Gene Association: SYNM

UniProt Search: SYNM (PROTEIN_CODING)
Function Description: synemin

found 102 associated metabolites with current gene based on the text mining result from the pubmed database.

Sudan_I

1-[(Z)-2-Phenylhydrazin-1-ylidene]naphthalen-2(1H)-one

C16H12N2O (248.095)


C.i. solvent yellow 14 appears as dark reddish-yellow leaflets or orange powder. Slight odor. (NTP, 1992) Sudan I is a monoazo compound. It has a role as a dye. It is functionally related to a 2-naphthol. D009676 - Noxae > D002273 - Carcinogens D004396 - Coloring Agents CONFIDENCE standard compound; INTERNAL_ID 5651

   

Dioscin

(2S,3R,4R,5R,6S)-2-[(2R,3S,4S,5R,6R)-4-hydroxy-2-(hydroxymethyl)-6-[(1S,2S,4S,5R,6R,7S,8R,9S,12S,13R,16S)-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icos-18-ene-6,2-oxane]-16-yl]oxy-5-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-3-yl]oxy-6-methyloxane-3,4,5-triol

C45H72O16 (868.482)


Dioscin is a spirostanyl glycoside that consists of the trisaccharide alpha-L-Rha-(1->4)-[alpha-L-Rha-(1->2)]-beta-D-Glc attached to position 3 of diosgenin via a glycosidic linkage. It has a role as a metabolite, an antifungal agent, an antiviral agent, an antineoplastic agent, an anti-inflammatory agent, a hepatoprotective agent, an apoptosis inducer and an EC 1.14.18.1 (tyrosinase) inhibitor. It is a spirostanyl glycoside, a spiroketal, a hexacyclic triterpenoid and a trisaccharide derivative. It is functionally related to a diosgenin. It derives from a hydride of a spirostan. Dioscin is a natural product found in Ophiopogon intermedius, Dracaena draco, and other organisms with data available. See also: Dioscorea polystachya tuber (part of). A spirostanyl glycoside that consists of the trisaccharide alpha-L-Rha-(1->4)-[alpha-L-Rha-(1->2)]-beta-D-Glc attached to position 3 of diosgenin via a glycosidic linkage. Dioscin is a member of the class of compounds known as steroidal saponins. Steroidal saponins are saponins in which the aglycone moiety is a steroid. The steroidal aglycone is usually a spirostane, furostane, spirosolane, solanidane, or curcubitacin derivative. Dioscin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Dioscin can be found in fenugreek and yam, which makes dioscin a potential biomarker for the consumption of these food products. [Raw Data] CBA65_Dioscin_pos_30eV.txt [Raw Data] CBA65_Dioscin_pos_20eV.txt [Raw Data] CBA65_Dioscin_pos_10eV.txt [Raw Data] CBA65_Dioscin_pos_50eV.txt [Raw Data] CBA65_Dioscin_pos_40eV.txt Dioscin (CCRIS 4123; Collettiside III) is a natural plant-derived steroidal saponin that has good anti-cancer activity against a variety of cancer cells. Dioscin (CCRIS 4123; Collettiside III) is a natural plant-derived steroidal saponin that has good anti-cancer activity against a variety of cancer cells.

   

Orientin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-8-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C21H20O11 (448.1006)


Orientin is a C-glycosyl compound that is luteolin substituted by a beta-D-glucopyranosyl moiety at position 8. It has a role as an antioxidant and a metabolite. It is a C-glycosyl compound, a tetrahydroxyflavone and a 3-hydroxyflavonoid. It is functionally related to a luteolin. Orientin is a natural product found in Itea chinensis, Vellozia epidendroides, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of); Acai fruit pulp (part of). Orientin is found in barley. Orientin is isolated from Hordeum vulgare (barley) and Passiflora incarnata (maypops).Orientin is a flavone, a chemical flavonoid-like compound found in the passion flower, the palm and Anadenanthera peregrina. Orientin is also reported in millets and in the Phyllostachys nigra bamboo leaves Isolated from Hordeum vulgare (barley) and Passiflora incarnata (maypops) [Raw Data] CBA20_Orientin_pos_40eV_1-2_01_1380.txt [Raw Data] CBA20_Orientin_neg_20eV_1-2_01_1405.txt [Raw Data] CBA20_Orientin_neg_50eV_1-2_01_1408.txt [Raw Data] CBA20_Orientin_neg_40eV_1-2_01_1407.txt [Raw Data] CBA20_Orientin_pos_50eV_1-2_01_1381.txt [Raw Data] CBA20_Orientin_neg_30eV_1-2_01_1406.txt [Raw Data] CBA20_Orientin_pos_20eV_1-2_01_1378.txt [Raw Data] CBA20_Orientin_pos_30eV_1-2_01_1379.txt [Raw Data] CBA20_Orientin_pos_10eV_1-2_01_1353.txt [Raw Data] CBA20_Orientin_neg_10eV_1-2_01_1364.txt Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2]. Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2].

   

Astragaloside I

[(2S,3R,4S,5R)-3-acetyloxy-5-hydroxy-2-[[(1S,3R,6S,8R,9S,11S,12S,14S,15R,16R)-14-hydroxy-15-[(2R,5S)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-7,7,12,16-tetramethyl-9-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-pentacyclo[9.7.0.01,3.03,8.012,16]octadecanyl]oxy]oxan-4-yl] acetate

C45H72O16 (868.482)


Astragaloside I is a triterpenoid saponin that is cycloastragenol glycosylated at positions 3 and 6 by 2,3-di-O-acetyl-beta-D-xylosyl and beta-D-glucosyl residues respectively. It has a role as a plant metabolite. It is a triterpenoid saponin, a monosaccharide derivative, a beta-D-glucoside, a member of oxolanes and a pentacyclic triterpenoid. It is functionally related to a cycloastragenol. Astrasieversianin IV is a natural product found in Astragalus hoantchy, Astragalus lehmannianus, and other organisms with data available. See also: Astragalus propinquus root (part of). A triterpenoid saponin that is cycloastragenol glycosylated at positions 3 and 6 by 2,3-di-O-acetyl-beta-D-xylosyl and beta-D-glucosyl residues respectively. Astragaloside I, one of the main active ingredients in Astragalus membranaceus, has osteogenic properties. Astragaloside I stimulates osteoblast differentiation through the Wnt/β-catenin signaling pathway[1]. Astragaloside I, one of the main active ingredients in Astragalus membranaceus, has osteogenic properties. Astragaloside I stimulates osteoblast differentiation through the Wnt/β-catenin signaling pathway[1].

   

Cedorol

Cedrol;[3R-(3alpha,3abeta,6alpha,7beta,8aalpha)]-octahydro-3,6,8,8-tetramethyl-1H-3a,7-methanoazulen-6-ol

C15H26O (222.1984)


Cedrol, also known as alpha-cedrol or (+)-cedrol, is a member of the class of compounds known as cedrane and isocedrane sesquiterpenoids. Cedrane and isocedrane sesquiterpenoids are sesquiternoids with a structure based on the cedrane or the isocedrane skeleton. Cedrane is a tricyclic molecules a 3,6,8,8-tetramethyl-1H-3a,7-methano-azulene moiety. Isocedrane is a rearranged cedrane arising from the migration of methyl group moved from the 6-position to the 4-position. Thus, cedrol is considered to be an isoprenoid lipid molecule. Cedrol is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Cedrol can be found in ginger, which makes cedrol a potential biomarker for the consumption of this food product. Cedrol is a sesquiterpene alcohol found in the essential oil of conifers (cedar oil), especially in the genera Cupressus (cypress) and Juniperus (juniper). It has also been identified in Origanum onites, a plant related to oregano. Its main uses are in the chemistry of aroma compounds. It makes up about 19\\\\% of cedarwood oil Texas and 15.8\\\\% of cedarwood oil Virginia . Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2]. Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2].

   

2-Hydroxycinnamic acid

(2E)-3-(2-hydroxyphenyl)prop-2-enoic acid

C9H8O3 (164.0473)


2-coumaric acid, also known as o-coumaric acid, is a monohydroxycinnamic acid in which the hydroxy substituent is located at C-2 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 2-coumarate. It is a hydroxycinnamic acid, an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers of coumaric acids: o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. 2-Hydroxycinnamic acid belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. 2-Hydroxycinnamic acid exists in all living organisms, ranging from bacteria to humans. 2-Hydroxycinnamic acid has been found in a few different foods, such as corns, hard wheats, and olives and in a lower concentration in pomegranates, american cranberries, and peanuts. 2-Hydroxycinnamic acid has also been detected, but not quantified in several different foods, such as carrots, soy beans, ryes, rye bread, and turmerics. Coumaric acid is a hydroxycinnamic acid, an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers, o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. o-Coumaric acid is found in many foods, some of which are common wheat, date, bilberry, and corn. 2-coumaric acid is a monohydroxycinnamic acid in which the hydroxy substituent is located at C-2 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 2-coumarate. 2-Hydroxycinnamic acid is a natural product found in Mikania glomerata, Coffea arabica, and other organisms with data available. See also: Ipomoea aquatica leaf (part of). The trans-isomer of 2-coumaric acid. o-Coumaric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=583-17-5 (retrieved 2024-07-01) (CAS RN: 583-17-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Acetochlor

2-chloranyl-N-(ethoxymethyl)-N-(2-ethyl-6-methyl-phenyl)ethanamide

C14H20ClNO2 (269.1182)


CONFIDENCE standard compound; INTERNAL_ID 1174; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9499; ORIGINAL_PRECURSOR_SCAN_NO 9495 CONFIDENCE standard compound; INTERNAL_ID 1174; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9451; ORIGINAL_PRECURSOR_SCAN_NO 9447 CONFIDENCE standard compound; INTERNAL_ID 1174; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9445; ORIGINAL_PRECURSOR_SCAN_NO 9442 CONFIDENCE standard compound; INTERNAL_ID 1174; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9479; ORIGINAL_PRECURSOR_SCAN_NO 9474 CONFIDENCE standard compound; INTERNAL_ID 1174; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9585; ORIGINAL_PRECURSOR_SCAN_NO 9582 CONFIDENCE standard compound; INTERNAL_ID 1174; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9473; ORIGINAL_PRECURSOR_SCAN_NO 9469 CONFIDENCE standard compound; EAWAG_UCHEM_ID 104 CONFIDENCE standard compound; INTERNAL_ID 8482 CONFIDENCE standard compound; INTERNAL_ID 3221 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

L-Histidinol

(2S)-2-amino-3-(1H-imidazol-5-yl)propan-1-ol

C6H11N3O (141.0902)


L-Histidinol, a structural analogue of the essential amino acid L-histidine, enhances the toxicity of a variety of anticancer drugs for many tumour cells of animal origin (PMID:8297120). L-Histidinol inhibits human myristoyl-CoA:protein-myristoyltransferase (hNMT), an essential eukaryotic enzyme that catalyzes the cotranslational transfer of myristate into the NH2-terminal glycine residue of a number of important proteins of diverse function (PMID:9778369). L-Histidinol, a structural analogue of the essential amino acid L-histidine, enhances the toxicity of a variety of anticancer drugs for many tumor cells of animal origin. (PMID 8297120)

   

N,N-Dimethylaniline

N,N-DIMETHYLANILINE HYDROCHLORIDE

C8H11N (121.0891)


N,N-Dimethylaniline, also known as dimethylaminobenzene or dimethylphenylamine, belongs to the class of organic compounds known as dialkylarylamines. These are aliphatic aromatic amines in which the amino group is linked to two aliphatic chains and one aromatic group. N,N-dimethylaniline is a tertiary amine that is aniline in which the amino hydrogens are replaced by two methyl groups. It is a tertiary amine and a dimethylaniline. N,N-dimethylaniline appears as a yellow to brown colored oily liquid with a fishlike odor. It is less dense than water and insoluble in water. Its flash point is 150 °F, and is toxic by ingestion, inhalation, and skin absorption. N,N-Dimethylaniline was used to make dyes and as a solvent. Outside of the human body, N,N-Dimethylaniline has been detected, but not quantified in several different foods, such as common mushrooms, strawberries, feijoa, limes, and black-eyed pea. the structural formula shown is also known as N,N-dimethylaniline -- Wikipedia; Dimethylaniline (C8H11N) is an organic chemical compound which is a substituted derivative of aniline. It consists of a benzene ring and a substituted amino group, making it a tertiary aromatic amine. -- Wikipedia; N,N-Dimethylaniline (DMA) is an organic chemical compound, a substituted derivative of aniline. It consists of a tertiary amine, featuring dimethylamino group attached to a phenyl group. This oily liquid is colourless when pure, but commercial samples are often yellow. N,N-Dimethylaniline is found in many foods, some of which are fennel, rose hip, black elderberry, and maitake. KEIO_ID D032

   

4-(Dimethylamino)azobenzene

N,N-dimethyl-4-[(Z)-2-phenyldiazen-1-yl]aniline

C14H15N3 (225.1266)


4-(Dimethylamino)azobenzene is formerly used as a food dye, use discontinued.Methyl yellow, or C.I. 11020, is a chemical compound which may be used as a pH indicator. In aqueous solution at low pH, methyl yellow appears red. Between pH 2.9 and 4.0, methyl yellow undergoes a transition, to become yellow above pH 4.0. As "butter yellow" the agent had been used as a food additive before its toxicity was recognized (Opie EL). (Wikipedia Formerly used as a food dye, use discontinued D009676 - Noxae > D002273 - Carcinogens D004396 - Coloring Agents

   

Phenacetin

N-(4-ethoxyphenyl)acetamide

C10H13NO2 (179.0946)


CONFIDENCE standard compound; INTERNAL_ID 800; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7488; ORIGINAL_PRECURSOR_SCAN_NO 7485 CONFIDENCE standard compound; INTERNAL_ID 800; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7488; ORIGINAL_PRECURSOR_SCAN_NO 7486 CONFIDENCE standard compound; INTERNAL_ID 800; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7450; ORIGINAL_PRECURSOR_SCAN_NO 7449 CONFIDENCE standard compound; INTERNAL_ID 800; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7440; ORIGINAL_PRECURSOR_SCAN_NO 7439 CONFIDENCE standard compound; INTERNAL_ID 800; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7504; ORIGINAL_PRECURSOR_SCAN_NO 7499 CONFIDENCE standard compound; INTERNAL_ID 800; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7480; ORIGINAL_PRECURSOR_SCAN_NO 7478 N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BE - Anilides D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics [Raw Data] CBA18_Phenacetin_pos_40eV_1-10_01_709.txt [Raw Data] CBA18_Phenacetin_pos_20eV_1-10_01_707.txt [Raw Data] CBA18_Phenacetin_pos_10eV_1-10_01_706.txt [Raw Data] CBA18_Phenacetin_pos_50eV_1-10_01_710.txt [Raw Data] CBA18_Phenacetin_pos_30eV_1-10_01_708.txt

   

N-acetylaspartate (NAA)

N-Acetylaspartate, monopotassium salt

C6H9NO5 (175.0481)


N-Acetyl-L-Aspartic acid (NAA) or N-Acetylaspartic acid, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-alpha-Acetyl-L-aspartic acid can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetyl-L-aspartic acid is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-aspartic acid. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\% of all human proteins and 68\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetylaspartate can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free aspartic acid can also occur. In particular, N-Acetyl-L-aspartic acid can be synthesized in neurons from the amino acid aspartate and acetyl coenzyme A (acetyl CoA). Specifically, the enzyme known as aspartate N-acetyltransferase (EC 2.3.1.17) catalyzes the transfer of the acetyl group of acetyl CoA to the amino group of aspartate. N-Acetyl-L-aspartic acid is the second most concentrated molecule in the brain after the amino acid glutamate. The various functions served by N-acetylaspartic acid are still under investigation, but the primary proposed functions include (1) acting as a neuronal osmolyte that is involved in fluid balance in the brain, (2) serving as a source of acetate for lipid and myelin synthesis in oligodendrocytes (the glial cells that myelinate neuronal axons), (3) serving as a precursor for the synthesis of the important dipeptide neurotransmitter N-acetylaspartylglutamate (NAAG), and (4) playing a potential role in energy production from the amino acid glutamate in neuronal mitochondria. High neurotransmitter (i.e. N-acetylaspartic acid) levels can lead to abnormal neural signaling, delayed or arrested intellectual development, and difficulties with general motor skills. When present in sufficiently high levels, N-acetylaspartic acid can be a neurotoxin, an acidogen, and a metabotoxin. A neurotoxin is a compound that disrupts or attacks neural tissue. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of N-acetylaspartic acid are associated with Canavan disease. Because N-acetylaspartic acid functions as an organic acid and high levels of organic acids can lead to a condition known... N-Acetylaspartic acid is a derivative of aspartic acid. It is the second most concentrated molecule in the brain after the amino acid glutamate. It is synthesized in neurons from the amino acid aspartate and acetyl coenzyme A. The various functions served by N-acetylaspartic acid are still under investigation, but the primary proposed functions include: Acquisition and generation of the data is financially supported in part by CREST/JST. D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids KEIO_ID A142 N-Acetyl-L-aspartic acid is a derivative of aspartic acid.

   

Naproxen

(+)-(S)-6-Methoxy-alpha-methyl-2-naphthaleneacetic acid

C14H14O3 (230.0943)


Naproxen (INN) is a non-steroidal anti-inflammatory drug (NSAID) commonly used for the reduction of mild to moderate pain, fever, inflammation and stiffness caused by conditions such as osteoarthritis, rheumatoid arthritis, psoriatic arthritis, gout, ankylosing spondylitis, injury (like fractures), menstrual cramps, tendonitis, bursitis, and the treatment of primary dysmenorrhea. Naproxen and naproxen sodium are marketed under various trade names including: Aleve, Anaprox, Naprogesic, Naprosyn, Naprelan; Naproxen is a non-steroidal anti-inflammatory drug (NSAID) commonly used for the reduction of mild to moderate pain, fever, inflammation and stiffness caused by conditions such as osteoarthritis, rheumatoid arthritis, psoriatic arthritis, gout, ankylosing spondylitis, injury (like fractures), menstrual cramps, tendonitis, bursitis, and the treatment of primary dysmenorrhea. Naproxen and naproxen sodium are marketed under various trade names including: Aleve, Anaprox, Naprogesic, Naprosyn, Naprelan. Naproxen was first marketed as the prescription drug Naprosyn in 1976 and naproxen sodium was first marketed under the trade name Anaprox in 1980. It remains a prescription-only drug in much of the world. The U.S. Food and Drug Administration (FDA) approved the use of naproxen sodium as an over-the-counter (OTC) drug in 1991, where OTC preparations are sold under the trade name Aleve. In Australia, small packets of lower-strength preparations of naproxen sodium are Schedule 2 Pharmacy Medicines; Naproxen is a member of the 2-arylpropionic acid (profen) family of NSAIDs. It is an odorless, white to off-white crystalline substance. It is lipid-soluble, practically insoluble in water with a low pH (below pH 4), while freely soluble in water at 6 pH and above. Naproxen has a melting point of 153 degree centigrade. Naproxen (INN) is a non-steroidal anti-inflammatory drug (NSAID) commonly used for the reduction of mild to moderate pain, fever, inflammation and stiffness caused by conditions such as osteoarthritis, rheumatoid arthritis, psoriatic arthritis, gout, ankylosing spondylitis, injury (like fractures), menstrual cramps, tendonitis, bursitis, and the treatment of primary dysmenorrhea. Naproxen and naproxen sodium are marketed under various trade names including: Aleve, Anaprox, Naprogesic, Naprosyn, Naprelan; Naproxen is a non-steroidal anti-inflammatory drug (NSAID) commonly used for the reduction of mild to moderate pain, fever, inflammation and stiffness caused by conditions such as osteoarthritis, rheumatoid arthritis, psoriatic arthritis, gout, ankylosing spondylitis, injury (like fractures), menstrual cramps, tendonitis, bursitis, and the treatment of primary dysmenorrhea. Naproxen and naproxen sodium are marketed under various trade names including: Aleve, Anaprox, Naprogesic, Naprosyn, Naprelan. M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02C - Other gynecologicals > G02CC - Antiinflammatory products for vaginal administration D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D018501 - Antirheumatic Agents > D006074 - Gout Suppressants C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents KEIO_ID N018; [MS2] KO009075 D004791 - Enzyme Inhibitors KEIO_ID N018 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Pyridazine-3,6-diol

1,2,3,6-tetrahydropyridazine-3,6-dione

C4H4N2O2 (112.0273)


D006133 - Growth Substances > D010937 - Plant Growth Regulators D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

7-Methylguanine

2-Amino-1,7-dihydroxy-7-methyl-6H-purine-6-one

C6H7N5O (165.0651)


7-Methylguanine is a metabolite of DNA methylation and depurination observed in normal human biofluids; however, it has been found significantly higher in the urine of smokers than in nonsmokers. (PMID 16059882). 7-Methylguanine has been identified in the human placenta (PMID: 32033212). 7-Methylguanine is a metabolite of DNA methylation and depurination observed in normal human biofluids; however, it has been found significantly higher in the urine of smokers than in nonsmokers. (PMID 16059882) [HMDB] KEIO_ID M043

   

Aflatoxin B1

(3S,7R)-11-methoxy-6,8,19-trioxapentacyclo[10.7.0.0^{2,9}.0^{3,7}.0^{13,17}]nonadeca-1(12),2(9),4,10,13(17)-pentaene-16,18-dione

C17H12O6 (312.0634)


Aflatoxins are naturally occurring mycotoxins that are produced by many species of Aspergillus, a fungus. At least 13 different types of aflatoxin are produced in nature. Aflatoxin B1 is considered the most toxic and is produced by both Aspergillus flavus and Aspergillus parasiticus. The native habitat of Aspergillus is in soil, decaying vegetation, hay, and grains undergoing microbiological deterioration and it invades all types of organic substrates whenever conditions are favourable for its growth. Favourable conditions include high moisture content (at least 7\\\%) and high temperature. Aflatoxins B1 (AFB1) are contaminants of improperly stored foods; they are potent genotoxic and carcinogenic compounds, exerting their effects through damage to DNA. They can also induce mutations that increase oxidative damage (PMID: 17214555). Crops which are frequently affected by Aspergillus contamination include cereals (maize, sorghum, pearl millet, rice, wheat), oilseeds (peanut, soybean, sunflower, cotton), spices (chile peppers, black pepper, coriander, turmeric, ginger), and tree nuts (almond, pistachio, walnut, coconut, brazil nut). Production by Aspergillus flavus and Aspergillus parasiticus. Toxin causing Turkey X disease. One of the most potent carcinogens known in animals. Potential food contaminant especies in grains and nuts D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D000348 - Aflatoxins Aflatoxin B1 (AFB1) is a Class 1A carcinogen, which is a secondary metabolite of Aspergillus flavus and A. parasiticus. Aflatoxin B1 (AFB1) mainly induces the transversion of G-->T in the third position of codon 249 of the p53 tumor suppressor gene, resulting in mutation[1][2].

   

Diazoxide

7-chloro-3-methyl-4H-1λ⁶,2,4-benzothiadiazine-1,1-dione

C8H7ClN2O2S (229.9917)


Diazoxide is only found in individuals that have used or taken this drug. It is a benzothiadiazine derivative that is a peripheral vasodilator used for hypertensive emergencies. It lacks diuretic effect, apparently because it lacks a sulfonamide group. [PubChem]As a diuretic, diazoxide inhibits active chloride reabsorption at the early distal tubule via the Na-Cl cotransporter, resulting in an increase in the excretion of sodium, chloride, and water. Thiazides like diazoxide also inhibit sodium ion transport across the renal tubular epithelium through binding to the thiazide sensitive sodium-chloride transporter. This results in an increase in potassium excretion via the sodium-potassium exchange mechanism. The antihypertensive mechanism of diazoxide is less well understood although it may be mediated through its action on carbonic anhydrases in the smooth muscle or through its action on the large-conductance calcium-activated potassium (KCa) channel, also found in the smooth muscle. As a antihypoglycemic, diazoxide inhibits insulin release from the pancreas, probably by opening potassium channels in the beta cell membrane. V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AH - Drugs for treatment of hypoglycemia C - Cardiovascular system > C02 - Antihypertensives > C02D - Arteriolar smooth muscle, agents acting on > C02DA - Thiazide derivatives C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents KEIO_ID D051; [MS2] KO008936 KEIO_ID D051

   

Phenobarbital

5-Ethyl-5-phenylpyrimidine-2,4,6(1H,3H,5H)-trione

C12H12N2O3 (232.0848)


Phenobarbital is only found in individuals that have used or taken this drug. It is a barbituric acid derivative that acts as a nonselective central nervous system depressant.Phenobarbital acts on GABAA receptors, increasing synaptic inhibition. This has the effect of elevating seizure threshold and reducing the spread of seizure activity from a seizure focus. Phenobarbital may also inhibit calcium channels, resulting in a decrease in excitatory transmitter release. The sedative-hypnotic effects of phenobarbital are likely the result of its effect on the polysynaptic midbrain reticular formation, which controls CNS arousal. Phenobarbital appears as odorless white crystalline powder or colorless crystals. A saturated aqueous solution is acid to litmus (approximately pH 5). Slightly bitter taste. (NTP, 1992) Phenobarbital is a member of the class of barbiturates, the structure of which is that of barbituric acid substituted at C-5 by ethyl and phenyl groups. It has a role as an anticonvulsant, a sedative, an excitatory amino acid antagonist and a drug allergen. Phenobarbital is a DEA Schedule IV controlled substance. Substances in the DEA Schedule IV have a low potential for abuse relative to substances in Schedule III. It is a Depressants substance. A barbituric acid derivative that acts as a nonselective central nervous system depressant. It promotes binding to inhibitory gamma-aminobutyric acid subtype receptors, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. Phenobarbital is a barbiturate that is widely used as a sedative and an antiseizure medication. Phenobarbital has been linked to rare instances of idiosyncratic liver injury that can be severe and even fatal. Phenobarbital is a long-acting barbituric acid derivative with antipsychotic property. Phenobarbital binds to and activates the gamma-aminobutyric acid (GABA)-A receptor, thereby mimicking the inhibitory actions of GABA in the brain. The activation effects of the phenobarbital-receptor-ionophore complex include increased frequency of chloride channel openings, membrane hyperpolarization and ultimately synaptic inhibition and decreased neuronal excitability. In addition, this agent inhibits glutamate induced depolarization. Phenobarbital is only found in individuals that have used or taken this drug. It is a barbituric acid derivative that acts as a nonselective central nervous system depressant. It promotes binding to inhibitory gamma-aminobutyric acid subtype receptors, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. [PubChem] Phenobarbital acts on GABAA receptors, increasing synaptic inhibition. This has the effect of elevating seizure threshold and reducing the spread of seizure activity from a seizure focus. Phenobarbital may also inhibit calcium channels, resulting in a decrease in excitatory transmitter release. The sedative-hypnotic effects of phenobarbital are likely the result of its effect on the polysynaptic midbrain reticular formation, which controls CNS arousal. A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations.

   

Ethoprophos

Phosphorodithioic acid, O-ethyl S,S-dipropyl ester

C8H19O2PS2 (242.0564)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 3651

   

N-Nitrosodibutylamine

N-Nitrosodibutylamine (NDBA)

C8H18N2O (158.1419)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 3460 D009676 - Noxae > D002273 - Carcinogens

   

N-NITROSODIPHENYLAMINE

N-Nitrosodiphenylamine, 14C-labeled

C12H10N2O (198.0793)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 3355 D009676 - Noxae > D002273 - Carcinogens

   

Psilocybine

3-(2-(Dimethylamino)ethyl)-1H-indol-4-ol dihydrogen phosphoric acid ester

C12H17N2O4P (284.0926)


D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

N-Nitrosodimethylamine

N-Methyl-N-nitrosomethanamine, 9ci

C2H6N2O (74.048)


N-Nitrosodimethylamine is found in pepper (Capsicum annuum). N-Nitrosodimethylamine is a food contaminant especially in cured meat products. N-Nitrosodimethylamine (NDMA), also known as dimethylnitrosamine (DMN), is a semi-volatile organic chemical that is highly toxic and is a suspected human carcinogen. The US Environmental Protection Agency has determined that the maximum admissible concentration of NDMA in drinking water is 7 ng L 1. The EPA has not yet set a regulatory maximum contaminant level (MCL) for drinking water. At high doses, it is a "potent hepatotoxin that can cause fibrosis of the liver" in rats. The induction of liver tumors in rats after chronic exposure to low doses is well-documented. Its toxic effects on humans are inferred from animal experiments but not well-established experimentally. NDMA is an industrial by-product or waste product of several industrial processes. It first came to attention as a groundwater contaminant in California in 1998 and 1999 at several sites that produced rocket fuel. Manufacturing of unsymmetrical dimethylhydrazine (UDMH), which is a component of rocket fuel that requires NDMA for its synthesis, proved to be the culprit in these cases. Of more general concern, water treatment via chlorination or chloramination of organic nitrogen-containing wastewater can lead to the production of NDMA at potentially harmful levels. Further, NDMA can form or be leached during treatment of water by anion exchange resins. Finally, NDMA is found at low levels in numerous items of human consumption including cured meat, fish, beer, and tobacco smoke, it is, however, unlikely to bioaccumulate CONFIDENCE standard compound; EAWAG_UCHEM_ID 3447 Food contaminant especies in cured meat products

   

Diethylnitrosamine

N-Nitrosodiethylamine (NDEA)

C4H10N2O (102.0793)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 3452 D009676 - Noxae > D000477 - Alkylating Agents N-Nitrosodiethylamine (Diethylnitrosamine) is a potent hepatocarcinogenic dialkylnitrosoamine. N-Nitrosodiethylamine is mainly present in tobacco smoke, water, cheddar cheese, cured, fried meals and many alcoholic beverages. N-Nitrosodiethylamine is responsible for the changes in the nuclear enzymes associated with DNA repair/replication. N-Nitrosodiethylamine results in various tumors in all animal species. The main target organs are the nasal cavity, trachea, lung, esophagus and liver.

   

N-Nitrosodipropylamine

1-Propanamine,N-nitroso-N-propyl-

C6H14N2O (130.1106)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 3456 D009676 - Noxae > D002273 - Carcinogens

   

N-NITROSOMETHYLETHYLAMINE

N-Nitrosomethylethylamine (NMEA)

C3H8N2O (88.0637)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 3449

   

N-NITROSOMORPHOLINE

alpha-Acetoxy-N-nitrosomorpholine

C4H8N2O2 (116.0586)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 3454 CONFIDENCE standard compound; INTERNAL_ID 4127 CONFIDENCE standard compound; INTERNAL_ID 8689 D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens

   

N-Nitroso-pyrrolidine

tetrahydro-N-nitroso-Pyrrole

C4H8N2O (100.0637)


N-Nitroso-pyrrolidine belongs to the class of organic compounds known as pyrrolidines. Pyrrolidines are compounds containing a pyrrolidine ring, which is a five-membered saturated aliphatic heterocycle with one nitrogen atom and four carbon atoms. N-Nitroso-pyrrolidine has been detected, but not quantified, in several different foods, such as green bell peppers, orange bell peppers, pepper (c. annuum), red bell peppers, and yellow bell peppers. This could make N-nitroso-pyrrolidine a potential biomarker for the consumption of these foods. CONFIDENCE standard compound; EAWAG_UCHEM_ID 3450 Found in fried bacon

   

N-Nitrosopiperidine

N-Nitrosopentamethyleneimine

C5H10N2O (114.0793)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 3453 D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens

   

2-Aminoanthracene

beta-Aminoanthracene

C14H11N (193.0891)


CONFIDENCE standard compound; INTERNAL_ID 8008 D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens

   

2-Acetylaminofluorene

N-(9H-fluoren-2-yl)ethanimidic acid

C15H13NO (223.0997)


D009676 - Noxae > D002273 - Carcinogens

   

Procarbazine

4-[(2-methylhydrazin-1-yl)methyl]-N-(propan-2-yl)benzamide

C12H19N3O (221.1528)


Procarbazine is only found in individuals that have used or taken this drug. It is an antineoplastic agent used primarily in combination with mechlorethamine, vincristine, and prednisone (the MOPP protocol) in the treatment of Hodgkins disease. [PubChem]The precise mode of cytotoxic action of procarbazine has not been clearly defined. There is evidence that the drug may act by inhibition of protein, RNA and DNA synthesis. Studies have suggested that procarbazine may inhibit transmethylation of methyl groups of methionine into t-RNA. The absence of functional t-RNA could cause the cessation of protein synthesis and consequently DNA and RNA synthesis. In addition, procarbazine may directly damage DNA. Hydrogen peroxide, formed during the auto-oxidation of the drug, may attack protein sulfhydryl groups contained in residual protein which is tightly bound to DNA. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01X - Other antineoplastic agents > L01XB - Methylhydrazines C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000970 - Antineoplastic Agents

   

Isopropyl alcohol

1-Methylethyl alcohol

C3H8O (60.0575)


Isopropyl alcohol, also known as isopropanol or 1-methylethanol, belongs to the class of organic compounds known as secondary alcohols. Secondary alcohols are compounds containing a secondary alcohol functional group, with the general structure HOC(R)(R) (R,R=alkyl, aryl). It is used in the manufacture of acetone and its derivatives and as a solvent. Isopropyl alcohol exists in all living species, ranging from bacteria to humans. Isopropyl alcohol is an alcohol, bitter, and musty tasting compound. Isopropyl alcohol has also been detected, but not quantified in several different foods, such as papaya, roselles, apples, sweet cherries, and allium (onion). Isopropyl alcohol is an isomer of 1-propanol and is considered as a potentially toxic compound. Topically, it is used as an antiseptic. It is a colorless liquid having disinfectant properties. Present in fruit aromas, e.g. papaya (Carica papaya). It is used as an extraction solvent in food preparation D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants D012997 - Solvents

   

Nitric oxide

Endothelium-derived relaxing factor

NO (29.998)


The biologically active molecule nitric oxide (NO) is a simple, membrane-permeable gas with unique chemistry. It is formed by the conversion of L-arginine to L-citrulline, with the release of NO. The enzymatic oxidation of L-arginine to L-citrulline takes place in the presence of oxygen and NADPH using flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), heme, thiol, and tetrahydrobiopterin as cofactors. The enzyme responsible for the generation of NO is nitric oxide synthase (E.C. 1.7.99.7; NOS). Three NOS isoforms have been described and shown to be encoded on three distinct genes: neuronal NOS (nNOS, NOS type I), inducible NOS (NOS type II), and endothelial NOS (eNOS, NOS type III). Two of them are constitutively expressed and dependent on the presence of calcium ions and calmodulin to function (nNOS and eNOS), while iNOS is considered non-constitutive and calcium-independent. However, experience has shown that constitutive expression of nNOS and eNOS is not as rigid as previously thought (i.e. either present or absent), but can be dynamically controlled during development and in response to injury. Functionally, NO may act as a hormone, neurotransmitter, paracrine messenger, mediator, cytoprotective molecule, and cytotoxic molecule. NO has multiple cellular molecular targets. It influences the activity of transcription factors, modulates upstream signaling cascades, mRNA stability and translation, and processes the primary gene products. In the brain, many processes are linked to NO. NO activates its receptor, soluble guanylate cyclase by binding to it. The stimulation of this enzyme leads to increased synthesis of the second messenger, cGMP, which in turn activates cGMP-dependent kinases in target cells. NO exerts a strong influence on glutamatergic neurotransmission by directly interacting with the N-methyl-D-aspartate (NMDA) receptor. Neuronal NOS is connected to NMDA receptors (see below) and sharply increases NO production following activation of this receptor. Thus, the level of endogenously produced NO around NMDA synapses reflects the activity of glutamate-mediated neurotransmission. However, there is recent evidence showing that non-NMDA glutamate receptors (i.e. AMPA and type I metabotropic receptors) also contribute to NO generation. Besides its influence on glutamate, NO is known to have effects on the storage, uptake and/or release of most other neurotransmitters in the CNS (acetylcholine, dopamine, noradrenaline, GABA, taurine, and glycine) as well as of certain neuropeptides. Finally, since NO is a highly diffusible molecule, it may reach extrasynaptic receptors at target cell membranes that are some distance away from the place of NO synthesis. NO is thus capable of mediating both synaptic and nonsynaptic communication processes. NO is a potent vasodilator (a major endogenous regulator of vascular tone), and an important endothelium-dependent relaxing factor. NO is synthesized by NO synthases (NOS) and NOS are inhibited by asymmetrical dimethylarginine (ADMA). ADMA is metabolized by dimethylarginine dimethylaminohydrolase (DDAH) and excreted in the kidneys. Lower ADMA levels in pregnant women compared to non-pregnant controls suggest that ADMA has a role in vascular dilatation and blood pressure changes. Several studies show an increase in ADMA levels in pregnancies complicated with preeclampsia. Elevated ADMA levels in preeclampsia are seen before clinical symptoms have developed; these findings suggest that ADMA has a role in the pathogenesis of preeclampsia. In some pulmonary hypertensive states such as ARDS, the production of endogenous NO may be impaired. Nitric oxide inhalation selectively dilates the pulmonary circulation. Significant systemic vasodilation does not occur because NO is inactivated by rapidly binding to hemoglobin. In an injured lung with pulmonary hypertension, inhaled NO produces local vasodilation of well-ventilated lung units and may "steal" blood flow away from unventil... D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents > D045462 - Endothelium-Dependent Relaxing Factors D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D018377 - Neurotransmitter Agents > D064426 - Gasotransmitters D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants R - Respiratory system

   

NSC100044

O(6)-Methyl-2-deoxyguanosine

C11H15N5O4 (281.1124)


O6-Methyldeoxy guanosine; DNA adduct is a purine nucleoside analog. Purine nucleoside analogs have broad antitumor activity targeting indolent lymphoid malignancies. Anticancer mechanisms in this process rely on inhibition of DNA synthesis, induction of apoptosis, etc[1].

   

Vanylglycol

1-(4-hydroxy-3-methoxyphenyl)ethane-1,2-diol

C9H12O4 (184.0736)


Vanylglycol, also known as 3-Methoxy-4-hydroxyphenylethyleneglycol (MHPG), belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. It is synthesized from endogenous epinephrine and norepinephrine in vivo. It is found in brain, blood, CSF, and urine, where its concentrations are used to measure catecholamine turnover. Catecholamines play an important role in platelet activation and aggregation, epinephrine being the most potent one. Vanylglycol and pyrocatechol can be biosynthesized from 3,4-dihydroxyphenylglycol and guaiacol; which is catalyzed by the enzyme catechol O-methyltransferase. Vanylglycol is a O-methylated metabolite of normetanephrine. In humans, vanylglycol is involved in the metabolic disorder called tyrosinemia in newborns. Alcohol consumption increases the level of vanylglycol in urine and CSF. Vanylglycol is found normally in urine, in plasma and cerebrospinal fluid. Outside of the human body, vanylglycol has been detected, but not quantified in several different foods, such as blackcurrants, chinese bayberries, elderberries, oriental wheats, and poppies.

   
   

Ivalin

[3aR-(3aalpha,4aalpha,7alpha,8abeta,9aalpha)]-Decahydro-7-hydroxy-8a-methyl-3,5-bis(methylene)-naphtho[2,3-b]furan-2(3H)-one

C15H20O3 (248.1412)


   

vermeerin

4a,9-dimethyl-3-methylideneoctahydrofuro[2,3:5,6]cyclohepta[1,2-c]pyran-2,7(3h,4h)-dione

C15H20O4 (264.1362)


   

2,6-Dinitrotoluene

1-Methyl-2,6-dinitrobenzene

C7H6N2O4 (182.0328)


   

BROMOBENZENE

BROMOBENZENE

C6H5Br (155.9575)


The simplest member of the class of bromobenzenes, that is benzene in which a single hydrogen has been substituted by a bromine. A liquid at room temperature (m.p. -30degreeC; b.p.760 156degreeC), it is used as a solvent, particularly for large-scale crystallisations, and for the introduction of phenyl groups in organic synthesis.

   

1-Naphthaldehyde

1-Naphthalenecarboxaldehyde

C11H8O (156.0575)


1-naphthaldehyde, also known as alpha-naphthal or 1-formylnaphthalene, is a member of the class of compounds known as naphthalenes. Naphthalenes are compounds containing a naphthalene moiety, which consists of two fused benzene rings. 1-naphthaldehyde is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). 1-naphthaldehyde can be found in a number of food items such as black crowberry, devilfish, other soy product, and chinese bayberry, which makes 1-naphthaldehyde a potential biomarker for the consumption of these food products. This compound belongs to the family of Naphthalenes. These are compounds containing a naphthalene moiety, which consists of two fused benzene rings.

   

Mirex

1,2,3,4,5,5,6,7,8,9,10,10-Dodecachloropentacyclo[5.3.0.0(2,6).0(3,9).0(4,8)]decane

C10Cl12 (539.6262)


Mirex is a chlorinated hydrocarbon that was commercialized as an insecticide and later banned because of its impact on the environment. This white crystalline odorless solid is a derivative of cyclopentadiene. It was popularized to control fire ants but by virtue of its chemical robustness and lipophilicity it was recognized as a bioaccumulative pollutant. Ironically, the spread of the red imported fire ant was actually encouraged by the use of Mirex, which also kills native ants that are highly competitive with the fire ants. The United States Environmental Protection Agency prohibited its use in 1976.

   

1,2-Dimethylnaphthalene

1,2-DIMETHYLNAPHTHALENE

C12H12 (156.0939)


   

2,6-Dimethyl-naphtalene

2,6-Dimethylnaphthalene ion (1-)

C12H12 (156.0939)


2,6-Dimethyl-naphtalene belongs to the family of Naphthalenes. These are compounds containing a naphthalene moiety, which consists of two fused benzene rings. Flavouring compound [Flavornet]

   

Benzo[e]pyrene

pentacyclo[10.6.2.0^{2,7}.0^{8,20}.0^{15,19}]icosa-1(18),2,4,6,8,10,12(20),13,15(19),16-decaene

C20H12 (252.0939)


   

3-Methylcholanthrene

16-methylpentacyclo[11.6.1.0²,¹¹.0⁵,¹⁰.0¹⁷,²⁰]icosa-1,3,5,7,9,11,13(20),14,16-nonaene

C21H16 (268.1252)


   

Mesitylene

1,3,5-Trimethylbenzene (mesitylene)

C9H12 (120.0939)


Mesitylene or 1,3,5-trimethylbenzene is a derivative of benzene with three methyl substituents symmetrically placed on the ring. Isomeric trimethylbenzenes include hemimellitene (1,2,3-trimethylbenzene) and pseudocumene (1,2,4-trimethylbenzene). All three compounds have the formula C6H3(CH3)3, which is commonly abbreviated C6H3Me3. Mesitylene is a colourless liquid with sweet aromatic odor. It is a component of coal tar, which is its traditional source. It is a precursor to diverse fine chemicals. The mesityl group (Mes) is a substituent with the formula C6H3Me3.

   

1-Methyl-2-nitro-1-nitrosoguanidine

N-Methyl-n,2-dioxohydrazinecarboximidohydrazide 2-oxide

C2H5N5O3 (147.0392)


D009676 - Noxae > D009153 - Mutagens > D009604 - Nitrosoguanidines

   

N-Methyl-N-nitrosourea

N-(C-hydroxycarbonimidoyl)-N-nitrosomethanamine

C2H5N3O2 (103.0382)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D009676 - Noxae > D000477 - Alkylating Agents

   

N'-nitrosonornicotine

3-(1-nitrosopyrrolidin-2-yl)pyridine

C9H11N3O (177.0902)


N-nitrosonornicotine belongs to the family of Pyrrolidinylpyridines. These are compounds containing a pyrrolidinylpyridine ring system, which consists of a pyrrolidine ring linked to a pyridine ring. D009676 - Noxae > D002273 - Carcinogens

   

Dibenz[a,c]anthracene

pentacyclo[12.8.0.0^{2,7}.0^{8,13}.0^{16,21}]docosa-1(22),2,4,6,8,10,12,14,16,18,20-undecaene

C22H14 (278.1095)


   

Nitroxyl

Nitroxyl

HNO (31.0058)


D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D020011 - Protective Agents > D000975 - Antioxidants

   

Cedrol

(3R-(3.ALPHA.,3A.BETA.,6.ALPHA.,7.BETA.,8A.ALPHA.))-OCTAHYDRO-3,6,8,8-TETRAMETHYL-1H-3A,7-METHANOAZULEN-6-OL

C15H26O (222.1984)


Cedrol is a cedrane sesquiterpenoid and a tertiary alcohol. Cedrol is a natural product found in Xylopia aromatica, Widdringtonia whytei, and other organisms with data available. Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2]. Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2].

   

Histidinol

2-amino-3-(3H-imidazol-4-yl)propan-1-ol

C6H11N3O (141.0902)


   

Naproxen

2-(6-Methoxynaphthalen-2-yl)propanoic acid

C14H14O3 (230.0943)


M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02C - Other gynecologicals > G02CC - Antiinflammatory products for vaginal administration D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D018501 - Antirheumatic Agents > D006074 - Gout Suppressants C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor CONFIDENCE standard compound; EAWAG_UCHEM_ID 202 D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Lutexin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-8-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]chromen-4-one

C21H20O11 (448.1006)


Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2]. Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2].

   

N-Nitrosodiethylamine

InChI=1/C4H10N2O/c1-3-6(4-2)5-7/h3-4H2,1-2H

C4H10N2O (102.0793)


N-nitrosodiethylamine is a clear slightly yellow liquid. Boiling point 175-177 °C. Can reasonably be anticipated to be a carcinogen. Used as a gasoline and lubricant additive and as an antioxidant and stabilizer in plastics. N-nitrosodiethylamine is a nitrosamine that is N-ethylethanamine substituted by a nitroso group at the N-atom. It has a role as a mutagen, a hepatotoxic agent and a carcinogenic agent. N-Nitrosodiethylamine is a synthetic light-sensitive, volatile, clear yellow oil that is soluble in water, lipids, and other organic solvents. It is used as gasoline and lubricant additive, antioxidant, and stabilizer for industry materials. When heated to decomposition, N-nitrosodiethylamine emits toxic fumes of nitrogen oxides. N-Nitrosodiethylamine affects DNA integrity, probably by alkylation, and is used in experimental research to induce liver tumorigenesis. It is considered to be reasonably anticipated to be a human carcinogen. (NCI05) A nitrosamine derivative with alkylating, carcinogenic, and mutagenic properties. D009676 - Noxae > D000477 - Alkylating Agents N-Nitrosodiethylamine (Diethylnitrosamine) is a potent hepatocarcinogenic dialkylnitrosoamine. N-Nitrosodiethylamine is mainly present in tobacco smoke, water, cheddar cheese, cured, fried meals and many alcoholic beverages. N-Nitrosodiethylamine is responsible for the changes in the nuclear enzymes associated with DNA repair/replication. N-Nitrosodiethylamine results in various tumors in all animal species. The main target organs are the nasal cavity, trachea, lung, esophagus and liver.

   

Naproxen

2-(6-Methoxynaphthalen-2-yl)propanoic acid

C14H14O3 (230.0943)


M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02C - Other gynecologicals > G02CC - Antiinflammatory products for vaginal administration D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D018501 - Antirheumatic Agents > D006074 - Gout Suppressants C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 2651 CONFIDENCE standard compound; INTERNAL_ID 8544 CONFIDENCE standard compound; INTERNAL_ID 4066

   

Histidinol

Histidinol

C6H11N3O (141.0902)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.044 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.042 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.041 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.040

   

phenacetin

Phenacetin-d5

C10H13NO2 (179.0946)


N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BE - Anilides D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Orientin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-8-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C21H20O11 (448.1006)


Orientin is a C-glycosyl compound that is luteolin substituted by a beta-D-glucopyranosyl moiety at position 8. It has a role as an antioxidant and a metabolite. It is a C-glycosyl compound, a tetrahydroxyflavone and a 3-hydroxyflavonoid. It is functionally related to a luteolin. Orientin is a natural product found in Itea chinensis, Vellozia epidendroides, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of); Acai fruit pulp (part of). A C-glycosyl compound that is luteolin substituted by a beta-D-glucopyranosyl moiety at position 8. Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2]. Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2].

   

Aflatoxin B1

Aflatoxin B1 (putative_Observed from A. flavus)

C17H12O6 (312.0634)


An aflatoxin having a tetrahydrocyclopenta[c]furo[3,2:4,5]furo[2,3-h]chromene skeleton with oxygen functionality at positions 1, 4 and 11. D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D000348 - Aflatoxins CONFIDENCE standard compound; INTERNAL_ID 5962 CONFIDENCE Reference Standard (Level 1) Aflatoxin B1 (AFB1) is a Class 1A carcinogen, which is a secondary metabolite of Aspergillus flavus and A. parasiticus. Aflatoxin B1 (AFB1) mainly induces the transversion of G-->T in the third position of codon 249 of the p53 tumor suppressor gene, resulting in mutation[1][2].

   

N-acetyl-L-aspartic acid

N-acetyl-L-aspartic acid

C6H9NO5 (175.0481)


An N-acyl-L-aspartic acid in which the acyl group is specified as acetyl. D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; OTCCIMWXFLJLIA-BYPYZUCNSA-N_STSL_0218_N-Acetyl-L-aspartic acid_2000fmol_190326_S2_LC02MS02_065; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. N-Acetyl-L-aspartic acid is a derivative of aspartic acid.

   

L-Histidinol

L-Histidinol

C6H11N3O (141.0902)


An amino alcohol that is propanol substituted by 1H-imidazol-4-yl group at position 3 and an amino group at position 2 (the 2S stereoisomer).

   

isopropanol

Isopropyl alcohol

C3H8O (60.0575)


D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants D012997 - Solvents

   

7-Methylguanine

7-Methylguanine

C6H7N5O (165.0651)


   

N,N-dimethylaniline

N,N-dimethylaniline

C8H11N (121.0891)


   

Vanylglycol

Vanylglycol

C9H12O4 (184.0736)


   

procarbazine

procarbazine

C12H19N3O (221.1528)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01X - Other antineoplastic agents > L01XB - Methylhydrazines C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000970 - Antineoplastic Agents

   

phenobarbital

phenobarbital

C12H12N2O3 (232.0848)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AA - Barbiturates and derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D065693 - Cytochrome P-450 Enzyme Inducers > D065695 - Cytochrome P-450 CYP2B6 Inducers D065693 - Cytochrome P-450 Enzyme Inducers > D065701 - Cytochrome P-450 CYP3A Inducers D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

Sudan I

C.I. Solvent Yellow 14

C16H12N2O (248.095)


CONFIDENCE standard compound; INTERNAL_ID 297; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10862; ORIGINAL_PRECURSOR_SCAN_NO 10860 D009676 - Noxae > D002273 - Carcinogens D004396 - Coloring Agents CONFIDENCE standard compound; INTERNAL_ID 297; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10878; ORIGINAL_PRECURSOR_SCAN_NO 10876 CONFIDENCE standard compound; INTERNAL_ID 297; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10910; ORIGINAL_PRECURSOR_SCAN_NO 10908 CONFIDENCE standard compound; INTERNAL_ID 297; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10917; ORIGINAL_PRECURSOR_SCAN_NO 10916 CONFIDENCE standard compound; INTERNAL_ID 297; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10908; ORIGINAL_PRECURSOR_SCAN_NO 10905 CONFIDENCE standard compound; INTERNAL_ID 297; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10943; ORIGINAL_PRECURSOR_SCAN_NO 10942

   

2,6-DIMETHYLNAPHTHALENE

2,6-DIMETHYLNAPHTHALENE

C12H12 (156.0939)


   

naphthal

1-Formylnaphthalene

C11H8O (156.0575)


A naphthaldehyde with a formyl group at position 1.

   

Fleet-X

1,3,5-Trimethylbenzene [UN2325] [Flammable liquid]

C9H12 (120.0939)


   

Isohol

Isopropyl alcohol (only persons who manufacture by the strong acid process are subject, supplier notification not required)

C3H8O (60.0575)


D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants D012997 - Solvents

   

AI3-01876

Dimethylnaphthalene, mixture of isomers

C12H12 (156.0939)


   

N-NITROSOMORPHOLINE

N-NITROSOMORPHOLINE

C4H8N2O2 (116.0586)


D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens

   
   

N-Nitrosopyrrolidine

N-Nitrosopyrrolidine

C4H8N2O (100.0637)


   

1-Nitrosopiperidine

1-Nitrosopiperidine

C5H10N2O (114.0793)


A nitrosamine that is piperidine in which the hydrogen attached to the nitrogen is replaced by a nitroso group. One of the many carcinogens detected in cigarette smoke, it is found in meat, cheese and spices that have been treated with the preservative sodium nitrite. D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens

   

2-Acetamidofluorene

2-Acetylaminofluorene

C15H13NO (223.0997)


D009676 - Noxae > D002273 - Carcinogens

   

Psilocybine

Psilocybine

C12H17N2O4P (284.0926)


D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Methyl Yellow

4-(Dimethylamino)azobenzene

C14H15N3 (225.1266)


D009676 - Noxae > D002273 - Carcinogens D004396 - Coloring Agents

   

MALEIC HYDRAZIDE

MALEIC HYDRAZIDE

C4H4N2O2 (112.0273)


D006133 - Growth Substances > D010937 - Plant Growth Regulators D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

N-Nitrosodipropylamine

1-Propanamine,N-nitroso-N-propyl-

C6H14N2O (130.1106)


D009676 - Noxae > D002273 - Carcinogens

   

N-Nitrosodibutylamine

N-Nitrosodibutylamine

C8H18N2O (158.1419)


D009676 - Noxae > D002273 - Carcinogens

   

benzo[f]tetraphene

Dibenz[a,c]anthracene

C22H14 (278.1095)


   

O(6)-Methyl-2-deoxyguanosine

O(6)-Methyl-2-deoxyguanosine

C11H15N5O4 (281.1124)


O6-Methyldeoxy guanosine; DNA adduct is a purine nucleoside analog. Purine nucleoside analogs have broad antitumor activity targeting indolent lymphoid malignancies. Anticancer mechanisms in this process rely on inhibition of DNA synthesis, induction of apoptosis, etc[1].

   

1,3,5-Trimethylbenzene

1,3,5-Trimethylbenzene

C9H12 (120.0939)


   

acetochlor

acetochlor

C14H20ClNO2 (269.1182)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Dimethylnitrosamine

N-NITROSODIMETHYLAMINE

C2H6N2O (74.048)


   

2,6-DNT

2,6-DINITROTOLUENE

C7H6N2O4 (182.0328)


   

Methylnitronitrosoguanidine

N-Methyl-n-nitro-N-nitrosoguanidine

C2H5N5O3 (147.0392)


D009676 - Noxae > D009153 - Mutagens > D009604 - Nitrosoguanidines

   

N-Nitrosonornicotine

3-(1-nitrosopyrrolidin-2-yl)pyridine

C9H11N3O (177.0902)


D009676 - Noxae > D002273 - Carcinogens

   
   

3-methylcholanthrene

3-methylcholanthrene

C21H16 (268.1252)


   

1,2-Benzpyrene

1,2-Benzpyrene

C20H12 (252.0939)


   

Methylnitrosourea

N-Methyl-N-nitrosourea

C2H5N3O2 (103.0382)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D009676 - Noxae > D000477 - Alkylating Agents

   

2-Anthramine

2-Aminoanthracene

C14H11N (193.0891)


D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens

   

N-NITROSODIPHENYLAMINE

N-NITROSO-DIPHENYLAMINE

C12H10N2O (198.0793)


D009676 - Noxae > D002273 - Carcinogens

   

1,2-DIMETHYLNAPHTHALENE

1,2-DIMETHYLNAPHTHALENE

C12H12 (156.0939)