L-Valine (BioDeep_00000000071)
Secondary id: BioDeep_00000229648
natural product human metabolite PANOMIX_OTCML-2023 blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C5H11NO2 (117.079)
中文名称: L-缬氨酸, 缬氨酸
谱图信息:
最多检出来源 Homo sapiens(blood) 17.67%
Last reviewed on 2024-06-29.
Cite this Page
L-Valine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/l-valine (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000000071). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CC(C)C(C(=O)O)N
InChI: InChI=1S/C5H11NO2/c1-3(2)4(6)5(7)8/h3-4H,6H2,1-2H3,(H,7,8)
描述信息
L-valine is the L-enantiomer of valine. It has a role as a nutraceutical, a micronutrient, a human metabolite, an algal metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a pyruvate family amino acid, a proteinogenic amino acid, a valine and a L-alpha-amino acid. It is a conjugate base of a L-valinium. It is a conjugate acid of a L-valinate. It is an enantiomer of a D-valine. It is a tautomer of a L-valine zwitterion.
Valine is a branched-chain essential amino acid that has stimulant activity. It promotes muscle growth and tissue repair. It is a precursor in the penicillin biosynthetic pathway.
L-Valine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Valine is an aliphatic and extremely hydrophobic essential amino acid in humans related to leucine, Valine is found in many proteins, mostly in the interior of globular proteins helping to determine three-dimensional structure. A glycogenic amino acid, valine maintains mental vigor, muscle coordination, and emotional calm. Valine is obtained from soy, cheese, fish, meats and vegetables. Valine supplements are used for muscle growth, tissue repair, and energy. (NCI04)
Valine (abbreviated as Val or V) is an -amino acid with the chemical formula HO2CCH(NH2)CH(CH3)2. It is named after the plant valerian. L-Valine is one of 20 proteinogenic amino acids. Its codons are GUU, GUC, GUA, and GUG. This essential amino acid is classified as nonpolar. Along with leucine and isoleucine, valine is a branched-chain amino acid. Branched chain amino acids (BCAA) are essential amino acids whose carbon structure is marked by a branch point. These three amino acids are critical to human life and are particularly involved in stress, energy and muscle metabolism. BCAA supplementation as therapy, both oral and intravenous, in human health and disease holds great promise. BCAA denotes valine, isoleucine and leucine which are branched chain essential amino acids. Despite their structural similarities, the branched amino acids have different metabolic routes, with valine going solely to carbohydrates, leucine solely to fats and isoleucine to both. The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. Furthermore, these amino acids have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. Many types of inborn errors of BCAA metabolism exist, and are marked by various abnormalities. The most common form is the maple syrup urine disease, marked by a characteristic urinary odor. Other abnormalities are associated with a wide range of symptoms, such as mental retardation, ataxia, hypoglycemia, spinal muscle atrophy, rash, vomiting and excessive muscle movement. Most forms of BCAA metabolism errors are corrected by dietary restriction of BCAA and at least one form is correctable by supplementation with 10 mg of biotin daily. BCAA are decreased in patients with liver disease, such as hepatitis, hepatic coma, cirrhosis, extrahepatic biliary atresia or portacaval shunt; aromatic amino acids (AAA) tyrosine, tryptophan and phenylalanine, as well as methionine are increased in these conditions. Valine in particular, has been established as a useful supplemental therapy to the ailing liver. All the BCAA probably compete with AAA for absorption into the brain. Supplemental BCAA with vitamin B6 and zinc help normalize the BCAA:AAA ratio. In sickle-cell disease, valine substitutes for the hydrophilic amino acid glutamic acid in hemoglobin. Because valine is hydrophobic, the hemoglobin does not fold correctly. Valine is an essential amino acid, hence it must be ingested, usually as a component of proteins.
A branched-chain essential amino acid that has stimulant activity. It promotes muscle growth and ...
Valine (Val) or L-valine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-valine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Valine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aliphatic amino acid. Valine was first isolated from casein in 1901 by Hermann Emil Fischer. The name valine comes from valeric acid, which in turn is named after the plant valerian due to the presence of valine in the roots of the plant. Valine is essential in humans, meaning the body cannot synthesize it, and it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. L-valine is a branched chain amino acid (BCAA). The BCAAs consist of leucine, valine and isoleucine (and occasionally threonine). BCAAs are essential amino acids whose carbon structure is marked by a branch point at the beta-carbon position. BCAAs are critical to human life and are particularly involved in stress, energy and muscle metabolism. BCAA supplementation as therapy, both oral and intravenous, in human health and disease holds great promise. BCAAs have different metabolic routes, with valine going solely to carbohydrates (glucogenic), leucine solely to fats (ketogenic) and isoleucine being both a glucogenic and a ketogenic amino acid. The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. Like other branched-chain amino acids, the catabolism of valine starts with the removal of the amino group by transamination, giving alpha-ketoisovalerate, an alpha-keto acid, which is converted to isobutyryl-CoA through oxidative decarboxylation by the branched-chain α-ketoacid dehydrogenase complex. This is further oxidised and rearranged to succinyl-CoA, which can enter the citric acid cycle. Furthermore, these amino acids have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. Many types of inborn errors of BCAA metabolism exist, and are marked by various abnormalities. The most common form is the maple syrup urine disease, marked by a characteristic urinary odor. Other abnormalities are associated with a wide range of symptoms, such as mental retardation, ataxia, hypoglycemia, spinal muscle atrophy, rash, vomiting and excessive muscle movement. Most forms of BCAA metabolism errors are corrected by dietary restriction of BCAA and at least one form is correctable by supplementation with 10 mg of biotin daily. BCAA are decreased in patients with liver disease, such as hepatitis, hepatic coma, cirrhosis, extrahepatic biliary atresia or portacaval shunt. Valine in particular, has been established as a useful supplemental therapy to the ailing liver. Valine, like other branched-chain amino acids, is associated with insulin resistance: higher levels of valine are observed in the blood of diabetic mice, rats, and humans (PMID: 25287287). Mice fed a valine deprivation diet for one day have improved insulin sensitivity and feeding of a valine deprivation diet for one week significantly decreases blood glucose levels (PMID: 24684822). In diet-induced obese and insulin resistant mice, a diet with decreased levels of valine and the other branched-chain amino acids results in reduced adiposity and improved insulin sensitivity (PMID: 29266268). In sickle-cell disease, valine substitutes for the hydrophilic amino acid glutamic acid in hemoglobin. Because valine ...
L-valine, also known as (2s)-2-amino-3-methylbutanoic acid or L-(+)-alpha-aminoisovaleric acid, belongs to valine and derivatives class of compounds. Those are compounds containing valine or a derivative thereof resulting from reaction of valine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. L-valine is soluble (in water) and a moderately acidic compound (based on its pKa). L-valine can be found in watermelon, which makes L-valine a potential biomarker for the consumption of this food product. L-valine can be found primarily in most biofluids, including cerebrospinal fluid (CSF), breast milk, urine, and blood, as well as in human epidermis and fibroblasts tissues. L-valine exists in all living species, ranging from bacteria to humans. In humans, L-valine is involved in several metabolic pathways, some of which include streptomycin action pathway, tetracycline action pathway, methacycline action pathway, and kanamycin action pathway. L-valine is also involved in several metabolic disorders, some of which include methylmalonic aciduria due to cobalamin-related disorders, 3-methylglutaconic aciduria type III, isovaleric aciduria, and methylmalonic aciduria. Moreover, L-valine is found to be associated with schizophrenia, alzheimers disease, paraquat poisoning, and hypervalinemia. L-valine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Valine (abbreviated as Val or V) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH3+ form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −COO− form under biological conditions), and a side chain isopropyl group, making it a non-polar aliphatic amino acid. It is essential in humans, meaning the body cannot synthesize it: it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. In the genetic code it is encoded by all codons starting with GU, namely GUU, GUC, GUA, and GUG (Applies to Valine, Leucine and Isoleucine)
This group of essential amino acids are identified as the branched-chain amino acids, BCAAs. Because this arrangement of carbon atoms cannot be made by humans, these amino acids are an essential element in the diet. The catabolism of all three compounds initiates in muscle and yields NADH and FADH2 which can be utilized for ATP generation. The catabolism of all three of these amino acids uses the same enzymes in the first two steps. The first step in each case is a transamination using a single BCAA aminotransferase, with a-ketoglutarate as amine acceptor. As a result, three different a-keto acids are produced and are oxidized using a common branched-chain a-keto acid dehydrogenase, yielding the three different CoA derivatives. Subsequently the metabolic pathways diverge, producing many intermediates.
The principal product from valine is propionylCoA, the glucogenic precursor of succinyl-CoA. Isoleucine catabolism terminates with production of acetylCoA and propionylCoA; thus isoleucine is both glucogenic and ketogenic. Leucine gives rise to acetylCoA and acetoacetylCoA, and is thus classified as strictly ketogenic.
There are a number of genetic diseases associated with faulty catabolism of the BCAAs. The most common defect is in the branched-chain a-keto acid dehydrogenase. Since there is only one dehydrogenase enzyme for all three amino acids, all three a-keto acids accumulate and are excreted in the urine. The disease is known as Maple syrup urine disease because of the characteristic odor of the urine in afflicted individuals. Mental retardation in these cases is extensive. Unfortunately, since these are essential amino acids, they cannot be heavily restricted in the diet; ultimately, the life of afflicted individuals is short and development is abnormal The main neurological pr...
L-Valine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7004-03-7 (retrieved 2024-06-29) (CAS RN: 72-18-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
L-Valine (Valine) is a new nonlinear semiorganic material[1].
L-Valine (Valine) is a new nonlinear semiorganic material[1].
同义名列表
123 个代谢物同义名
L-Valine, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0\\%; L-Valine, Pharmaceutical Secondary Standard; Certified Reference Material; InChI=1/C5H11NO2/c1-3(2)4(6)5(7)8/h3-4H,6H2,1-2H3,(H,7,8)/t4-/m0/s; L-Valine, United States Pharmacopeia (USP) Reference Standard; L-Valine, dimer, meets the analytical specifications of USP; Valine, European Pharmacopoeia (EP) Reference Standard; L-Valine, certified reference material, TraceCERT(R); L-Valine, Cell Culture Reagent (H-L-Val-OH); L-Valine, Vetec(TM) reagent grade, >=98\\%; (S)-alpha-Amino-beta-methylbutyric acid; LYSINE ACETATE IMPURITY D [EP IMPURITY]; Butanoic acid, 2-amino-3-methyl-, (S)-; L-Valine, reagent grade, >=98\\% (HPLC); L-Valine, SAJ special grade, >=98.5\\%; L-alpha-Amino-beta-methylbutyric acid; 1B39571B-0AE8-4A9A-AE80-4B898D11A981; (S)-(+)-2-AMINO-3-METHYLBUTYRIC ACID; (S)-alpha-Amino-beta-methylbutyrate; 2-Amino-3-methylbutanoic acid, (S)-; 2-Amino-3-methylbutanoic acid (VAN); (S)-2-amino-3-methyl-Butanoic acid; 2-Amino-3-methylbutyric acid, (S)-; (2S)-2-amino-3-methylbutanoic acid; L-(+)-.alpha.-Aminoisovaleric acid; L-Valine, BioUltra, >=99.5\\% (NT); (S)-2-amino-3-methyl-butyric acid; L-alpha-Amino-beta-methylbutyrate; (S)-2-Amino-3-methylbutanoic acid; Butanoic acid, 2-amino-3-methyl-; (S)-2-Amino-3-methylbutyric acid; L-Valine, 99\\%, natural, FCC, FG; l-(+)-alpha-Aminoisovaleric acid; (S)-a-Amino-b-methylbutyric acid; L(+)-alpha-Aminoisovaleric acid; L-2-Amino-3-methylbutanoic acid; (2S)-2-amino-3-methylbutanoate; (S)-alpha-Aminoisovaleric acid; (S)-2-amino-3-methyl-Butanoate; L-Α-amino-β-methylbutyric acid; L-a-Amino-b-methylbutyric acid; (S)-2-Amino-3-methylbutanoate; 2-Amino-3-methylbutanoic acid; 2-Amino-3-methyl-butyric acid; L-(+)-alpha-Aminoisovalerate; L-(+)-Α-aminoisovaleric acid; L-(+)-a-Aminoisovaleric acid; (S)-a-Amino-b-methylbutyrate; (S)-2-Amino-3-methylbutyrate; 2-Amino-3-methylbutyric acid; (S)-?-Aminoisovaleric acid; (S)-A-Aminoisovaleric acid; 2-Aminoisovaleric acid,(S); L-a-Amino-b-methylbutyrate; L-Α-amino-β-methylbutyrate; alpha-aminoisovaleric acid; 2-amino-3-methylbutanoate; L-(+)-Α-aminoisovalerate; 2-Amino-3-methylbutyrate; L-(+)-a-Aminoisovalerate; L-2-Aminoisovaleric Acid; L-Valine, 98.5-101.5\\%; 2-aminoisovaleric acid; VALINE [USP MONOGRAPH]; VALINE (USP MONOGRAPH); VALINE [EP MONOGRAPH]; L-iso-C3H7CH(NH2)COOH; VALINE (EP MONOGRAPH); L-VALINE [USP-RS]; Valine [USAN:INN]; Valine (L-Valine); Valina [Spanish]; Valinum [Latin]; UNII-HG18B9YRS7; Valinum (Latin); VALINE [WHO-DD]; L-Valine (JP17); L-VALINE [FCC]; Racemic valine; L-Valine, 99\\%; L-VALINE [JAN]; VALINE [VANDF]; VALINE [MART.]; VALINE (MART.); VALINE [HSDB]; VALINE [INCI]; L-Valine, FCC; VALINE [USAN]; L-Valine,(S); Valine (VAN); VALINE [INN]; Valine (USP); VALINE (II); 3h-l-valine; VALINE [MI]; VALINE [II]; HG18B9YRS7; VALINE, L-; (S)-Valine; (+)-valine; (L)-valine; L-Valine;; DL-Valine; L-Valine; L-VAL-OH; L Valine; H-Val-OH; L-valin; (S)-Val; Valinum; L-Val-4; s-valin; valina; Valine; valin; L-Val; Hval; 1t4s; val; V; poly-l-valine; Valine; L-Valine; Valine
数据库引用编号
62 个数据库交叉引用编号
- ChEBI: CHEBI:16414
- ChEBI: CHEBI:27266
- KEGG: C00183
- KEGGdrug: D00039
- PubChem: 6287
- PubChem: 1182
- HMDB: HMDB0000883
- Metlin: METLIN35
- DrugBank: DB00161
- ChEMBL: CHEMBL43068
- ChEMBL: CHEMBL11257
- Wikipedia: L-valine
- Wikipedia: Valine
- MeSH: Valine
- ChemIDplus: 0000072184
- MetaCyc: VAL
- KNApSAcK: C00001398
- foodb: FDB004905
- chemspider: 6050
- CAS: 72-18-4
- MoNA: RP000912
- MoNA: PS029004
- MoNA: KNA00027
- MoNA: KNA00233
- MoNA: KNA00028
- MoNA: PS029002
- MoNA: KO004254
- MoNA: KNA00232
- MoNA: KO001989
- MoNA: PB000390
- MoNA: KO004253
- MoNA: KO004252
- MoNA: KO001990
- MoNA: KO004251
- MoNA: KO001988
- MoNA: PS029003
- MoNA: PB000391
- MoNA: PR100588
- MoNA: RP000901
- MoNA: RP000902
- MoNA: KNA00026
- MoNA: PS029001
- MoNA: PB000389
- MoNA: KO004255
- MoNA: RP000911
- MoNA: RP000903
- MoNA: KNA00234
- MoNA: KNA00025
- MoNA: PR100176
- MoNA: KNA00235
- MoNA: PB000388
- medchemexpress: HY-N0717
- PMhub: MS000000621
- MetaboLights: MTBLC16414
- PDB-CCD: VAL
- 3DMET: B00054
- NIKKAJI: J9.179K
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-759
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-77
- PubChem: 3483
- KNApSAcK: 16414
- LOTUS: LTS0231703
分类词条
相关代谢途径
Reactome(0)
PlantCyc(0)
代谢反应
92 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(5)
- alanine biosynthesis I:
pyruvate + val ⟶ 2-oxoisovalerate + ala
- superpathway of alanine biosynthesis:
pyruvate + val ⟶ 2-oxoisovalerate + ala
- tRNA charging pathway:
ATP + arg ⟶ AMP + diphosphate
- valine degradation I:
(S)-methylmalonate-semialdehyde + H2O + NAD+ + coenzyme A ⟶ H+ + NADH + bicarbonate + propanoyl-CoA
- valine degradation I:
(S)-methylmalonate-semialdehyde + H2O + NAD+ + coenzyme A ⟶ H+ + NADH + bicarbonate + propanoyl-CoA
WikiPathways(1)
- Glucosinolate biosynthesis from branched-chain amino acid:
2-Oxo-3-methyl-butanoic acid ⟶ L-Valine
Plant Reactome(0)
INOH(2)
- Valine,Leucine and Isoleucine degradation ( Valine,Leucine and Isoleucine degradation ):
2-Methyl-3-acetoacetyl-CoA + CoA ⟶ Acetyl-CoA + Propanoyl-CoA
- 2-Oxo-glutaric acid + L-Valine = L-Glutamic acid + 3-Methyl-2-oxo-butanoic acid ( Valine,Leucine and Isoleucine degradation ):
2-Oxo-glutaric acid + L-Valine ⟶ 3-Methyl-2-oxo-butanoic acid + L-Glutamic acid
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(84)
- Malonyl-CoA Decarboxylase Deficiency:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Malonic Aciduria:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Methylmalonic Aciduria Due to Cobalamin-Related Disorders:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Malonyl-CoA Decarboxylase Deficiency:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Malonic Aciduria:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Methylmalonic Aciduria Due to Cobalamin-Related Disorders:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Malonyl-CoA Decarboxylase Deficiency:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Secondary Metabolites: Valine and L-Leucine Biosynthesis from Pyruvate:
3-Methyl-2-oxovaleric acid + Acetyl-CoA + Water ⟶ 2-Isopropylmalic acid + Coenzyme A + Hydrogen Ion
- Secondary Metabolites: Valine and L-Leucine Biosynthesis from Pyruvate:
3-Methyl-2-oxovaleric acid + Acetyl-CoA + Water ⟶ 2-Isopropylmalic acid + Coenzyme A + Hydrogen Ion
- Valine Biosynthesis:
Isovaleric acid + L-Glutamic acid ⟶ L-Valine + Oxoglutaric acid
- Valine Biosynthesis:
Isovaleric acid + L-Glutamic acid ⟶ L-Valine + Oxoglutaric acid
- Valine Biosynthesis:
Isovaleric acid + L-Glutamic acid ⟶ L-Valine + Oxoglutaric acid
- Valine, Leucine, and Isoleucine Degradation:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- beta-Ketothiolase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 2-Methyl-3-hydroxybutyryl-CoA Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Propionic Acidemia:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Maple Syrup Urine Disease:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Methylcrotonyl-CoA Carboxylase Deficiency Type I:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Methylglutaconic Aciduria Type I:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Methylglutaconic Aciduria Type III:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Methylmalonate Semialdehyde Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Methylmalonic Aciduria:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Isovaleric Aciduria:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Methylglutaconic Aciduria Type IV:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Hydroxyisobutyric Acid Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- 3-Hydroxyisobutyric Aciduria:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Isobutyryl-CoA Dehydrogenase Deficiency:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Isovaleric Acidemia:
-Ketoisovaleric acid + Thiamine pyrophosphate ⟶ 2-Methyl-1-hydroxypropyl-ThPP + Carbon dioxide
- Valine Degradation:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Valine Degradation:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Valine, Leucine, and Isoleucine Degradation:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 2-Methyl-3-hydroxybutryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylcrotonyl-CoA Carboxylase Deficiency Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type III:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type IV:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- beta-Ketothiolase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isovaleric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Maple Syrup Urine Disease:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Methylmalonate Semialdehyde Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Methylmalonic Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Propionic Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Acid Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isobutyryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isovaleric Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- L-Alanine Metabolism:
L-Valine + Pyruvic acid ⟶ -Ketoisovaleric acid + L-Alanine
- L-Alanine Metabolism:
L-Valine + Pyruvic acid ⟶ -Ketoisovaleric acid + L-Alanine
- Valine, Leucine, and Isoleucine Degradation:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Valine, Leucine, and Isoleucine Degradation:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 2-Methyl-3-hydroxybutryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxy-3-methylglutaryl-CoA Lyase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylcrotonyl-CoA Carboxylase Deficiency Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type I:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type III:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Methylglutaconic Aciduria Type IV:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- beta-Ketothiolase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isovaleric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Maple Syrup Urine Disease:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Methylmalonate Semialdehyde Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Methylmalonic Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Propionic Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Acid Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- 3-Hydroxyisobutyric Aciduria:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isobutyryl-CoA Dehydrogenase Deficiency:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- Isovaleric Acidemia:
L-Valine + Oxoglutaric acid ⟶ -Ketoisovaleric acid + L-Glutamic acid
- tRNA Charging:
Adenosine triphosphate + Hydrogen Ion + L-Arginine ⟶ Adenosine monophosphate + Pyrophosphate
- tRNA Charging:
Adenosine triphosphate + Hydrogen Ion + L-Arginine ⟶ Adenosine monophosphate + Pyrophosphate
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Malonic Aciduria:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- Methylmalonic Aciduria Due to Cobalamin-Related Disorders:
2-Ketobutyric acid + Coenzyme A + NAD ⟶ NADH + Propionyl-CoA
- tRNA Charging 2:
Adenosine triphosphate + Hydrogen Ion + L-Arginine ⟶ Adenosine monophosphate + Pyrophosphate
- Protein Synthesis: Valine:
Adenosine triphosphate + L-Valine ⟶ Adenosine monophosphate + Pyrophosphate
- Protein Synthesis: Valine:
Adenosine triphosphate + L-Valine ⟶ Adenosine monophosphate + Pyrophosphate
- Protein Synthesis: Valine:
Adenosine triphosphate + L-Valine ⟶ Adenosine monophosphate + Pyrophosphate
- Protein Synthesis: Valine:
Adenosine triphosphate + L-Valine ⟶ Adenosine monophosphate + Pyrophosphate
- tRNA Charging 2:
Adenosine triphosphate + Hydrogen Ion + L-Arginine ⟶ Adenosine monophosphate + Pyrophosphate
PharmGKB(0)
486 个相关的物种来源信息
- 3319 - Abies: LTS0231703
- 90345 - Abies balsamea: 10.1016/S0021-9673(01)97854-9
- 90345 - Abies balsamea: LTS0231703
- 4185 - Acanthaceae: LTS0231703
- 13328 - Achillea: LTS0231703
- 13329 - Achillea millefolium: 10.1016/S0031-9422(00)90576-4
- 13329 - Achillea millefolium: LTS0231703
- 482479 - Achillea millefolium var. borealis: 10.1016/S0031-9422(00)90576-4
- 482479 - Achillea millefolium var. borealis: LTS0231703
- 5339 - Agaricaceae: LTS0231703
- 155619 - Agaricomycetes: LTS0231703
- 5340 - Agaricus: LTS0231703
- 56157 - Agaricus campestris: 10.1021/JF60199A047
- 56157 - Agaricus campestris: LTS0231703
- 4449 - Alismataceae: LTS0231703
- 4678 - Allium: LTS0231703
- 4681 - Allium ampeloprasum: 10.1021/JF00044A010
- 4681 - Allium ampeloprasum: LTS0231703
- 4679 - Allium cepa: 10.1021/JF00044A010
- 4679 - Allium cepa: LTS0231703
- 1174972 - Allium rotundum: 10.1007/S10600-009-9452-5
- 1174972 - Allium rotundum: LTS0231703
- 4682 - Allium sativum: 10.1016/0378-8741(96)01416-X
- 4682 - Allium sativum: 10.1021/JF00044A010
- 4682 - Allium sativum: LTS0231703
- 94326 - Alpinia: LTS0231703
- 94327 - Alpinia galanga: 10.1016/0305-1978(86)90092-X
- 94327 - Alpinia galanga: LTS0231703
- 230707 - Alpinia purpurata: 10.1016/0305-1978(86)90092-X
- 230707 - Alpinia purpurata: LTS0231703
- 3563 - Amaranthaceae: LTS0231703
- 3564 - Amaranthus: LTS0231703
- 124765 - Amaranthus spinosus: 10.1079/9781780642635.0298
- 124765 - Amaranthus spinosus: LTS0231703
- 4668 - Amaryllidaceae: LTS0231703
- 4614 - Ananas: LTS0231703
- 4615 - Ananas comosus: 10.1016/0305-1978(86)90092-X
- 4615 - Ananas comosus: LTS0231703
- 40948 - Angelica: LTS0231703
- 85712 - Angelica gigas: 10.1263/JBB.105.655
- 85712 - Angelica gigas: LTS0231703
- 4150 - Antirrhinum: LTS0231703
- 4151 - Antirrhinum majus: 10.1055/S-0028-1097736
- 4151 - Antirrhinum majus: LTS0231703
- 4037 - Apiaceae: LTS0231703
- 3701 - Arabidopsis: LTS0231703
- 3702 - Arabidopsis thaliana: 10.1073/PNAS.1403248111
- 3702 - Arabidopsis thaliana: 10.1104/PP.104.053793
- 3702 - Arabidopsis thaliana: 10.1104/PP.108.117754
- 3702 - Arabidopsis thaliana: 10.1111/TPJ.14311
- 3702 - Arabidopsis thaliana: LTS0231703
- 4454 - Araceae: LTS0231703
- 4050 - Araliaceae: LTS0231703
- 131254 - Archontophoenix: LTS0231703
- 180981 - Archontophoenix alexandrae: 10.1016/0305-1978(86)90092-X
- 180981 - Archontophoenix alexandrae: LTS0231703
- 115440 - Areca: LTS0231703
- 184783 - Areca catechu: 10.1016/0305-1978(86)90092-X
- 184783 - Areca catechu: LTS0231703
- 4710 - Arecaceae: LTS0231703
- 6660 - Artemia: LTS0231703
- 85549 - Artemia salina: 10.1021/JF60200A008
- 85549 - Artemia salina: LTS0231703
- 38009 - Artemiidae: LTS0231703
- 4219 - Artemisia: LTS0231703
- 72332 - Artemisia absinthium: 10.1007/BF00600846
- 72332 - Artemisia absinthium: LTS0231703
- 6656 - Arthropoda: LTS0231703
- 4890 - Ascomycota: LTS0231703
- 40552 - Asparagaceae: LTS0231703
- 4210 - Asteraceae: LTS0231703
- 20400 - Astragalus: LTS0231703
- 47038 - Astragalus falcatus: 10.1007/BF00567904
- 47038 - Astragalus falcatus: LTS0231703
- 91061 - Bacilli: LTS0231703
- 2 - Bacteria: LTS0231703
- 5204 - Basidiomycota: LTS0231703
- 6658 - Branchiopoda: LTS0231703
- 3705 - Brassica: LTS0231703
- 3708 - Brassica napus: 10.1021/JF00011A007
- 3708 - Brassica napus: LTS0231703
- 3712 - Brassica oleracea: 10.1021/JF00044A010
- 3712 - Brassica oleracea: LTS0231703
- 3700 - Brassicaceae: LTS0231703
- 4613 - Bromeliaceae: LTS0231703
- 37796 - Buccinidae: LTS0231703
- 4269 - Byrsonima: LTS0231703
- 4270 - Byrsonima crassifolia: 10.3109/13880209509088143
- 4270 - Byrsonima crassifolia: LTS0231703
- 3593 - Cactaceae: LTS0231703
- 3820 - Cajanus: LTS0231703
- 3821 - Cajanus cajan: 10.1055/S-2006-960880
- 3821 - Cajanus cajan: LTS0231703
- 41495 - Calendula: LTS0231703
- 41496 - Calendula officinalis: 10.29296/25877313-2018-06-01
- 41496 - Calendula officinalis: LTS0231703
- 5475 - Candida: LTS0231703
- 5476 - Candida albicans: LTS0231703
- 3481 - Cannabaceae: LTS0231703
- 3482 - Cannabis: LTS0231703
- 3483 - Cannabis sativa: 10.1021/NP50008A001
- 3483 - Cannabis sativa: LTS0231703
- 4200 - Caprifoliaceae: LTS0231703
- 3568 - Caryophyllaceae: LTS0231703
- 21019 - Castanea: LTS0231703
- 21020 - Castanea sativa: 10.1016/S0031-9422(00)83785-1
- 21020 - Castanea sativa: LTS0231703
- 3521 - Casuarina: LTS0231703
- 3523 - Casuarina equisetifolia: 10.1079/9781780642635.0298
- 3523 - Casuarina equisetifolia: LTS0231703
- 3520 - Casuarinaceae: LTS0231703
- 1804623 - Chenopodiaceae: LTS0231703
- 3051 - Chlamydomonadaceae: LTS0231703
- 3052 - Chlamydomonas: LTS0231703
- 3055 - Chlamydomonas reinhardtii: 10.1111/TPJ.12747
- 3055 - Chlamydomonas reinhardtii: LTS0231703
- 3166 - Chlorophyceae: LTS0231703
- 3041 - Chlorophyta: LTS0231703
- 7711 - Chordata: LTS0231703
- 5110 - Claviceps: LTS0231703
- 5111 - Claviceps purpurea: 10.1055/S-0028-1100051
- 5111 - Claviceps purpurea: LTS0231703
- 34397 - Clavicipitaceae: LTS0231703
- 13893 - Cocos: LTS0231703
- 13894 - Cocos nucifera: 10.1016/0305-1978(86)90092-X
- 13894 - Cocos nucifera: LTS0231703
- 41218 - Colchicaceae: LTS0231703
- 13444 - Colchicum: LTS0231703
- 1094124 - Colchicum trigynum: 10.1055/S-0028-1097874
- 1094124 - Colchicum trigynum: LTS0231703
- 4743 - Commelina: LTS0231703
- 4740 - Commelinaceae: LTS0231703
- 93758 - Corchorus: LTS0231703
- 360610 - Corchorus aestuans: 10.1515/ZNB-1984-1020
- 360610 - Corchorus aestuans: LTS0231703
- 3367 - Cupressaceae: LTS0231703
- 4609 - Cyperaceae: LTS0231703
- 4610 - Cyperus: LTS0231703
- 1234190 - Cyperus aromaticus: 10.1016/0305-1978(86)90092-X
- 1234190 - Cyperus aromaticus: LTS0231703
- 6668 - Daphnia: LTS0231703
- 6669 - Daphnia pulex: 10.1038/SREP25125
- 6669 - Daphnia pulex: LTS0231703
- 77658 - Daphniidae: LTS0231703
- 4038 - Daucus: LTS0231703
- 4039 - Daucus carota: 10.1016/0008-6215(84)85339-2
- 4039 - Daucus carota: 10.1079/9781780642635.0298
- 4039 - Daucus carota: LTS0231703
- 766764 - Debaryomycetaceae: LTS0231703
- 37818 - Dendrobium: LTS0231703
- 51096 - Dendrobium crumenatum: 10.1016/0305-1978(86)90092-X
- 51096 - Dendrobium crumenatum: LTS0231703
- 42195 - Dieffenbachia: LTS0231703
- 4671 - Dioscoreaceae: LTS0231703
- 44615 - Discinaceae: LTS0231703
- 40129 - Donax: LTS0231703
- 96514 - Donax canniformis: 10.1016/0305-1978(86)90092-X
- 96514 - Donax canniformis: LTS0231703
- 210034 - Donax grandis: 10.1016/0305-1978(86)90092-X
- 210034 - Donax grandis: LTS0231703
- 147541 - Dothideomycetes: LTS0231703
- 543 - Enterobacteriaceae: LTS0231703
- 174214 - Epipremnum: LTS0231703
- 78380 - Epipremnum aureum: 10.1016/0305-1978(86)90092-X
- 78380 - Epipremnum aureum: LTS0231703
- 258264 - Epipremnum pinnatum: 10.1016/0305-1978(86)90092-X
- 258264 - Epipremnum pinnatum: LTS0231703
- 561 - Escherichia: LTS0231703
- 562 - Escherichia coli: LTS0231703
- 33682 - Euglenozoa: LTS0231703
- 2759 - Eukaryota: LTS0231703
- 3977 - Euphorbiaceae: LTS0231703
- 46053 - Euphrasia: LTS0231703
- 290213 - Euphrasia officinalis: 10.1055/S-0028-1099453
- 290213 - Euphrasia officinalis: LTS0231703
- 374709 - Euphrasia stricta: 10.1055/S-0028-1099453
- 374709 - Euphrasia stricta: LTS0231703
- 3803 - Fabaceae: LTS0231703
- 3503 - Fagaceae: LTS0231703
- 38944 - Flammulina: LTS0231703
- 38945 - Flammulina velutipes: 10.1111/J.1365-2621.1987.TB13989.X
- 38945 - Flammulina velutipes: LTS0231703
- 3746 - Fragaria: LTS0231703
- 3747 - Fragaria × ananassa: 10.1021/JF00023A036
- 4751 - Fungi: LTS0231703
- 1236 - Gammaproteobacteria: LTS0231703
- 6448 - Gastropoda: LTS0231703
- 21472 - Gentianaceae: LTS0231703
- 41219 - Gloriosa: LTS0231703
- 41220 - Gloriosa superba: 10.1016/0305-1978(86)90092-X
- 41220 - Gloriosa superba: LTS0231703
- 3846 - Glycine: LTS0231703
- 3847 - Glycine max: 10.1007/BF00576124
- 3847 - Glycine max: LTS0231703
- 3633 - Gossypium: LTS0231703
- 3635 - Gossypium hirsutum: 10.1177/004051757504500511
- 3635 - Gossypium hirsutum: LTS0231703
- 33160 - Gyromitra: LTS0231703
- 33161 - Gyromitra esculenta: 10.1021/JF60199A047
- 33161 - Gyromitra esculenta: LTS0231703
- 4051 - Hedera: LTS0231703
- 4052 - Hedera helix: 10.1016/S0731-7085(98)00094-6
- 4052 - Hedera helix: LTS0231703
- 85353 - Hedera hibernica: 10.1016/S0731-7085(98)00094-6
- 85353 - Hedera hibernica: LTS0231703
- 3980 - Hevea: LTS0231703
- 3981 - Hevea brasiliensis: 10.1039/JR9262901448
- 3981 - Hevea brasiliensis: LTS0231703
- 9604 - Hominidae: LTS0231703
- 9605 - Homo: LTS0231703
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1038/NBT.2488
- 9606 - Homo sapiens: LTS0231703
- 51023 - Hydrilla: LTS0231703
- 51024 - Hydrilla verticillata: 10.1016/0305-1978(86)90092-X
- 51024 - Hydrilla verticillata: LTS0231703
- 26319 - Hydrocharitaceae: LTS0231703
- 80649 - Hymenogastraceae: LTS0231703
- 71944 - Hypholoma: LTS0231703
- 72129 - Hypholoma fasciculare: 10.1055/S-0028-1097581
- 72129 - Hypholoma fasciculare: LTS0231703
- 20685 - Indigofera: LTS0231703
- 520844 - Indigofera hendecaphylla: 10.1021/JF60189A002
- 520844 - Indigofera hendecaphylla: LTS0231703
- 539088 - Indigofera hirsuta: 10.1021/JF60189A002
- 539088 - Indigofera hirsuta: LTS0231703
- 3089969 - Indigofera pilosa: LTS0231703
- 138272 - Indigofera schimperi: 10.1021/JF60189A002
- 138272 - Indigofera schimperi: LTS0231703
- 304104 - Iochroma: LTS0231703
- 304105 - Iochroma fuchsioides: 10.1021/NP50078A017
- 304105 - Iochroma fuchsioides: LTS0231703
- 3995 - Jatropha: LTS0231703
- 454931 - Jatropha gossypiifolia: 10.1016/0031-9422(71)85055-0
- 454931 - Jatropha gossypiifolia: 10.1016/S0031-9422(00)80544-0
- 454931 - Jatropha gossypiifolia: LTS0231703
- 14101 - Juncaceae: LTS0231703
- 13578 - Juncus: LTS0231703
- 879918 - Juncus roemerianus: 10.18785/GRR.0602.07
- 879918 - Juncus roemerianus: LTS0231703
- 13100 - Juniperus: LTS0231703
- 58039 - Juniperus communis: LTS0231703
- 244307 - Juniperus communis var. communis: 10.1016/S0021-9673(01)97854-9
- 244307 - Juniperus communis var. communis: LTS0231703
- 114265 - Juniperus occidentalis: 10.1016/S0021-9673(01)97854-9
- 114265 - Juniperus occidentalis: LTS0231703
- 466205 - Juniperus scopulorum: 10.1016/S0021-9673(01)97854-9
- 466205 - Juniperus scopulorum: LTS0231703
- 5653 - Kinetoplastea: LTS0231703
- 4136 - Lamiaceae: LTS0231703
- 87005 - Lantana: LTS0231703
- 126435 - Lantana camara: 10.1079/9781780642635.0298
- 126435 - Lantana camara: LTS0231703
- 147548 - Leotiomycetes: LTS0231703
- 4447 - Liliopsida: LTS0231703
- 29683 - Lophatherum gracile: -
- 3867 - Lotus: LTS0231703
- 47247 - Lotus corniculatus: LTS0231703
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-3040.2009.02047.X
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-313X.2007.03381.X
- 1211582 - Lotus corniculatus subsp. corniculatus: LTS0231703
- 153658 - Lunaria: LTS0231703
- 153659 - Lunaria annua: 10.3891/ACTA.CHEM.SCAND.21-1592
- 153659 - Lunaria annua: LTS0231703
- 3869 - Lupinus: LTS0231703
- 3870 - Lupinus albus: 10.1515/BCHM2.1905.45.1-2.38
- 3870 - Lupinus albus: LTS0231703
- 3873 - Lupinus luteus: 10.1002/PRAC.18830270118
- 3873 - Lupinus luteus: LTS0231703
- 3398 - Magnoliopsida: LTS0231703
- 4268 - Malpighiaceae: LTS0231703
- 3629 - Malvaceae: LTS0231703
- 40674 - Mammalia: LTS0231703
- 4619 - Marantaceae: LTS0231703
- 33208 - Metazoa: LTS0231703
- 3537 - Mirabilis: LTS0231703
- 3538 - Mirabilis jalapa: 10.1079/9781780642635.0298
- 3538 - Mirabilis jalapa: LTS0231703
- 31969 - Mollicutes: LTS0231703
- 6447 - Mollusca: LTS0231703
- 3487 - Moraceae: LTS0231703
- 5193 - Morchella: LTS0231703
- 60347 - Morchella angusticeps: 10.1021/JF60199A047
- 60347 - Morchella angusticeps: LTS0231703
- 62754 - Morchella crassipes: 10.1021/JF60199A047
- 62754 - Morchella crassipes: LTS0231703
- 1579548 - Morchella deliciosa: 10.1021/JF60199A047
- 1579548 - Morchella deliciosa: LTS0231703
- 39407 - Morchella esculenta: 10.1021/JF60199A047
- 39407 - Morchella esculenta: LTS0231703
- 5192 - Morchellaceae: LTS0231703
- 168074 - Murdannia: LTS0231703
- 428249 - Murdannia nudiflora: 10.1016/0305-1978(86)90092-X
- 428249 - Murdannia nudiflora: LTS0231703
- 10066 - Muridae: LTS0231703
- 10088 - Mus: LTS0231703
- 10090 - Mus musculus: LTS0231703
- 10090 - Mus musculus: NA
- 4640 - Musa: LTS0231703
- 89151 - Musa × paradisiaca: 10.1016/0305-1978(86)90092-X
- 4637 - Musaceae: LTS0231703
- 2093 - Mycoplasma: LTS0231703
- 28903 - Mycoplasma bovis: 10.1128/MSYSTEMS.00055-17
- 2096 - Mycoplasma gallisepticum: 10.1128/MSYSTEMS.00055-17
- 2092 - Mycoplasmataceae: LTS0231703
- 2767358 - Mycoplasmopsis: LTS0231703
- 37240 - Myxotrichaceae: LTS0231703
- 78133 - Myxotrichum: 10.1016/0305-1978(86)90092-X
- 78133 - Myxotrichum: LTS0231703
- 57632 - Neptunea: LTS0231703
- 167137 - Neptunea antiqua: 10.1016/0041-0101(89)90038-X
- 167137 - Neptunea antiqua: LTS0231703
- 4085 - Nicotiana: LTS0231703
- 4097 - Nicotiana tabacum: 10.1007/BF02660305
- 4097 - Nicotiana tabacum: LTS0231703
- 3536 - Nyctaginaceae: LTS0231703
- 42451 - Onchidiidae: LTS0231703
- 69681 - Onchidium: 10.1016/0305-1978(86)90092-X
- 69681 - Onchidium: LTS0231703
- 45173 - Oncidium: 10.1016/0305-1978(86)90092-X
- 45173 - Oncidium: LTS0231703
- 3881 - Onobrychis: LTS0231703
- 1441993 - Onobrychis kachetica: 10.1007/BF00565728
- 1441993 - Onobrychis kachetica: LTS0231703
- 106975 - Opuntia: LTS0231703
- 371859 - Opuntia ficus-indica: 10.1055/S-1999-14037
- 371859 - Opuntia ficus-indica: LTS0231703
- 4747 - Orchidaceae: LTS0231703
- 91896 - Orobanchaceae: LTS0231703
- 4053 - Panax: LTS0231703
- 4054 - Panax ginseng: 10.1021/JF00093A051
- 4054 - Panax ginseng: LTS0231703
- 4724 - Pandanaceae: LTS0231703
- 4725 - Pandanus: LTS0231703
- 1165086 - Pandanus odorifer: 10.1016/0305-1978(86)90092-X
- 1165086 - Pandanus odorifer: LTS0231703
- 3684 - Passiflora: LTS0231703
- 159425 - Passiflora incarnata: 10.1007/BF00563657
- 159425 - Passiflora incarnata: LTS0231703
- 3683 - Passifloraceae: LTS0231703
- 59064 - Peliosanthes: LTS0231703
- 148715 - Pentaclethra: LTS0231703
- 148716 - Pentaclethra macrophylla: 10.1007/BF02666050
- 148716 - Pentaclethra macrophylla: LTS0231703
- 147549 - Pezizomycetes: LTS0231703
- 862241 - Physalacriaceae: LTS0231703
- 3328 - Picea: LTS0231703
- 3330 - Picea glauca: 10.1016/S0021-9673(01)97854-9
- 3330 - Picea glauca: LTS0231703
- 3335 - Picea mariana: 10.1016/S0021-9673(01)97854-9
- 3335 - Picea mariana: LTS0231703
- 3331 - Picea pungens: 10.1016/S0021-9673(01)97854-9
- 3331 - Picea pungens: LTS0231703
- 3318 - Pinaceae: LTS0231703
- 58019 - Pinopsida: LTS0231703
- 3337 - Pinus: LTS0231703
- 3339 - Pinus contorta: 10.1016/S0021-9673(01)97854-9
- 3339 - Pinus contorta: LTS0231703
- 77912 - Pinus densiflora: 10.1248/YAKUSHI1947.107.4_279
- 77912 - Pinus densiflora: LTS0231703
- 55062 - Pinus ponderosa: 10.1016/S0021-9673(01)97854-9
- 55062 - Pinus ponderosa: 10.1034/J.1399-3054.1990.790104.X
- 55062 - Pinus ponderosa: LTS0231703
- 3887 - Pisum: LTS0231703
- 3888 - Pisum sativum: 10.1007/BF00574236
- 3888 - Pisum sativum: 10.1016/S0031-9422(00)85399-6
- 3888 - Pisum sativum: LTS0231703
- 208194 - Pisum sativum subsp. sativum: 10.1007/BF00574236
- 208194 - Pisum sativum subsp. sativum: LTS0231703
- 156152 - Plantaginaceae: LTS0231703
- 33090 - Plants: -
- 36657 - Pluteaceae: LTS0231703
- 21861 - Pogostemon: LTS0231703
- 28511 - Pogostemon cablin: 10.1021/JF304466T
- 28511 - Pogostemon cablin: LTS0231703
- 16367 - Pontederiaceae: LTS0231703
- 3689 - Populus: LTS0231703
- 113636 - Populus tremula: 10.1111/NPH.16799
- 113636 - Populus tremula: LTS0231703
- 81051 - Poria: -
- 3754 - Prunus: LTS0231703
- 3758 - Prunus domestica: 10.1021/JF00017A016
- 3758 - Prunus domestica: LTS0231703
- 135621 - Pseudomonadaceae: LTS0231703
- 286 - Pseudomonas: LTS0231703
- 287 - Pseudomonas aeruginosa: LTS0231703
- 303 - Pseudomonas putida: LTS0231703
- 3356 - Pseudotsuga: LTS0231703
- 3357 - Pseudotsuga menziesii: 10.1016/S0021-9673(01)97854-9
- 3357 - Pseudotsuga menziesii: LTS0231703
- 71950 - Psilocybe: LTS0231703
- 3889 - Psophocarpus: LTS0231703
- 3891 - Psophocarpus tetragonolobus: 10.1111/J.1365-2621.1985.TB10514.X
- 3891 - Psophocarpus tetragonolobus: LTS0231703
- 25443 - Psychotria: LTS0231703
- 46332 - Rhynchospora: LTS0231703
- 906937 - Rhynchospora colorata: 10.1016/0305-1978(86)90092-X
- 906937 - Rhynchospora colorata: LTS0231703
- 2872799 - Ripariosida: LTS0231703
- 108447 - Ripariosida hermaphrodita: LTS0231703
- 3764 - Rosa: LTS0231703
- 3745 - Rosaceae: LTS0231703
- 24966 - Rubiaceae: LTS0231703
- 13659 - Ruellia: LTS0231703
- 441035 - Ruellia tuberosa: 10.1079/9781780642635.0298
- 441035 - Ruellia tuberosa: LTS0231703
- 4891 - Saccharomycetes: LTS0231703
- 4450 - Sagittaria: LTS0231703
- 4451 - Sagittaria sagittifolia: 10.1016/0305-1978(86)90092-X
- 4451 - Sagittaria sagittifolia: LTS0231703
- 3688 - Salicaceae: LTS0231703
- 590 - Salmonella: LTS0231703
- 28901 - Salmonella enterica: 10.1039/C3MB25598K
- 28901 - Salmonella enterica: LTS0231703
- 77655 - Sida: LTS0231703
- 108447 - Sida hermaphrodita: 10.1007/BF00607552
- 4070 - Solanaceae: LTS0231703
- 147550 - Sordariomycetes: LTS0231703
- 35916 - Spermacoce: LTS0231703
- 2491924 - Spermacoce pusilla: 10.4268/CJCMM20120313
- 2491924 - Spermacoce pusilla: LTS0231703
- 90964 - Staphylococcaceae: LTS0231703
- 1279 - Staphylococcus: LTS0231703
- 1280 - Staphylococcus aureus: LTS0231703
- 13273 - Stellaria: LTS0231703
- 13274 - Stellaria media: 10.1007/S10600-010-9710-6
- 13274 - Stellaria media: LTS0231703
- 1883 - Streptomyces: 10.1007/S00253-015-7150-8
- 1883 - Streptomyces: LTS0231703
- 1434256 - Streptomyces jiujiangensis: 10.1007/S00253-015-7150-8
- 1434256 - Streptomyces jiujiangensis: LTS0231703
- 2062 - Streptomycetaceae: LTS0231703
- 35493 - Streptophyta: LTS0231703
- 40562 - Strophariaceae: LTS0231703
- 46108 - Suaeda: LTS0231703
- 224153 - Suaeda aegyptiaca: 10.4197/SCI.16-1.4
- 224153 - Suaeda aegyptiaca: LTS0231703
- 39241 - Swertia: LTS0231703
- 166611 - Swertia angustifolia: LTS0231703
- 1460260 - Swertia angustifolia var. pulchella: 10.1055/S-0028-1097323
- 1460260 - Swertia angustifolia var. pulchella: LTS0231703
- 44981 - Tacca: LTS0231703
- 2487666 - Tacca cristata: 10.1016/0305-1978(86)90092-X
- 2487666 - Tacca cristata: LTS0231703
- 167567 - Tacca integrifolia: 10.1016/0305-1978(86)90092-X
- 167567 - Tacca integrifolia: LTS0231703
- 1898022 - Taccaceae: LTS0231703
- 56538 - Telekia: LTS0231703
- 56539 - Telekia speciosa: 10.1007/BF00633415
- 56539 - Telekia speciosa: LTS0231703
- 49990 - Thymus: LTS0231703
- 2019959 - Thymus transcaucasicus: 10.1007/BF00575075
- 2019959 - Thymus transcaucasicus: LTS0231703
- 58023 - Tracheophyta: LTS0231703
- 4741 - Tradescantia: LTS0231703
- 428268 - Tradescantia spathacea: 10.1016/0305-1978(86)90092-X
- 428268 - Tradescantia spathacea: LTS0231703
- 709071 - Treculia: LTS0231703
- 709072 - Treculia africana: 10.1007/BF02666050
- 709072 - Treculia africana: LTS0231703
- 3677 - Trichosanthes kirilowii Maxim.: -
- 676073 - Trichosanthes rosthornii Harms: -
- 5690 - Trypanosoma: LTS0231703
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 5691 - Trypanosoma brucei: LTS0231703
- 5654 - Trypanosomatidae: LTS0231703
- 3358 - Tsuga: LTS0231703
- 3359 - Tsuga heterophylla: 10.1016/S0021-9673(01)97854-9
- 3359 - Tsuga heterophylla: LTS0231703
- 19952 - Valeriana: LTS0231703
- 19953 - Valeriana officinalis: 10.1055/S-2006-959538
- 19953 - Valeriana officinalis: LTS0231703
- 19944 - Valerianaceae: LTS0231703
- 21910 - Verbenaceae: LTS0231703
- 44607 - Verpa: LTS0231703
- 44609 - Verpa bohemica: 10.1021/JF60199A047
- 44609 - Verpa bohemica: LTS0231703
- 3904 - Vicia: LTS0231703
- 3908 - Vicia sativa: 10.1515/BCHM2.1905.45.1-2.38
- 3908 - Vicia sativa: LTS0231703
- 33090 - Viridiplantae: LTS0231703
- 36658 - Volvariella: LTS0231703
- 36659 - Volvariella volvacea: LTS0231703
- 4642 - Zingiberaceae: LTS0231703
- 33090 - 百脉根: -
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Jing Ni, Yue Zhang, Shaowei Zhai, Hejian Xiong, Yanlin Ming, Ying Ma. Preparation of valine-curcumin conjugate and its in vitro antibacterial and antitumor activity and in vivo biological effects on American eels (Anguilla rostrata).
Fish & shellfish immunology.
2024 Jun; 149(?):109615. doi:
10.1016/j.fsi.2024.109615
. [PMID: 38719095] - Ahmed Adel Ali Youssef, Muna Hayder Abdelrahman, Mona M Geweda, Corinne Varner, Poorva H Joshi, Mihir Ghonge, Narendar Dudhipala, Suresh P Sulochana, Rama S Gadepalli, Soumyajit Majumdar. Formulation and In Vitro-Ex vivo Evaluation of Cannabidiol and Cannabidiol-Valine-Hemisuccinate Loaded Lipid-Based Nanoformulations for Ocular Applications.
International journal of pharmaceutics.
2024 May; 657(?):124110. doi:
10.1016/j.ijpharm.2024.124110
. [PMID: 38604539] - Pengliang Han, Chengli Wang, Fudong Li, Meilian Li, Jiajun Nie, Ming Xu, Hao Feng, Liangsheng Xu, Cong Jiang, Qingmei Guan, Lili Huang. Valsa mali PR1-like protein modulates an apple valine-glutamine protein to suppress JA signaling-mediated immunity.
Plant physiology.
2024 Jan; ?(?):. doi:
10.1093/plphys/kiae020
. [PMID: 38235781] - Anna Szuba-Trznadel, Anna Jama-Rodzeńska, Bernard Gałka, Rafał Ramut, Zygmunt Król, Daniel Jarki, Dragana Latković. The impact of the distribution method for struvite (Crystal Green) on the chemical composition of soybean and their utility in animal nutrition.
Scientific reports.
2024 01; 14(1):1093. doi:
10.1038/s41598-024-51625-3
. [PMID: 38212440] - Sergej Nadalin, Lena Zatković, Vjekoslav Peitl, Dalibor Karlović, Maja Vilibić, Ante Silić, Sanja Dević Pavlić, Alena Buretić-Tomljanović. An association between PPARα-L162V polymorphism and increased plasma LDL cholesterol levels after risperidone treatment.
Prostaglandins, leukotrienes, and essential fatty acids.
2024 Jan; 200(?):102604. doi:
10.1016/j.plefa.2023.102604
. [PMID: 38113727] - Hui Yang, Yan-Ru Liu, Zhong-Xing Song, Zhi-Shu Tang, Ai-Ling Jia, Ming-Geng Wang, Jin-Ao Duan. Study on the underlying mechanism of Poria in intervention of arrhythmia zebrafish by integrating metabolomics and network pharmacology.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2024 Jan; 122(?):155143. doi:
10.1016/j.phymed.2023.155143
. [PMID: 37890443] - Xinbo Zhou, Junjie Zhang, Jian Shen, Baojing Cheng, Chongpeng Bi, Qingquan Ma. Branched-chain amino acid modulation of lipid metabolism, gluconeogenesis, and inflammation in a finishing pig model: targeting leucine and valine.
Food & function.
2023 Nov; 14(22):10119-10134. doi:
10.1039/d3fo03899h
. [PMID: 37882496] - Xuan Liao, Bingyan Wu, Haixia Li, Mengtao Zhang, Muzi Cai, Bozhi Lang, Zhizhen Wu, Fangling Wang, Jianong Sun, Panpan Zhou, Hongli Chen, Duolong Di, Cuiling Ren, Haixia Zhang. Fluorescent/Colorimetric Dual-Mode Discriminating Gln and Val Enantiomers Based on Carbon Dots.
Analytical chemistry.
2023 10; 95(39):14573-14581. doi:
10.1021/acs.analchem.3c01854
. [PMID: 37729469] - Jiao Wang, Chunyu Zhou, Qing Zhang, Zhangsuo Liu. Metabolomic profiling of amino acids study reveals a distinct diagnostic model for diabetic kidney disease.
Amino acids.
2023 Sep; ?(?):. doi:
10.1007/s00726-023-03330-0
. [PMID: 37736814] - Seungyoun Jung, Sarah Silva, Cher M Dallal, Erin LeBlanc, Kenneth Paris, John Shepherd, Linda G Snetselaar, Linda Van Horn, Yuji Zhang, Joanne F Dorgan. Untargeted serum metabolomic profiles and breast density in young women.
Cancer causes & control : CCC.
2023 Sep; ?(?):. doi:
10.1007/s10552-023-01793-w
. [PMID: 37737303] - Jiashen Cai, Crystal Chun Yuen Chong, Ching Yu Cheng, Cynthia Ciwei Lim, Charumathi Sabanayagam. Circulating metabolites and cardiovascular disease in Asians with chronic kidney disease.
Cardiorenal medicine.
2023 Sep; ?(?):. doi:
10.1159/000533741
. [PMID: 37669626] - Alessandre C Crispim, Shirley M A Crispim, Jéssica R Rocha, Jeferson S Ursulino, Roberto R Sobrinho, Viviane A Porto, Edson S Bento, Antônio E G Santana, Luiz C Caetano. Light effects on Lasiodiplodia theobromae metabolome cultured in vitro.
Metabolomics : Official journal of the Metabolomic Society.
2023 08; 19(8):75. doi:
10.1007/s11306-023-02041-7
. [PMID: 37580624] - Joel T Steyer, Richard B Todd. Branched-chain amino acid biosynthesis in fungi.
Essays in biochemistry.
2023 Jul; ?(?):. doi:
10.1042/ebc20230003
. [PMID: 37455545] - Zengzhi Si, Lianjun Wang, Zhixin Ji, Yake Qiao, Kai Zhang, Jinling Han. Genome-wide comparative analysis of the valine glutamine motif containing genes in four Ipomoea species.
BMC plant biology.
2023 Apr; 23(1):209. doi:
10.1186/s12870-023-04235-6
. [PMID: 37085761] - Mona Synnøve Bjune, Laurence Lawrence-Archer, Johnny Laupsa-Borge, Cathrine Horn Sommersten, Adrian McCann, Robert Clay Glastad, Iain George Johnston, Matthias Kern, Matthias Blüher, Gunnar Mellgren, Simon N Dankel. Metabolic role of the hepatic valine/3-hydroxyisobutyrate (3-HIB) pathway in fatty liver disease.
EBioMedicine.
2023 Apr; 91(?):104569. doi:
10.1016/j.ebiom.2023.104569
. [PMID: 37084480] - Miaomiao Yang, Ziwei Liu, Yuanhui Yu, Min Yang, Li Guo, Xuejie Han, Xiangjie Ma, Ziya Huang, Qiguo Gao. Genome-wide identification of the valine-glutamine motif containing gene family and the role of VQ25-1 in pollen germination in Brassica oleracea.
Genes & genomics.
2023 Apr; ?(?):. doi:
10.1007/s13258-023-01375-9
. [PMID: 37004590] - Regine Å Jersin, Divya Sri Priyanka Tallapragada, Linn Skartveit, Mona S Bjune, Maheswary Muniandy, Sindre Lee-Ødegård, Sini Heinonen, Marcus Alvarez, Kåre Inge Birkeland, Christian André Drevon, Päivi Pajukanta, Adrian McCann, Kirsi H Pietiläinen, Melina Claussnitzer, Gunnar Mellgren, Simon N Dankel. Impaired adipocyte SLC7A10 promotes lipid storage in association with insulin resistance and altered BCAA metabolism.
The Journal of clinical endocrinology and metabolism.
2023 Mar; ?(?):. doi:
10.1210/clinem/dgad148
. [PMID: 36916878] - Ricarda Freke, Björn Heinemann, Samuel Edward Hakim, Claus-Peter Witte, Marco Herde, Tatjana M Hildebrandt, Jakob Franke. Isotope-guided metabolomics reveals divergent incorporation of valine into different flavor precursor classes in chives.
Chembiochem : a European journal of chemical biology.
2023 Feb; ?(?):e202300056. doi:
10.1002/cbic.202300056
. [PMID: 36853993] - Mengmeng Xu, Long Che, Lizhu Niu, Liuzhen Wang, Mengyun Li, Dongfeng Jiang, Hongyu Deng, Wen Chen, Zongyong Jiang. Molecular mechanism of valine and its metabolite in improving triglyceride synthesis of porcine intestinal epithelial cells.
Scientific reports.
2023 Feb; 13(1):2933. doi:
10.1038/s41598-023-30036-w
. [PMID: 36806358] - Fauziahanim Zakaria, Muhammad Tayyab Akhtar, Wan Ibrahim Wan Norhamidah, Abu Bakar Noraini, Azira Muhamad, Shamarina Shohaimi, Maulidiani, Hafandi Ahmad, Intan Safinar Ismail, Nor Hadiani Ismail, Khozirah Shaari. Centella asiatica (L.) Urb. Extract ameliorates branched-chain amino acid (BCAA) metabolism in acute reserpine-induced stress zebrafish model via 1H Nuclear Magnetic Resonance (NMR)-based metabolomics approach.
Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.
2023 Feb; 264(?):109501. doi:
10.1016/j.cbpc.2022.109501
. [PMID: 36336330] - Haiwen Chen, Jintao Cheng, Yuan Huang, Qiusheng Kong, Zhilong Bie. Comparative analysis of sugar, acid, and volatile compounds in CPPU-treated and honeybee-pollinated melon fruits during different developmental stages.
Food chemistry.
2023 Feb; 401(?):134072. doi:
10.1016/j.foodchem.2022.134072
. [PMID: 36108381] - Feng Huang, Tong Zhang, Bin Li, Shaosong Wang, Chang Xu, Caihua Huang, Donghai Lin. NMR-based metabolomic analysis for the effects of moxibustion on imiquimod-induced psoriatic mice.
Journal of ethnopharmacology.
2023 Jan; 300(?):115626. doi:
10.1016/j.jep.2022.115626
. [PMID: 36049653] - Jolanta Bugajska, Joanna Berska, Małgorzata Wójcik, Krystyna Sztefko. Amino acid profile in overweight and obese prepubertal children - can simple biochemical tests help in the early prevention of associated comorbidities?.
Frontiers in endocrinology.
2023; 14(?):1274011. doi:
10.3389/fendo.2023.1274011
. [PMID: 37964971] - Marwah Doestzada, Daria V Zhernakova, Inge C L van den Munckhof, Daoming Wang, Alexander Kurilshikov, Lianmin Chen, Vincent W Bloks, Martijn van Faassen, Joost H W Rutten, Leo A B Joosten, Mihai G Netea, Cisca Wijmenga, Niels P Riksen, Alexandra Zhernakova, Folkert Kuipers, Jingyuan Fu. Systematic analysis of relationships between plasma branched-chain amino acid concentrations and cardiometabolic parameters: an association and Mendelian randomization study.
BMC medicine.
2022 12; 20(1):485. doi:
10.1186/s12916-022-02688-4
. [PMID: 36522747] - Cui-Fang Wang, Xiao-Rong Cai, Yan-Ni Chi, Xiao-Yao Miao, Jian-Yun Yang, Bing-Kun Xiao, Rong-Qing Huang. Analgesic Activity of Jin Ling Zi Powder and Its Single Herbs: A Serum Metabonomics Study.
Chinese journal of integrative medicine.
2022 Nov; 28(11):1007-1014. doi:
10.1007/s11655-021-3277-x
. [PMID: 33881717] - Shangqing Li, Guorong Lyu, Shaohui Li, Hainan Yang, Yiru Yang. Metabolic characterization of amniotic fluid of fetuses with isolated choroid plexus cyst.
Journal of perinatal medicine.
2022 Oct; 50(8):1100-1106. doi:
10.1515/jpm-2022-0028
. [PMID: 35607760] - Amalia E Yanni, Alexander Kokkinos, Panagiota Binou, Varvara Papaioannou, Maria Halabalaki, Panagiotis Konstantopoulos, Stamatia Simati, Vaios T Karathanos. Postprandial Glucose and Gastrointestinal Hormone Responses of Healthy Subjects to Wheat Biscuits Enriched with L-Arginine or Branched-Chain Amino Acids of Plant Origin.
Nutrients.
2022 Oct; 14(20):. doi:
10.3390/nu14204381
. [PMID: 36297065] - Aradhana Mishra, Arpita Bhattacharya, Priyanka Chauhan, Shipra Pandey, Ashish Dwivedi. Phenotype microarray analysis reveals the biotransformation of Fusarium oxysporum f.sp. lycopersici influenced by Bacillus subtilis PBE-8 metabolites.
FEMS microbiology ecology.
2022 10; 98(10):. doi:
10.1093/femsec/fiac102
. [PMID: 36066920] - Zhiyuan Meng, Jiajia Cui, Li Liu, Chunmei Yang, Xin Bao, Jianjun Wang, Xiaojun Chen. Toxicity effects of chlorantraniliprole in zebrafish (Danio rerio) involving in liver function and metabolic phenotype.
Pesticide biochemistry and physiology.
2022 Oct; 187(?):105194. doi:
10.1016/j.pestbp.2022.105194
. [PMID: 36127066] - Honghong Deng, Runmei He, Hui Xia, Nuo Xu, Qunxian Deng, Dong Liang, Lijin Lin, Ling Liao, Bo Xiong, Xinyu Xie, Zhijian Gao, Qingxuan Kang, Zhihui Wang. Ultra-HPLC-MS pseudo-targeted metabolomic profiling reveals metabolites and associated metabolic pathway alterations in Asian plum (Prunus salicina) fruits in response to gummosis disease.
Functional plant biology : FPB.
2022 10; 49(11):936-945. doi:
10.1071/fp21168
. [PMID: 35817541] - Can Ozlu, Priya Chelliah, Hamza Dahshi, Daniel Horton, Veronica B Edgar, Souad Messahel, Saima Kayani. ECHS1 deficiency and its biochemical and clinical phenotype.
American journal of medical genetics. Part A.
2022 10; 188(10):2908-2919. doi:
10.1002/ajmg.a.62895
. [PMID: 35856138] - Haitao Jiang, Hua Zhu, Guangming Huo, Shengjie Li, Yulong Wu, Feng Zhou, Chun Hua, Qiuhui Hu. Oudemansiella raphanipies Polysaccharides Improve Lipid Metabolism Disorders in Murine High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease.
Nutrients.
2022 Oct; 14(19):. doi:
10.3390/nu14194092
. [PMID: 36235744] - Venelina Popova, Zhana Petkova, Nadezhda Mazova, Tanya Ivanova, Nadezhda Petkova, Magdalena Stoyanova, Albena Stoyanova, Sezai Ercisli, Zuhal Okcu, Sona Skrovankova, Jiri Mlcek. Chemical Composition Assessment of Structural Parts (Seeds, Peel, Pulp) of Physalis alkekengi L. Fruits.
Molecules (Basel, Switzerland).
2022 Sep; 27(18):. doi:
10.3390/molecules27185787
. [PMID: 36144521] - Yuan Lu, Yan-Li Wang, Zhong-Jun Song, Xiao-Qing Zhu, Chun-Hua Liu, Ji-Yu Chen, Yong-Jun Li, Yan He. [Cell metabolomics study of ginkgo flavone aglycone combined with doxorubicin against liver cancer in synergy].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2022 Sep; 47(18):5040-5051. doi:
10.19540/j.cnki.cjcmm.20220506.401
. [PMID: 36164914] - Ling Gao, Qiang Gu, Hong Wang, Xingkong Ma, Feng Xue, Xing Zhang, Jiachun Ge, Tao Ding, Weijian Shen. [Determination of free amino acids in Eriocheir sinensis by ultra-high performance liquid chromatography-high resolution mass spectrometry].
Se pu = Chinese journal of chromatography.
2022 Sep; 40(9):825-832. doi:
10.3724/sp.j.1123.2022.03027
. [PMID: 36156629] - Tae Hyung Won, Jin Woo Bok, Nischala Nadig, Nandhitha Venkatesh, Grant Nickles, Claudio Greco, Fang Yun Lim, Jennifer B González, B Gillian Turgeon, Nancy P Keller, Frank C Schroeder. Copper starvation induces antimicrobial isocyanide integrated into two distinct biosynthetic pathways in fungi.
Nature communications.
2022 08; 13(1):4828. doi:
10.1038/s41467-022-32394-x
. [PMID: 35973982] - Bei Yan, Panpan Liu, Xiaoqin Yi, Jie Li, Nian Liu, Wu Zhu, Yehong Kuang, Xiang Chen, Cong Peng. Topical VX-509 attenuates psoriatic inflammation through the STAT3/FABP5 pathway in keratinocytes.
Pharmacological research.
2022 08; 182(?):106318. doi:
10.1016/j.phrs.2022.106318
. [PMID: 35728766] - Mohamad Tarik, Lakshmy Ramakrishnan, Nidhi Bhatia, Ravindra Goswami, Devasenathipathy Kandasamy, Atanu Roy, Dinu S Chandran, Archna Singh, Ashish Datt Upadhyay, Mani Kalaivani, Jayanthi Neelamraju, Ratna Sudha Madempudi, Reena Rajan. The effect of Bacillus coagulans Unique IS-2 supplementation on plasma amino acid levels and muscle strength in resistance trained males consuming whey protein: a double-blind, placebo-controlled study.
European journal of nutrition.
2022 Aug; 61(5):2673-2685. doi:
10.1007/s00394-022-02844-9
. [PMID: 35249118] - Meng Jiang, Shang Dai, Yun-Chao Zheng, Rui-Qing Li, Yuan-Yuan Tan, Gang Pan, Ian Max Møller, Shi-Yong Song, Jian-Zhong Huang, Qing-Yao Shu. An alanine to valine mutation of glutamyl-tRNA reductase enhances 5-aminolevulinic acid synthesis in rice.
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik.
2022 Aug; 135(8):2817-2831. doi:
10.1007/s00122-022-04151-7
. [PMID: 35779128] - Tian Zhang, Zicheng Wang, Yongli Zhang, Guofeng Yang, Hui Song. Dissection of valine-glutamine genes and their responses to drought stress in Arachis hypogaea cv. Tifrunner.
Functional & integrative genomics.
2022 Aug; 22(4):491-501. doi:
10.1007/s10142-022-00847-7
. [PMID: 35366145] - Eveline Gart, Wim van Duyvenvoorde, Martien P M Caspers, Nikki van Trigt, Jessica Snabel, Aswin Menke, Jaap Keijer, Kanita Salic, Martine C Morrison, Robert Kleemann. Intervention with isoleucine or valine corrects hyperinsulinemia and reduces intrahepatic diacylglycerols, liver steatosis, and inflammation in Ldlr-/-.Leiden mice with manifest obesity-associated NASH.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2022 08; 36(8):e22435. doi:
10.1096/fj.202200111r
. [PMID: 35830259] - Yong-Lan Xiong, Joseph Therriault, Shu-Jiang Ren, Xiao-Jun Jing, Hua Zhang. The associations of serum valine with mild cognitive impairment and Alzheimer's disease.
Aging clinical and experimental research.
2022 Aug; 34(8):1807-1817. doi:
10.1007/s40520-022-02120-0
. [PMID: 35362856] - Yulei Zhang, Jieyi Li, Zhangxi Hu, Dong Chen, Feng Li, Xianghu Huang, Changling Li. Transcriptome Analysis Reveals the Algicidal Mechanism of Brevibacillus laterosporus against Microcystis aeruginosa through Multiple Metabolic Pathways.
Toxins.
2022 07; 14(7):. doi:
10.3390/toxins14070492
. [PMID: 35878230] - Xenia Bacinschi, Gabriel Cristian Popescu, Anca Zgura, Laurentia Gales, Anghel Rodica, Adriana Mercan, Dragos Serban, Bogdan Haineala, Letitia Toma, Laura Iliescu. A Real-World Study to Compare the Safety and Efficacy of Paritaprevir/Ombitasvir/Ritonavir and Dasabuvir, with or without Ribavirin, in 587 Patients with Chronic Hepatitis C at the Fundeni Clinical Institute, Bucharest, Romania.
Medical science monitor : international medical journal of experimental and clinical research.
2022 Jul; 28(?):e936706. doi:
10.12659/msm.936706
. [PMID: 35787600] - Lipeng Liao, Jiaming Zhang, Yuchuan Wang, Qiuyun Liu. Why Omicron Variant of SARS-CoV-2 is Less Fatal?.
Chembiochem : a European journal of chemical biology.
2022 Jul; 23(13):e202200158. doi:
10.1002/cbic.202200158
. [PMID: 35639835] - Chisato Tsuzuki, Masakazu Hachisu, Rihoko Iwabe, Yuna Nakayama, Yoko Nonaga, Satoru Sukegawa, Shigeomi Horito, Gen-Ichiro Arimura. An amino acid ester of menthol elicits defense responses in plants.
Plant molecular biology.
2022 Jul; 109(4-5):523-531. doi:
10.1007/s11103-021-01150-y
. [PMID: 33856592] - Ahmad Fariz Malvi Zamzam Zein, Catur Setiya Sulistiyana, Wilson Matthew Raffaello, Arief Wibowo, Raymond Pranata. Sofosbuvir with daclatasvir and the outcomes of patients with COVID-19: a systematic review and meta-analysis with GRADE assessment.
Postgraduate medical journal.
2022 Jul; 98(1161):509-514. doi:
10.1136/postgradmedj-2021-140287
. [PMID: 34103373] - Lindsay A Petty, Preeti N Malani. Oral Antiviral Medications for COVID-19.
JAMA.
2022 06; 327(24):2464. doi:
10.1001/jama.2022.6876
. [PMID: 35467696] - Yaqin Wang, Keyong Huang, Fangchao Liu, Xiangfeng Lu, Jianfeng Huang, Dongfeng Gu. Association of circulating branched-chain amino acids with risk of cardiovascular disease: A systematic review and meta-analysis.
Atherosclerosis.
2022 06; 350(?):90-96. doi:
10.1016/j.atherosclerosis.2022.04.026
. [PMID: 35576716] - Hayarpi Javrushyan, Edita Nadiryan, Anna Grigoryan, Nikolay Avtandilyan, Alina Maloyan. Antihyperglycemic activity of L-norvaline and L-arginine in high-fat diet and streptozotocin-treated male rats.
Experimental and molecular pathology.
2022 06; 126(?):104763. doi:
10.1016/j.yexmp.2022.104763
. [PMID: 35398371] - Wanting Chen, Qian Li, Ranran Hou, Huaguo Liang, Yongli Zhang, Yongxia Yang. An integrated metabonomics study to reveal the inhibitory effect and metabolism regulation of taurine on breast cancer.
Journal of pharmaceutical and biomedical analysis.
2022 May; 214(?):114711. doi:
10.1016/j.jpba.2022.114711
. [PMID: 35306435] - Jasmijn Z Jagt, Eduard A Struys, Ibrahim Ayada, Abdellatif Bakkali, Erwin E W Jansen, Jürgen Claesen, Johan E van Limbergen, Marc A Benninga, Nanne K H de Boer, Tim G J de Meij. Fecal Amino Acid Analysis in Newly Diagnosed Pediatric Inflammatory Bowel Disease: A Multicenter Case-Control Study.
Inflammatory bowel diseases.
2022 05; 28(5):755-763. doi:
10.1093/ibd/izab256
. [PMID: 34757415] - Xenia Bacinschi, Adriana Mercan-Stanciu, Letitia Toma, Anca Zgura, Nicolae Bacalbasa, Chen-Peng Ifrim, Camelia Diaconu, Laura Iliescu, Radu Valeriu Toma. Glycemic Control in Patients Undergoing Treatment With Paritaprevir/Ombitasvir/Ritonavir and Dasabuvir for Chronic Hepatitis C Infection.
In vivo (Athens, Greece).
2022 May; 36(3):1438-1443. doi:
10.21873/invivo.12849
. [PMID: 35478152] - Tomoko Nakatsuka-Mori, Daisuke Sato, Hideyuki Aoki. Improvement of substrate recognition in branched-chain aminoacyl-tRNA synthetases from Escherichia coli under conditions of pyrophosphate amplification.
Journal of bioscience and bioengineering.
2022 May; 133(5):436-443. doi:
10.1016/j.jbiosc.2022.01.009
. [PMID: 35216933] - Florin Sasarman, Sacha Ferdinandusse, David S Sinasac, Ernest Fung, Rebecca Sparkes, Melanie Reeves, Catherine Rombough, Jörn Oliver Sass, Renate Voit, Jos P N Ruiter, Janet Koster, Hans R Waterham, Elisabetta Pasquini, Maria A Donati, Thorsten Marquardt, Ronald J A Wanders, Walla Al-Hertani. 3-Hydroxyisobutyric acid dehydrogenase deficiency: Expanding the clinical spectrum and quantitation of D- and L-3-Hydroxyisobutyric acid by an LC-MS/MS method.
Journal of inherited metabolic disease.
2022 05; 45(3):445-455. doi:
10.1002/jimd.12486
. [PMID: 35174513] - Xiuming Li, Peiyan Tian, Xinmin Hu. Association of Met/Val polymorphism of BDNF gene with Alzheimer's disease in Chinese patients.
Cellular and molecular biology (Noisy-le-Grand, France).
2022 Apr; 68(4):46-51. doi:
10.14715/cmb/2022.68.4.6
. [PMID: 35988269] - Shlomit Ezer, Muhannad Daana, Julien H Park, Shira Yanovsky-Dagan, Ulrika Nordström, Adily Basal, Simon Edvardson, Ann Saada, Markus Otto, Vardiella Meiner, Stefan L Marklund, Peter Munch Andersen, Tamar Harel. Infantile SOD1 deficiency syndrome caused by a homozygous SOD1 variant with absence of enzyme activity.
Brain : a journal of neurology.
2022 04; 145(3):872-878. doi:
10.1093/brain/awab416
. [PMID: 34788402] - Christopher A Bishop, Tina Machate, Thorsten Henning, Janin Henkel, Gerhard Püschel, Daniela Weber, Tilman Grune, Susanne Klaus, Karolin Weitkunat. Detrimental effects of branched-chain amino acids in glucose tolerance can be attributed to valine induced glucotoxicity in skeletal muscle.
Nutrition & diabetes.
2022 04; 12(1):20. doi:
10.1038/s41387-022-00200-8
. [PMID: 35418570] - Yuna Sadaka, Midori Soda, Akiyo Hori, Yuri Miyahara, Yasuhisa Oida, Yoichi Nishigaki, Eiichi Tomita, Takashi Mizui, Kiyoyuki Kitaichi. Combined Use of Calcium-channel Blockers With Ombitasvir/Paritaprevir/Ritonavir Exacerbates Peripheral Edema in Elderly Japanese Patients.
Anticancer research.
2022 04; 42(4):2087-2093. doi:
10.21873/anticanres.15690
. [PMID: 35347032] - ShengNan Shao, Biao Li, Qi Sun, PeiRu Guo, YeJuan Du, JiaFeng Huang. Acetolactate synthases regulatory subunit and catalytic subunit genes VdILVs are involved in BCAA biosynthesis, microscletotial and conidial formation and virulence in Verticillium dahliae.
Fungal genetics and biology : FG & B.
2022 04; 159(?):103667. doi:
10.1016/j.fgb.2022.103667
. [PMID: 35041986] - Mohammad Habibi, Parniyan Goodarzi, Cedrick Ndhumba Shili, Julia Sutton, Caitlyn Marie Wileman, Dohyung Markus Kim, Dingbo Lin, Adel Pezeshki. A Mixture of Valine and Isoleucine Restores the Growth of Protein-Restricted Pigs Likely through Improved Gut Development, Hepatic IGF-1 Pathway, and Plasma Metabolomic Profile.
International journal of molecular sciences.
2022 Mar; 23(6):. doi:
10.3390/ijms23063300
. [PMID: 35328720] - Druszczynska Magdalena, Seweryn Michal, Sieczkowska Marta, Kowalewska-Pietrzak Magdalena, Pankowska Anna, Godkowicz Magdalena, Szewczyk Rafał. Targeted metabolomics analysis of serum and Mycobacterium tuberculosis antigen-stimulated blood cultures of pediatric patients with active and latent tuberculosis.
Scientific reports.
2022 03; 12(1):4131. doi:
10.1038/s41598-022-08201-4
. [PMID: 35260782] - Lijuan Sun, Hui Jen Goh, Sanjay Verma, Priya Govindharajulu, Suresh Anand Sadananthan, Navin Michael, Christiani Jeyakumar Henry, Julian Park-Nam Goh, S Sendhil Velan, Melvin Khee-Shing Leow. Brown adipose tissues mediate the metabolism of branched chain amino acids during the transitioning from hyperthyroidism to euthyroidism (TRIBUTE).
Scientific reports.
2022 03; 12(1):3693. doi:
10.1038/s41598-022-07701-7
. [PMID: 35256693] - David Fabregat-Safont, María Mata-Pesquera, Manuela Barneo-Muñoz, Ferran Martinez-Garcia, Marie Mardal, Anders B Davidsen, Juan V Sancho, Félix Hernández, María Ibáñez. In-depth comparison of the metabolic and pharmacokinetic behaviour of the structurally related synthetic cannabinoids AMB-FUBINACA and AMB-CHMICA in rats.
Communications biology.
2022 02; 5(1):161. doi:
10.1038/s42003-022-03113-5
. [PMID: 35210552] - Sara Mobarak, Mehdi Salasi, Ahmad Hormati, Javad Khodadadi, Masood Ziaee, Farshid Abedi, Azadeh Ebrahimzadeh, Zohreh Azarkar, Fariborz Mansour-Ghanaei, Farahnaz Joukar, Sara Yeganeh, Tofigh Yaghubi Kalurazi, Mohammadreza Naghipour, Zeinab Mehrabi, Amir Reza Bahadori, Shoeleh Yaghoubi, Rohollah Moslemi, Hamideh Abbaspour Kasgari, Hafez Fakheri, Minoo Moghimi, Amir Mohammad Shabani, Zahra Nekoukar, Farhang Babamahmoodi, Ali Reza Davoudi Badabi, Lotfollah Davoodi, Mehdi Hassaniazad, Elham Barahimi, Abdolali Tousi, Anahita Sadeghi, Hadiseh Hosamirudsari, Ali Ali Asgari, Mohammad Abdollahi, Amir Anushiravani, Minoosh Shabani, Shervin Shokouhi, Nasim Khajavirad, Mohammadreza Salehi, Seyed Ali Dehghan Manshadi, Hashem Mousavi, Farnaz Zolfaghari, Elmira Azimi, Aida Zeinali, Elham Akbarpour, Dorsa Merat, Gholamali Eslami, Sajedeh Mousaviasl, Sara Sayar, Esmat Radmanesh, Mona Ebrahimzadeh, Zahra Arizavi, Saeed Jelvay, Shokrollah Salmanzadeh, Hani Esmaeilian, Morteza Mobarak, Jalal Karimi, Zahra Poormontaseri, Nasrollah Hasooni Bahrini, Atefeh Bonyadi, Fatemeh Dehghani, Hadi Mirzaei, Masoome Noori Jangi, Hossein Pourmasoomi, Lili Rezaie Keikhaie, Mahdi Afshari, Alireza Nateghi Baygi, Helia Nateghi Baygi, Jacob Levi, Kaitlyn McCann, Hannah Wentzel, Bryony Simmons, Andrew Hill, Shahin Merat. Evaluation of the effect of sofosbuvir and daclatasvir in hospitalized COVID-19 patients: a randomized double-blind clinical trial (DISCOVER).
The Journal of antimicrobial chemotherapy.
2022 02; 77(3):758-766. doi:
10.1093/jac/dkab433
. [PMID: 34849957] - Xuanting Wang, Carolina Q Sacramento, Steffen Jockusch, Otávio Augusto Chaves, Chuanjuan Tao, Natalia Fintelman-Rodrigues, Minchen Chien, Jairo R Temerozo, Xiaoxu Li, Shiv Kumar, Wei Xie, Dinshaw J Patel, Cindy Meyer, Aitor Garzia, Thomas Tuschl, Patrícia T Bozza, James J Russo, Thiago Moreno L Souza, Jingyue Ju. Combination of antiviral drugs inhibits SARS-CoV-2 polymerase and exonuclease and demonstrates COVID-19 therapeutic potential in viral cell culture.
Communications biology.
2022 02; 5(1):154. doi:
10.1038/s42003-022-03101-9
. [PMID: 35194144] - Mahmoud El-Bendary, Sherief Abd-Elsalam, Tamer Elbaz, Wafaa El-Akel, Ahmed Cordie, Tamer Elhadidy, Hatem Elalfy, Khaled Farid, Mohamed Elegezy, Adel El-Badrawy, Mustafa Neamatallah, Mohamed Abd Elghafar, Marwa Salama, Mohamed AbdAllah, Mahmoud Essam, Mostafa El-Shazly, Gamal Esmat. Efficacy of combined Sofosbuvir and Daclatasvir in the treatment of COVID-19 patients with pneumonia: a multicenter Egyptian study.
Expert review of anti-infective therapy.
2022 02; 20(2):291-295. doi:
10.1080/14787210.2021.1950532
. [PMID: 34225541] - Chao Xu, Xiao-Ping Huang, Jun-Feng Guan, Ze-Min Chen, Yong-Cai Ma, Di-Zhi Xie, Li-Jun Ning, Yuan-You Li. Effects of dietary leucine and valine levels on growth performance, glycolipid metabolism and immune response in Tilapia GIFT Oreochromis niloticus.
Fish & shellfish immunology.
2022 Feb; 121(?):395-403. doi:
10.1016/j.fsi.2022.01.028
. [PMID: 35065275] - Raven Bough, Franck E Dayan. Biochemical and structural characterization of quizalofop-resistant wheat acetyl-CoA carboxylase.
Scientific reports.
2022 01; 12(1):679. doi:
10.1038/s41598-021-04280-x
. [PMID: 35027605] - Wenjie Fu, Gaochen Jin, Guillermo H Jiménez-Alemán, Xinjue Wang, Jiajin Song, Suhua Li, Yonggen Lou, Ran Li. The jasmonic acid-amino acid conjugates JA-Val and JA-Leu are involved in rice resistance to herbivores.
Plant, cell & environment.
2022 01; 45(1):262-272. doi:
10.1111/pce.14202
. [PMID: 34661303] - Sai Chen, Rong Gui, Xiong-Hui Zhou, Jun-Hua Zhang, Hai-Ye Jiang, Hai-Ting Liu, Yun-Feng Fu. Combined Microbiome and Metabolome Analysis Reveals a Novel Interplay Between Intestinal Flora and Serum Metabolites in Lung Cancer.
Frontiers in cellular and infection microbiology.
2022; 12(?):885093. doi:
10.3389/fcimb.2022.885093
. [PMID: 35586253] - Hideki Ikeda. The Effect of Mild Renal Dysfunction on the Assessment of Plasma Amino Acid Concentration and Insulin Resistance in Patients with Type 2 Diabetes Mellitus.
Journal of diabetes research.
2022; 2022(?):2048300. doi:
10.1155/2022/2048300
. [PMID: 35734236] - Ilaria Mastrorosa, Massimo Tempestilli, Stefania Notari, Patrizia Lorenzini, Gabriele Fabbri, Elisabetta Grilli, Rita Bellagamba, Alessandra Vergori, Stefania Cicalini, Adriana Ammassari, Chiara Agrati, Andrea Antinori. Association of Sofosbuvir and Daclatasvir Plasma Trough Concentrations with Patient-, Treatment-, and Disease-Related Factors Among HIV/HCV-Coinfected Persons.
European journal of drug metabolism and pharmacokinetics.
2022 Jan; 47(1):135-142. doi:
10.1007/s13318-021-00725-w
. [PMID: 34623616] - Da-Xia Zhang, Rui Wang, Haichao Cao, Jian Luo, Tong-Fang Jing, Bei-Xing Li, Wei Mu, Feng Liu, Youming Hou. Emamectin benzoate nanogel suspension constructed from poly(vinyl alcohol)-valine derivatives and lignosulfonate enhanced insecticidal efficacy.
Colloids and surfaces. B, Biointerfaces.
2022 Jan; 209(Pt 1):112166. doi:
10.1016/j.colsurfb.2021.112166
. [PMID: 34739877] - Peter V Chrystal, Shiva Greenhalgh, Shemil P Macelline, Juliano C de Paula Dorigam, Peter H Selle, Sonia Y Liu. A multivariate Box-Behnken assessment of elevated branched-chain amino acid concentrations in reduced crude protein diets offered to male broiler chickens.
PloS one.
2022; 17(3):e0266080. doi:
10.1371/journal.pone.0266080
. [PMID: 35353869] - Su Han, Xiaoli Zhang, Jian Ding, Xiang Li, Xueli Zhang, Xu Jiang, Shanshan Duan, Beibei Sun, Xinyi Hu, Yannan Gao. Serum metabolic profiling of rats infected with Clonorchis sinensis using LC-MS/MS method.
Frontiers in cellular and infection microbiology.
2022; 12(?):1040330. doi:
10.3389/fcimb.2022.1040330
. [PMID: 36683702] - Ibrahim Mohammed Badamasi, Maulidiani Maulidiani, Munn Sann Lye, Normala Ibrahim, Khozirah Shaari, Johnson Stanslas. A Preliminary Nuclear Magnetic Resonance Metabolomics Study Identifies Metabolites that Could Serve as Diagnostic Markers of Major Depressive Disorder.
Current neuropharmacology.
2022; 20(5):965-982. doi:
10.2174/1570159x19666210611095320
. [PMID: 34126904] - Stephen A Harrison, Seth J Baum, Nadege T Gunn, Ziad H Younes, Anita Kohli, Rashmee Patil, Margaret J Koziel, Harinder Chera, Jeff Zhao, Manu V Chakravarthy. Safety, Tolerability, and Biologic Activity of AXA1125 and AXA1957 in Subjects With Nonalcoholic Fatty Liver Disease.
The American journal of gastroenterology.
2021 12; 116(12):2399-2409. doi:
10.14309/ajg.0000000000001375
. [PMID: 34382947] - Sherif Abbass, Ehab Kamal, Mohsen Salama, Tary Salman, Alyaa Sabry, Wael Abdel-Razek, Sherine Helmy, Ahmed Abdelgwad, Neamt Sakr, Mohamed Elgazzar, Mohamed Einar, Mahmoud Farouk, Mounir Saif, Ismail Shehab, Eman El-Hosieny, Mai Mansour, Doaa Mahdi, El-Sayed Tharwa, Mostafa Salah, Ola Elrouby, Imam Waked. Efficacy and safety of sofosbuvir plus daclatasvir or ravidasvir in patients with COVID-19: A randomized controlled trial.
Journal of medical virology.
2021 12; 93(12):6750-6759. doi:
10.1002/jmv.27264
. [PMID: 34379337] - Wen Hu, Ziyu Liu, Weinan Yu, Surong Wen, Xiaoqing Wang, Xing Qi, Hairong Hao, Yanwen Lu, Jing Li, Shayan Li, Hongwen Zhou. Effects of PPM1K rs1440581 and rs7678928 on serum branched-chain amino acid levels and risk of cardiovascular disease.
Annals of medicine.
2021 12; 53(1):1316-1326. doi:
10.1080/07853890.2021.1965204
. [PMID: 34382495] - Mahmoud Abdo, Ahmed Rabiee, Zeinab Abdellatif, Shereen Abdel Alem, Ahmed Moustafa. Impact of sustained virological response on metabolic disorders in diabetic chronic hepatitis C virus patients after treatment with generic sofosbuvir and daclatasvir.
European journal of gastroenterology & hepatology.
2021 12; 33(12):1588-1594. doi:
10.1097/meg.0000000000001903
. [PMID: 32804853] - Ishtiyaq Ahmad, Imtiaz Ahmed, Nazir A Dar. Dietary valine improved growth, immunity, enzymatic activities and expression of TOR signaling cascade genes in rainbow trout, Oncorhynchus mykiss fingerlings.
Scientific reports.
2021 11; 11(1):22089. doi:
10.1038/s41598-021-01142-4
. [PMID: 34764336] - Melanie Meyer, Jana C Hollenbeck, Janine Reunert, Anja Seelhöfer, Stephan Rust, Manfred Fobker, Saskia Biskup, Ulrike Och, Mechthild Linden, Jörn Oliver Sass, Thorsten Marquardt. 3-Hydroxyisobutyrate dehydrogenase (HIBADH) deficiency-A novel disorder of valine metabolism.
Journal of inherited metabolic disease.
2021 11; 44(6):1323-1329. doi:
10.1002/jimd.12410
. [PMID: 34176136] - Fabrizio Fabrizi, Cristina Alonso, Ana Palazzo, Margarita Anders, Maria Virginia Reggiardo, Hugo Cheinquer, Maria Grazia Videla Zuain, Sebastian Figueroa, Manuel Mendizabal, Marcelo Silva, Ezequiel Ridruejo. 'Real-life' experience with direct-acting antiviral agents for HCV after kidney transplant.
Annals of hepatology.
2021 Nov; 25(?):100337. doi:
10.1016/j.aohep.2021.100337
. [PMID: 33684523] - Abdullahi Tsanni. African scientists race to test COVID drugs - but face major hurdles.
Nature.
2021 11; 599(7883):25-27. doi:
10.1038/d41586-021-02995-5
. [PMID: 34732862] - Sonia Younas, Hamid Mukhtar, Umar Farooq Gohar, Abdullah Alsrhani, Badr Alzahrani, Kashaf Junaid, Muhammad Usman Qamar, Hasan Ejaz. Diagnostic approach to elucidate the efficacy and side effects of direct-acting antivirals in HCV infected patients.
Journal of infection in developing countries.
2021 10; 15(10):1489-1496. doi:
10.3855/jidc.12912
. [PMID: 34780372] - Nan Shan, Zijin Xiang, Jingyu Sun, Qianglong Zhu, Yao Xiao, Putao Wang, Xin Chen, Qinghong Zhou, Zengyu Gan. Genome-wide analysis of valine-glutamine motif-containing proteins related to abiotic stress response in cucumber (Cucumis sativus L.).
BMC plant biology.
2021 Oct; 21(1):492. doi:
10.1186/s12870-021-03242-9
. [PMID: 34696718] - Chih-Cheng Lai, Chien-Ming Chao, Po-Ren Hsueh. Clinical efficacy of antiviral agents against coronavirus disease 2019: A systematic review of randomized controlled trials.
Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi.
2021 Oct; 54(5):767-775. doi:
10.1016/j.jmii.2021.05.011
. [PMID: 34253490] - Yingchao Li, Farong Lu, Yawei Zhang, Xiaoyu Liu, Longyi Lin, Qikun Jiang, Tianhong Zhang. A rapid ultra high performance liquid chromatography-tandem mass spectrometry method for the quantification of daidzein, its valine carbamate prodrug, and glucuronide in rat plasma samples: Comparison of the pharmacokinetic behavior of daidzine valine carbamate prodrugs.
Journal of separation science.
2021 Oct; 44(19):3691-3699. doi:
10.1002/jssc.202100331
. [PMID: 34347375] - Yun-Sook Lim, Lap P Nguyen, Gun-Hee Lee, Sung-Geun Lee, Kwang-Soo Lyoo, Bumseok Kim, Soon B Hwang. Asunaprevir, a Potent Hepatitis C Virus Protease Inhibitor, Blocks SARS-CoV-2 Propagation.
Molecules and cells.
2021 Sep; 44(9):688-695. doi:
10.14348/molcells.2021.0076
. [PMID: 34518443] - Amit Goel, Dharmendra S Bhadauria, Anupma Kaul, Abhai Verma, Prachi Tiwari, Sumit Rungta, Praveer Rai, Amit Gupta, Rakesh Aggarwal. Acute hepatitis C treatment in advanced renal failure using 8 weeks of pan-genotypic daclatasvir and reduced-dose sofosbuvir.
Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.
2021 09; 36(10):1867-1871. doi:
10.1093/ndt/gfaa187
. [PMID: 33097949] - Guolan Wu, Huili Zhou, Jing Wu, Duo Lv, Lihua Wu, You Zhai, Meihua Lin, Jingzi J Wu, Jianzhong Shentu. Pharmacokinetics, Safety, and Tolerability of Ravidasvir, with and without Danoprevir/Ritonavir, in Healthy Subjects.
Antimicrobial agents and chemotherapy.
2021 09; 65(10):e0060021. doi:
10.1128/aac.00600-21
. [PMID: 34252301] - Abolghasem Jouyban, Mir Ali Farajzadeh, Fariba Khodadadeian, Maryam Khoubnasabjafari, Mohammad Reza Afshar Mogaddam. Development of a deep eutectic solvent-based ultrasound-assisted homogenous liquid-liquid microextraction method for simultaneous extraction of daclatasvir and sofosbuvir from urine samples.
Journal of pharmaceutical and biomedical analysis.
2021 Sep; 204(?):114254. doi:
10.1016/j.jpba.2021.114254
. [PMID: 34256327] - Mohamed Mohamed Yousri Kaddah, Wael Talaat, Maha A El Demellawy. Determination and structural characterization of ravidasvir metabolites by LC coupled to triple quadrupole linear ion trap MS: Application to pharmacokinetics and phase I metabolism in rats.
Biomedical chromatography : BMC.
2021 Sep; 35(9):e5146. doi:
10.1002/bmc.5146
. [PMID: 33893663] - Xiaolan Xu, Lulu Shen, Qiuchi Xu, Xiaochen Bai, Zhonggui He, Tianhong Zhang, Qikun Jiang. Development and optimization of a high-throughput HPLC-MS/MS method for the simultaneous determination of naringenin and its valine carbamate prodrug in rat plasma.
Biomedical chromatography : BMC.
2021 Aug; 35(8):e5119. doi:
10.1002/bmc.5119
. [PMID: 33749889] - Li-Ping Shi, Xue Yang, Fang Liu, Jun-Gang Yin, Jing-Mei Yu, Jun Zhang, Hui Wang, Chong Zou, Meng Jiang. Bioequivalence of daclatasvir hydrochloride tablets in healthy Chinese subjects.
International journal of clinical pharmacology and therapeutics.
2021 Aug; 59(8):585-592. doi:
10.5414/cp203895
. [PMID: 34032204] - Junxian Ou, Zhonghua Zhou, Ruixue Dai, Jing Zhang, Shan Zhao, Xiaowei Wu, Wendong Lan, Yi Ren, Lilian Cui, Qiaoshuai Lan, Lu Lu, Donald Seto, James Chodosh, Jianguo Wu, Gong Zhang, Qiwei Zhang. V367F Mutation in SARS-CoV-2 Spike RBD Emerging during the Early Transmission Phase Enhances Viral Infectivity through Increased Human ACE2 Receptor Binding Affinity.
Journal of virology.
2021 07; 95(16):e0061721. doi:
10.1128/jvi.00617-21
. [PMID: 34105996] - Junjun Li, Han Jin, Ximei Yan, Dongyan Shao, Xinzhong Hu, Junling Shi. The anti-obesity effects exerted by different fractions of Artemisia sphaerocephala Krasch polysaccharide in diet-induced obese mice.
International journal of biological macromolecules.
2021 Jul; 182(?):825-837. doi:
10.1016/j.ijbiomac.2021.04.070
. [PMID: 33864863] - Nazim Hussain, Nimrah Farooq, Muhammad Maqsood, Muhammad Shahid Riaz Rajoka, Muhammad Bilal. Expression profiling of miRNA-196a biomarker in naïve hepatitis C virus-infected and Sofosbuvir plus Daclatasvir-treated patients.
Archives of microbiology.
2021 Jul; 203(5):2365-2371. doi:
10.1007/s00203-021-02233-6
. [PMID: 33660021]