxy)-8a-[(acetyloxy)methyl]-2-hydroxy-5,6-dimethyl-4-oxo-hexahydrospiro[naphthalene-1,2'-oxiran]-5-yl]-1-(5-oxo-2h-furan-3-yl)ethyl (2s)-2-methylbutanoate
1-[1-(4-ethyl-5-methyl-6-oxo-2,3-dihydropyran-2-yl)-1-hydroxyethyl]-3a,8-dihydroxy-9a,11a-dimethyl-1h,2h,3h,5ah,6h,8h,9h,9bh,10h-cyclopenta[a]phenanthrene-5,7,11-trione
1-(5-ethyl-6-methylhepta-3,6-dien-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol
(3r,4s,5r)-4-[(2r,3s)-3-[(1s,3as,5ar,7r,8s,9ar,9br,11ar)-3a,7,8-trihydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-2,3-dihydroxybutyl]-3,5-dimethyloxolan-2-one
(2r,3r)-2-[(1s,3as,5ar,7r,8s,9ar,9br,11ar)-3a,7,8-trihydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-2,6-dihydroxy-6-methylheptan-3-yl acetate
5,7-dihydroxy-2-(4-hydroxy-3-oxidophenyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium
(3s,4s)-4-[(2r,3r)-3-[(1s,3as,5as,7r,8s,9ar,9br,11ar)-3a,5a,7,8-tetrahydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-2,3-dihydroxybutyl]-3-methyloxolan-2-one
(3s,4s,5r)-4-[(2r,3r)-3-[(1s,3as,5ar,7s,8r,9ar,9br,11ar)-3a,7,8-trihydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-2,3-dihydroxybutyl]-3,5-dimethyloxolan-2-one
4-(3-{3a,7,8-trihydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-2,3-dihydroxybutyl)-3-methyloxan-2-one
6-(1-{3a,7,8-trihydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-1-hydroxyethyl)-4-(1-hydroxyethyl)-3-methyl-5,6-dihydropyran-2-one
5-(2-{3a,7,8-trihydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-1,2-dihydroxypropyl)-4-ethyl-4-hydroxy-3-methyloxolan-2-one
(1r,2s,4r,4ar,5s,6r,8s,8ar)-5-[(2r,3as,6as)-2h,3h,3ah,6ah-furo[2,3-b]furan-2-yl]-8-(acetyloxy)-8a-[(acetyloxy)methyl]-2-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-4-yl (2r)-2-methylbutanoate
(1r,2s,4r,4ar,5s,6r,8s,8ar)-5-[(2s,3ar,6as)-hexahydrofuro[2,3-b]furan-2-yl]-8-(acetyloxy)-8a-[(acetyloxy)methyl]-2-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-4-yl (2r)-2-methylbutanoate
(1s,3as,5ar,7r,8s,9ar,9br,11ar)-1-[(1r)-1-[(2r,4r,5s,6s)-4-ethyl-4-hydroxy-6-methoxy-5-methyloxan-2-yl]-1-hydroxyethyl]-3a,7,8-trihydroxy-9a,11a-dimethyl-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one
8-(acetyloxy)-5,6-dimethyl-4-oxo-5-[2-(5-oxo-2h-furan-3-yl)ethyl]-4a,6,7,8-tetrahydrospiro[naphthalene-1,2'-oxiran]-8a-ylmethyl acetate
(1r,4ar,5s,6r,8s,8ar)-8-(acetyloxy)-5,6-dimethyl-4-oxo-5-[2-(5-oxo-2h-furan-3-yl)ethyl]-4a,6,7,8-tetrahydrospiro[naphthalene-1,2'-oxiran]-8a-ylmethyl acetate
(3s,4s,5r)-4-[(2r,3r)-3-[(1s,3as,5ar,9br)-3a,7,8-trihydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-2,3-dihydroxybutyl]-3,5-dimethyloxolan-2-one
(3s,4s)-4-[(2r,3r)-3-[(1s,3as,5as,7s,8s,9ar,9br,11ar)-3a,5a,7,8-tetrahydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-2,3-dihydroxybutyl]-3-methyloxolan-2-one
4-(3-{3a,5a,7,8-tetrahydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-2,3-dihydroxybutyl)-3,5-dimethyloxolan-2-one
(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2s,3e,5s)-5-ethyl-6-methylhepta-3,6-dien-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol
(1r,2s,3r,4ar,5s,6r,8s,8ar)-5-[(2r,3ar,6as)-2h,3h,3ah,6ah-furo[2,3-b]furan-2-yl]-8-(acetyloxy)-8a-[(acetyloxy)methyl]-3-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-2-yl 2-methylpropanoate
(3s,4s)-4-[(2r,3r)-3-[(1s,3as,5ar,7r,8s,9ar,9br,11ar)-3a,7,8-trihydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-2,3-dihydroxybutyl]-3-methyloxan-2-one
2-{[4-hydroxy-2-(1-hydroxypropan-2-yl)-4b,8-dimethyl-8-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-5,6,7,8a,9,10-hexahydrophenanthren-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
3-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2-(3,4-dihydroxyphenyl)-7-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium
(3s,4s)-4-[(3r)-3-[(1s,3ar,5ar,7r,8s,9ar,9br,11r,11as)-3a,7,8,11-tetrahydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-3-hydroxy-2-oxobutyl]-3-methyloxolan-2-one
(1s,4as,5r,7s,7as)-4a,5-dihydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-hexahydrocyclopenta[c]pyran-7-yl acetate
C17H28O11 (408.16315380000003)
(3s,4s)-4-[(2r,3r)-3-[(1s,3as,5ar,7r,8s,9ar,9br,11ar)-3a,7,8-trihydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-2,3-dihydroxybutyl]-3-methyloxolan-2-one
(1r,2s,4r,4ar,5s,6r,8s,8ar)-5-[(2s,3ar,6as)-hexahydrofuro[2,3-b]furan-2-yl]-8-(acetyloxy)-8a-[(acetyloxy)methyl]-2-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-4-yl (2e)-2-methylbut-2-enoate
(3s,4s,5r)-4-[(3r)-3-[(1s,3ar,5ar,7r,8s,9ar,9br,11r,11as)-3a,7,8,11-tetrahydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-3-hydroxy-2-oxobutyl]-3,5-dimethyloxolan-2-one
4-(3-{3a,7,8-trihydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-2,3-dihydroxybutyl)-3-methyloxolan-2-one
(1r,2s,4r,4ar,5s,6r,8s,8ar)-5-[(2s,3as,6ar)-2h,3h,3ah,6ah-furo[2,3-b]furan-2-yl]-8-(acetyloxy)-8a-[(acetyloxy)methyl]-2-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-4-yl (2e)-2-methylbut-2-enoate
5-{[(2s,3r,4s,5r,6r)-6-{[(2-carboxyacetyl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl]oxy}-3-{[(2s,3r,4s,5r,6r)-4,5-dihydroxy-6-({[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-7-hydroxy-2-(3,4,5-trihydroxyphenyl)-1λ⁴-chromen-1-ylium
(1s,4as,5r,7s,7as)-4a,5-dihydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-7-yl acetate
(1s,3ar,5ar,7s,8s,9ar,9br,11ar)-1-[(1r)-1-[(2r)-4-ethyl-5-methyl-6-oxo-2,3-dihydropyran-2-yl]-1-hydroxyethyl]-3a,7,8-trihydroxy-9a,11a-dimethyl-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h-cyclopenta[a]phenanthrene-5,11-dione
(1r,2s,4r,4ar,5s,6r,8s,8ar)-5-[(2s,3ar,6as)-hexahydrofuro[2,3-b]furan-2-yl]-8-(acetyloxy)-8a-[(acetyloxy)methyl]-2-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-4-yl (2s)-2-methylbutanoate
1-(5-ethyl-6-methylhept-6-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol
4a-hydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-7-yl acetate
(3s,4r,5r)-5-[(1r,2r)-2-[(1s,3as,5ar,7r,8s,9ar,9br,11ar)-3a,7,8-trihydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-1,2-dihydroxypropyl]-4-ethyl-3-methyloxolan-2-one
6-{3a,7,8-trihydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-5,6-dihydroxy-2-methylheptan-2-yl acetate
(1s)-2-[(1r,2r,4ar,5s,6r,8s,8ar)-8-(acetyloxy)-8a-[(acetyloxy)methyl]-2-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-5-yl]-1-(5-oxo-2h-furan-3-yl)ethyl (2r)-2-methylbutanoate
(1s,3as,5as,7r,8r,9ar,9br,11ar)-3a,5a,7,8-tetrahydroxy-9a,11a-dimethyl-1-[(2r,3r)-2,3,6-trihydroxy-6-methylheptan-2-yl]-1h,2h,3h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one
8-(acetyloxy)-8a-[(acetyloxy)methyl]-5,6-dimethyl-4-oxo-5-[2-(5-oxo-2h-furan-3-yl)ethyl]-hexahydrospiro[naphthalene-1,2'-oxiran]-2-yl 2-methylbutanoate
(1r,4s,4ar,5s,6r,8s,8ar)-5-[(2s,3ar,6as)-hexahydrofuro[2,3-b]furan-2-yl]-8-(acetyloxy)-8a-[(acetyloxy)methyl]-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-4-yl 2-methylbutanoate
4-(3-{3a,7,8,11-tetrahydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-3-hydroxy-2-oxobutyl)-3,5-dimethyloxolan-2-one
(2s,3r,4ar,5s,6r,8s,8ar)-5-[(3as,6as)-2h,3h,3ah,6ah-furo[2,3-b]furan-2-yl]-8-(acetyloxy)-8a-[(acetyloxy)methyl]-3-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-2-yl 2-methylpropanoate
2-{[(4as,7s)-4a,5,7-trihydroxy-7-methyl-1h,5h,6h,7ah-cyclopenta[c]pyran-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
C15H24O10 (364.13694039999996)