Gene Association: SLC9C1

UniProt Search: SLC9C1 (PROTEIN_CODING)
Function Description: solute carrier family 9 member C1

found 109 associated metabolites with current gene based on the text mining result from the pubmed database.

Elliptisine

5,11-dimethyl-6H-pyrido(4,3-b)carbazole

C17H14N2 (246.1157)


Ellipticine is a organic heterotetracyclic compound that is pyrido[4,3-b]carbazole carrying two methyl substituents at positions 5 and 11. It has a role as an antineoplastic agent and a plant metabolite. It is an organic heterotetracyclic compound, an organonitrogen heterocyclic compound, a polycyclic heteroarene and an indole alkaloid. Ellipticine (NSC 71795) is a potent antineoplastic agent; inhibits DNA topoisomerase II activities. Ellipticine (NSC 71795) is a potent antineoplastic agent; inhibits DNA topoisomerase II activities.

   

Harmaline

3H-Pyrido[3,4-b]indole, 4,9-dihydro-7-methoxy-1-methyl-

C13H14N2O (214.1106)


Harmaline is a harmala alkaloid in which the harman skeleton is methoxy-substituted at C-7 and has been reduced across the 3,4 bond. It has a role as a oneirogen. It derives from a hydride of a harman. Harmaline is a natural product found in Passiflora pilosicorona, Passiflora boenderi, and other organisms with data available. A beta-carboline alkaloid isolated from seeds of PEGANUM. A harmala alkaloid in which the harman skeleton is methoxy-substituted at C-7 and has been reduced across the 3,4 bond. Harmaline is found in fruits. Harmaline is an alkaloid from Passiflora incarnata (maypops D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H027; [MS2] KO008994 KEIO_ID H027

   

Melamine

2,4,6-triamino-1,3,5-triazine;melamine;1,3,5-triazine-2,4,6-triamine;[1,3,5]triazine-2,4,6-triamine;s-triazine, 4,6-diamino-1,2-dihydro-2-imino-;2,4,6-triamino-1,3,5-triazine melamine 1,3,5-triazine-2,4,6-triamine [1,3,5]triazine-2,4,6-triamine s-triazine, 4,6-diamino-1,2-dihydro-2-imino-

C3H6N6 (126.0654)


Melamine is an organic base and a trimer of cyanamide, with a 1,3,5-triazine skeleton. Like cyanamide, it contains 66\\\% nitrogen by mass and, if mixed with resins, has fire retardant properties due to its release of nitrogen gas when burned or charred, and has several other industrial uses. Melamine is also a metabolite of cyromazine, a pesticide. It is formed in the body of mammals who have ingested cyromazine. It has been reported that cyromazine can also be converted to melamine in plants. Melamine is combined with formaldehyde to produce melamine resin, a very durable thermosetting plastic used in Formica, and melamine foam, a polymeric cleaning product. The end products include countertops, dry erase boards, fabrics, glues, housewares, dinnerware, cooking spoons, guitar saddles, guitar nuts, acoustic foam paneling, and flame retardants. Melamine is one of the major components in Pigment Yellow 150, a colorant in inks and plastics. Melamine is sometimes illegally added to food products in order to increase the apparent protein content. Standard tests, such as the Kjeldahl and Dumas tests, estimate protein levels by measuring the nitrogen content, so they can be misled by adding nitrogen-rich compounds such as melamine.There is an instrument (SPRINT) developed by the company CEM Corp that allows the determination of protein content directly in some applications; this cannot be fooled by adding melamine in the sample. Ultrasound-assisted extractive electrospray ionization mass spectrometry (EESI-MS) has been developed at ETH Zurich (Switzerland) by Zhu et al., (2008) for a rapid detection of melamine in untreated food samples. Ultrasounds are used to nebulize the melamine-containing liquids into a fine spray. The spray is then ionised by extractive electrospray ionisation (EESI) and analysed using tandem mass spectrometry (MS/MS). An analysis requires 30 seconds per sample. The limit of detection of melamine is a few nanograms of melamine per gram of milk. Crystallization and washing of melamine generates a considerable amount of waste water, which is a pollutant if discharged directly into the environment. The waste water may be concentrated into a solid (1.5-5\\\% of the weight) for easier disposal. The solid may contain approximately 70\\\% melamine, 23\\\% oxytriazines (ammeline, ammelide, and cyanuric acid), 0.7\\\% polycondensates (melem, melam, and melon). In the Eurotecnica process, however, there is no solid waste and the contaminants are decomposed to ammonia and carbon dioxide and sent as off gas to the upstream urea plant; accordingly, the waste water can be recycled to the melamine plant itself or used as clean cooling water make-up. Melamine also enters the fabrication of melamine poly-sulfonate used as superplasticizer for making high-resistance concrete. Sulfonated melamine formaldehyde (SMF) is a polymer used as cement admixture to reduce the water content in concrete while increasing the fluidity and the workability of the mix during its handling and pouring. It results in concrete with a lower porosity and a higher mechanical strength, exhibiting an improved resistance to aggressive environments and a longer life-time. Melamine appears as colorless to white monoclinic crystals or prisms or white powder. Sublimes when gently heated. (NTP, 1992) Melamine is a trimer of cyanamide, with a 1,3,5-triazine skeleton. It has a role as a xenobiotic metabolite. It is functionally related to a cyanamide. It is a conjugate base of a melamine(1+). Melamine is a natural product found in Euglena gracilis, Aeromonas veronii, and Apis cerana with data available. Melamine is an organic base and a trimer of cyanamide, with a 1,3,5-triazine skeleton. Like cyanamide, it contains 66\\\% nitrogen by mass and, if mixed with resins, has fire retardant properties due to its release of nitrogen gas when burned or charred, and has several other industrial uses. Melamine is also a metabolite of cyromazine, a pesticide. It is formed in the body of mammals who have ingested cyromazine. It has been reported that cyromazine can also be converted to melamine in plants. Melamine is described as Harmful if swallowed, inhaled or absorbed through the skin. Chronic exposure may cause cancer or reproductive damage. Eye, skin and respiratory irritant. However, the short-term lethal dose is on a par with common table salt with an LD50 of more than 3 grams per kilogram of bodyweight.[15] U.S. Food and Drug Administration (FDA) scientists explained that when melamine and cyanuric acid are absorbed into the bloodstream, they concentrate and interact in the urine-filled renal tubules, then crystallize and form large numbers of round, yellow crystals, which in turn block and damage the renal cells that line the tubes, causing the kidneys to malfunction. A trimer of cyanamide, with a 1,3,5-triazine skeleton. CONFIDENCE standard compound; EAWAG_UCHEM_ID 3151 CONFIDENCE standard compound; INTERNAL_ID 8699 CONFIDENCE standard compound; INTERNAL_ID 3870 Melamine is a metabolite?of?cyromazine. Melamine is a intermediate for the synthesis of melamine resin and plastic materials[1].

   

Salicin

2-(Hydroxymethyl)phenyl-beta-D-glucopyranoside, Salicoside, Salicyl alcohol glucoside, Saligenin beta-D-glucoside

C13H18O7 (286.1052)


Salicin, also known as salicoside or delta-salicin, is an aryl beta-D-glucoside that is salicyl alcohol in which the phenolic hydrogen has been replaced by a beta-D-glucosyl residue. It has a role as a prodrug, an antipyretic, a non-narcotic analgesic, a non-steroidal anti-inflammatory drug, an EC 1.14.99.1 (prostaglandin-endoperoxide synthase) inhibitor and a metabolite. It is an aryl beta-D-glucoside, an aromatic primary alcohol and a member of benzyl alcohols. It derives from a salicyl alcohol. Salicin belongs to the class of organic compounds known as phenolic glycosides. These are organic compounds containing a phenolic structure attached to a glycosyl moiety. Some examples of phenolic structures include lignans, and flavonoids. Among the sugar units found in natural glycosides are D-glucose, L-Fructose, and L rhamnose. Salicin exists in all living organisms, ranging from bacteria to humans. Salicin is a bitter tasting compound. Salicin is an aryl beta-D-glucoside that is salicyl alcohol in which the phenolic hydrogen has been replaced by a beta-D-glucosyl residue. It has a role as a prodrug, an antipyretic, a non-narcotic analgesic, a non-steroidal anti-inflammatory drug, an EC 1.14.99.1 (prostaglandin-endoperoxide synthase) inhibitor and a metabolite. It is an aryl beta-D-glucoside, an aromatic primary alcohol and a member of benzyl alcohols. It is functionally related to a salicyl alcohol. Salicin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Salicin is a natural product found in Salix candida, Populus tremula, and other organisms with data available. Salicin is an alcoholic β-glycoside that contains D-glucose. Salicin is an anti-inflammatory agent that is produced from willow bark. Salicin is closely related in chemical make-up to aspirin and has a very similar action in the human body. When consumed by humans, Salicin is metabolized into salicylic acid. [HMDB] An aryl beta-D-glucoside that is salicyl alcohol in which the phenolic hydrogen has been replaced by a beta-D-glucosyl residue. D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors Salicin is a natural COX inhibitor. Salicin is a natural COX inhibitor.

   

4-Hydroxybenzyl alcohol

4-(Hydroxymethyl)phenol;p-Hydroxybenzyl alcohol;p-Methylolphenol

C7H8O2 (124.0524)


4-hydroxybenzyl alcohol is the cleavage product produced during the biosynthesis of the thiazole moiety of thiamine from tyrosine as part of the thiamine biosynthesis pathway. It is a derivative of benzyl alcohol which is used as a local anesthetic and to reduce pain associated with Lidocaine injection. Also, it is used in the manufacture of other benzyl compounds, as a pharmaceutical aid, and in perfumery and flavoring. Benzyl Alcohol is an aromatic alcohol used in a wide variety of cosmetic formulations as a fragrance component, preservative, solvent, and viscosity-decreasing agent. Benzyl Alcohol is metabolized to Benzoic Acid, which reacts with glycine and excreted as hippuric acid in the human body. Acceptable daily intakes were established by the World Health Organization at 5 mg/kg for Benzyl Alcohol. No adverse effects of benzyl alcohol have been seen in chronic exposure animal studies using rats and mice. Effects of Benzyl Alcohol in chronic exposure animal studies are limited to reduced feed intake and reduced growth. Some differences have been noted in one reproductive toxicity study using mice, but these were limited to lower maternal body weights and decreased mean litter weights. Another study also noted that fetal weight was decreased compared to controls, but a third study showed no differences between control and benzyl alcohol-treated groups. Benzyl Alcohol has been associated with an increased number of resorptions and malformations in hamsters, but there have been no reproductive or developmental toxicity findings in studies using mice and rats. Genotoxicity tests for benzyl alcohol are mostly negative, but there were some assays that were positive. Carcinogenicity studies, however, were negative. Clinical data indicates that benzyl alcohol can produce nonimmunologic contact urticaria and nonimmunologic immediate contact reactions, characterized by the appearance of wheals, erythema, and pruritis. 5\\\\% benzyl alcohol can elicit a reaction. Benzyl Alcohol is not a sensitizer at 10\\\\%. Benzyl Alcohol could be used safely at concentrations up to 5\\\\%, but that manufacturers should consider the nonimmunologic phenomena when using benzyl alcohol in cosmetic formulations designed for infants and children. Additionally, Benzyl Alcohol is considered safe up to 10\\\\% for use in hair dyes. The limited body exposure, the duration of use, and the frequency of use are considered in concluding that the nonimmunologic reactions would not be a concern. Because of the wide variety of product types in which benzyl alcohol may be used, it is likely that inhalation may be a route of exposure. The available safety tests are not considered sufficient to support the safety of benzyl alcohol in formulations where inhalation is a route of exposure. Inhalation toxicity data are needed to complete the safety assessment of benzyl alcohol where inhalation can occur. (PMID: 11766131). P-hydroxybenzyl alcohol is a member of the class of benzyl alcohols that is benzyl alcohol substituted by a hydroxy group at position 4. It has been isolated from Arcangelisia gusanlung. It has a role as a plant metabolite. It is a member of phenols and a member of benzyl alcohols. 4-Hydroxybenzyl alcohol is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). 4-Hydroxybenzyl alcohol is a natural product found in Populus laurifolia, Mesua, and other organisms with data available. Constituent of muskmelon (Cucurbita moschata) 4-Hydroxybenzyl alcohol is a phenolic compound widely distributed in various kinds of plants. Anti-inflammatory, anti-oxidant, anti-nociceptive activity. Neuroprotective effect. Inhibitor of tumor angiogenesis and growth[1][2][3][4]. 4-Hydroxybenzyl alcohol is a phenolic compound widely distributed in various kinds of plants. Anti-inflammatory, anti-oxidant, anti-nociceptive activity. Neuroprotective effect. Inhibitor of tumor angiogenesis and growth[1][2][3][4].

   

Veratrole_alcohol

3,4-dimethoxy-benzenemethano;3,4-dimethoxy-Benzenemethanol;(3,4-Dimethoxyphenyl)methanol

C9H12O3 (168.0786)


(3,4-dimethoxyphenyl)methanol is a member of the class of benzyl alcohols that is benzyl alcohol in which the hydrogens at positions 3 and 4 of the phenyl group are substituted by methoxy groups. It has a role as a fungal metabolite. It is a member of benzyl alcohols, a primary alcohol and a dimethoxybenzene. 3,4-Dimethoxybenzyl alcohol is a natural product found in Croton lechleri and Cucurbita pepo with data available. A member of the class of benzyl alcohols that is benzyl alcohol in which the hydrogens at positions 3 and 4 of the phenyl group are substituted by methoxy groups. Veratryl alcohol (3,4-Dimethoxybenzenemethanol), a secondary metabolite of some lignin degrading fungi, is commonly used nonphenolic substrate for assaying ligninolytic activity[1][2]. Veratryl alcohol (3,4-Dimethoxybenzenemethanol), a secondary metabolite of some lignin degrading fungi, is commonly used nonphenolic substrate for assaying ligninolytic activity[1][2].

   

K-Strophanthidin

(3S,5S,8R,9S,10S,13R,14S,17R)-3,5,14-trihydroxy-13-methyl-17-(5-oxo-2H-furan-3-yl)-2,3,4,6,7,8,9,11,12,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthrene-10-carbaldehyde

C23H32O6 (404.2199)


Strophanthidin is a 3beta-hydroxy steroid, a 14beta-hydroxy steroid, a 5beta-hydroxy steroid, a 19-oxo steroid, a member of cardenolides and a steroid aldehyde. It is functionally related to a 5beta-cardanolide. Strophanthidin is a natural product found in Crossosoma bigelovii, Adonis aestivalis, and other organisms with data available. 3 beta,5,14-Trihydroxy-19-oxo-5 beta-card-20(22)-enolide. The aglycone cardioactive agent isolated from Strophanthus Kombe, S. gratus and other species; it is a very toxic material formerly used as digitalis. Synonyms: Apocymarin; Corchorin; Cynotoxin; Corchorgenin. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins Strophanthidin is a naturally available cardiac glycoside[1]. Strophanthidin 0.1 and 1 nmol/L increases and 1~100 μmol/L inhibits the Na+/K+-ATPase activities, but Strophanthidin 10 and 100 nmol/L does not affect Na+/K+-ATPase activities in cardiac sarcolemmal[2]. Strophanthidin increases both diastolic and systolic intracellular Ca2+ concentration[3]. Strophanthidin is a naturally available cardiac glycoside[1]. Strophanthidin 0.1 and 1 nmol/L increases and 1~100 μmol/L inhibits the Na+/K+-ATPase activities, but Strophanthidin 10 and 100 nmol/L does not affect Na+/K+-ATPase activities in cardiac sarcolemmal[2]. Strophanthidin increases both diastolic and systolic intracellular Ca2+ concentration[3].

   

L-Ascorbic acid

(5R)-5-[(1S)-1,2-dihydroxyethyl]-3,4-dihydroxy-2,5-dihydrofuran-2-one

C6H8O6 (176.0321)


L-ascorbic acid is a white to very pale yellow crystalline powder with a pleasant sharp acidic taste. Almost odorless. (NTP, 1992) L-ascorbic acid is the L-enantiomer of ascorbic acid and conjugate acid of L-ascorbate. It has a role as a coenzyme, a flour treatment agent, a food antioxidant, a plant metabolite, a cofactor, a skin lightening agent and a geroprotector. It is an ascorbic acid and a vitamin C. It is a conjugate acid of a L-ascorbate. It is an enantiomer of a D-ascorbic acid. A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. Ascorbic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Ascorbic acid is a Vitamin C. Ascorbic Acid is a natural product found in Populus tremula, Rosa platyacantha, and other organisms with data available. Ascorbic Acid is a natural water-soluble vitamin (Vitamin C). Ascorbic acid is a potent reducing and antioxidant agent that functions in fighting bacterial infections, in detoxifying reactions, and in the formation of collagen in fibrous tissue, teeth, bones, connective tissue, skin, and capillaries. Found in citrus and other fruits, and in vegetables, vitamin C cannot be produced or stored by humans and must be obtained in the diet. (NCI04) A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. See also: Sodium Ascorbate (active moiety of); D-ascorbic acid (related); Magnesium Ascorbyl Phosphate (active moiety of) ... View More ... G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AD - Organic acids A - Alimentary tract and metabolism > A11 - Vitamins > A11G - Ascorbic acid (vitamin c), incl. combinations > A11GA - Ascorbic acid (vitamin c), plain B - Blood and blood forming organs > B03 - Antianemic preparations > B03A - Iron preparations > B03AA - Iron bivalent, oral preparations COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins S - Sensory organs > S01 - Ophthalmologicals L-Ascorbic acid (L-Ascorbate), an electron donor, is an endogenous antioxidant agent. L-Ascorbic acid inhibits selectively Cav3.2 channels with an IC50 of 6.5 μM. L-Ascorbic acid is also a collagen deposition enhancer and an elastogenesis inhibitor[1][2][3]. L-Ascorbic acid exhibits anti-cancer effects through the generation of reactive oxygen species (ROS) and selective damage to cancer cells[4]. L-Ascorbic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=50-81-7 (retrieved 2024-10-29) (CAS RN: 50-81-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

DUB OM HTO

(Z)-9-octadecenoic acid, methyl ester;methyl (Z)-9-octadecenoate;methyl cis-9-octadecenoate;methyl-cis-oleate

C19H36O2 (296.2715)


Oleic acid methyl ester is a clear to amber liquid. Insoluble in water. (NTP, 1992) Methyl oleate is a fatty acid methyl ester resulting from the formal condensation of the carboxy group of oleic acid with methanol. It is functionally related to an oleic acid. Methyl oleate is a natural product found in Anchietea pyrifolia, Lepidium meyenii, and other organisms with data available. Methyl oleate is a fatty acid methyl ester (FAME). Methyl oleate substantially improves the antioxidation ability but markedly impaired the antiwear capacity of zinc dialkyldithiophosphate (ZDDP)[1]. Methyl oleate is a fatty acid methyl ester (FAME). Methyl oleate substantially improves the antioxidation ability but markedly impaired the antiwear capacity of zinc dialkyldithiophosphate (ZDDP)[1].

   

2-Methylpyridine

2-Picolinium bromide

C6H7N (93.0578)


2-methylpyridine, also known as 2-picoline or 2-mepy, is a member of the class of compounds known as methylpyridines. Methylpyridines are organic compounds containing a pyridine ring substituted at one or more positions by a methyl group. 2-methylpyridine is soluble (in water) and a very strong basic compound (based on its pKa). 2-methylpyridine is a bitter and sweat tasting compound found in tea, which makes 2-methylpyridine a potential biomarker for the consumption of this food product. 2-methylpyridine can be found primarily in saliva. 2-methylpyridine exists in all eukaryotes, ranging from yeast to humans. 2-Methylpyridine, or 2-picoline, is the compound described with formula C6H7N. 2-Picoline is a colorless liquid that has an unpleasant odor similar to pyridine. It is mainly used to make vinylpyridine and the agrichemical nitrapyrin . 2-Methylpyridine, or 2-picoline, is the compound described with formula C6H7N. 2-Picoline is a colorless liquid that has an unpleasant odor similar to pyridine. Pyridines including 2-picoline are most crudely prepared by the reaction of acetylene and hydrogen cyanide.

   

Mesaconic acid

trans-1-Propene-1,2-dicarboxylic acid

C5H6O4 (130.0266)


Mesaconic acid, also known as 2-methylfumarate or citronic acid, belongs to the class of organic compounds known as methyl-branched fatty acids. These are fatty acids with an acyl chain that has a methyl branch. Usually, they are saturated and contain only one or more methyl group. However, branches other than methyl may be present. Mesaconic acid is a dicarboxylic butenoic acid, with a methyl group in position 2 and the double bound between carbons 2 and 3. Mesaconic acid was first studied for its physical properties in 1874 by Jacobus van ‘t Hoff (https://web.archive.org/web/20051117102410/http://dbhs.wvusd.k12.ca.us/webdocs/Chem-History/Van\\%27t-Hoff-1874.html). It is now known to be involved in the biosynthesis of vitamin B12 and it is also a competitor inhibitor of the reduction of fumarate. Mesaconic acid is one of several isomeric carboxylic acids obtained from citric acid. Is used as a fire retardant, recent studies revealed this acid is a competitive inhibitor of fumarate reduction. [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. D003879 - Dermatologic Agents

   

Dihydroorotic acid

(S)-2,6-dioxo-hexahydro-Pyrimidine-4-carboxylic acid

C5H6N2O4 (158.0328)


4,5-Dihydroorotic acid, also known as dihydroorotate or hydroorotate is a pyrimidinemonocarboxylic acid that results from the base-catalysed cyclisation of N-alpha-carbethoxyasparagine. It is classified as a secondary amide, a monocarboxylic acid, a pyrimidinemonocarboxylic acid and a N-acylurea. 4,5-Dihydroorotic acid is a derivative of orotic acid which serves as an intermediate in pyrimidine biosynthesis. 4,5-Dihydroorotic acid exists in all living species, ranging from bacteria to plants to humans. 4,5-Dihydroorotic acid is synthesized by the enzyme known as Dihydroorotase (EC 3.5.2.3) which converts carbamoyl aspartic acid into 4,5-dihydroorotic acid as part of the de novo pyrimidine biosynthesis pathway (PMID: 13163076). 4,5-Dihydroorotic acid is also a substrate for the enzyme known as dihydroorotate dehydrogenase (DHODH). In mammalian species, DHODH catalyzes the fourth step in the de novo pyrimidine biosynthesis pathway, which involves the ubiquinone-mediated oxidation of dihydroorotate to orotate and the reduction of flavin mononucleotide (FMN) to dihydroflavin mononucleotide (FMNH2). Inhibition of DHODH activity with teriflunomide (an immunomodulatory drug) or expression with RNA interference results in reduced ROS generation and consequent apoptosis of transformed skin and prostate epithelial cells. Mutations in the DHOD gene have been shown to cause Miller syndrome, also known as Genee-Wiedemann syndrome, Wildervanck-Smith syndrome or post-axial acrofacial dystosis (PMID: 19915526). 4,5-Dihydroorotic acid is a substrate of the enzyme orotate reductase [EC 1.3.1.14], which is part of the pyrimidine metabolism pathway. (KEGG) Dihydroorotate is oxidized by Dihydroorotate dehydrogenases (DHODs) to orotate. These dehydrogenases use their FMN (flavin mononucleotide) prosthetic group to abstract a hydride equivalent from C6 to deprotonate C5 [HMDB] L-Dihydroorotic acid can reversibly hydrolyze to yield the acyclic L-ureidosuccinic acid by dihydrowhey enzyme[1].

   

Etomidate

(R)-(+)-1-(alpha-Methylbenzyl)imidazole-5-carboxylic acid ethyl ester

C14H16N2O2 (244.1212)


Etomidate is only found in individuals that have used or taken this drug. It is an midazole derivative anesthetic and hypnotic with little effect on blood gases, ventilation, or the cardiovascular system. It has been proposed as an induction anesthetic. [PubChem]Etomidate binds at a distinct binding site associated with a Cl- ionopore at the GABAA receptor, increasing the duration of time for which the Cl- ionopore is open. The post-synaptic inhibitory effect of GABA in the thalamus is, therefore, prolonged. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

Hydrochlorothiazide

6-chloro-1,1-dioxo-3,4-dihydro-2H-1lambda6,2,4-benzothiadiazine-7-sulfonamide

C7H8ClN3O4S2 (296.9645)


Hydrochlorothiazide is a thiazide diuretic often considered the prototypical member of this class. It reduces the reabsorption of electrolytes from the renal tubules. This results in increased excretion of water and electrolytes, including sodium, potassium, chloride, and magnesium. It has been used in the treatment of several disorders including edema, hypertension, diabetes insipidus, and hypoparathyroidism. -- Pubchem. Hydrochlorothiazide (Apo-Hydro, Aquazide H, Microzide, Oretic), sometimes abbreviated HCT, HCTZ, or HZT is a popular diuretic drug that acts by inhibiting the kidneys ability to retain water. This reduces the volume of the blood, decreasing peripheral vascular resistance. Chlorothiazide, a carbonic anhydrase inhibitor. --Wikipedia. A thiazide diuretic often considered the prototypical member of this class. It reduces the reabsorption of electrolytes from the renal tubules. This results in increased excretion of water and electrolytes, including sodium, potassium, chloride, and magnesium. It has been used in the treatment of several disorders including edema, hypertension, diabetes insipidus, and hypoparathyroidism. -- Pubchem CONFIDENCE standard compound; INTERNAL_ID 514; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2043; ORIGINAL_PRECURSOR_SCAN_NO 2040 CONFIDENCE standard compound; INTERNAL_ID 514; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2023; ORIGINAL_PRECURSOR_SCAN_NO 2022 CONFIDENCE standard compound; INTERNAL_ID 514; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2034; ORIGINAL_PRECURSOR_SCAN_NO 2032 CONFIDENCE standard compound; INTERNAL_ID 514; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2037; ORIGINAL_PRECURSOR_SCAN_NO 2035 CONFIDENCE standard compound; INTERNAL_ID 514; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2060; ORIGINAL_PRECURSOR_SCAN_NO 2058 CONFIDENCE standard compound; INTERNAL_ID 514; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2039; ORIGINAL_PRECURSOR_SCAN_NO 2037 C - Cardiovascular system > C03 - Diuretics > C03A - Low-ceiling diuretics, thiazides > C03AA - Thiazides, plain D045283 - Natriuretic Agents > D004232 - Diuretics > D049993 - Sodium Chloride Symporter Inhibitors C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D049990 - Membrane Transport Modulators

   

5-Methyldeoxycytidine

4-amino-1-[(2R,5R)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methyl-1,2-dihydropyrimidin-2-one

C10H15N3O4 (241.1063)


5-Methyldeoxycytidine is a dinucleotide. Methylation of cytosine-guanine dinucleotide sequences (CpG dinucleotides) catalyzed by DNA methyltransferase, particularly in the 5′-promoter regions of mammalian genes, forms 5-methyldeoxycytidine (5-mdc) whose levels may regulate gene expression. Levels of 5-mdc and the expression of nm23-H1 (an anti-metastatic gene identified in and human cancer lines) are highly correlated with human hepatoma cells with different invasion activities. DNA hypermethylation is a common finding in malignant cells and has been explored as a therapeutic target for hypomethylating agents. The levels of 5-mdc in the urine of patients with breast cancer is not significantly different than controls. (PMID: 17044778, 17264127, 16799933) [HMDB] 5-Methyldeoxycytidine is a dinucleotide. Methylation of cytosine-guanine dinucleotide sequences (CpG dinucleotides) catalyzed by DNA methyltransferase, particularly in the 5′-promoter regions of mammalian genes, forms 5-methyldeoxycytidine (5-mdc) whose levels may regulate gene expression. Levels of 5-mdc and the expression of nm23-H1 (an anti-metastatic gene identified in and human cancer lines) are highly correlated with human hepatoma cells with different invasion activities. DNA hypermethylation is a common finding in malignant cells and has been explored as a therapeutic target for hypomethylating agents. The levels of 5-mdc in the urine of patients with breast cancer is not significantly different than controls. (PMID: 17044778, 17264127, 16799933). 5-Methyl-2'-deoxycytidine in single-stranded DNA can act in cis to signal de novo DNA methylation[1][2]. 5-Methyl-2'-deoxycytidine in single-stranded DNA can act in cis to signal de novo DNA methylation[1][2].

   

Acetazolamide

N-[5-(Aminosulphonyl)-1,3,5-thiadiazol-2-yl]acetamide

C4H6N4O3S2 (221.9881)


One of the carbonic anhydrase inhibitors that is sometimes effective against absence seizures. It is sometimes useful also as an adjunct in the treatment of tonic-clonic, myoclonic, and atonic seizures, particularly in women whose seizures occur or are exacerbated at specific times in the menstrual cycle. However, its usefulness is transient often because of rapid development of tolerance. Its antiepileptic effect may be due to its inhibitory effect on brain carbonic anhydrase, which leads to an increased transneuronal chloride gradient, increased chloride current, and increased inhibition. (From Smith and Reynard, Textbook of Pharmacology, 1991, p337) S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EC - Carbonic anhydrase inhibitors D004791 - Enzyme Inhibitors > D002257 - Carbonic Anhydrase Inhibitors D002491 - Central Nervous System Agents > D000927 - Anticonvulsants C471 - Enzyme Inhibitor > C29577 - Carbonic Anhydrase Inhibitor D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic D045283 - Natriuretic Agents > D004232 - Diuretics CONFIDENCE standard compound; EAWAG_UCHEM_ID 3011

   

Methazolamide

N-[(2Z)-3-Methyl-5-sulphamoyl-2,3-dihydro-1,3,4-thiadiazol-2-ylidene]acetamide

C5H8N4O3S2 (236.0038)


Methazolamide is only found in individuals that have used or taken this drug. It is a potent carbonic anhydrase inhibitor that is used as a diuretic and in the treatment of glaucoma. [PubChem]Inhibition of carbonic anhydrase in the ciliary processes of the eye decreases aqueous humor secretion, presumably by slowing the formation of bicarbonate ions with subsequent reduction in sodium and fluid transport. S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EC - Carbonic anhydrase inhibitors D004791 - Enzyme Inhibitors > D002257 - Carbonic Anhydrase Inhibitors C471 - Enzyme Inhibitor > C29577 - Carbonic Anhydrase Inhibitor D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic D045283 - Natriuretic Agents > D004232 - Diuretics

   

Prilocaine

N-(2-Methylphenyl)-2-(propylamino)propanamide

C13H20N2O (220.1576)


Prilocaine is only found in individuals that have used or taken this drug. It is a local anesthetic that is similar pharmacologically to lidocaine. Currently, it is used most often for infiltration anesthesia in dentistry. (From AMA Drug Evaluations Annual, 1992, p165)Prilocaine acts on sodium channels on the neuronal cell membrane, limiting the spread of seizure activity and reducing seizure propagation. The antiarrhythmic actions are mediated through effects on sodium channels in Purkinje fibers. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local > N01BB - Amides D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3141

   

4-Chlorophenoxyacetic acid

4-Chlorophenoxyacetic acid, potassium salt

C8H7ClO3 (186.0084)


CONFIDENCE standard compound; INTERNAL_ID 1191; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3757; ORIGINAL_PRECURSOR_SCAN_NO 3752 CONFIDENCE standard compound; INTERNAL_ID 1191; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3829; ORIGINAL_PRECURSOR_SCAN_NO 3825 CONFIDENCE standard compound; INTERNAL_ID 1191; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4159; ORIGINAL_PRECURSOR_SCAN_NO 4154 CONFIDENCE standard compound; INTERNAL_ID 1191; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3737; ORIGINAL_PRECURSOR_SCAN_NO 3736 CONFIDENCE standard compound; INTERNAL_ID 1191; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4074; ORIGINAL_PRECURSOR_SCAN_NO 4072 CONFIDENCE standard compound; INTERNAL_ID 1191; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4080; ORIGINAL_PRECURSOR_SCAN_NO 4076 KEIO_ID C151

   
   

Amiloride

3,5-diamino-6-chloro-N-(diaminomethylidene)pyrazine-2-carboxamide

C6H8ClN7O (229.0479)


A pyrazine compound inhibiting sodium reabsorption through sodium channels in renal epithelial cells. This inhibition creates a negative potential in the luminal membranes of principal cells, located in the distal convoluted tubule and collecting duct. Negative potential reduces secretion of potassium and hydrogen ions. Amiloride is used in conjunction with diuretics to spare potassium loss. (From Gilman et al., Goodman and Gilmans The Pharmacological Basis of Therapeutics, 9th ed, p705) D049990 - Membrane Transport Modulators > D026941 - Sodium Channel Blockers > D062686 - Epithelial Sodium Channel Blockers D049990 - Membrane Transport Modulators > D026941 - Sodium Channel Blockers > D062646 - Acid Sensing Ion Channel Blockers C - Cardiovascular system > C03 - Diuretics > C03D - Aldosterone antagonists and other potassium-sparing agents C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49186 - Potassium-Sparing Diuretic C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D004232 - Diuretics KEIO_ID A225; [MS2] KO008833 KEIO_ID A225

   

Cefixime

(6R,7R)-7-({(2Z)-2-(2-amino-1,3-thiazol-4-yl)-2-[(carboxymethoxy)imino]acetyl}amino)-3-ethenyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

C16H15N5O7S2 (453.0413)


Cefixime, an antibiotic, is a third-generation cephalosporin like ceftriaxone and cefotaxime. Cefixime is highly stable in the presence of beta-lactamase enzymes. As a result, many organisms resistant to penicillins and some cephalosporins due to the presence of beta-lactamases, may be susceptible to cefixime. The antibacterial effect of cefixime results from inhibition of mucopeptide synthesis in the bacterial cell wall. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DD - Third-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C61101 - Glycopeptide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

2,6-Dimethoxyphenol

2,6-Dimethoxyphenol (syringol)

C8H10O3 (154.063)


2,6-Dimethoxyphenol, also known as syringol, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. 2,6-Dimethoxyphenol is a bacon, balsamic, and medicine tasting compound. Isolated from maople syrup. Flavouring ingredient.

   

Tiamulin

Tiamulin

C28H47NO4S (493.3226)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic Same as: D06127 CONFIDENCE standard compound; INTERNAL_ID 1055

   

Pyrene

Coal tar pitch volatiles:pyrene

C16H10 (202.0782)


Pyrene is a polycyclic aromatic hydrocarbon (PAH) consisting of four fused benzene rings, resulting in a flat aromatic system. The chemical formula is C16H10. This colourless solid is the smallest peri-fused PAH (one where the rings are fused through more than one face). Pyrene forms during incomplete combustion of organic compounds. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes

   

m-Phenylenediamine

Meta-phenylenediamine

C6H8N2 (108.0687)


KEIO_ID P035

   

2-Methylimidazole

2-Methylimidazole, silver (1+) salt

C4H6N2 (82.0531)


CONFIDENCE standard compound; INTERNAL_ID 8017

   

Beta-Guanidinopropionic acid

3-(diaminomethylideneamino)propanoic acid

C4H9N3O2 (131.0695)


Beta-Guanidinopropionic acid is analog of creatine and is reported to decrease phosphocreatine and ATP content in animal tissues in vivo. Acquisition and generation of the data is financially supported in part by CREST/JST. A human metabolite taken as a putative food compound of mammalian origin [HMDB] C274 - Antineoplastic Agent > C177430 - Agent Targeting Cancer Metabolism KEIO_ID G039

   

2-Hydroxybenzaldehyde

2-Hydroxy-1-benzaldehyde

C7H6O2 (122.0368)


2-Hydroxybenzaldehyde, also known as salicylal or O-formylphenol, belongs to the class of organic compounds known as hydroxybenzaldehydes. These are organic aromatic compounds containing a benzene ring carrying an aldehyde group and a hydroxyl group. 2-Hydroxybenzaldehyde is a cinnamon, cooling, and medical tasting compound. 2-Hydroxybenzaldehyde is found, on average, in the highest concentration within peppermints. 2-Hydroxybenzaldehyde has also been detected, but not quantified, in several different foods, such as common buckwheats, garden tomato (var.), herbs and spices, and tea. This could make 2-hydroxybenzaldehyde a potential biomarker for the consumption of these foods. 2-Hydroxybenzaldehyde is a potentially toxic compound. Present in cinnamon (Cinnamomum versum). Flavouring ingredient. 2-Hydroxybenzaldehyde is found in many foods, some of which are garden tomato (variety), herbs and spices, common buckwheat, and tea.

   

Carbazole

Dibenzo(b,D)pyrrole

C12H9N (167.0735)


CONFIDENCE standard compound; INTERNAL_ID 1 D009676 - Noxae > D002273 - Carcinogens KEIO_ID C040

   

Propynoic acid

Propiolic acid, monosodium salt

C3H2O2 (70.0055)


Propynoic acid, also known as propiolic acid, is involved in propanoate metabolism and is interconverted into 2-propyn-1-al by mitochondrial aldehyde dehydrogenase. Propynoic acid is an unsaturated organic acid and it can be prepared by boiling acetylene dicarboxylic acid. It is chemically obtained by the action of alcoholic potash on dibromosuccinic acid, or its acid potassium salt with water. It forms silky crystals which melt at 6°C and boil at about 144°C with decomposition. It is soluble in water and possesses an odour resembling that of acetic acid. Exposure to sunlight converts it into trimesic acid (benzene-1,3,5-tricarboxylic acid). It undergoes bromination to give dibromoacrylic acid. With hydrogen chloride it forms chloroacrylic acid. Its ethyl ester condenses with hydrazine to form pyrazolone. Propynoic acid forms a characteristic explosive silver salt upon the addition of ammoniacal silver nitrate to its aqueous solution, and an amorphous precipitate which explodes upon warming with ammoniacal cuprous chloride. Its ethyl ester condenses with hydrazine to form pyrazolone (Wikipedia). Propynoic acid is involved in propanoate metabolism and is interconverted between 2-propyn1-al and propynoic acid by mitochondrial aldehyde dehydrogenase. Propiolic acid is an unsaturated organic acid and it can be prepared by boiling acetylene dicarboxylic acid. It is chemically obtained by the action of alcoholic potash on dibromosuccinic acid, or its acid potassium salt with water. It forms silky crystals which melt at 6 degree centigrade, and boil at about 144 degree centigrade with decomposition. It is soluble in water and possesses an odor resembling that of acetic acid. Exposure to sunlight converts it into trimesic acid (benzene-1,3,5-tricarboxylic acid). Bromine converts it into dibromoacrylic acid, and it gives with hydrochloric acid O-chloracrylic acid. It forms a characteristic explosive silver salt on the addition of ammoniacal silver nitrate to its aqueous solution, and an amorphous precipitate which explodes on warming with ammoniacal cuprous chloride. Its ethyl ester condenses with hydrazine to form pyrazolone. [HMDB] KEIO_ID P040

   

Chelerythrine

17,18-dimethoxy-21-methyl-5,7-dioxa-21-azapentacyclo[11.8.0.0^{2,10}.0^{4,8}.0^{14,19}]henicosa-1(13),2,4(8),9,11,14(19),15,17,20-nonaen-21-ium

C21H18NO4+ (348.1236)


Chelerythrine is a benzophenanthridine alkaloid isolated from the root of Zanthoxylum simulans, Chelidonium majus L., and other Papaveraceae. It has a role as an EC 2.7.11.13 (protein kinase C) inhibitor, an antibacterial agent and an antineoplastic agent. It is a benzophenanthridine alkaloid and an organic cation. A benzophenanthridine alkaloid evaluated as a kinase-inhibitor. Chelerythrine is a natural product found in Zanthoxylum fagara, Zanthoxylum mayu, and other organisms with data available. Chelerythrine is a benzophenanthridine alkaloid extracted from the plant Greater celandine (Chelidonium majus). It is a potent, selective, and cell-permeable protein kinase C inhibitor. See also: Sanguinaria canadensis root (part of); Chelidonium majus flowering top (part of). A benzophenanthridine alkaloid isolated from the root of Zanthoxylum simulans, Chelidonium majus L., and other Papaveraceae. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000970 - Antineoplastic Agents

   

Sulfate

Schwefelsaeureloesungen

H2O4S (97.9674)


The sulfate ion is a polyatomic anion with the empirical formula SO42- and a molecular mass of 96.06 daltons; it consists of one central sulfur atom surrounded by four equivalent oxygen atoms in a tetrahedral arrangement. The sulfate ion carries a negative two charge and is the conjugate base of the hydrogen sulfate ion, HSO4-, which is the conjugate base of H2SO4, sulfuric acid. In inorganic chemistry, a sulfate (IUPAC-recommended spelling; also sulphate in British English) is a salt of sulfuric acid. Sulfate aerosols can act as cloud condensation nuclei and this leads to greater numbers of smaller droplets of water. Lots of smaller droplets can diffuse light more efficiently than just a few larger droplets. It is used in food processing as a pH control agent and a flavour modifier

   

Hydrogen

Molecular hydrogen

H2 (2.0156)


Hydrogen is a colorless, odorless, nonmetallic, tasteless, highly flammable diatomic gas with the molecular formula H2. With an atomic weight of 1.00794, hydrogen is the lightest element. Besides the common H1 isotope, hydrogen exists as the stable isotope Deuterium and the unstable, radioactive isotope Tritium. Hydrogen is the most abundant of the chemical elements, constituting roughly 75\\% of the universes elemental mass. Hydrogen can form compounds with most elements and is present in water and most organic compounds. It plays a particularly important role in acid-base chemistry, in which many reactions involve the exchange of protons between soluble molecules. Oxidation of hydrogen, in the sense of removing its electron, formally gives H+, containing no electrons and a nucleus which is usually composed of one proton. That is why H+ is often called a proton. This species is central to discussion of acids. Under the Bronsted-Lowry theory, acids are proton donors, while bases are proton acceptors. A bare proton H+ cannot exist in solution because of its strong tendency to attach itself to atoms or molecules with electrons. However, the term proton is used loosely to refer to positively charged or cationic hydrogen, denoted H+. H2 is a product of some types of anaerobic metabolism and is produced by several microorganisms, usually via reactions catalyzed by iron- or nickel-containing enzymes called hydrogenases. These enzymes catalyze the reversible redox reaction between H2 and its component two protons and two electrons. Creation of hydrogen gas occurs in the transfer of reducing equivalents produced during pyruvate fermentation to water. Hydrogen has been found to be a metabolite of Citrobacter, Cyanobacteria, Enterobacter, Halobacterium and Rhodobacteraceae (PMID: 28042989; PMID: 16371161) (https://www.insa.nic.in/writereaddata/UpLoadedFiles/PINSA/Vol51B_1985_2_Art16.pdf) (https://www.researchgate.net/publication/222428793_High_Hydrogen_Yield_from_a_Two-step_Process_of_Dark-_and_Photo-fermentation_of_Sucrose) (Tao, Y; Chen, Y; Wu, Y; He, Y; Zhou, Z (2007). "High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose". International Journal of Hydrogen Energy. 32 (2): 200-206). It is used as a packaging gas [DFC]

   

Bicarbonate ion

Bicarbonate ion

CHO3- (60.9926)


D019995 - Laboratory Chemicals > D002021 - Buffers > D001639 - Bicarbonates

   

Benzyl Viologen

Benzyl Viologen

C24H22N2+2 (338.1783)


   

Bromide

Bromine anion

Br- (78.9183)


Bromine is a brown or red liquid with a characteristic odor. Bromine is mainly used in the manufacture of dyes, inks, flame retardants, pharmaceuticals and chemical warfare agents. Occupational exposure to bromine may occur during the production and the application of bromine compounds and during other industrial activities. This compound is adsorbed into the human body through the respiratory tract, skin (occupational exposure) and alimentary tract (general population). Physiologically, bromine exists as an ion in the body. Slight eye irritation occurs as a consequence of chronic exposure to bromine vapors at concentration of 1 mg/m3. Higher concentrations increase this effect and cause nasal and skin irritation. Many years observations have shown that during occupational exposure to bromine vapors at concentrations of up to 0.7 mg/m3 (0.1 ppm), there are no observed adverse effects. From cytotoxicity and mutagenicity assays, it is known that brominated organic compounds are more toxic than chlorinated organic compounds. However, only a limited number of brominated organic compounds have been regulated. (PMID: 17316744). Bromine is a brown or red liquid with a characteristic odor. Bromine is mainly used in the manufacture of dyes, inks, flame retardants, pharmaceuticals and chemical warfare agents. Occupational exposure to bromine may occur during the production and the application of bromine compounds and during other industrial activities. This compound is adsorbed into the human body through the respiratory tract, skin (occupational exposure) and alimentary tract (general population). Physiologically, bromine exists as an ion in the body. Slight eye irritation occurs as a consequence of chronic exposure to bromine vapors at concentration of 1 mg/m3. Higher concentrations increase this effect and cause nasal and skin irritation. Many years observations have shown that during occupational exposure to bromine vapors at concentrations of up to 0.7 mg/m3 (0.1 ppm), there are no observed adverse effects. D002491 - Central Nervous System Agents > D000927 - Anticonvulsants > D001965 - Bromides N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives

   

FADH

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}[({[(2R,3S,4S)-5-{7,8-dimethyl-2,4-dioxo-1H,2H,3H,4H,5H,10H-benzo[g]pteridin-10-yl}-2,3,4-trihydroxypentyl]oxy}(hydroxy)phosphoryl)oxy]phosphinic acid

C27H35N9O15P2 (787.1728)


Fadh2, also known as 1,5-dihydro-fad or dihydroflavine-adenine dinucleotide, is a member of the class of compounds known as flavin nucleotides. Flavin nucleotides are nucleotides containing a flavin moiety. Flavin is a compound that contains the tricyclic isoalloxazine ring system, which bears 2 oxo groups at the 2- and 4-positions. Fadh2 is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Fadh2 can be found in a number of food items such as soft-necked garlic, fruits, winter squash, and black cabbage, which makes fadh2 a potential biomarker for the consumption of these food products. Fadh2 exists in all living species, ranging from bacteria to humans. In humans, fadh2 is involved in several metabolic pathways, some of which include the oncogenic action of fumarate, the oncogenic action of 2-hydroxyglutarate, citric acid cycle, and congenital lactic acidosis. Fadh2 is also involved in several metabolic disorders, some of which include 2-ketoglutarate dehydrogenase complex deficiency, the oncogenic action of d-2-hydroxyglutarate in hydroxygluaricaciduria, the oncogenic action of l-2-hydroxyglutarate in hydroxygluaricaciduria, and pyruvate dehydrogenase deficiency (E2). FADH is the reduced form of flavin adenine dinucleotide (FAD). FAD is synthesized from riboflavin and two molecules of ATP. Riboflavin is phosphorylated by ATP to give riboflavin 5-phosphate (FMN). FAD is then formed from FMN by the transfer of an AMP moiety from a second molecule of ATP. FADH is generated in each round of fatty acid oxidation, and the fatty acyl chain is shortened by two carbon atoms as a result of these reactions; because oxidation is on the beta carbon, this series of reactions is called the beta-oxidation pathway. In the citric acid cycle, FADH is involved in the harvesting of high-energy electrons from carbon fuels; the citric acid cycle itself neither generates a large amount of ATP nor includes oxygen as a reactant. Instead, the citric acid cycle removes electrons from acetyl CoA and uses these electrons to form FADH.

   

Xanthan

9H-Xanthene

C13H10O (182.0732)


   

diazenediol

Hyponitrous acid

H2N2O2 (62.0116)


   

Hexazyanoferrat(II)

Ferrocyanide; Hexacyanoferrate(II)

C6FeN6-4 (211.9534)


   

Thiocysteine

(2S)-2-amino-3-disulfanyl-propanoic acid

C3H7NO2S2 (152.9918)


The reactive species in the phosphofructokinase modulation system could be considered thiocysteine (R-S-S-) or cystine trisulfide (R-S-S-S-R) produced from cystine in the presence of gamma-Cystathionase (CST, EC 4.4.1.1). The desulfuration reaction of cystine in vivo produces thiocysteine containing a bound sulfur atom. Persulfide generated from L-cysteine inactivates tyrosine aminotransferase. Thiocysteine is the reactive (unstable) intermediate of thiocystine which functions as a persulfide in transferring its sulfane sulfur to thiophilic acceptors. Thiocystine conversion to unstable thiocysteine is accelerated by sulfhydryl compounds, or reagents that cleave sulfur-sulfur bonds to yield sulfhydryl groups. Thiocystine is proposed as the storage form of sulfane sulfur in biological systems. Liver cytosols contain factors that produce an inhibitor of tyrosine aminotransferase in 3 steps: initial oxidation of cysteine to form cystine; desulfurization of cystine catalyzed by cystathionase to form the persulfide, thiocysteine; and reaction of thiocysteine (or products of its decomposition) with proteins to form protein-bound sulfane. (PMID: 2903161, 454618, 7287665) [HMDB] The reactive species in the phosphofructokinase modulation system could be considered thiocysteine (R-S-S-) or cystine trisulfide (R-S-S-S-R) produced from cystine in the presence of gamma-Cystathionase (CST, EC 4.4.1.1). The desulfuration reaction of cystine in vivo produces thiocysteine containing a bound sulfur atom. Persulfide generated from L-cysteine inactivates tyrosine aminotransferase. Thiocysteine is the reactive (unstable) intermediate of thiocystine which functions as a persulfide in transferring its sulfane sulfur to thiophilic acceptors. Thiocystine conversion to unstable thiocysteine is accelerated by sulfhydryl compounds, or reagents that cleave sulfur-sulfur bonds to yield sulfhydryl groups. Thiocystine is proposed as the storage form of sulfane sulfur in biological systems. Liver cytosols contain factors that produce an inhibitor of tyrosine aminotransferase in 3 steps: initial oxidation of cysteine to form cystine; desulfurization of cystine catalyzed by cystathionase to form the persulfide, thiocysteine; and reaction of thiocysteine (or products of its decomposition) with proteins to form protein-bound sulfane. (PMID: 2903161, 454618, 7287665).

   

4'-Nitroacetophenone

1-(4-nitrophenyl)ethan-1-one

C8H7NO3 (165.0426)


D011838 - Radiation-Sensitizing Agents

   

Pentaporphyrin I

21,22,23,24-tetraazapentacyclo[16.2.1.1^{3,6}.1^{8,11}.1^{13,16}]tetracosa-1,3,5,7,9,11,13(22),14,16,18(21),19-undecaene

C20H14N4 (310.1218)


Pentaporphyrin I is a porphyrin intermediate detected in liver, kidney and erythrocytes (PubMed ID 8803328 ).

   

Diazene

Diimide

H2N2 (30.0218)


   

Selenocystine

2-amino-3-[(2-amino-2-carboxyethyl)diselanyl]propanoic acid

C6H12N2O4Se2 (335.9127)


Selenocystine, also known as 3,3-diselenodialanine, belongs to the class of organic compounds known as alpha-amino acids. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxyl group (alpha carbon). More specifically, selenocystine is a diselenide consisting of two selenoamino acids that are attached together at their selenium atoms. This particular selenoamino acid is selenocysteine, the selenium analogue to cysteine (selenium being the element directly beneath sulphur in the periodic table); likewise, selenocystine is the selenium analogue to cystine. Since each constituent amino acid has a stereocentre, there are three different stereoisomers of selenocystine: D-selenocystine, L-selenocystine, and meso-selenocystine, the first two of which are optically active. Like other amino acids, L-selenocystine is the most common form within organisms; however, the D- and meso- forms have also been found (PMID: 30920149). Selenocystine is a solid that is moderately soluble in water. Due to the reactivity of selenocysteine, it is rarely encountered; rather, cells store selenium in the less reactive oxidized form of selenocystine or in a methylated form, such as selenomethionine (DOI: 10.1007/978-3-319-92405-2_3). When cells are grown in the absence of selenium, translation of selenoproteins terminates at the UGA codon, resulting in a truncated, non-functional enzyme. Unlike other amino acids present in biological proteins, selenocysteine is not coded for directly in the genetic code. Rather, the tRNA-bound seryl residue is converted to a selenocysteine residue by the pyridoxal phosphate-containing enzyme selenocysteine synthase (PMID: 17194211). Kurt Franke et al. indicated that there was evidence that selenium was in a form similar to that of cysteine, predating Thressa Stadtman’s discovery of the 21st amino acid by four decades (PMID: 26949981; J. Biol. Chem. 111:643). Selenocysteine may be denoted by the short forms Sec, U, or SeCys (Cys is used for cysteine), whereas selenocystine may be denoted by SeCys2. However, the literature sometimes uses SeCys for selenocystine and may cause confusion. Selenocystine has been found in animals, plants, and bacteria. It is being researched as treatment for cancer and for its antioxidant properties (PMID: 24763048, 24030774). Selenium, in its various forms such as selenocystine, is essential for many species, including humans, yet it is also toxic to all organisms; hence, it has come to be referred to as the “essential poison” (PMID: 26949981; 6679541). Selenocystine is a substrate for glutathione peroxidase 1. [HMDB] D000890 - Anti-Infective Agents > D000998 - Antiviral Agents L-Selenocystine is a diselenide-bridged amino acid. L-Selenocystine is a redox-active selenium compound that has both anti- and pro-oxidant actions. L-Selenocystine induces an unfolded protein response, ER stress, and large cytoplasmic vacuolization in HeLa cells and has cytostatic effects in a range of cancer cell types[1].

   

Amyl Nitrite

Isopentyl nitrite

C5H11NO2 (117.079)


Amyl Nitrite is an antihypertensive medicine. Amyl nitrite is employed medically to treat heart diseases such as angina and to treat cyanide poisoning. Like other alkyl nitrites, amyl nitrite is bioactive in mammals, being a vasodilator which is the basis of its use as a prescription medicine. As an inhalant, it also has psychoactive effect which has led to illegal drug use. V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

Lupulone

5-hydroxy-2,6,6-tris(3-methylbut-2-en-1-yl)-4-(3-methylbutanoyl)cyclohex-4-ene-1,3-dione

C26H38O4 (414.277)


Lupulone is found in alcoholic beverages. Lupulone is a constituent of hops

   

DIDS

Benzenesulfonic acid, 2,2-(1,2-ethenediyl)bis[5-isothiocyanato-

C16H10N2O6S4 (453.9422)


   

Telomestatin

4,8-dimethyl-3,7,11,15,19,23,27-heptaoxa-31-thia-33,34,35,36,37,38,39,40-octazanonacyclo[28.2.1.12,5.16,9.110,13.114,17.118,21.122,25.126,29]tetraconta-2(40),4,6(39),8,10(38),12,14(37),16,18(36),20,22(35),24,26(34),28,30(33)-pentadecaene

C26H14N8O7S (582.0706)


Telomestatin is a naturally occurring organic compound classified as a cyclic phenolphthioceramide derivative. It is isolated from the fermentation broth of microorganisms and is known for its antitumor properties. The name "telomestatin" reflects its primary mode of action, which is the inhibition of telomerase, an enzyme crucial for the maintenance of chromosome stability and cell proliferation, particularly in cancer cells where telomerase activity is often elevated. Telomerase is responsible for adding repetitive DNA sequences called telomeres to the ends of chromosomes, which prevents the loss of genetic material during DNA replication and cell division. By inhibiting telomerase, telomestatin interferes with the ability of cancer cells to divide and proliferate, making it a potential candidate for antitumor therapy. The compound's unique chemical structure allows it to bind specifically to the telomerase RNA component, thereby blocking the enzyme's activity. The discovery and study of telomestatin have contributed to the understanding of telomerase biology and the development of potential therapeutic strategies for cancer treatment.

   

N-phenylanthranilic acid

N-Phenyl-ortho-aminobenzoic acid

C13H11NO2 (213.079)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002491 - Central Nervous System Agents > D000700 - Analgesics D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents

   

sits

4-Acetamido-4-isothiocyanostilbene-2,2-disulphonic acid

C17H14N2O7S3 (453.9963)


   

Phenamil

3,5-Diamino-6-chloro-N-(N-phenylcarbamimidoyl)pyrazine-2-carboximidate

C12H12ClN7O (305.0792)


   

concanamycin a

[6-[2-[4-[(4E,6E,14E,16Z)-11-ethyl-10,12-dihydroxy-3,17-dimethoxy-7,9,13,15-tetramethyl-18-oxo-1-oxacyclooctadeca-4,6,14,16-tetraen-2-yl]-3-hydroxypentan-2-yl]-2-hydroxy-5-methyl-6-[(E)-prop-1-enyl]oxan-4-yl]oxy-4-hydroxy-2-methyloxan-3-yl] carbamate

C46H75NO14 (865.5187)


A concanamycin in which the lactone ring contains 4 double bonds and is substituted by 4 methyl groups, 2 hydroxy groups, 2 methoxy groups and an ethyl group. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D004791 - Enzyme Inhibitors

   

Squalamine

3beta-N-1-(N-[3-(4-aminobutyl)]- 1,3-diaminopropane)-7alpha,24R-dihydroxy-5alpha-cholestane 24-sulfate

C34H65N3O5S (627.4645)


C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor > C2143 - Endothelial Cell Inhibitor D006133 - Growth Substances > D043924 - Angiogenesis Modulating Agents D000970 - Antineoplastic Agents > D020533 - Angiogenesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D006133 - Growth Substances > D006131 - Growth Inhibitors

   

Ellipticine

5,11-dimethyl-6H-pyrido[4,3-b]carbazole

C17H14N2 (246.1157)


Ellipticine is a organic heterotetracyclic compound that is pyrido[4,3-b]carbazole carrying two methyl substituents at positions 5 and 11. It has a role as an antineoplastic agent and a plant metabolite. It is an organic heterotetracyclic compound, an organonitrogen heterocyclic compound, a polycyclic heteroarene and an indole alkaloid. Ellipticine is a potent antineoplastic agent. Ellipticine is a natural product found in Asparagus cochinchinensis, Aspergillus sclerotiorum, and other organisms with data available. A organic heterotetracyclic compound that is pyrido[4,3-b]carbazole carrying two methyl substituents at positions 5 and 11. Ellipticine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=519-23-3 (retrieved 2024-06-29) (CAS RN: 519-23-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Ellipticine (NSC 71795) is a potent antineoplastic agent; inhibits DNA topoisomerase II activities. Ellipticine (NSC 71795) is a potent antineoplastic agent; inhibits DNA topoisomerase II activities.

   

Vaporole

Nitrous acid, 3-methylbutyl ester

C5H11NO2 (117.079)


Isoamyl nitrite (IAN) has been used as antianginal agents for more than 100 years. It is now established that IAN cause direct vasorelaxation through vascular generation of NO and relaxation via a cyclic guanosine monophosphate-dependent process. (PMID: 8996213). IAN is a member of the family of volatile organic nitrites that exert vasodilatory effects and have recently exhibited a considerable potential for inhalation abuse. (PMID: 9829558). All nitrovasodilators act intracellularly by a common molecular mechanism. This is characterized by the release of nitric oxide (NO). This process basically depends on the presence of oxygen as electron acceptor from the sydnonimine molecule. Organic nitrites (such as IAN) require the interaction with a mercapto group to form a S-nitrosothiol intermediate, from which finally NO radicals are liberated. In the presence of thiol compounds organic nitrites (e.g., IAN) and nitrosothiols may act as intermediary products of NO generation. (PMID: 1683227). Isoamyl nitrite (IAN) has been used as antianginal agents for more than 100 years. It is now established that IAN cause direct vasorelaxation through vascular generation of NO and relaxation via a cyclic guanosine monophosphate-dependent process. (PMID: 8996213) C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent

   

4-Acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid

N-{4-[2-(4-isothiocyanato-2-sulphophenyl)ethenyl]-3-sulphophenyl}ethanimidic acid

C17H14N2O7S3 (453.9963)


   

concanamycin a

{[6-({2-[4-(11-ethyl-10,12-dihydroxy-3,17-dimethoxy-7,9,13,15-tetramethyl-18-oxo-1-oxacyclooctadeca-4,6,14,16-tetraen-2-yl)-3-hydroxypentan-2-yl]-2-hydroxy-5-methyl-6-(prop-1-en-1-yl)oxan-4-yl}oxy)-4-hydroxy-2-methyloxan-3-yl]oxy}methanimidate

C46H75NO14 (865.5187)


   

Valnemulin

2-Amino-N-(2-{[2-({4-ethenyl-3-hydroxy-2,4,7,14-tetramethyl-9-oxotricyclo[5.4.3.0,]tetradecan-6-yl}oxy)-2-oxoethyl]sulphanyl}-2-methylpropyl)-3-methylbutanimidic acid

C31H52N2O5S (564.3597)


   

hydrochlorothiazide

6-Chloro-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide

C7H8ClN3O4S2 (296.9645)


C - Cardiovascular system > C03 - Diuretics > C03A - Low-ceiling diuretics, thiazides > C03AA - Thiazides, plain D045283 - Natriuretic Agents > D004232 - Diuretics > D049993 - Sodium Chloride Symporter Inhibitors C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2610 D049990 - Membrane Transport Modulators

   

Mesaconic acid

2-methyl-2E-butenedioic acid

C5H6O4 (130.0266)


A dicarboxylic acid consisting of fumaric acid having a methyl substituent at the 2-position. D003879 - Dermatologic Agents

   

Harmaline

HARMALINE HYDROCHLORIDE DIHYDRATE

C13H14N2O (214.1106)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.572 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.569 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.563 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.565 D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors

   

Lupulone

2,4-Cyclohexadien-1-one,3,5-dihydroxy-2,6,6-tris(3-methyl-2-buten-1-yl)-4-(3-methyl-1-oxobutyl)-

C26H38O4 (414.277)


Lupulone is a beta-bitter acid in which the acyl group is specified as 3-methylbutanoyl. It has a role as an antimicrobial agent, an apoptosis inducer, an angiogenesis inhibitor and an antineoplastic agent. It is a conjugate acid of a lupulone(1-). Lupulone is a natural product found in Humulus lupulus with data available. A beta-bitter acid in which the acyl group is specified as 3-methylbutanoyl.

   

hydrochlorothiazide

hydrochlorothiazide

C7H8ClN3O4S2 (296.9645)


C - Cardiovascular system > C03 - Diuretics > C03A - Low-ceiling diuretics, thiazides > C03AA - Thiazides, plain D045283 - Natriuretic Agents > D004232 - Diuretics > D049993 - Sodium Chloride Symporter Inhibitors C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D049990 - Membrane Transport Modulators CONFIDENCE Reference Standard (Level 1)

   

Melamine

Melamine

C3H6N6 (126.0654)


CONFIDENCE standard compound; INTERNAL_ID 3870 CONFIDENCE Reference Standard (Level 1) Melamine is a metabolite?of?cyromazine. Melamine is a intermediate for the synthesis of melamine resin and plastic materials[1].

   

Salicin

(2R,3S,4S,5R,6S)-2-(hydroxymethyl)-6-[2-(hydroxymethyl)phenoxy]tetrahydropyran-3,4,5-triol

C13H18O7 (286.1052)


D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors relative retention time with respect to 9-anthracene Carboxylic Acid is 0.253 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.247 Salicin is a natural COX inhibitor. Salicin is a natural COX inhibitor.

   

methazolamide

methazolamide

C5H8N4O3S2 (236.0038)


S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EC - Carbonic anhydrase inhibitors D004791 - Enzyme Inhibitors > D002257 - Carbonic Anhydrase Inhibitors C471 - Enzyme Inhibitor > C29577 - Carbonic Anhydrase Inhibitor D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic D045283 - Natriuretic Agents > D004232 - Diuretics

   

prilocaine

prilocaine

C13H20N2O (220.1576)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local > N01BB - Amides D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

RGX-202

3-Guanidinopropionic acid

C4H9N3O2 (131.0695)


C274 - Antineoplastic Agent > C177430 - Agent Targeting Cancer Metabolism

   

hydroorotic acid

4,5-Dihydroorotic acid

C5H6N2O4 (158.0328)


   

Selenocystine

(R,R)-3,3-diselenobis-(2-aminopropionic acid)

C6H12N2O4Se2 (335.9127)


D000890 - Anti-Infective Agents > D000998 - Antiviral Agents

   

AMILORIDE

3,5-diamino-6-chloro-N-(diaminomethylidene)pyrazine-2-carboxamide

C6H8ClN7O (229.0479)


D049990 - Membrane Transport Modulators > D026941 - Sodium Channel Blockers > D062686 - Epithelial Sodium Channel Blockers D049990 - Membrane Transport Modulators > D026941 - Sodium Channel Blockers > D062646 - Acid Sensing Ion Channel Blockers C - Cardiovascular system > C03 - Diuretics > C03D - Aldosterone antagonists and other potassium-sparing agents C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49186 - Potassium-Sparing Diuretic C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D004232 - Diuretics CONFIDENCE standard compound; INTERNAL_ID 1085; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2314; ORIGINAL_PRECURSOR_SCAN_NO 2312 CONFIDENCE standard compound; INTERNAL_ID 1085; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2312; ORIGINAL_PRECURSOR_SCAN_NO 2311 CONFIDENCE standard compound; INTERNAL_ID 1085; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2315; ORIGINAL_PRECURSOR_SCAN_NO 2313 CONFIDENCE standard compound; INTERNAL_ID 1085; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2304; ORIGINAL_PRECURSOR_SCAN_NO 2302 CONFIDENCE standard compound; INTERNAL_ID 1085; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2373; ORIGINAL_PRECURSOR_SCAN_NO 2370 CONFIDENCE standard compound; INTERNAL_ID 1085; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2315; ORIGINAL_PRECURSOR_SCAN_NO 2314 CONFIDENCE standard compound; INTERNAL_ID 1085; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4866; ORIGINAL_PRECURSOR_SCAN_NO 4864 CONFIDENCE standard compound; INTERNAL_ID 1085; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4878; ORIGINAL_PRECURSOR_SCAN_NO 4875 CONFIDENCE standard compound; INTERNAL_ID 1085; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4900; ORIGINAL_PRECURSOR_SCAN_NO 4899 CONFIDENCE standard compound; INTERNAL_ID 1085; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4909; ORIGINAL_PRECURSOR_SCAN_NO 4907 INTERNAL_ID 1085; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4909; ORIGINAL_PRECURSOR_SCAN_NO 4907 CONFIDENCE standard compound; INTERNAL_ID 1085; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4914; ORIGINAL_PRECURSOR_SCAN_NO 4912 CONFIDENCE standard compound; INTERNAL_ID 1085; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4905; ORIGINAL_PRECURSOR_SCAN_NO 4903 CONFIDENCE standard compound; INTERNAL_ID 9; HBM4EU - science and policy for a healthy future (https://www.hbm4eu.eu) INTERNAL_ID 9; CONFIDENCE standard compound; HBM4EU - science and policy for a healthy future (https://www.hbm4eu.eu) CONFIDENCE Reference Standard (Level 1); HBM4EU - science and policy for a healthy future (https://www.hbm4eu.eu); Flow Injection Flow Injection; CONFIDENCE Reference Standard (Level 1); HBM4EU - science and policy for a healthy future (https://www.hbm4eu.eu) CONFIDENCE Reference Standard (Level 1); HBM4EU - science and policy for a healthy future (https://www.hbm4eu.eu)

   

(E)-Cefixime

Cefixime anhydrous, (E)-

C16H15N5O7S2 (453.0413)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DD - Third-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams A third-generation cephalosporin antibiotic bearing vinyl and (2Z)-2-(2-amino-1,3-thiazol-4-yl)-2-[(carboxymethoxy)imino]acetamido groups at positions 3 and 7, respectively, of the cephem skeleton. It is used in the treatment of gonorrhoea, tonsilitis, pharyngitis, bronchitis, and urinary tract infections. C254 - Anti-Infective Agent > C258 - Antibiotic > C61101 - Glycopeptide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

4-CPA

4-CHLOROPHENOXYACETIC ACID

C8H7ClO3 (186.0084)


   

acetazolamide

acetazolamide

C4H6N4O3S2 (221.9881)


S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EC - Carbonic anhydrase inhibitors D004791 - Enzyme Inhibitors > D002257 - Carbonic Anhydrase Inhibitors D002491 - Central Nervous System Agents > D000927 - Anticonvulsants C471 - Enzyme Inhibitor > C29577 - Carbonic Anhydrase Inhibitor D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic D045283 - Natriuretic Agents > D004232 - Diuretics CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2118; ORIGINAL_PRECURSOR_SCAN_NO 2116 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2116; ORIGINAL_PRECURSOR_SCAN_NO 2114 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2122; ORIGINAL_PRECURSOR_SCAN_NO 2121 INTERNAL_ID 366; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2122; ORIGINAL_PRECURSOR_SCAN_NO 2121 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2106; ORIGINAL_PRECURSOR_SCAN_NO 2104 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2172; ORIGINAL_PRECURSOR_SCAN_NO 2170 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2116; ORIGINAL_PRECURSOR_SCAN_NO 2112 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4436; ORIGINAL_PRECURSOR_SCAN_NO 4434 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4453; ORIGINAL_PRECURSOR_SCAN_NO 4450 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4473; ORIGINAL_PRECURSOR_SCAN_NO 4469 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4469; ORIGINAL_PRECURSOR_SCAN_NO 4466 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4488; ORIGINAL_PRECURSOR_SCAN_NO 4483 CONFIDENCE standard compound; INTERNAL_ID 366; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4487; ORIGINAL_PRECURSOR_SCAN_NO 4484

   

Ethyl 1-(1-phenylethyl)-1H-imidazole-5-carboxylate

Ethyl 1-(1-phenylethyl)-1H-imidazole-5-carboxylate

C14H16N2O2 (244.1212)


   

N-phenylanthranilic acid

N-phenylanthranilic acid

C13H11NO2 (213.079)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002491 - Central Nervous System Agents > D000700 - Analgesics D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents

   

Aldrich

1,3-Dimethoxy-2-hydroxybenzene

C8H10O3 (154.063)


   

toddaline

Chelerythrine

C21H18NO4+ (348.1236)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000970 - Antineoplastic Agents

   

XS-89

(3S,5S,8R,9S,10S,13R,14S,17R)-3,5,14-trihydroxy-13-methyl-17-(5-oxo-2H-furan-3-yl)-2,3,4,6,7,8,9,11,12,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthrene-10-carboxaldehyde

C23H32O6 (404.2199)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins Strophanthidin is a naturally available cardiac glycoside[1]. Strophanthidin 0.1 and 1 nmol/L increases and 1~100 μmol/L inhibits the Na+/K+-ATPase activities, but Strophanthidin 10 and 100 nmol/L does not affect Na+/K+-ATPase activities in cardiac sarcolemmal[2]. Strophanthidin increases both diastolic and systolic intracellular Ca2+ concentration[3]. Strophanthidin is a naturally available cardiac glycoside[1]. Strophanthidin 0.1 and 1 nmol/L increases and 1~100 μmol/L inhibits the Na+/K+-ATPase activities, but Strophanthidin 10 and 100 nmol/L does not affect Na+/K+-ATPase activities in cardiac sarcolemmal[2]. Strophanthidin increases both diastolic and systolic intracellular Ca2+ concentration[3].

   

93-03-8

3,4-Dimethoxyphenylmethyl alcohol

C9H12O3 (168.0786)


Veratryl alcohol (3,4-Dimethoxybenzenemethanol), a secondary metabolite of some lignin degrading fungi, is commonly used nonphenolic substrate for assaying ligninolytic activity[1][2]. Veratryl alcohol (3,4-Dimethoxybenzenemethanol), a secondary metabolite of some lignin degrading fungi, is commonly used nonphenolic substrate for assaying ligninolytic activity[1][2].

   

Pyren

InChI=1\C16H10\c1-3-11-7-9-13-5-2-6-14-10-8-12(4-1)15(11)16(13)14\h1-10

C16H10 (202.0782)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes

   

623-05-2

InChI=1\C7H8O2\c8-5-6-1-3-7(9)4-2-6\h1-4,8-9H,5H

C7H8O2 (124.0524)


4-Hydroxybenzyl alcohol is a phenolic compound widely distributed in various kinds of plants. Anti-inflammatory, anti-oxidant, anti-nociceptive activity. Neuroprotective effect. Inhibitor of tumor angiogenesis and growth[1][2][3][4]. 4-Hydroxybenzyl alcohol is a phenolic compound widely distributed in various kinds of plants. Anti-inflammatory, anti-oxidant, anti-nociceptive activity. Neuroprotective effect. Inhibitor of tumor angiogenesis and growth[1][2][3][4].

   

Mesaconate

4-02-00-02231 (Beilstein Handbook Reference)

C5H6O4 (130.0266)


D003879 - Dermatologic Agents

   

Elliptisine

5-23-09-00417 (Beilstein Handbook Reference)

C17H14N2 (246.1157)


D000970 - Antineoplastic Agents > D000972 - Antineoplastic Agents, Phytogenic > D004611 - Ellipticines D004791 - Enzyme Inhibitors > D014475 - Uncoupling Agents Ellipticine (NSC 71795) is a potent antineoplastic agent; inhibits DNA topoisomerase II activities. Ellipticine (NSC 71795) is a potent antineoplastic agent; inhibits DNA topoisomerase II activities.

   

Salicylal

4-08-00-00176 (Beilstein Handbook Reference)

C7H6O2 (122.0368)


   

Picoline

o-Picoline [UN2313] [Flammable liquid]

C6H7N (93.0578)


   

Hydrogen

Hydrogen

H2 (2.0156)


   

SALICYLALDEHYDE

SALICYLALDEHYDE

C7H6O2 (122.0368)


A hydroxybenzaldehyde carrying a hydroxy substituent at position 2.

   

CARBAZOLE

CARBAZOLE

C12H9N (167.0735)


D009676 - Noxae > D002273 - Carcinogens

   

HUMAN IL-2

SULFURIC ACID

H2O4S (97.9674)


A sulfur oxoacid that consists of two oxo and two hydroxy groups joined covalently to a central sulfur atom.

   

m-Phenylenediamine

m-Phenylenediamine

C6H8N2 (108.0687)


   

Amyl nitrite

Isopentyl nitrite

C5H11NO2 (117.079)


C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent

   

Propiolic acid

Propiolic acidd

C3H2O2 (70.0055)


   

Xanthene

9H-Xanthene

C13H10O (182.0732)


   

4-Nitroacetophenone

4-Nitroacetophenone

C8H7NO3 (165.0426)


D011838 - Radiation-Sensitizing Agents

   

bromide

BROMIDE ion

Br- (78.9183)


D002491 - Central Nervous System Agents > D000927 - Anticonvulsants > D001965 - Bromides N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives

   

Porphine

Porphyrin

C20H14N4 (310.1218)


   

Diazene

Diazene

H2N2 (30.0218)


   

FADH2

DIHYDROFLAVINE-adenine dinucleotide

C27H35N9O15P2 (787.1728)


   

5-Methyl-2-deoxycytidine

5-Methyl-2-deoxycytidine

C10H15N3O4 (241.1063)


5-Methyl-2'-deoxycytidine in single-stranded DNA can act in cis to signal de novo DNA methylation[1][2]. 5-Methyl-2'-deoxycytidine in single-stranded DNA can act in cis to signal de novo DNA methylation[1][2].

   
   
   

Fenamic acid

Diphenylamine-2-carboxylic acid

C13H11NO2 (213.079)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002491 - Central Nervous System Agents > D000700 - Analgesics D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents

   

syringol

Pyrogallol 1,3-dimethyl ether

C8H10O3 (154.063)


A member of the class of phenols that is phenol substituted by methoxy groups at positions 2 and 6.

   

PYRENE

PYRENE

C16H10 (202.0782)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes

   

2-picoline

2-METHYLPYRIDINE

C6H7N (93.0578)