Isofucosterol (BioDeep_00000000530)

   

human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Marine Natural Products


代谢物信息卡片


(3S,8S,9S,10R,13R,14S,17R)-17-((R,E)-5-Isopropylhept-5-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

化学式: C29H48O (412.3705)
中文名称: 岩藻甾醇, 豆甾-5,24(28)-二烯-3-醇, 岩皂甾醇
谱图信息: 最多检出来源 Viridiplantae(plant) 17.61%

Reviewed

Last reviewed on 2024-10-08.

Cite this Page

Isofucosterol. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/isofucosterol (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000000530). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C/C=C(/CC[C@@H](C)[C@H]1CC[C@H]2[C@@H]3CC=C4C[C@H](CC[C@]4(C)[C@H]3CC[C@]12C)O)\C(C)C
InChI: InChI=1S/C29H48O/c1-7-21(19(2)3)9-8-20(4)25-12-13-26-24-11-10-22-18-23(30)14-16-28(22,5)27(24)15-17-29(25,26)6/h7,10,19-20,23-27,30H,8-9,11-18H2,1-6H3/b21-7-/t20-,23+,24+,25-,26+,27+,28+,29-/m1/s1

描述信息

Isofucosterol, also known as delta5-avenasterol, is a phytosterol. Phytosterols, or plant sterols, are compounds that occur naturally and bear a close structural resemblance to cholesterol but have different side-chain configurations. Phytosterols are relevant in pharmaceuticals (production of therapeutic steroids), nutrition (anti-cholesterol additives in functional foods, anti-cancer properties), and cosmetics (creams, lipstick). Phytosterols can be obtained from vegetable oils or from industrial wastes, which gives an added value to the latter. Considerable efforts have been recently dedicated to the development of efficient processes for phytosterol isolation from natural sources. The present work aims to summarize information on the applications of phytosterols and to review recent approaches, mainly from the industry, for the large-scale recovery of phytosterols (PMID: 17123816, 16481154). Isofucosterol is found to be associated with phytosterolemia, which is an inborn error of metabolism.
Isofucosterol, also known as (24z)-stigmasta-5,24(28)-dien-3-ol or delta5-avenasterol, belongs to stigmastanes and derivatives class of compounds. Those are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24. Thus, isofucosterol is considered to be a sterol lipid molecule. Isofucosterol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Isofucosterol can be found in a number of food items such as globe artichoke, gooseberry, deerberry, and ucuhuba, which makes isofucosterol a potential biomarker for the consumption of these food products. Isofucosterol can be found primarily in blood. Moreover, isofucosterol is found to be associated with sitosterolemia.
Isofucosterol is a 3beta-sterol consisting of stigmastan-3beta-ol with double bonds at positions 5 and 24(28). The double bond at postion 24(28) adopts a Z-configuration. It has a role as an animal metabolite, a plant metabolite, an algal metabolite and a marine metabolite. It is a 3beta-sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane.
Fucosterol is a natural product found in Echinometra lucunter, Ulva fasciata, and other organisms with data available.
A 3beta-sterol consisting of stigmastan-3beta-ol with double bonds at positions 5 and 24(28). The double bond at postion 24(28) adopts a Z-configuration.

Fucosterol is a sterol isolated from algae, seaweed or diatoms.?Fucosterol exhibits various biological activities, including antioxidant, anti-adipogenic, blood cholesterol reducing, anti-diabetic and anti-cancer activities[1][2]. Fucosterol regulates adipogenesis via inhibition of?PPARα?and?C/EBPα?expression and can be used for anti-obesity agents development research.

Isofucosterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=481-14-1 (retrieved 2024-10-08) (CAS RN: 481-14-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

同义名列表

74 个代谢物同义名

(3S,8S,9S,10R,13R,14S,17R)-17-((R,E)-5-Isopropylhept-5-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol; (3S,8S,9S,10R,13R,14S,17R)-17-[(Z,1R)-4-isopropyl-1-methyl-hex-4-enyl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol; (3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(Z,2R)-5-propan-2-ylhept-5-en-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol; (1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R,5Z)-5-(propan-2-yl)hept-5-en-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol; (1S,2R,5S,10S,11S,14R,15R)-14-[(2R,5Z)-5-isopropylhept-5-en-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol; 24-isoethylidenecholest-5-en-3 beta-ol,delta(5)-avenasterol; (24Z)-24-ETHYLCHOLESTA-5,24(28)-DIEN-3.BETA.-OL; (Z)-24-ETHYLCHOLESTA-5,24(28)-DIEN-3.BETA.-OL; (24Z)-24-Ethylcholesta-5,24(28)-dien-3beta-ol; fucosterol, 28-(14)C-labeled cpd, (E)-isomer; Stigmasta-5,24(28)-dien-3-ol, (3.beta.,24Z)-; Stigmasta-5,24(28)-dien-3-ol, (3.beta.,24E)-; (Z)-24-Ethylcholesta-5,24(28)-dien-3beta-ol; (3.beta.,24Z)-Stigmasta-5,24(28)-dien-3-ol; (24Z)-24-Ethylcholesta-5,24(28)-dien-3β-ol; 24-ETHYLCHOLESTA-5,24(28)Z-DIEN-3.BETA.-OL; (24Z)-24-Ethylcholesta-5,24(28)-dien-3b-ol; Stigmasta-5,24(28)-dien-3-ol, (3beta,24Z)-; Stigmasta-5,24(28)-dien-3.beta.-ol, (E)-; 24-Ethylcholesta-5,24(28)Z-dien-3beta-ol; (Z)-24-Ethylcholesta-5,24(28)-dien-3b-ol; (3beta,24Z)-stigmasta-5,24(28)-dien-3-ol; Stigmasta-5,24(28)-dien-3.beta.-ol, (Z)-; (Z)-24-Ethylcholesta-5,24(28)-dien-3β-ol; 24(Z)-ETHYLIDENECHOLEST-5-EN-3.BETA.-OL; 24(E)-Ethylidenecholest-5-en-3.beta.-ol; STIGMASTA-5-CIS,24(28)-DIEN-3.BETA.-OL; Stigmasta-5,24(28)-dien-3beta-ol, (Z)-; (Z)-STIGMASTA-5,24(28)-DIEN-3.BETA.-OL; (24Z)-stigmasta-5,24(28)-dien-3beta-ol; 5-Cholesten-24(28)-ethylidene-3beta-ol; Stigmasta-5,24(28)-dien-3-ol, (3beta)-; 24-Ethylcholesta-5,24(28)Z-dien-3β-ol; (3Β,24Z)-stigmasta-5,24(28)-dien-3-ol; 24(Z)-Ethylidenecholest-5-en-3beta-ol; (3b,24Z)-Stigmasta-5,24(28)-dien-3-ol; (3beta)-stigmasta-5,24(28)-dien-3-ol; 24Z-ethylidene-cholest-5-en-3beta-ol; (Z)-Stigmasta-5,24(28)-dien-3beta-ol; Stigmasta-5-cis,24(28)-dien-3beta-ol; (24Z)-Stigmasta-5,24(28)-dien-3-ol; 24(Z)-Ethylidenecholest-5-en-3β-ol; 24Z-Ethylidene-cholest-5-en-3β-ol; (Z)-Stigmasta-5,24(28)-dien-3b-ol; (3b)-Stigmasta-5,24(28)-dien-3-ol; (3Β)-stigmasta-5,24(28)-dien-3-ol; 24Z-Ethylidene-cholest-5-en-3b-ol; (24E)-24-N-propylidenecholesterol; Stigmasta-5-cis,24(28)-dien-3β-ol; (Z)-Stigmasta-5,24(28)-dien-3β-ol; 24Z-ethylidenecholest-5-en-3B-ol; stigmasta-5,24-dien-3 beta-ol; (Z)-24-Ethylidenecholesterol; (24Z)-Ethylidenecholesterol; OSELKOCHBMDKEJ-WGMIZEQOSA-N; fucosterol, (3beta)-isomer; delta(5)-avenasterol; Delta 5-avenasterol; delta5-Avenosterol; delta5-Avenasterol; 28-isofucosterol; 29-Isofucosterol; Δ(5)-avenasterol; UNII-CS4PB4FQQ7; UNII-S4UL5AI3R2; D5-Avenasterol; Δ5-Avenasterol; Isofucosterol; Fucosterol; CS4PB4FQQ7; S4UL5AI3R2; ST 29:2;O; Avenasterol; Isofucosterol



数据库引用编号

24 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(1)

代谢反应

123 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(1)

  • plant sterol biosynthesis: 4α-formyl-ergosta-7,24(241)-dien-3β-ol + H+ + O2 + a ferrocytochrome b5 ⟶ 4α-carboxy-ergosta-7,24(241)-dien-3β-ol + H2O + a ferricytochrome b5

WikiPathways(0)

Plant Reactome(3)

INOH(0)

PlantCyc(118)

COVID-19 Disease Map(0)

PathBank(1)

  • Steroid Biosynthesis: Hydrogen Ion + Lathosterol + Oxygen + ferrocytochrome b5 ⟶ 7-Dehydrocholesterol + Water + ferricytochrome b5

PharmGKB(0)

92 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 14 ADIG, AKT1, ANXA5, BCL2, BDNF, CAT, MAPK1, NR1H2, PIK3C3, PIK3CA, PIK3R6, PPARG, PTGS2, SREBF1
Peripheral membrane protein 4 ACHE, ANXA5, PIK3R6, PTGS2
Endosome membrane 1 BACE1
Endoplasmic reticulum membrane 4 BCL2, HMOX1, PTGS2, SREBF1
Cytoplasmic vesicle, autophagosome 1 PIK3C3
Nucleus 9 ACHE, ADIG, AKT1, BCL2, HMOX1, MAPK1, NR1H2, PPARG, SREBF1
autophagosome 1 PIK3C3
cytosol 12 AKT1, ANXA5, BCL2, CAT, HMOX1, MAPK1, NR1H2, PIK3C3, PIK3CA, PIK3R6, PPARG, SREBF1
dendrite 2 BACE1, BDNF
phosphatidylinositol 3-kinase complex, class III 1 PIK3C3
trans-Golgi network 1 BACE1
centrosome 1 MAPK1
nucleoplasm 6 AKT1, HMOX1, MAPK1, NR1H2, PPARG, SREBF1
RNA polymerase II transcription regulator complex 2 NR1H2, PPARG
Cell membrane 5 ACHE, AKT1, BACE1, PIK3R6, TNF
Cytoplasmic side 1 HMOX1
lamellipodium 2 AKT1, PIK3CA
Cell projection, axon 1 BACE1
Multi-pass membrane protein 1 SREBF1
Golgi apparatus membrane 1 SREBF1
Synapse 2 ACHE, MAPK1
cell cortex 1 AKT1
cell surface 3 ACHE, BACE1, TNF
glutamatergic synapse 2 AKT1, PIK3C3
Golgi apparatus 3 ACHE, BACE1, MAPK1
Golgi membrane 2 INS, SREBF1
neuromuscular junction 1 ACHE
neuronal cell body 2 BACE1, TNF
postsynapse 1 AKT1
sarcolemma 1 ANXA5
synaptic vesicle 2 BACE1, BDNF
Lysosome 1 BACE1
endosome 2 BACE1, PIK3C3
plasma membrane 7 ACHE, AKT1, BACE1, MAPK1, PIK3CA, PIK3R6, TNF
Membrane 11 ACHE, ADIG, AKT1, ANXA5, BACE1, BCL2, BDNF, CAT, HMOX1, PIK3C3, PIK3R6
axon 2 BACE1, BDNF
caveola 2 MAPK1, PTGS2
extracellular exosome 2 ANXA5, CAT
endoplasmic reticulum 5 BACE1, BCL2, HMOX1, PTGS2, SREBF1
extracellular space 6 ACHE, BDNF, HMOX1, IL6, INS, TNF
perinuclear region of cytoplasm 5 ACHE, BDNF, HMOX1, PIK3CA, PPARG
intercalated disc 1 PIK3CA
mitochondrion 3 BCL2, CAT, MAPK1
protein-containing complex 5 AKT1, BCL2, CAT, PTGS2, SREBF1
intracellular membrane-bounded organelle 2 CAT, PPARG
Microsome membrane 1 PTGS2
Single-pass type I membrane protein 1 BACE1
Secreted 5 ACHE, ADIG, BDNF, IL6, INS
extracellular region 9 ACHE, ADIG, ANXA5, BDNF, CAT, IL6, INS, MAPK1, TNF
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 2 ADIG, BCL2
mitochondrial outer membrane 2 BCL2, HMOX1
hippocampal mossy fiber to CA3 synapse 1 BACE1
mitochondrial matrix 1 CAT
Extracellular side 1 ACHE
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 MAPK1
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 2 ANXA5, TNF
multivesicular body 1 BACE1
microtubule cytoskeleton 1 AKT1
midbody 1 PIK3C3
Early endosome 2 BACE1, MAPK1
cell-cell junction 1 AKT1
recycling endosome 2 BACE1, TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
Membrane raft 2 BACE1, TNF
pore complex 1 BCL2
Cell junction, focal adhesion 1 MAPK1
Cytoplasm, cytoskeleton, spindle 1 MAPK1
focal adhesion 3 ANXA5, CAT, MAPK1
spindle 2 AKT1, MAPK1
GABA-ergic synapse 1 PIK3C3
Peroxisome 2 CAT, PIK3C3
basement membrane 1 ACHE
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
collagen-containing extracellular matrix 1 ANXA5
axoneme 1 PIK3C3
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Late endosome 3 BACE1, MAPK1, PIK3C3
receptor complex 1 PPARG
Zymogen granule membrane 1 ANXA5
neuron projection 1 PTGS2
ciliary basal body 1 AKT1
chromatin 3 NR1H2, PPARG, SREBF1
phagocytic cup 1 TNF
phagocytic vesicle membrane 1 PIK3C3
mitotic spindle 1 MAPK1
cytoskeleton 1 MAPK1
Golgi apparatus, trans-Golgi network 1 BACE1
Lipid-anchor, GPI-anchor 1 ACHE
nuclear envelope 1 SREBF1
Endomembrane system 1 BACE1
endosome lumen 1 INS
Lipid droplet 1 ADIG
Membrane, caveola 1 MAPK1
phagophore assembly site 1 PIK3C3
phosphatidylinositol 3-kinase complex, class III, type I 1 PIK3C3
phosphatidylinositol 3-kinase complex, class III, type II 1 PIK3C3
Cytoplasmic vesicle membrane 2 BACE1, SREBF1
Cell projection, dendrite 1 BACE1
side of membrane 1 ACHE
myelin sheath 1 BCL2
pseudopodium 1 MAPK1
ficolin-1-rich granule lumen 2 CAT, MAPK1
secretory granule lumen 2 CAT, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 6 BACE1, BDNF, IL6, INS, MAPK1, PTGS2
phosphatidylinositol 3-kinase complex 2 PIK3CA, PIK3R6
phosphatidylinositol 3-kinase complex, class IA 2 PIK3CA, PIK3R6
transport vesicle 1 INS
azurophil granule lumen 1 MAPK1
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
presynaptic endosome 1 PIK3C3
Single-pass type IV membrane protein 1 HMOX1
ER to Golgi transport vesicle membrane 1 SREBF1
vesicle membrane 1 ANXA5
synaptic cleft 1 ACHE
Cytoplasmic vesicle, COPII-coated vesicle membrane 1 SREBF1
postsynaptic endosome 1 PIK3C3
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
Autolysosome 1 PIK3C3
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
endothelial microparticle 1 ANXA5
BAD-BCL-2 complex 1 BCL2
[Isoform H]: Cell membrane 1 ACHE
[Neurotrophic factor BDNF precursor form]: Secreted 1 BDNF
[Sterol regulatory element-binding protein 1]: Endoplasmic reticulum membrane 1 SREBF1
[Processed sterol regulatory element-binding protein 1]: Nucleus 1 SREBF1
[Isoform SREBP-1aDelta]: Nucleus 1 SREBF1
[Isoform SREBP-1cDelta]: Nucleus 1 SREBF1
phosphatidylinositol 3-kinase complex, class IB 2 PIK3CA, PIK3R6
Golgi-associated vesicle lumen 1 BACE1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Pengrui Wang, Junfang Zhang, Na Zhan, Shuang Yang, Mingming Yu, Hongbing Liu. The pharmacokinetic characteristics and excretion studies of fucosterol from Sargasssum fusiforme in rats. Biomedical chromatography : BMC. 2022 Apr; 36(4):e5309. doi: 10.1002/bmc.5309. [PMID: 34981527]
  • Xingyu Lu, Amila A Dissanayake, Chuqiao Xiao, Jie Gao, Mouming Zhao, Muraleedharan G Nair. The edible seaweed Laminaria japonica contains cholesterol analogues that inhibit lipid peroxidation and cyclooxygenase enzymes. PloS one. 2022 ; 17(1):e0258980. doi: 10.1371/journal.pone.0258980. [PMID: 35085233]
  • Kenneth Vanbrabant, David Van Meel, Anja Kerksiek, Silvia Friedrichs, Marco Dubbeldam, Melissa Schepers, Na Zhan, Katharina Gutbrod, Peter Dörmann, Hong-Bing Liu, Monique T Mulder, Tim Vanmierlo, Dieter Lütjohann. 24(R, S)-Saringosterol - From artefact to a biological medical agent. The Journal of steroid biochemistry and molecular biology. 2021 09; 212(?):105942. doi: 10.1016/j.jsbmb.2021.105942. [PMID: 34144153]
  • Ye-Jin Kim, So-Yeon Jeon, Jae-Sue Choi, Na-Hyun Kim, Yukiori Goto, Young-A Lee. Alterations of amygdala-prefrontal cortical coupling and attention deficit/hyperactivity disorder-like behaviors induced by neonatal habenula lesion: normalization by Ecklonia stolonifera extract and its active compound fucosterol. Behavioural pharmacology. 2021 06; 32(4):308-320. doi: 10.1097/fbp.0000000000000620. [PMID: 33491993]
  • Md Abdul Hannan, Abdullah Al Mamun Sohag, Raju Dash, Md Nazmul Haque, Md Mohibbullah, Diyah Fatimah Oktaviani, Md Tahmeed Hossain, Ho Jin Choi, Il Soo Moon. Phytosterols of marine algae: Insights into the potential health benefits and molecular pharmacology. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2020 Apr; 69(?):153201. doi: 10.1016/j.phymed.2020.153201. [PMID: 32276177]
  • I P Shanura Fernando, Thilina U Jayawardena, Hyun-Soo Kim, A P J P Vaas, H I C De Silva, C M Nanayakkara, D T U Abeytunga, WonWoo Lee, Ginnae Ahn, Dae-Sung Lee, In-Kyu Yeo, You-Jin Jeon. A keratinocyte and integrated fibroblast culture model for studying particulate matter-induced skin lesions and therapeutic intervention of fucosterol. Life sciences. 2019 Sep; 233(?):116714. doi: 10.1016/j.lfs.2019.116714. [PMID: 31376370]
  • Zhangfan Mao, Xiaoling Shen, Ping Dong, Gaoli Liu, Shize Pan, Xiangran Sun, Haifeng Hu, Li Pan, Jie Huang. Fucosterol exerts antiproliferative effects on human lung cancer cells by inducing apoptosis, cell cycle arrest and targeting of Raf/MEK/ERK signalling pathway. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2019 Aug; 61(?):152809. doi: 10.1016/j.phymed.2018.12.032. [PMID: 31035050]
  • I P Shanura Fernando, Thilina U Jayawardena, Hyun-Soo Kim, Won Woo Lee, A P J P Vaas, H I C De Silva, G S Abayaweera, C M Nanayakkara, D T U Abeytunga, Dae-Sung Lee, You-Jin Jeon. Beijing urban particulate matter-induced injury and inflammation in human lung epithelial cells and the protective effects of fucosterol from Sargassum binderi (Sonder ex J. Agardh). Environmental research. 2019 05; 172(?):150-158. doi: 10.1016/j.envres.2019.02.016. [PMID: 30782534]
  • Nina S Liland, Karin Pittman, Paul Whatmore, Bente E Torstensen, Nini H Sissener. Fucosterol Causes Small Changes in Lipid Storage and Brassicasterol Affects some Markers of Lipid Metabolism in Atlantic Salmon Hepatocytes. Lipids. 2018 07; 53(7):737-747. doi: 10.1002/lipd.12083. [PMID: 30259993]
  • Pachiappan Perumal, Rajamani Sowmiya, Sundaram Prasanna Kumar, Sundaram Ravikumar, Paramasivam Deepak, Govindasamy Balasubramani. Isolation, structural elucidation and antiplasmodial activity of fucosterol compound from brown seaweed, Sargassum linearifolium against malarial parasite Plasmodium falciparum. Natural product research. 2018 Jun; 32(11):1316-1319. doi: 10.1080/14786419.2017.1342081. [PMID: 28637390]
  • Jie Zhang, Wan-Fang Zhu, Wei-Yuan Zhu, Pan Pan Yang, Jian Xu, Jiradej Manosroi, Takashi Kikuchi, Masahiko Abe, Toshihiro Akihisa, Feng Feng. Melanogenesis-Inhibitory and Cytotoxic Activities of Chemical Constituents from the Leaves of Sauropus androgynus L. Merr. (Euphorbiaceae). Chemistry & biodiversity. 2018 Feb; 15(2):. doi: 10.1002/cbdv.201700486. [PMID: 29144597]
  • Ole G Mouritsen, Luis A Bagatolli, Lars Duelund, Olav Garvik, John H Ipsen, Adam Cohen Simonsen. Effects of seaweed sterols fucosterol and desmosterol on lipid membranes. Chemistry and physics of lipids. 2017 06; 205(?):1-10. doi: 10.1016/j.chemphyslip.2017.03.010. [PMID: 28365392]
  • Ji-Hyun Lee, Hyun Ah Jung, Min Jae Kang, Jae Sue Choi, Gun-Do Kim. Fucosterol, isolated from Ecklonia stolonifera, inhibits adipogenesis through modulation of FoxO1 pathway in 3T3-L1 adipocytes. The Journal of pharmacy and pharmacology. 2017 Mar; 69(3):325-333. doi: 10.1111/jphp.12684. [PMID: 28134973]
  • Francesca D'Acunzo, Donato Giannino, Vincenzo Longo, Marco Ciardi, Giulio Testone, Giovanni Mele, Chiara Nicolodi, Maria Gonnella, Massimiliano Renna, Giuseppe Arnesi, Alessandro Schiappa, Ornella Ursini. Influence of cultivation sites on sterol, nitrate, total phenolic contents and antioxidant activity in endive and stem chicory edible products. International journal of food sciences and nutrition. 2017 Feb; 68(1):52-64. doi: 10.1080/09637486.2016.1221386. [PMID: 27575665]
  • Panawan Suttiarporn, Watcharapong Chumpolsri, Sugunya Mahatheeranont, Suwaporn Luangkamin, Somsuda Teepsawang, Vijittra Leardkamolkarn. Structures of phytosterols and triterpenoids with potential anti-cancer activity in bran of black non-glutinous rice. Nutrients. 2015 Mar; 7(3):1672-87. doi: 10.3390/nu7031672. [PMID: 25756784]
  • Hyun Ah Jung, Hee Jin Jung, Hyun Young Jeong, Hyun Ju Kwon, Min-Sun Kim, Jae Sue Choi. Anti-adipogenic activity of the edible brown alga Ecklonia stolonifera and its constituent fucosterol in 3T3-L1 adipocytes. Archives of pharmacal research. 2014 Jun; 37(6):713-20. doi: 10.1007/s12272-013-0237-9. [PMID: 24014306]
  • Don-Gil Lee, Sang-Yong Park, Won-Seok Chung, Jae-Hee Park, Heon-Sub Shin, Eunson Hwang, In-Ho Kim, Tae-Hoo Yi. The bone regenerative effects of fucosterol in in vitro and in vivo models of postmenopausal osteoporosis. Molecular nutrition & food research. 2014 Jun; 58(6):1249-57. doi: 10.1002/mnfr.201300319. [PMID: 24604889]
  • Maged P Mansour, Pushkar Shrestha, Srinivas Belide, James R Petrie, Peter D Nichols, Surinder P Singh. Characterization of oilseed lipids from "DHA-producing Camelina sativa": a new transformed land plant containing long-chain omega-3 oils. Nutrients. 2014 Feb; 6(2):776-89. doi: 10.3390/nu6020776. [PMID: 24566436]
  • Hyun Ah Jung, Seong Eun Jin, Bo Ra Ahn, Chan Mi Lee, Jae Sue Choi. Anti-inflammatory activity of edible brown alga Eisenia bicyclis and its constituents fucosterol and phlorotannins in LPS-stimulated RAW264.7 macrophages. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2013 Sep; 59(?):199-206. doi: 10.1016/j.fct.2013.05.061. [PMID: 23774261]
  • Minh-Hien Hoang, Yaoyao Jia, Hee-jin Jun, Ji Hae Lee, Boo Yong Lee, Sung-Joon Lee. Fucosterol is a selective liver X receptor modulator that regulates the expression of key genes in cholesterol homeostasis in macrophages, hepatocytes, and intestinal cells. Journal of agricultural and food chemistry. 2012 Nov; 60(46):11567-75. doi: 10.1021/jf3019084. [PMID: 23116181]
  • Mohammed-Amine Madoui, Justine Bertrand-Michel, Elodie Gaulin, Bernard Dumas. Sterol metabolism in the oomycete Aphanomyces euteiches, a legume root pathogen. The New phytologist. 2009; 183(2):291-300. doi: 10.1111/j.1469-8137.2009.02895.x. [PMID: 19496952]
  • M-J Ahn, K-D Yoon, C Y Kim, J H Kim, C-G Shin, J Kim. Inhibitory activity on HIV-1 reverse transcriptase and integrase of a carmalol derivative from a brown Alga, Ishige okamurae. Phytotherapy research : PTR. 2006 Aug; 20(8):711-3. doi: 10.1002/ptr.1939. [PMID: 16775811]
  • Yeon Sil Lee, Kuk Hyun Shin, Bak-Kwang Kim, Sanghyun Lee. Anti-diabetic activities of fucosterol from Pelvetia siliquosa. Archives of pharmacal research. 2004 Nov; 27(11):1120-2. doi: 10.1007/bf02975115. [PMID: 15595413]
  • Sanghyun Lee, Yeon Sil Lee, Sang Hoon Jung, Sam Sik Kang, Kuk Hyun Shin. Anti-oxidant activities of fucosterol from the marine algae Pelvetia siliquosa. Archives of pharmacal research. 2003 Sep; 26(9):719-22. doi: 10.1007/bf02976680. [PMID: 14560919]
  • A Kamal-Eldin, K Määttä, J Toivo, A M Lampi, V Piironen. Acid-catalyzed isomerization of fucosterol and delta5-avenasterol. Lipids. 1998 Nov; 33(11):1073-7. doi: 10.1007/s11745-998-0307-6. [PMID: 9870901]
  • Atta-Ur-Rahman, M I Choudhary, A Majeed, M Shabbir, U Ghani, M Shameel. A succinylanthranilic acid ester and other bioactive constituents of Jolyna laminarioides. Phytochemistry. 1997 Dec; 46(7):1215-8. doi: . [PMID: 9423291]
  • M C Dai, H B Chiche, N Düzgüneş, E Ayanoglu, C Djerassi. Phospholipid studies of marine organisms: 26. Interactions of some marine sterols with 1-stearoyl-2-oleoyl phosphatidylcholine (SOPC) in model membranes. Chemistry and physics of lipids. 1991 Oct; 59(3):245-53. doi: 10.1016/0009-3084(91)90024-6. [PMID: 1804568]
  • I Ikeda, K Tanaka, M Sugano, G V Vahouny, L L Gallo. Inhibition of cholesterol absorption in rats by plant sterols. Journal of lipid research. 1988 Dec; 29(12):1573-82. doi: . [PMID: 2468730]
  • S Kojima, W Soga, H Hagiwara, M Shimonaka, Y Saito, Y Inada. Visible fibrinolysis by endothelial cells: effect of vitamins and sterols. Bioscience reports. 1986 Dec; 6(12):1029-33. doi: 10.1007/bf01141023. [PMID: 3580525]
  • . . . . doi: . [PMID: 9761794]
  • . . . . doi: . [PMID: 12226510]