Gene Association: IARS1

UniProt Search: IARS1 (PROTEIN_CODING)
Function Description: isoleucyl-tRNA synthetase 1

found 27 associated metabolites with current gene based on the text mining result from the pubmed database.

L-Valine

(2S)-2-amino-3-methylbutanoic acid

C5H11NO2 (117.079)


L-valine is the L-enantiomer of valine. It has a role as a nutraceutical, a micronutrient, a human metabolite, an algal metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a pyruvate family amino acid, a proteinogenic amino acid, a valine and a L-alpha-amino acid. It is a conjugate base of a L-valinium. It is a conjugate acid of a L-valinate. It is an enantiomer of a D-valine. It is a tautomer of a L-valine zwitterion. Valine is a branched-chain essential amino acid that has stimulant activity. It promotes muscle growth and tissue repair. It is a precursor in the penicillin biosynthetic pathway. L-Valine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Valine is an aliphatic and extremely hydrophobic essential amino acid in humans related to leucine, Valine is found in many proteins, mostly in the interior of globular proteins helping to determine three-dimensional structure. A glycogenic amino acid, valine maintains mental vigor, muscle coordination, and emotional calm. Valine is obtained from soy, cheese, fish, meats and vegetables. Valine supplements are used for muscle growth, tissue repair, and energy. (NCI04) Valine (abbreviated as Val or V) is an -amino acid with the chemical formula HO2CCH(NH2)CH(CH3)2. It is named after the plant valerian. L-Valine is one of 20 proteinogenic amino acids. Its codons are GUU, GUC, GUA, and GUG. This essential amino acid is classified as nonpolar. Along with leucine and isoleucine, valine is a branched-chain amino acid. Branched chain amino acids (BCAA) are essential amino acids whose carbon structure is marked by a branch point. These three amino acids are critical to human life and are particularly involved in stress, energy and muscle metabolism. BCAA supplementation as therapy, both oral and intravenous, in human health and disease holds great promise. BCAA denotes valine, isoleucine and leucine which are branched chain essential amino acids. Despite their structural similarities, the branched amino acids have different metabolic routes, with valine going solely to carbohydrates, leucine solely to fats and isoleucine to both. The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. Furthermore, these amino acids have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. Many types of inborn errors of BCAA metabolism exist, and are marked by various abnormalities. The most common form is the maple syrup urine disease, marked by a characteristic urinary odor. Other abnormalities are associated with a wide range of symptoms, such as mental retardation, ataxia, hypoglycemia, spinal muscle atrophy, rash, vomiting and excessive muscle movement. Most forms of BCAA metabolism errors are corrected by dietary restriction of BCAA and at least one form is correctable by supplementation with 10 mg of biotin daily. BCAA are decreased in patients with liver disease, such as hepatitis, hepatic coma, cirrhosis, extrahepatic biliary atresia or portacaval shunt; aromatic amino acids (AAA) tyrosine, tryptophan and phenylalanine, as well as methionine are increased in these conditions. Valine in particular, has been established as a useful supplemental therapy to the ailing liver. All the BCAA probably compete with AAA for absorption into the brain. Supplemental BCAA with vitamin B6 and zinc help normalize the BCAA:AAA ratio. In sickle-cell disease, valine substitutes for the hydrophilic amino acid glutamic acid in hemoglobin. Because valine is hydrophobic, the hemoglobin does not fold correctly. Valine is an essential amino acid, hence it must be ingested, usually as a component of proteins. A branched-chain essential amino acid that has stimulant activity. It promotes muscle growth and ... Valine (Val) or L-valine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (‚ÄìNH2) and carboxyl (‚ÄìCOOH) functional groups, along with a side chain (R group) specific to each amino acid. L-valine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Valine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aliphatic amino acid. Valine was first isolated from casein in 1901 by Hermann Emil Fischer. The name valine comes from valeric acid, which in turn is named after the plant valerian due to the presence of valine in the roots of the plant. Valine is essential in humans, meaning the body cannot synthesize it, and it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. L-valine is a branched chain amino acid (BCAA). The BCAAs consist of leucine, valine and isoleucine (and occasionally threonine). BCAAs are essential amino acids whose carbon structure is marked by a branch point at the beta-carbon position. BCAAs are critical to human life and are particularly involved in stress, energy and muscle metabolism. BCAA supplementation as therapy, both oral and intravenous, in human health and disease holds great promise. BCAAs have different metabolic routes, with valine going solely to carbohydrates (glucogenic), leucine solely to fats (ketogenic) and isoleucine being both a glucogenic and a ketogenic amino acid. The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. Like other branched-chain amino acids, the catabolism of valine starts with the removal of the amino group by transamination, giving alpha-ketoisovalerate, an alpha-keto acid, which is converted to isobutyryl-CoA through oxidative decarboxylation by the branched-chain Œ±-ketoacid dehydrogenase complex. This is further oxidised and rearranged to succinyl-CoA, which can enter the citric acid cycle. Furthermore, these amino acids have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. Many types of inborn errors of BCAA metabolism exist, and are marked by various abnormalities. The most common form is the maple syrup urine disease, marked by a characteristic urinary odor. Other abnormalities are associated with a wide range of symptoms, such as mental retardation, ataxia, hypoglycemia, spinal muscle atrophy, rash, vomiting and excessive muscle movement. Most forms of BCAA metabolism errors are corrected by dietary restriction of BCAA and at least one form is correctable by supplementation with 10 mg of biotin daily. BCAA are decreased in patients with liver disease, such as hepatitis, hepatic coma, cirrhosis, extrahepatic biliary atresia or portacaval shunt. Valine in particular, has been established as a useful supplemental therapy to the ailing liver. Valine, like other branched-chain amino acids, is associated with insulin resistance: higher levels of valine are observed in the blood of diabetic mice, rats, and humans (PMID: 25287287). Mice fed a valine deprivation diet for one day have improved insulin sensitivity and feeding of a valine deprivation diet for one week significantly decreases blood glucose levels (PMID: 24684822). In diet-induced obese and insulin resistant mice, a diet with decreased levels of valine and the other branched-chain amino acids results in reduced adiposity and improved insulin sensitivity (PMID: 29266268). In sickle-cell disease, valine substitutes for the hydrophilic amino acid glutamic acid in hemoglobin. Because valine ... L-valine, also known as (2s)-2-amino-3-methylbutanoic acid or L-(+)-alpha-aminoisovaleric acid, belongs to valine and derivatives class of compounds. Those are compounds containing valine or a derivative thereof resulting from reaction of valine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. L-valine is soluble (in water) and a moderately acidic compound (based on its pKa). L-valine can be found in watermelon, which makes L-valine a potential biomarker for the consumption of this food product. L-valine can be found primarily in most biofluids, including cerebrospinal fluid (CSF), breast milk, urine, and blood, as well as in human epidermis and fibroblasts tissues. L-valine exists in all living species, ranging from bacteria to humans. In humans, L-valine is involved in several metabolic pathways, some of which include streptomycin action pathway, tetracycline action pathway, methacycline action pathway, and kanamycin action pathway. L-valine is also involved in several metabolic disorders, some of which include methylmalonic aciduria due to cobalamin-related disorders, 3-methylglutaconic aciduria type III, isovaleric aciduria, and methylmalonic aciduria. Moreover, L-valine is found to be associated with schizophrenia, alzheimers disease, paraquat poisoning, and hypervalinemia. L-valine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Valine (abbreviated as Val or V) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH3+ form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −COO− form under biological conditions), and a side chain isopropyl group, making it a non-polar aliphatic amino acid. It is essential in humans, meaning the body cannot synthesize it: it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. In the genetic code it is encoded by all codons starting with GU, namely GUU, GUC, GUA, and GUG (Applies to Valine, Leucine and Isoleucine)
This group of essential amino acids are identified as the branched-chain amino acids, BCAAs. Because this arrangement of carbon atoms cannot be made by humans, these amino acids are an essential element in the diet. The catabolism of all three compounds initiates in muscle and yields NADH and FADH2 which can be utilized for ATP generation. The catabolism of all three of these amino acids uses the same enzymes in the first two steps. The first step in each case is a transamination using a single BCAA aminotransferase, with a-ketoglutarate as amine acceptor. As a result, three different a-keto acids are produced and are oxidized using a common branched-chain a-keto acid dehydrogenase, yielding the three different CoA derivatives. Subsequently the metabolic pathways diverge, producing many intermediates.
The principal product from valine is propionylCoA, the glucogenic precursor of succinyl-CoA. Isoleucine catabolism terminates with production of acetylCoA and propionylCoA; thus isoleucine is both glucogenic and ketogenic. Leucine gives rise to acetylCoA and acetoacetylCoA, and is thus classified as strictly ketogenic.
There are a number of genetic diseases associated with faulty catabolism of the BCAAs. The most common defect is in the branched-chain a-keto acid dehydrogenase. Since there is only one dehydrogenase enzyme for all three amino acids, all three a-keto acids accumulate and are excreted in the urine. The disease is known as Maple syrup urine disease because of the characteristic odor of the urine in afflicted individuals. Mental retardation in these cases is extensive. Unfortunately, since these are essential amino acids, they cannot be heavily restricted in the diet; ultimately, the life of afflicted individuals is short and development is abnormal The main neurological pr... L-Valine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7004-03-7 (retrieved 2024-06-29) (CAS RN: 72-18-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Valine (Valine) is a new nonlinear semiorganic material[1]. L-Valine (Valine) is a new nonlinear semiorganic material[1].

   

L-Isoleucine

(2S,3S)-2-amino-3-methylpentanoic acid

C6H13NO2 (131.0946)


Isoleucine (Ile) or L-isoleucine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-isolecuine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Isoleucine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aliphatic amino acid. Isoleucine is an essential amino acid in humans, meaning the body cannot synthesize it and that it must be obtained from the diet. In plants and microorganisms, isoleucine is synthesized starting from pyruvate and alpha-ketobutyrate. Isoleucine is classified as a branched chain amino acid (BCAA). BCAAs include three amino acids: isoleucine, leucine and valine. They are alpha amino acids whose carbon structure is marked by a beta branch point. Despite their structural similarities, BCAAs have different metabolic routes, with valine going solely to carbohydrates (glucogenic), leucine solely to fats (ketogenic) and isoleucine being both a glucogenic and a ketogenic amino acid. Isoleucine is catabolized via with alpha-ketoglutarate where upon it is oxidized and split into propionyl-CoA and acetyl-CoA. Propionyl-CoA is converted into succinyl-CoA, a TCA cycle intermediate which can be converted into oxaloacetate for gluconeogenesis (hence glucogenic). The acetyl-CoA can be fed into the TCA cycle by condensing with oxaloacetate to form citrate or used in the synthesis of ketone bodies or fatty acids. The different metabolism of BCAAs accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine are required respectively. Furthermore, these amino acids have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. BCAAs are decreased in patients with liver disease, such as hepatitis, hepatic coma, cirrhosis, extrahepatic biliary atresia. An inability to break down isoleucine, along with other amino acids, is associated with maple syrup urine disease (MSUD) (PMID: 34125801). Isoleucine, like other BCAAs, is associated with insulin resistance. In particular, higher levels of isoleucine are observed in the blood of diabetic mice, rats, and humans (PMID 25287287). Mice fed an isoleucine deprivation diet for one day have improved insulin sensitivity, and feeding of an isoleucine deprivation diet for one week significantly decreases blood glucose levels (PMID: 24684822). L-isoleucine is the L-enantiomer of isoleucine. It has a role as a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a plant metabolite, a human metabolite, an algal metabolite and a mouse metabolite. It is an aspartate family amino acid, a proteinogenic amino acid, an isoleucine and a L-alpha-amino acid. It is a conjugate base of a L-isoleucinium. It is a conjugate acid of a L-isoleucinate. It is an enantiomer of a D-isoleucine. It is a tautomer of a L-isoleucine zwitterion. An essential branched-chain aliphatic amino acid found in many proteins. It is an isomer of leucine. It is important in hemoglobin synthesis and regulation of blood sugar and energy levels. L-Isoleucine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Isoleucine is one of nine essential amino acids in humans (present in dietary proteins), Isoleucine has diverse physiological functions, such as assisting wound healing, detoxification of nitrogenous wastes, stimulating immune function, and promoting secretion of several hormones. Necessary for hemoglobin formation and regulating blood sugar and energy levels, isoleucine is concentrated in muscle tissues in humans. Isoleucine is found especially in meats, fish, cheese, eggs, and most seeds and nuts. (NCI04) L-Isoleucine is one of the essential amino acids that cannot be made by the body and is known for its ability to help endurance and assist in the repair and rebuilding of muscle. This amino acid is important to body builders as it helps boost energy and helps the body recover from training. L-Isoleucine is also classified as a branched-chain amino acid (BCAA). It helps promote muscle recovery after exercise. Isoleucine is actually broken down for energy within the muscle tissue. It is important in hemoglobin synthesis and regulation of blood sugar and energy levels. An essential branched-chain aliphatic amino acid found in many proteins. It is an isomer of LEUCINE. It is important in hemoglobin synthesis and regulation of blood sugar and energy levels. L-Isoleucine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=73-32-5 (retrieved 2024-07-01) (CAS RN: 73-32-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-isoleucine is a nonpolar hydrophobic amino acid[1]. L-Isoleucine is an essential amino acid. L-isoleucine is a nonpolar hydrophobic amino acid[1]. L-Isoleucine is an essential amino acid.

   

L-Glutamine

(2S)-2,5-diamino-5-oxopentanoic acid

C5H10N2O3 (146.0691)


Glutamine (Gln), also known as L-glutamine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. Structurally, glutamine is similar to the amino acid glutamic acid. However, instead of having a terminal carboxylic acid, it has an amide. Glutamine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Glutamine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, polar amino acid. In humans glutamine is considered a non-essential amino acid. Enzymatically, glutamine is formed by replacing a side-chain hydroxyl of glutamic acid with an amine functional group. More specifically, glutamine is synthesized by the enzyme glutamine synthetase from glutamate and ammonia. The most relevant glutamine-producing tissue are skeletal muscles, accounting for about 90\\\\\\% of all glutamine synthesized. Glutamine is also released, in small amounts, by the lungs and brain. In human blood, glutamine is the most abundant free amino acid. Dietary sources of glutamine include protein-rich foods such as beef, chicken, fish, dairy products, eggs, beans, beets, cabbage, spinach, carrots, parsley, vegetable juices, wheat, papaya, Brussels sprouts, celery and kale. Glutamine is one of the few amino acids that can directly cross the blood–brain barrier. Glutamine is often used as a supplement in weightlifting, bodybuilding, endurance and other sports, as well as by those who suffer from muscular cramps or pain, particularly elderly people. In 2017, the U.S. Food and Drug Administration (FDA) approved L-glutamine oral powder, marketed as Endari, to reduce severe complications of sickle cell disease in people aged five years and older with the disorder. Subjects who were treated with L-glutamine oral powder experienced fewer hospital visits for pain treated with a parenterally administered narcotic or ketorolac. The main use of glutamine within the diet of either group is as a means of replenishing the bodys stores of amino acids that have been used during exercise or everyday activities. Studies which have looked into problems with excessive consumption of glutamine thus far have proved inconclusive. However, normal supplementation is healthy mainly because glutamine is supposed to be supplemented after prolonged periods of exercise (for example, a workout or exercise in which amino acids are required for use) and replenishes amino acid stores. This is one of the main reasons glutamine is recommended during fasting or for people who suffer from physical trauma, immune deficiencies, or cancer. There is a significant body of evidence that links glutamine-enriched diets with positive intestinal effects. These include maintenance of gut barrier function, aiding intestinal cell proliferation and differentiation, as well as generally reducing septic morbidity and the symptoms of Irritable Bowel Syndrome (IBS). The reason for such "cleansing" properties is thought to stem from the fact that the intestinal extraction rate of glutamine is higher than that for other amino acids, and is therefore thought to be the most viable option when attempting to alleviate conditions relating to the gastrointestinal tract. These conditions were discovered after comparing plasma concentration within the gut between glutamine-enriched and non glutamine-enriched diets. However, even though glutamine is thought to have "cleansing" properties and effects, it is unknown to what extent glutamine has clinical benefits, due to the varied concentrations of glutamine in varieties of food. It is also known that glutamine has positive effects in reducing healing time after operations. Hospital waiting times after abdominal s... L-glutamine, also known as L-2-aminoglutaramic acid or levoglutamide, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. L-glutamine is soluble (in water) and a moderately acidic compound (based on its pKa). L-glutamine can be found in a number of food items such as acorn, yautia, ohelo berry, and oregon yampah, which makes L-glutamine a potential biomarker for the consumption of these food products. L-glutamine can be found primarily in most biofluids, including blood, sweat, breast milk, and cerebrospinal fluid (CSF), as well as throughout most human tissues. L-glutamine exists in all living species, ranging from bacteria to humans. In humans, L-glutamine is involved in several metabolic pathways, some of which include amino sugar metabolism, the oncogenic action of 2-hydroxyglutarate, mercaptopurine metabolism pathway, and transcription/Translation. L-glutamine is also involved in several metabolic disorders, some of which include the oncogenic action of d-2-hydroxyglutarate in hydroxygluaricaciduria, tay-sachs disease, xanthinuria type I, and adenosine deaminase deficiency. Moreover, L-glutamine is found to be associated with carbamoyl Phosphate Synthetase Deficiency, epilepsy, schizophrenia, and alzheimers disease. L-glutamine is a non-carcinogenic (not listed by IARC) potentially toxic compound. L-glutamine is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalance. L-Glutamine (L-Glutamic acid 5-amide) is a non-essential amino acid present abundantly throughout the body and involved in many metabolic processes. L-Glutamine provides a source of carbons for oxidation in some cells[1][2]. L-Glutamine (L-Glutamic acid 5-amide) is a non-essential amino acid present abundantly throughout the body and involved in many metabolic processes. L-Glutamine provides a source of carbons for oxidation in some cells[1][2]. L-Glutamine (L-Glutamic acid 5-amide) is a non-essential amino acid present abundantly throughout the body and involved in many metabolic processes. L-Glutamine provides a source of carbons for oxidation in some cells[1][2].

   

But-2-enoic acid

beta-Methylacrylic acid

C4H6O2 (86.0368)


But-2-enoic acid, also known as (2E)-2-butenoate or alpha-crotonic acid, belongs to the class of organic compounds known as straight chain organic acids. These are organic acids with a straight aliphatic chain. But-2-enoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Food flavour component KEIO_ID C093 NSC 8751 is an endogenous metabolite. NSC 8751 is an endogenous metabolite.

   

Kasugamycin

2-amino-2-[(2R,3S,5S,6R)-5-amino-2-methyl-6-[(2S,3S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyoxan-3-yl]iminoacetic acid

C14H25N3O9 (379.1591)


An amino cyclitol glycoside that is isolated from Streptomyces kasugaensis and exhibits antibiotic and fungicidal properties. Kasugamycin is an amino cyclitol glycoside that is isolated from Streptomyces kasugaensis and exhibits antibiotic and fungicidal properties. It has a role as a bacterial metabolite, a protein synthesis inhibitor and an antifungal agrochemical. It is an amino cyclitol glycoside, an aminoglycoside antibiotic, a monosaccharide derivative, a carboxamidine and an antibiotic fungicide. Kasugamycin has been reported in Streptomyces celluloflavus and Streptomyces kasugaensis. Kasugamycin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=6980-18-3 (retrieved 2024-12-11) (CAS RN: 6980-18-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Methionine sulfoximine

Butanoic acid, 2-amino-4-(S-methylsulfonimidoyl)- (9ci)

C5H12N2O3S (180.0569)


Methionine sulfoximine is found in flours treated with NCl3 as a produced of NCl3 action on wheat protein

   

Mupirocin

9-{[(2E)-4-[(2S,3R,4R,5S)-3,4-dihydroxy-5-{[(2S,3S)-3-[(2S,3S)-3-hydroxybutan-2-yl]oxiran-2-yl]methyl}oxan-2-yl]-3-methylbut-2-enoyl]oxy}nonanoic acid

C26H44O9 (500.2985)


Mupirocin (pseudomonic acid A, or Bactroban or Centany) is an antibiotic originally isolated from Pseudomonas fluorescens. It is used topically, and is primarily effective against Gram-positive bacteria. Mupirocin is bacteriostatic at low concentrations and bactericidal at high concentrations. Mupirocin has a unique mechanism of action, which is selective binding to bacterial isoleucyl-tRNA synthetase, which halts the incorporation of isoleucine into bacterial proteins. Because this mechanism of action is not shared with any other antibiotic, mupirocin has few problems of antibiotic cross-resistance. D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06A - Antibiotics for topical use R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Same as: D01076 Mupirocin (BRL-4910A, Pseudomonic acid) is an orally active antibiotic isolated from Pseudomonas fluorescens. Mupirocin apparently exerts its antimicrobial activity by reversibly inhibiting isoleucyl-transfer RNA, thereby inhibiting bacterial protein and RNA synthesis[1][2].

   

Magnesium

Magnesium Cation

Mg+2 (23.985)


   

3-deoxy-D-manno-octulosonate

(4R,5R,6R,7R)-4,5,6,7,8-pentahydroxy-2-oxooctanoic acid

C8H14O8 (238.0689)


3-deoxy-d-manno-octulosonate, also known as kdo or 2-dehydro-3-deoxy-D-octonate, belongs to sugar acids and derivatives class of compounds. Those are compounds containing a saccharide unit which bears a carboxylic acid group. 3-deoxy-d-manno-octulosonate is soluble (in water) and a moderately acidic compound (based on its pKa). 3-deoxy-d-manno-octulosonate can be found in a number of food items such as peppermint, okra, horseradish tree, and hazelnut, which makes 3-deoxy-d-manno-octulosonate a potential biomarker for the consumption of these food products. 3-deoxy-d-manno-octulosonate may be a unique E.coli metabolite.

   

globomycin

globomycin

C32H57N5O9 (655.4156)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors

   

L-2,3-Dihydrodipicolinate

2,3-dihydropyridine-2,6-dicarboxylic acid

C7H7NO4 (169.0375)


L-2,3-Dihydrodipicolinate is involved in the lysine biosynthesis I pathway. L-2,3-Dihydrodipicolinate is produced from a reaction between pyruvate and L-aspartate-semialdehyde, with water as a byproduct. The reaction is catalyzed by dihydrodipicolinate synthase. L-2,3-dihydrodipicolinate reacts with NAD(P)H and H+ to produce tetrahydrodipicolinate and NAD(P)+. The reaction is catalyzed by dihydrodipicolinate reductase. L-2,3-Dihydrodipicolinate is involved in the lysine biosynthesis I pathway. L-2,3-Dihydrodipicolinate is produced from a reaction between pyruvate and L-aspartate-semialdehyde, with water as a byproduct. The reaction is catalyzed by dihydrodipicolinate synthase.

   

Meticillin

(2S,5R,6R)-6-[(2,6-Dimethoxybenzoyl)amino]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid

C17H20N2O6S (380.1042)


Meticillin is only found in individuals that have used or taken this drug. It is one of the penicillins which is resistant to penicillinase but susceptible to a penicillin-binding protein. It is inactivated by gastric acid so administered by injection. [PubChem]Like other beta-lactam antibiotics, meticillin acts by inhibiting the synthesis of bacterial cell walls. It inhibits cross-linkage between the linear peptidoglycan polymer chains that make up a major component of the cell wall of Gram-positive bacteria. It does this by binding to and competitively inhibiting the transpeptidase enzyme used by bacteria to cross-link the peptide (D-alanyl-alanine) used in peptidogylcan synthesis. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CF - Beta-lactamase resistant penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Gramicidin S

NCGC00095992-01

C60H92N12O10 (1140.7059)


C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Origin: Microbe; SubCategory_DNP: Peptides, Cyclic peptides, Tyrothricins Gramicidin S (Gramicidin soviet) is a cationic cyclic peptide antibiotic. Gramicidin S is active against Gram-negative and Gram-positive bacteria by perturbing integrity of the bacterial membranes. Gramicidin S also inhibits cytochrome bd quinol oxidase[1].

   

DL-Glutamine

DL-Glutamine

C5H10N2O3 (146.0691)


DL-Glutamine is used for biochemical research and drug synthesis.

   

METHIONINE SULFOXIMINE

(R-(R*,S*))-S-(3-Amino-3-carboxypropyl)-S-methylsulphoximide

C5H12N2O3S (180.0569)


A non-proteinogenic alpha-amino acid that is the sulfoximine derivative of methionine . KEIO_ID M114

   

Keto-3-deoxy-D-manno-octulosonic acid

Ion(1-),(D)-isomer OF 2-keto-3-deoxyoctonate

C8H14O8 (238.0689)


   

Valine

L-Valine

C5H11NO2 (117.079)


COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Valine (Valine) is a new nonlinear semiorganic material[1]. L-Valine (Valine) is a new nonlinear semiorganic material[1].

   

Isoleucine

L-Isoleucine

C6H13NO2 (131.0946)


COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-isoleucine is a nonpolar hydrophobic amino acid[1]. L-Isoleucine is an essential amino acid. L-isoleucine is a nonpolar hydrophobic amino acid[1]. L-Isoleucine is an essential amino acid.

   

Mupirocin

Mupirocin

C26H44O9 (500.2985)


An alpha,beta-unsaturated ester resulting from the formal condensation of the alcoholic hydroxy group of 9-hydroxynonanoic acid with the carboxy group of (2E)-4-[(2S)-tetrahydro-2H-pyran-2-yl]-3-methylbut-2-enoic acid in which the tetrahydropyranyl ring is substituted at positions 3 and 4 by hydroxy groups and at position 5 by a {(2S,3S)-3-[(2S,3S)-3-hydroxybutan-2-yl]oxiran-2-yl}methyl group. Originally isolated from the Gram-negative bacterium Pseudomonas fluorescens, it is used as a topical antibiotic for the treatment of Gram-positive bacterial infections. D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06A - Antibiotics for topical use R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Mupirocin (BRL-4910A, Pseudomonic acid) is an orally active antibiotic isolated from Pseudomonas fluorescens. Mupirocin apparently exerts its antimicrobial activity by reversibly inhibiting isoleucyl-transfer RNA, thereby inhibiting bacterial protein and RNA synthesis[1][2].

   

L-Isoleucine

L-Isoleucine

C6H13NO2 (131.0946)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; AGPKZVBTJJNPAG-WHFBIAKZSA-N_STSL_0101_Isoleucine_8000fmol_180425_S2_LC02_MS02_58; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. CONFIDENCE standard compound; INTERNAL_ID 8 COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-isoleucine is a nonpolar hydrophobic amino acid[1]. L-Isoleucine is an essential amino acid. L-isoleucine is a nonpolar hydrophobic amino acid[1]. L-Isoleucine is an essential amino acid.

   

Crotonic acid

2-Butenoic acid

C4H6O2 (86.0368)


A but-2-enoic acid with a trans- double bond at C-2. It has been isolated from Daucus carota. But-2-enoic acid is fatty acid formed by the action of fatty acid synthases from acetyl-CoA and malonyl-CoA precursors. It is involved in the fatty acid biosynthesis. Specifically, it is the product of reaction between (R)-3-Hydroxybutyric acid and fatty acid synthase. [HMDB]. NSC 8751 is an endogenous metabolite. NSC 8751 is an endogenous metabolite.

   

FA 4:1

Dihydrofuran-2(3H)-one

C4H6O2 (86.0368)


NSC 8751 is an endogenous metabolite. NSC 8751 is an endogenous metabolite.

   

AI3-06287

InChI=1\C4H6O2\c1-2-3-4(5)6\h2-3H,1H3,(H,5,6)\b3-2

C4H6O2 (86.0368)


NSC 8751 is an endogenous metabolite. NSC 8751 is an endogenous metabolite.

   

methicillin

methicillin

C17H20N2O6S (380.1042)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CF - Beta-lactamase resistant penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic A penicillin compound having a (6R)-2,6-dimethoxybenzamido substituent.

   

Magnesium Cation

Magnesium Cation

Mg+2 (23.985)


   

3-deoxy-D-manno-octulosonate

3-deoxy-D-manno-octulosonate

C8H14O8 (238.0689)


   

(S)-2,3-Dihydrodipicolinic acid

(S)-2,3-Dihydrodipicolinic acid

C7H7NO4 (169.0375)