Cyanidin (BioDeep_00000003884)
Secondary id: BioDeep_00000270623
natural product human metabolite PANOMIX_OTCML-2023 blood metabolite PANOMIX-Anthocyanidin BioNovoGene_Lab2019
代谢物信息卡片
化学式: [C15H11O6]+ (287.0556)
中文名称: 花青素, 矢车菊素, 氯化矢车菊素、花青色素
谱图信息:
最多检出来源 Homo sapiens(lipidsearch) 11.02%
分子结构信息
SMILES: c1(cc(c2c(c1)[o+]c(c(c2)O)c1ccc(c(c1)O)O)O)O
InChI: InChI=1S/C15H10O6/c16-8-4-11(18)9-6-13(20)15(21-14(9)5-8)7-1-2-10(17)12(19)3-7/h1-6H,(H4-,16,17,18,19,20)/p+1
描述信息
Cyanidin, also known as cyanidin chloride (CAS: 528-58-5), belongs to the class of organic compounds known as 7-hydroxyflavonoids. These are flavonoids that bear one hydroxyl group at the C-7 position of the flavonoid skeleton. Thus, cyanidin is considered to be a flavonoid lipid molecule. Cyanidin is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Cyanidin (and its glycosides) is the most commonly occurring of the anthocyanins, a widespread group of pigments responsible for the red-blue colour of many fruits and vegetables (PMID: 14711454). BioTransformer predicts that cyanidin is a product of cyanidin 3-glucoside metabolism via a glycoside-hydrolysis reaction occurring in human gut microbiota and catalyzed by the EC.3.2.1.X enzyme (PMID: 30612223).
Widely distributed anthocyanidin, found especies in Vaccinium subspecies (blueberries, bilberries, whortleberries), cherries, raspberries, red onions, red wine and black tea. Cyanidin is found in many foods, some of which are papaya, hyacinth bean, sweet basil, and abalone.
同义名列表
26 个代谢物同义名
1-benzopyrylium, 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-, chloride (1:1); 1-benzopyrylium, 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-, chloride; 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-1-benzopyrylium chloride; 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-2H-chromen-2-ylium; 2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-1-benzopyrylium; 3,3,4,5,7-pentahydroxy-2-phenylbenzopyrylium chloride; 2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxychromenylium; 2-(3,4-dihydroxyphenyl) chromenylium-3,5,7-triol; flavylium, 3,3,4,5,7-pentahydroxy-, chloride; Chlorure de 3,3,4,5,7-pentahydroxyflavylium; 3 3 4 5 7-pentahydroxy flavylium chloride; 3,3,4,5,7-Pentahydroxyflavylium chloride; 3,3,4,5,7-Pentahydroxyflavyliumchlorid; 3,5,7,3’,4’-Pentahydroxyflavylium; 3,3,4,5,7-pentahydroxy flavylium; 3,5,7,3,4-pentahydroxyflavylium; 3,3,4,5,7-Pentahydroxyflavylium; Cyanidin Chloride; cyanidol chloride; cyanidin cation; cyanidin ion; cyanidine; IdB 1027; cyanidin; cyanidol; Cyanidin
数据库引用编号
27 个数据库交叉引用编号
- ChEBI: CHEBI:27843
- KEGG: C05905
- PubChem: 128861
- HMDB: HMDB0002708
- ChEMBL: CHEMBL404515
- Wikipedia: Cyanidin
- MetaCyc: CPD-591
- KNApSAcK: C00006614
- foodb: FDB002602
- chemspider: 114193
- CAS: 528-58-5 13306-05-3 87725-42-6
- CAS: 13306-05-3
- MoNA: PR040005
- MoNA: PR020007
- MoNA: PR040006
- MoNA: PS039606
- MoNA: PS039602
- MoNA: PS039601
- PubChem: 8193
- LipidMAPS: LMPK12010002
- CAS: 528-58-5
- PDB-CCD: HWB
- 3DMET: B01906
- NIKKAJI: J401.296H
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-684
- KNApSAcK: 27843
- LOTUS: LTS0077168
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
194 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(2)
- Flavonoid pathway:
Naringenin chalcone ⟶ Naringenin
- Representative anthocyanin biosynthetic pathway:
Leucocyanidin ⟶ Cyanidin
Plant Reactome(192)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
UDP-Glc + pelargonidin ⟶ UDP + pelargonidin-3-O-beta-D-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
L-Phe ⟶ ammonia + trans-cinnamate
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
- Anthocyanin biosynthesis (pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside):
2OG + Oxygen + leucopelargonidin ⟶ H2O + SUCCA + carbon dioxide + pelargonidin
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
406 个相关的物种来源信息
- 3630 - Abutilon: LTS0077168
- 3631 - Abutilon theophrasti: 10.1007/BF01012523
- 3631 - Abutilon theophrasti: LTS0077168
- 3808 - Acacia: LTS0077168
- 205042 - Acacia dealbata: 10.1007/BF00597820
- 205042 - Acacia dealbata: LTS0077168
- 269559 - Actinoschoenus: LTS0077168
- 76409 - Actinoscirpus: LTS0077168
- 76410 - Actinoscirpus grossus: 10.1016/S0031-9422(00)84889-X
- 76410 - Actinoscirpus grossus: LTS0077168
- 4206 - Adoxaceae: LTS0077168
- 43363 - Aesculus: LTS0077168
- 43364 - Aesculus hippocastanum: 10.1016/0031-9422(75)85197-1
- 43364 - Aesculus hippocastanum: LTS0077168
- 2607223 - Anthelepis undulata: 10.1016/S0031-9422(00)84889-X
- 4150 - Antirrhinum: LTS0077168
- 4151 - Antirrhinum majus: 10.1515/ZNC-1983-11-1201
- 4151 - Antirrhinum majus: LTS0077168
- 3702 - Arabidopsis thaliana: 10.1046/J.1365-313X.2003.01834.X
- 7713 - Ascidiacea: LTS0077168
- 306617 - Baumea: LTS0077168
- 874446 - Baumea juncea: 10.1016/S0031-9422(00)84889-X
- 874446 - Baumea juncea: LTS0077168
- 306618 - Baumea rubiginosa: 10.1016/S0031-9422(00)84889-X
- 306618 - Baumea rubiginosa: LTS0077168
- 372380 - Baumea teretifolia: 10.1016/S0031-9422(00)84889-X
- 372380 - Baumea teretifolia: LTS0077168
- 76416 - Bolboschoenus: LTS0077168
- 269565 - Bolboschoenus caldwellii: 10.1016/S0031-9422(00)84889-X
- 269565 - Bolboschoenus caldwellii: LTS0077168
- 3700 - Brassicaceae: LTS0077168
- 76419 - Bulbostylis: LTS0077168
- 269567 - Bulbostylis densa: 10.1016/S0031-9422(00)84889-X
- 269567 - Bulbostylis densa: LTS0077168
- 4441 - Camellia: 10.1016/S0021-9673(01)88752-5
- 4441 - Camellia: LTS0077168
- 140580 - Carpha: LTS0077168
- 140581 - Carpha alpina: 10.1016/S0031-9422(00)84889-X
- 140581 - Carpha alpina: LTS0077168
- 224677 - Carpha nivicola: 10.1016/S0031-9422(00)84889-X
- 224677 - Carpha nivicola: LTS0077168
- 76425 - Caustis: LTS0077168
- 76426 - Caustis dioica: 10.1016/S0031-9422(00)84889-X
- 76426 - Caustis dioica: LTS0077168
- 3049580 - Caustis recurvata: LTS0077168
- 7711 - Chordata: LTS0077168
- 178434 - Chorizandra: LTS0077168
- 178435 - Chorizandra cymbaria: 10.1016/S0031-9422(00)84889-X
- 178435 - Chorizandra cymbaria: LTS0077168
- 241640 - Chorizandra sphaerocephala: 10.1016/S0031-9422(00)84889-X
- 241640 - Chorizandra sphaerocephala: LTS0077168
- 149357 - Cissus: LTS0077168
- 165299 - Cissus discolor: 10.1111/J.1365-2621.1983.TB09238.X
- 289665 - Cissus verticillata: LTS0077168
- 42219 - Cornaceae: LTS0077168
- 4281 - Cornus: LTS0077168
- 367337 - Cornus alba: 10.1016/J.PHYTOCHEM.2006.11.028
- 367337 - Cornus alba: LTS0077168
- 179117 - Cornus sericea: 10.1016/J.PHYTOCHEM.2006.11.028
- 179117 - Cornus sericea: LTS0077168
- 23159 - Crataegus: 10.1055/S-0031-1299862
- 23159 - Crataegus: LTS0077168
- 140997 - Crataegus monogyna: 10.1016/S0031-9422(00)90397-2
- 140997 - Crataegus monogyna: LTS0077168
- 510735 - Crataegus pinnatifida: 10.1021/JF1049062
- 392618 - Cunila: 10.1007/S00299-018-2303-8
- 392618 - Cunila: LTS0077168
- 224683 - Cyathochaeta: LTS0077168
- 224684 - Cyathochaeta diandra: 10.1016/S0031-9422(00)84889-X
- 224684 - Cyathochaeta diandra: LTS0077168
- 36609 - Cydonia: LTS0077168
- 36610 - Cydonia oblonga: 10.1007/BF00597820
- 36610 - Cydonia oblonga: LTS0077168
- 4609 - Cyperaceae: LTS0077168
- 4610 - Cyperus: 10.1016/S0031-9422(00)84889-X
- 4610 - Cyperus: LTS0077168
- 180973 - Cyperus brevifolius: LTS0077168
- 388573 - Cyperus brevifolius subsp. brevifolius: 10.1016/S0031-9422(00)84889-X
- 388573 - Cyperus brevifolius subsp. brevifolius: LTS0077168
- 180965 - Cyperus congestus: 10.1016/S0031-9422(00)84889-X
- 180965 - Cyperus congestus: LTS0077168
- 1352566 - Cyperus hortensis: 10.1016/S0031-9422(00)84889-X
- 388567 - Cyperus iria: 10.1016/S0031-9422(00)84889-X
- 388567 - Cyperus iria: LTS0077168
- 1867339 - Cyperus sesquiflorus: 10.1016/S0031-9422(00)84889-X
- 1867339 - Cyperus sesquiflorus: LTS0077168
- 13492 - Diospyros: LTS0077168
- 35925 - Diospyros kaki: 10.1007/BF00597820
- 35925 - Diospyros kaki: LTS0077168
- 19955 - Ebenaceae: LTS0077168
- 46324 - Eleocharis: LTS0077168
- 679958 - Eleocharis brassii: 10.1016/S0031-9422(00)84889-X
- 679958 - Eleocharis brassii: LTS0077168
- 269574 - Eleocharis cylindrostachys: 10.1016/S0031-9422(00)84889-X
- 269574 - Eleocharis cylindrostachys: LTS0077168
- 863326 - Eleocharis dietrichiana: 10.1016/S0031-9422(00)84889-X
- 863326 - Eleocharis dietrichiana: LTS0077168
- 110284 - Eleocharis dulcis: 10.1016/S0031-9422(00)84889-X
- 110284 - Eleocharis dulcis: LTS0077168
- 110288 - Eleocharis geniculata: 10.1016/S0031-9422(00)84889-X
- 110288 - Eleocharis geniculata: LTS0077168
- 110296 - Eleocharis pallens: 10.1016/S0031-9422(00)84889-X
- 110296 - Eleocharis pallens: LTS0077168
- 372386 - Eleocharis sphacelata: 10.1016/S0031-9422(00)84889-X
- 372386 - Eleocharis sphacelata: LTS0077168
- 4345 - Ericaceae: LTS0077168
- 2759 - Eukaryota: LTS0077168
- 241636 - Exocarya: LTS0077168
- 241637 - Exocarya sclerioides: 10.1016/S0031-9422(00)84889-X
- 241637 - Exocarya sclerioides: LTS0077168
- 3803 - Fabaceae: LTS0077168
- 76442 - Fimbristylis: LTS0077168
- 269577 - Fimbristylis bisumbellata: 10.1016/S0031-9422(00)84889-X
- 76444 - Fimbristylis dichotoma: 10.1016/S0031-9422(00)84889-X
- 76444 - Fimbristylis dichotoma: LTS0077168
- 269589 - Fimbristylis nutans: 10.1016/S0031-9422(00)84889-X
- 269589 - Fimbristylis nutans: LTS0077168
- 269556 - Fimbristylis pachyptera: 10.1016/S0031-9422(00)84889-X
- 269556 - Fimbristylis pachyptera: LTS0077168
- 269595 - Fimbristylis schultzii: 10.1016/S0031-9422(00)84889-X
- 269595 - Fimbristylis schultzii: LTS0077168
- 3746 - Fragaria: 10.1021/JF049450R
- 3746 - Fragaria: LTS0077168
- 46328 - Gahnia: LTS0077168
- 1651857 - Gahnia radula: 10.1016/S0031-9422(00)84889-X
- 1651857 - Gahnia radula: LTS0077168
- 224686 - Gahnia sieberiana: 10.1016/S0031-9422(00)84889-X
- 224686 - Gahnia sieberiana: LTS0077168
- 4027 - Geraniaceae: LTS0077168
- 3310 - Ginkgo: LTS0077168
- 3311 - Ginkgo biloba: 10.5650/JOS1996.48.719
- 3311 - Ginkgo biloba: LTS0077168
- 3309 - Ginkgoaceae: LTS0077168
- 29811 - Ginkgoopsida: LTS0077168
- 3846 - Glycine: LTS0077168
- 3847 - Glycine max: LTS0077168
- 23066 - Grossulariaceae: LTS0077168
- 224687 - Gymnoschoenus: LTS0077168
- 224688 - Gymnoschoenus sphaerocephalus: 10.1016/S0031-9422(00)84889-X
- 224688 - Gymnoschoenus sphaerocephalus: LTS0077168
- 42216 - Hamamelidaceae: LTS0077168
- 4395 - Hamamelis: LTS0077168
- 4397 - Hamamelis virginiana: 10.1007/BF02323304
- 4397 - Hamamelis virginiana: LTS0077168
- 9606 - Homo sapiens: -
- 23109 - Hydrangea: LTS0077168
- 152289 - Hydrangea anomala: 10.1016/S0031-9422(00)94161-X
- 152289 - Hydrangea anomala: LTS0077168
- 185767 - Hydrangea aspera: 10.1016/S0031-9422(00)94161-X
- 185767 - Hydrangea aspera: LTS0077168
- 860753 - Hydrangea heteromalla: 10.1016/S0031-9422(00)94161-X
- 860753 - Hydrangea heteromalla: LTS0077168
- 52833 - Hydrangea paniculata: 10.1016/S0031-9422(00)94161-X
- 52833 - Hydrangea paniculata: LTS0077168
- 60124 - Hydrangea quercifolia: 10.1016/S0031-9422(00)94161-X
- 60124 - Hydrangea quercifolia: LTS0077168
- 23097 - Hydrangeaceae: LTS0077168
- 76454 - Isolepis: LTS0077168
- 76455 - Isolepis cernua: LTS0077168
- 130954 - Isolepis cernua var. platycarpa: LTS0077168
- 130949 - Isolepis inundata: 10.1016/S0031-9422(00)84889-X
- 130949 - Isolepis inundata: LTS0077168
- 2814769 - Isolepis nigricans: 10.1016/S0031-9422(00)84889-X
- 2814769 - Isolepis nigricans: LTS0077168
- 4136 - Lamiaceae: LTS0077168
- 3433 - Lauraceae: LTS0077168
- 140780 - Lepidosperma: 10.1016/S0031-9422(00)84889-X
- 140780 - Lepidosperma: LTS0077168
- 372397 - Lepidosperma laterale: 10.1016/S0031-9422(00)84889-X
- 372397 - Lepidosperma laterale: LTS0077168
- 4447 - Liliopsida: LTS0077168
- 3928 - Lythraceae: LTS0077168
- 335118 - Machaerina: LTS0077168
- 388575 - Machaerina rubiginosa: 10.1016/S0031-9422(00)84889-X
- 388575 - Machaerina rubiginosa: LTS0077168
- 85856 - Magnolia denudata: 10.3390/MOLECULES23071558
- 3403 - Magnolia liliiflora: 10.3390/MOLECULES23071558
- 3398 - Magnoliopsida: LTS0077168
- 3749 - Malus: LTS0077168
- 3750 - Malus domestica: 10.1016/0031-9422(75)85197-1
- 3750 - Malus domestica: LTS0077168
- 283210 - Malus pumila: 10.1016/0031-9422(75)85197-1
- 283210 - Malus pumila: LTS0077168
- 3752 - Malus sylvestris: 10.1016/0031-9422(75)85197-1
- 3752 - Malus sylvestris: LTS0077168
- 3629 - Malvaceae: LTS0077168
- 3723 - Matthiola: LTS0077168
- 3724 - Matthiola incana:
- 3724 - Matthiola incana: 10.1515/ZNC-1983-11-1201
- 3724 - Matthiola incana: 10.1515/ZNC-1983-7-810
- 3724 - Matthiola incana: LTS0077168
- 33208 - Metazoa: LTS0077168
- 4146 - Olea europaea: 10.1016/S0003-2670(01)01241-7
- 76481 - Oreobolus: LTS0077168
- 224689 - Oreobolus distichus: 10.1016/S0031-9422(00)84889-X
- 224689 - Oreobolus distichus: LTS0077168
- 224690 - Oreobolus pumilio: 10.1016/S0031-9422(00)84889-X
- 224690 - Oreobolus pumilio: LTS0077168
- 4030 - Pelargonium: LTS0077168
- 69923 - Penstemon: LTS0077168
- 388205 - Penstemon serrulatus: 10.1515/ZNC-1997-7-803
- 388205 - Penstemon serrulatus: LTS0077168
- 3434 - Persea: LTS0077168
- 3435 - Persea americana: 10.1016/0031-9422(75)85197-1
- 3435 - Persea americana: LTS0077168
- 4101 - Petunia: LTS0077168
- 323115 - Petunia exserta: 10.1016/S0031-9422(99)00026-6
- 323115 - Petunia exserta: LTS0077168
- 4102 - Petunia × hybrida: 10.1016/S0031-9422(99)00026-6
- 3883 - Phaseolus: LTS0077168
- 3885 - Phaseolus vulgaris: 10.1016/J.FOODCHEM.2004.11.038
- 3885 - Phaseolus vulgaris: LTS0077168
- 3318 - Pinaceae: LTS0077168
- 58019 - Pinopsida: LTS0077168
- 3337 - Pinus: LTS0077168
- 88726 - Pinus brutia: 10.1016/S0305-1978(97)00049-5
- 88726 - Pinus brutia: LTS0077168
- 1193841 - Pinus brutia var. eldarica: 10.1016/S0305-1978(97)00049-5
- 1193841 - Pinus brutia var. eldarica: LTS0077168
- 71633 - Pinus halepensis: 10.1016/S0305-1978(97)00049-5
- 71633 - Pinus halepensis: LTS0077168
- 156152 - Plantaginaceae: LTS0077168
- 260822 - Polycitoridae: LTS0077168
- 42229 - Prunus avium: 10.1371/JOURNAL.PONE.0121164
- 22662 - Punica: LTS0077168
- 22663 - Punica granatum:
- 22663 - Punica granatum: 10.1007/BF00597820
- 22663 - Punica granatum: LTS0077168
- 3726 - Raphanus sativus: 10.3390/NU11020402
- 4346 - Rhododendron: LTS0077168
- 49628 - Rhododendron ponticum: 10.1016/0031-9422(75)85197-1
- 49628 - Rhododendron ponticum: LTS0077168
- 407979 - Rhododendron rubiginosum: 10.1016/0031-9422(75)85197-1
- 407979 - Rhododendron rubiginosum: LTS0077168
- 3801 - Ribes: LTS0077168
- 175201 - Ribes sanguineum: 10.1016/0031-9422(75)85197-1
- 175201 - Ribes sanguineum: LTS0077168
- 3764 - Rosa: LTS0077168
- 74630 - Rosa spinosissima: 10.1007/BF00713334
- 74630 - Rosa spinosissima: LTS0077168
- 3745 - Rosaceae: LTS0077168
- 23216 - Rubus: LTS0077168
- 57936 - Rubus chamaemorus: 10.1021/JF049450R
- 57936 - Rubus chamaemorus: LTS0077168
- 714648 - Rubus cochinchinensis: 10.1007/BF00597820
- 32247 - Rubus idaeus:
- 32247 - Rubus idaeus: 10.1021/JF049450R
- 32247 - Rubus idaeus: 10.1111/J.1365-2621.1993.TB06132.X
- 32247 - Rubus idaeus: LTS0077168
- 211815 - Rubus plicatus: 10.1007/BF00597820
- 211815 - Rubus plicatus: LTS0077168
- 3688 - Salicaceae: LTS0077168
- 40685 - Salix: LTS0077168
- 75704 - Salix alba:
- 75704 - Salix alba: 10.1016/S0031-9422(00)85563-6
- 75704 - Salix alba: 10.1016/S0031-9422(00)88609-4
- 75704 - Salix alba: LTS0077168
- 395313 - Salix arctica: 10.1016/S0031-9422(00)88609-4
- 395313 - Salix arctica: LTS0077168
- 1004002 - Salix atrocinerea:
- 75706 - Salix babylonica:
- 75706 - Salix babylonica: 10.1016/S0031-9422(00)85563-6
- 75706 - Salix babylonica: 10.1016/S0031-9422(00)88609-4
- 75706 - Salix babylonica: LTS0077168
- 75707 - Salix bebbiana:
- 1087216 - Salix candida: 10.1016/S0031-9422(00)88609-4
- 1087216 - Salix candida: LTS0077168
- 172267 - Salix caprea:
- 172267 - Salix caprea: 10.1016/S0031-9422(00)85563-6
- 172267 - Salix caprea: 10.1016/S0031-9422(00)88609-4
- 172267 - Salix caprea: LTS0077168
- 470278 - Salix cinerea: 10.1016/S0031-9422(00)88609-4
- 470278 - Salix cinerea: LTS0077168
- 470274 - Salix daphnoides: 10.1016/S0031-9422(00)88609-4
- 470274 - Salix daphnoides: LTS0077168
- 77063 - Salix fragilis:
- 77063 - Salix fragilis: 10.1016/S0031-9422(00)85563-6
- 77063 - Salix fragilis: 10.1016/S0031-9422(00)88609-4
- 77063 - Salix fragilis: LTS0077168
- 77064 - Salix herbacea: 10.1016/S0031-9422(00)85563-6
- 77064 - Salix herbacea: LTS0077168
- 75712 - Salix interior:
- 75712 - Salix interior: 10.1016/S0031-9422(00)85563-6
- 75712 - Salix interior: 10.1016/S0031-9422(00)88609-4
- 75712 - Salix interior: LTS0077168
- 339964 - Salix myrsinifolia: 10.1016/S0031-9422(00)88609-4
- 339964 - Salix myrsinifolia: LTS0077168
- 1623474 - Salix myrsinifolia subsp. myrsinifolia: LTS0077168
- 75715 - Salix pentandra: 10.1016/S0031-9422(00)88609-4
- 75715 - Salix pentandra: LTS0077168
- 470269 - Salix phylicifolia: 10.1016/S0031-9422(00)88609-4
- 470269 - Salix phylicifolia: LTS0077168
- 77065 - Salix purpurea:
- 77065 - Salix purpurea: 10.1016/S0031-9422(00)85563-6
- 77065 - Salix purpurea: 10.1016/S0031-9422(00)88609-4
- 77065 - Salix purpurea: LTS0077168
- 77069 - Salix triandra:
- 77069 - Salix triandra: 10.1016/S0031-9422(00)85563-6
- 77069 - Salix triandra: 10.1016/S0031-9422(00)88609-4
- 77069 - Salix triandra: LTS0077168
- 40686 - Salix viminalis:
- 40686 - Salix viminalis: 10.1016/S0031-9422(00)88609-4
- 40686 - Salix viminalis: LTS0077168
- 526929 - Salix × pendulina: 10.1016/S0031-9422(00)85563-6
- 526929 - Salix × pendulina: 10.1016/S0031-9422(00)88609-4
- 1112091 - Salix × rubra: 10.1016/S0031-9422(00)85563-6
- 1112091 - Salix × rubra: 10.1016/S0031-9422(00)88609-4
- 1244589 - Salix × smithiana: 10.1016/S0031-9422(00)88609-4
- 23672 - Sapindaceae: LTS0077168
- 76500 - Schoenoplectus: LTS0077168
- 316508 - Schoenoplectus tabernaemontani: 10.1016/S0031-9422(00)84889-X
- 316508 - Schoenoplectus tabernaemontani: LTS0077168
- 76505 - Schoenus: LTS0077168
- 372400 - Schoenus apogon: 10.1016/S0031-9422(00)84889-X
- 372400 - Schoenus apogon: LTS0077168
- 372401 - Schoenus brevifolius: 10.1016/S0031-9422(00)84889-X
- 372401 - Schoenus brevifolius: LTS0077168
- 882628 - Schoenus calostachyus: 10.1016/S0031-9422(00)84889-X
- 882628 - Schoenus calostachyus: LTS0077168
- 1914811 - Schoenus ericetorum: 10.1016/S0031-9422(00)84889-X
- 1914811 - Schoenus ericetorum: LTS0077168
- 1914812 - Schoenus falcatus: 10.1016/S0031-9422(00)84889-X
- 1914812 - Schoenus falcatus: LTS0077168
- 1914837 - Schoenus sparteus: 10.1016/S0031-9422(00)84889-X
- 1914837 - Schoenus sparteus: LTS0077168
- 1914845 - Schoenus unispiculatus: 10.1016/S0031-9422(00)84889-X
- 1914845 - Schoenus unispiculatus: LTS0077168
- 76510 - Scleria: LTS0077168
- 1735510 - Scleria mackaviensis: 10.1016/S0031-9422(00)84889-X
- 1735510 - Scleria mackaviensis: LTS0077168
- 1735542 - Scleria sphacelata: 10.1016/S0031-9422(00)84889-X
- 1735542 - Scleria sphacelata: LTS0077168
- 4070 - Solanaceae: LTS0077168
- 35493 - Streptophyta: LTS0077168
- 260142 - Syzygium cumini: 10.1016/S2221-1691(12)60050-1
- 335126 - Tetraria: LTS0077168
- 27065 - Theaceae: LTS0077168
- 58023 - Tracheophyta: LTS0077168
- 435688 - Trachystylis: LTS0077168
- 435689 - Trachystylis stradbrokensis: 10.1016/S0031-9422(00)84889-X
- 435689 - Trachystylis stradbrokensis: LTS0077168
- 224699 - Tricostularia: LTS0077168
- 13749 - Vaccinium: LTS0077168
- 13750 - Vaccinium macrocarpon: 10.1081/JLC-120027089
- 13750 - Vaccinium macrocarpon: LTS0077168
- 180763 - Vaccinium myrtillus:
- 180763 - Vaccinium myrtillus: 10.1016/0003-2670(92)85082-H
- 180763 - Vaccinium myrtillus: 10.1016/0031-9422(75)85197-1
- 180763 - Vaccinium myrtillus: 10.1016/S0731-7085(00)00264-8
- 180763 - Vaccinium myrtillus: 10.1076/PHBI.37.2.109.6091
- 180763 - Vaccinium myrtillus: LTS0077168
- 180772 - Vaccinium vitis-idaea: 10.1016/0031-9422(75)85197-1
- 180772 - Vaccinium vitis-idaea: LTS0077168
- 4204 - Viburnum: LTS0077168
- 224736 - Viburnum betulifolium: 10.1016/S0031-9422(00)94161-X
- 224736 - Viburnum betulifolium: LTS0077168
- 1190426 - Viburnum buddleifolium: 10.1016/S0031-9422(00)94161-X
- 1190426 - Viburnum buddleifolium: LTS0077168
- 237927 - Viburnum carlesii: 10.1016/S0031-9422(00)94161-X
- 237927 - Viburnum carlesii: LTS0077168
- 1220046 - Viburnum corylifolium: 10.1016/S0031-9422(00)94161-X
- 1220046 - Viburnum corylifolium: LTS0077168
- 446156 - Viburnum cotinifolium: 10.1016/S0031-9422(00)94161-X
- 446156 - Viburnum cotinifolium: LTS0077168
- 237931 - Viburnum cylindricum: 10.1016/S0031-9422(00)94161-X
- 237931 - Viburnum cylindricum: LTS0077168
- 237932 - Viburnum davidii: 10.1016/S0031-9422(00)94161-X
- 237932 - Viburnum davidii: LTS0077168
- 61589 - Viburnum dentatum: 10.1016/S0031-9422(00)94161-X
- 61589 - Viburnum dentatum: LTS0077168
- 237939 - Viburnum farreri: 10.1016/S0031-9422(00)94161-X
- 237939 - Viburnum farreri: LTS0077168
- 1444319 - Viburnum foetens: 10.1016/S0031-9422(00)94161-X
- 1444319 - Viburnum foetens: LTS0077168
- 436500 - Viburnum foetidum: 10.1016/S0031-9422(00)94161-X
- 436500 - Viburnum foetidum: LTS0077168
- 1444320 - Viburnum grandiflorum: 10.1016/S0031-9422(00)94161-X
- 237945 - Viburnum lantana: 10.1016/S0031-9422(00)94161-X
- 237945 - Viburnum lantana: LTS0077168
- 61590 - Viburnum lentago: 10.1016/S0031-9422(00)94161-X
- 61590 - Viburnum lentago: LTS0077168
- 237947 - Viburnum lobophyllum: 10.1016/S0031-9422(00)94161-X
- 237947 - Viburnum lobophyllum: LTS0077168
- 432676 - Viburnum macrocephalum: 10.1016/S0031-9422(00)94161-X
- 432676 - Viburnum macrocephalum: LTS0077168
- 432677 - Viburnum mongolicum: 10.1016/S0031-9422(00)94161-X
- 432677 - Viburnum mongolicum: LTS0077168
- 85293 - Viburnum opulus: 10.1016/S0031-9422(00)94161-X
- 85293 - Viburnum opulus: LTS0077168
- 237952 - Viburnum opulus var. sargentii: 10.1016/S0031-9422(00)94161-X
- 237952 - Viburnum opulus var. sargentii: LTS0077168
- 179996 - Viburnum plicatum: 10.1016/S0031-9422(00)94161-X
- 179996 - Viburnum plicatum: LTS0077168
- 237955 - Viburnum rafinesqueanum: LTS0077168
- 237955 - Viburnum rafinesquianum: 10.1016/S0031-9422(00)94161-X
- 47689 - Viburnum rhytidophyllum: 10.1016/S0031-9422(00)94161-X
- 47689 - Viburnum rhytidophyllum: LTS0077168
- 432680 - Viburnum sympodiale: 10.1016/S0031-9422(00)94161-X
- 432680 - Viburnum sympodiale: LTS0077168
- 237959 - Viburnum tinus: 10.1016/S0031-9422(00)94161-X
- 237959 - Viburnum tinus: LTS0077168
- 3904 - Vicia: LTS0077168
- 3906 - Vicia faba: 10.1139/B89-200
- 3906 - Vicia faba: LTS0077168
- 33090 - Viridiplantae: LTS0077168
- 3602 - Vitaceae: LTS0077168
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Breyson Yaranga Chávez, José L Paz, Lenin A Gonzalez-Paz, Ysaias J Alvarado, Julio Santiago Contreras, Marcos A Loroño-González. Theoretical Study of Cyanidin-Resveratrol Copigmentation by the Functional Density Theory.
Molecules (Basel, Switzerland).
2024 Apr; 29(9):. doi:
10.3390/molecules29092064
. [PMID: 38731555] - Lingfeng Zhu, Fuliang Cao, Zuomin Hu, Yaping Zhou, Tianyi Guo, Sisi Yan, Qiutao Xie, Xinxin Xia, Hongyan Yuan, Gaoyang Li, Feijun Luo, Qinlu Lin. Cyanidin-3-O-Glucoside Alleviates Alcoholic Liver Injury via Modulating Gut Microbiota and Metabolites in Mice.
Nutrients.
2024 Feb; 16(5):. doi:
10.3390/nu16050694
. [PMID: 38474822] - Luana Magri Tunin, Mariana Nascimento de Paula, Graciette Matioli, Daniela Cristina de Medeiros Araújo, Cláudio Roberto Novello, Emilene Dias Fiuza Ferreira, João Carlos Palazzo de Mello. Method development and validation for analysis of microencapsulated cyanidin-3-O-rutinoside in dairy samples containing juçara palm fruit by high-performance liquid chromatography.
Journal of the science of food and agriculture.
2024 Jan; 104(1):10-13. doi:
10.1002/jsfa.12933
. [PMID: 37598413] - Qianyu Zhao, Hua Zhang, Haitian Zhao, Hongwei Zhu, Jia Liu, Bin Li, Minjie Li, Xin Yang. Construction of a Biomimetic Receptor Based on Hydrophilic Multifunctional Monomer Covalent Organic Framework Molecularly Imprinted Polymers for Molecular Recognition of Cyanidin-3-O-Glucoside.
Journal of agricultural and food chemistry.
2023 Nov; ?(?):. doi:
10.1021/acs.jafc.3c04391
. [PMID: 37939378] - Changtong Liu, Yingchao Wang, Yixin Zeng, Zirong Kang, Hong Zhao, Kun Qi, Hongzhi Wu, Lu Zhao, Yi Wang. Use of Deep-Learning Assisted Assessment of Cardiac Parameters in Zebrafish to Discover Cyanidin Chloride as a Novel Keap1 Inhibitor Against Doxorubicin-Induced Cardiotoxicity.
Advanced science (Weinheim, Baden-Wurttemberg, Germany).
2023 Sep; ?(?):e2301136. doi:
10.1002/advs.202301136
. [PMID: 37679058] - Anna Maria Posadino, Roberta Giordo, Iman Ramli, Hatem Zayed, Gheyath K Nasrallah, Zena Wehbe, Ali H Eid, Eda Sönmez Gürer, John F Kennedy, Afaf Ahmed Aldahish, Daniela Calina, Ahmad Faizal Abdull Razis, Babagana Modu, Solomon Habtemariam, Javad Sharifi-Rad, Gianfranco Pintus, William C Cho. An updated overview of cyanidins for chemoprevention and cancer therapy.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2023 Jul; 163(?):114783. doi:
10.1016/j.biopha.2023.114783
. [PMID: 37121149] - Li Wang, Qiguang Wang, Ningning Fu, Minyan Song, Xiao Han, Qi Yang, Yuting Zhang, Zaikang Tong, Junhong Zhang. Cyanidin-3-O-glucoside Contributes to Leaf Color Change by Regulating Two bHLH Transcription Factors in Phoebe bournei.
International journal of molecular sciences.
2023 Feb; 24(4):. doi:
10.3390/ijms24043829
. [PMID: 36835240] - Muhammad Azhaf Safdar, Rana Muhammad Nabeel Aslam, Amna Shakeel, Shiza, Mashael Waqar, Abdullah Jmail, Malik Hassan Mehmood, Humaira Gul. Cyanidin as potential anticancer agent targeting various proliferative pathways.
Chemical biology & drug design.
2023 02; 101(2):438-452. doi:
10.1111/cbdd.14173
. [PMID: 36326796] - Ruijing Liu, Yulong Jin, Boping Liu, Qing Zhang, Xusheng Li, Dongbao Cai, Lingmin Tian, Xinwei Jiang, Wenbao Zhang, Jianxia Sun, Weibin Bai. Untargeted Lipidomics Revealed the Protective Effects of Cyanidin-3-O-glucoside on Bisphenol A-Induced Liver Lipid Metabolism Disorder in Rats.
Journal of agricultural and food chemistry.
2023 Jan; 71(2):1077-1090. doi:
10.1021/acs.jafc.2c06849
. [PMID: 36597173] - Zhen Cheng, Xu Si, Hui Tan, Zhihuan Zang, Jinlong Tian, Chi Shu, Xiyun Sun, Zhiying Li, Qiao Jiang, Xianjun Meng, Yi Chen, Bin Li, Yuehua Wang. Cyanidin-3-O-glucoside and its phenolic metabolites ameliorate intestinal diseases via modulating intestinal mucosal immune system: potential mechanisms and therapeutic strategies.
Critical reviews in food science and nutrition.
2023; 63(11):1629-1647. doi:
10.1080/10408398.2021.1966381
. [PMID: 34420433] - Xuejiao Qie, Wenpu Chen, Yaru Wu, Tian Yang, Zhaojun Wang, Maomao Zeng, Jie Chen, H Douglas Goff, Zhiyong He. Entrapment of cyanidin-3-O-glucoside in β-conglycinin: From interaction to bioaccessibility and antioxidant activity under thermal treatment.
Food chemistry.
2023 Jan; 398(?):133832. doi:
10.1016/j.foodchem.2022.133832
. [PMID: 35961170] - Jihui Gao, Jiahui Fu, Xiaoyu Gao, Dong Yang. Molecular Mechanism of Cyanidin-3-O-Glucoside Disassembling Aβ Fibril In Silico.
Nutrients.
2022 Dec; 15(1):. doi:
10.3390/nu15010109
. [PMID: 36615767] - Dario E Iglesias, Eleonora Cremonini, Shelly N Hester, Steven M Wood, Mark Bartlett, Cesar G Fraga, Patricia I Oteiza. Cyanidin and delphinidin restore colon physiology in high fat diet-fed mice: Involvement of TLR-4 and redox-regulated signaling.
Free radical biology & medicine.
2022 08; 188(?):71-82. doi:
10.1016/j.freeradbiomed.2022.06.006
. [PMID: 35691508] - Warathit Semmarath, Sariya Mapoung, Sonthaya Umsumarng, Punnida Arjsri, Kamonwan Srisawad, Pilaiporn Thippraphan, Supachai Yodkeeree, Pornngarm Dejkriengkraikul. Cyanidin-3-O-glucoside and Peonidin-3-O-glucoside-Rich Fraction of Black Rice Germ and Bran Suppresses Inflammatory Responses from SARS-CoV-2 Spike Glycoprotein S1-Induction In Vitro in A549 Lung Cells and THP-1 Macrophages via Inhibition of the NLRP3 Inflammasome Pathway.
Nutrients.
2022 Jun; 14(13):. doi:
10.3390/nu14132738
. [PMID: 35807916] - John Bradley Morris, Brandon D Tonnis, Ming Li Wang, Uttam Bhattarai. Genetic Diversity for Quercetin, Myricetin, Cyanidin, and Delphinidin Concentrations in 38 Blackeye Pea (Vigna unguiculata L. Walp.) Genotypes for Potential Use as a Functional Health Vegetable.
Journal of dietary supplements.
2022 May; ?(?):1-16. doi:
10.1080/19390211.2022.2077881
. [PMID: 35615864] - Tawfik A Khattab, Mehrez E El-Naggar, Mehboobali Pannipara, S Wageh, Manal F Abou Taleb, M A Abu-Saied, Ibrahim El-Tantawy El Sayed. Green metallochromic cellulose dipstick for Fe(III) using chitosan nanoparticles and cyanidin-based natural anthocyanins red-cabbage extract.
International journal of biological macromolecules.
2022 Mar; 202(?):269-277. doi:
10.1016/j.ijbiomac.2022.01.067
. [PMID: 35033529] - Eleonora Cremonini, Dario E Iglesias, Karen E Matsukuma, Shelly N Hester, Steven M Wood, Mark Bartlett, Cesar G Fraga, Patricia I Oteiza. Supplementation with cyanidin and delphinidin mitigates high fat diet-induced endotoxemia and associated liver inflammation in mice.
Food & function.
2022 Jan; 13(2):781-794. doi:
10.1039/d1fo03108b
. [PMID: 34981106] - Tsukasa Iwashina, Sri Rahayu, Kohtaro Sugahara, Takayuki Mizuno, Chie Tsutsumi, Didik Widyatmoko. Acylated pelargonidin and cyanidin 3-sambubiosides from the flowers of Aeschynanthus species and cultivars.
Phytochemistry.
2021 Dec; 192(?):112956. doi:
10.1016/j.phytochem.2021.112956
. [PMID: 34592514] - Zhiguo Shen, Wenying Li, Yanli Li, Meilan Liu, Heping Cao, Nicholas Provart, Xin Ding, Meng Sun, Zhenghui Tang, Changping Yue, Yunpeng Cao, Deyi Yuan, Lin Zhang. The red flower wintersweet genome provides insights into the evolution of magnoliids and the molecular mechanism for tepal color development.
The Plant journal : for cell and molecular biology.
2021 12; 108(6):1662-1678. doi:
10.1111/tpj.15533
. [PMID: 34624152] - Xiaoli Song, Yang Lu, Yongling Lu, Lishuang Lv. Adduct Formation of Acrolein with Cyanidin-3-O-glucoside and Its Degradants/Metabolites during Thermal Processing or In Vivo after Consumption of Red Bayberry.
Journal of agricultural and food chemistry.
2021 Nov; 69(44):13143-13154. doi:
10.1021/acs.jafc.1c05727
. [PMID: 34714663] - Mohammad Rezaul Islam Shishir, Hao Suo, Xiaobing Liu, Qingzheng Kang, Jianbo Xiao, Mingfu Wang, Feng Chen, Ka-Wing Cheng. Development and evaluation of a novel nanofibersolosome for enhancing the stability, in vitro bioaccessibility, and colonic delivery of cyanidin-3-O-glucoside.
Food research international (Ottawa, Ont.).
2021 11; 149(?):110712. doi:
10.1016/j.foodres.2021.110712
. [PMID: 34600700] - Haichao Wen, Hehe Tian, Chang Liu, Xiaoxu Zhang, Yao Peng, Xinquan Yang, Feng Chen, Jingming Li. Metformin and cyanidin 3-O-galactoside from Aronia melanocarpa synergistically alleviate cognitive impairment in SAMP8 mice.
Food & function.
2021 Nov; 12(21):10994-11008. doi:
10.1039/d1fo02122b
. [PMID: 34657937] - Zhitao Ren, Nishikant A Raut, Temitope O Lawal, Shital R Patel, Simon M Lee, Gail B Mahady. Peonidin-3-O-glucoside and cyanidin increase osteoblast differentiation and reduce RANKL-induced bone resorption in transgenic medaka.
Phytotherapy research : PTR.
2021 Nov; 35(11):6255-6269. doi:
10.1002/ptr.7271
. [PMID: 34704297] - Boris M Popović, Bojana Blagojević, Alicja Z Kucharska, Dejan Agić, Nenad Magazin, Maja Milović, Ana Teresa Serra. Exploring fruits from genus Prunus as a source of potential pharmaceutical agents - In vitro and in silico study.
Food chemistry.
2021 Oct; 358(?):129812. doi:
10.1016/j.foodchem.2021.129812
. [PMID: 33940289] - Alberto Dávila-Lara, Michael Reichelt, Ding Wang, Heiko Vogel, Axel Mithöfer. Proof of anthocyanins in the carnivorous plant genus Nepenthes.
FEBS open bio.
2021 09; 11(9):2576-2585. doi:
10.1002/2211-5463.13255
. [PMID: 34289256] - Nguyen Minh Thuy, Vo Quang Minh, Tran Chi Ben, My Tuyen Thi Nguyen, Ho Thi Ngan Ha, Ngo Van Tai. Identification of Anthocyanin Compounds in Butterfly Pea Flowers (Clitoria ternatea L.) by Ultra Performance Liquid Chromatography/Ultraviolet Coupled to Mass Spectrometry.
Molecules (Basel, Switzerland).
2021 Jul; 26(15):. doi:
10.3390/molecules26154539
. [PMID: 34361692] - Csanad Gurdon, Alexander Kozik, Rong Tao, Alexander Poulev, Isabel Armas, Richard W Michelmore, Ilya Raskin. Isolating an active and inactive CACTA transposon from lettuce color mutants and characterizing their family.
Plant physiology.
2021 Jun; 186(2):929-944. doi:
10.1093/plphys/kiab143
. [PMID: 33768232] - Shu Wang, Yuqing Huang, Guangyan Luo, Xin Yang, Wei Huang. Cyanidin-3-O-glucoside attenuates high glucose-induced podocyte dysfunction by inhibiting apoptosis and promoting autophagy via activation of SIRT1/AMPK pathway.
Canadian journal of physiology and pharmacology.
2021 Jun; 99(6):589-598. doi:
10.1139/cjpp-2020-0341
. [PMID: 33049148] - Sarah Straßmann, Maike Passon, Andreas Schieber. Chemical Hemisynthesis of Sulfated Cyanidin-3-O-Glucoside and Cyanidin Metabolites.
Molecules (Basel, Switzerland).
2021 Apr; 26(8):. doi:
10.3390/molecules26082146
. [PMID: 33917913] - Dewi Ratih Tirto Sari, Atchara Paemanee, Sittiruk Roytrakul, James Robert Ketudat Cairns, Anna Safitri, Fatchiyah Fatchiyah. Black rice cultivar from Java Island of Indonesia revealed genomic, proteomic, and anthocyanin nutritional value.
Acta biochimica Polonica.
2021 Mar; 68(1):55-63. doi:
10.18388/abp.2020_5386
. [PMID: 33676377] - Nan Zhang, Zhentao Zhang, Wei Xu, Pu Jing. TMT-based quantitative proteomic analysis of hepatic tissue reveals the effects of dietary cyanidin-3-diglucoside-5-glucoside-rich extract on alleviating D-galactose-induced aging in mice.
Journal of proteomics.
2021 02; 232(?):104042. doi:
10.1016/j.jprot.2020.104042
. [PMID: 33161165] - Li Li, Jun Li, Hui Xu, Fengmei Zhu, Zhijun Li, Hongzhi Lu, Jinrong Zhang, Zhengsheng Yang, Yongsheng Liu. The Protective Effect of Anthocyanins Extracted from Aronia Melanocarpa Berry in Renal Ischemia-Reperfusion Injury in Mice.
Mediators of inflammation.
2021; 2021(?):7372893. doi:
10.1155/2021/7372893
. [PMID: 33551679] - Xi Yang, Hanju Sun, Lijun Tu, Yuan Jin, Muwen Wang, Shuyun Liu, Zuoyong Zhang, Shudong He. Investigation of acute, subacute and subchronic toxicities of anthocyanin derived acylation reaction products and evaluation of their antioxidant activities in vitro.
Food & function.
2020 Dec; 11(12):10954-10967. doi:
10.1039/d0fo01478h
. [PMID: 33283810] - Kirsten Berger, Johanna Josefine Ostberg-Potthoff, Tamara Bakuradze, Peter Winterhalter, Elke Richling. Carbohydrate Hydrolase-Inhibitory Activity of Juice-Based Phenolic Extracts in Correlation to Their Anthocyanin/Copigment Profile.
Molecules (Basel, Switzerland).
2020 Nov; 25(22):. doi:
10.3390/molecules25225224
. [PMID: 33182561] - Daniel Mieres-Castro, Guillermo Schmeda-Hirschmann, Cristina Theoduloz, Ana Rojas, Daniela Piderit, Felipe Jiménez-Aspee. Isolation and characterization of secondary metabolites from Gaultheria tenuifolia berries.
Journal of food science.
2020 Sep; 85(9):2792-2802. doi:
10.1111/1750-3841.15380
. [PMID: 32812218] - X Z Tian, Q Lu, P Paengkoum, S Paengkoum. Short communication: Effect of purple corn pigment on change of anthocyanin composition and unsaturated fatty acids during milk storage.
Journal of dairy science.
2020 Sep; 103(9):7808-7812. doi:
10.3168/jds.2020-18409
. [PMID: 32684465] - Shrikant Sharma, Inger B Holme, Giuseppe Dionisio, Miyako Kodama, Tsaneta Dzhanfezova, Bjarne Joernsgaard, Henrik Brinch-Pedersen. Cyanidin based anthocyanin biosynthesis in orange carrot is restored by expression of AmRosea1 and AmDelila, MYB and bHLH transcription factors.
Plant molecular biology.
2020 Jul; 103(4-5):443-456. doi:
10.1007/s11103-020-01002-1
. [PMID: 32270430] - Ana Zuleta-Correa, Mari Sum Chinn, Marcela Alfaro-Córdoba, Van-Den Truong, George Craig Yencho, José Manuel Bruno-Bárcena. Use of unconventional mixed Acetone-Butanol-Ethanol solvents for anthocyanin extraction from Purple-Fleshed sweetpotatoes.
Food chemistry.
2020 Jun; 314(?):125959. doi:
10.1016/j.foodchem.2019.125959
. [PMID: 31991283] - Héctor A Peniche-Pavía, Axel Tiessen. Anthocyanin Profiling of Maize Grains Using DIESI-MSQD Reveals That Cyanidin-Based Derivatives Predominate in Purple Corn, whereas Pelargonidin-Based Molecules Occur in Red-Pink Varieties from Mexico.
Journal of agricultural and food chemistry.
2020 May; 68(21):5980-5994. doi:
10.1021/acs.jafc.9b06336
. [PMID: 32379971] - Che-Yu Liang, Krishna Preethi Rengasamy, Li-Min Huang, Chia-Chi Hsu, Mei-Fen Jeng, Wen-Huei Chen, Hong-Hwa Chen. Assessment of violet-blue color formation in Phalaenopsis orchids.
BMC plant biology.
2020 May; 20(1):212. doi:
10.1186/s12870-020-02402-7
. [PMID: 32397954] - Laura A Chatham, Jay E Howard, John A Juvik. A natural colorant system from corn: Flavone-anthocyanin copigmentation for altered hues and improved shelf life.
Food chemistry.
2020 Apr; 310(?):125734. doi:
10.1016/j.foodchem.2019.125734
. [PMID: 31791725] - Jim Fang, Jiannan Huang. Accumulation of plasma levels of anthocyanins following multiple saskatoon berry supplements.
Xenobiotica; the fate of foreign compounds in biological systems.
2020 Apr; 50(4):454-457. doi:
10.1080/00498254.2019.1637967
. [PMID: 31269857] - Umeo Takahama, Sachiko Hirota, Filis Morina. Procyanidins in rice cooked with adzuki bean and their contribution to the reduction of nitrite to nitric oxide (•NO) in artificial gastric juice.
International journal of food sciences and nutrition.
2020 Feb; 71(1):63-73. doi:
10.1080/09637486.2019.1605338
. [PMID: 31055987] - Caibi Zhou, Xin Mei, Dylan O'Neill Rothenberg, Zaibo Yang, Wenting Zhang, Shihua Wan, Haijun Yang, Lingyun Zhang. Metabolome and Transcriptome Analysis Reveals Putative Genes Involved in Anthocyanin Accumulation and Coloration in White and Pink Tea (Camellia sinensis) Flower.
Molecules (Basel, Switzerland).
2020 Jan; 25(1):. doi:
10.3390/molecules25010190
. [PMID: 31906542] - Thang Tung Lian, Myat Myat Moe, Yong Ju Kim, Keuk Soo Bang. Effects of Different Colored LEDs on the Enhancement of Biologically Active Ingredients in Callus Cultures of Gynura procumbens (Lour.) Merr.
Molecules (Basel, Switzerland).
2019 11; 24(23):. doi:
10.3390/molecules24234336
. [PMID: 31783554] - GuoLiang Li, Zhaomiao Lin, Hong Zhang, Zhonghua Liu, Yongqing Xu, Guochun Xu, Huawei Li, Rongchang Ji, Wenbin Luo, Yongxiang Qiu, Sixin Qiu, Hao Tang. Anthocyanin Accumulation in the Leaves of the Purple Sweet Potato (Ipomoea batatas L.) Cultivars.
Molecules (Basel, Switzerland).
2019 Oct; 24(20):. doi:
10.3390/molecules24203743
. [PMID: 31627373] - Li Xue, Jian Wang, Jun Zhao, Yang Zheng, Hai-Feng Wang, Xue Wu, Cheng Xian, Jia-Jun Lei, Chuan-Fei Zhong, Yun-Tao Zhang. Study on cyanidin metabolism in petals of pink-flowered strawberry based on transcriptome sequencing and metabolite analysis.
BMC plant biology.
2019 Oct; 19(1):423. doi:
10.1186/s12870-019-2048-8
. [PMID: 31610785] - Samanta Thomas-Valdés, Cristina Theoduloz, Felipe Jiménez-Aspee, Guillermo Schmeda-Hirschmann. Effect of simulated gastrointestinal digestion on polyphenols and bioactivity of the native Chilean red strawberry (Fragaria chiloensis ssp. chiloensis f. patagonica).
Food research international (Ottawa, Ont.).
2019 09; 123(?):106-114. doi:
10.1016/j.foodres.2019.04.039
. [PMID: 31284957] - Ana Solopova, Amanda Y van Tilburg, Alexandre Foito, J William Allwood, Derek Stewart, Saulius Kulakauskas, Oscar P Kuipers. Engineering Lactococcus lactis for the production of unusual anthocyanins using tea as substrate.
Metabolic engineering.
2019 07; 54(?):160-169. doi:
10.1016/j.ymben.2019.04.002
. [PMID: 30978503] - Hossein Rafiei, Kosar Omidian, Brian Bandy. Phenolic Breakdown Products of Cyanidin and Quercetin Contribute to Protection against Mitochondrial Impairment and Reactive Oxygen Species Generation in an In Vitro Model of Hepatocyte Steatosis.
Journal of agricultural and food chemistry.
2019 Jun; 67(22):6241-6247. doi:
10.1021/acs.jafc.9b02367
. [PMID: 31117508] - Karla Yuritzi Amador-Rodríguez, Fernando Martínez-Bustos, Héctor Silos-Espino. Effect of High-Energy Milling on Bioactive Compounds and Antioxidant Capacity in Nixtamalized Creole Corn Flours.
Plant foods for human nutrition (Dordrecht, Netherlands).
2019 Jun; 74(2):241-246. doi:
10.1007/s11130-019-00727-9
. [PMID: 31001726] - Rupesh R Kariyat, Iffa Gaffoor, Sampurna Sattar, Cullen W Dixon, Nadia Frock, Juliet Moen, Consuelo M De Moraes, Mark C Mescher, Gary A Thompson, Surinder Chopra. Sorghum 3-Deoxyanthocyanidin Flavonoids Confer Resistance against Corn Leaf Aphid.
Journal of chemical ecology.
2019 Jun; 45(5-6):502-514. doi:
10.1007/s10886-019-01062-8
. [PMID: 30911880] - Meltem Türkyılmaz, Fatmagül Hamzaoğlu, Mehmet Özkan. Effects of sucrose and copigment sources on the major anthocyanins isolated from sour cherries.
Food chemistry.
2019 May; 281(?):242-250. doi:
10.1016/j.foodchem.2018.12.089
. [PMID: 30658754] - Ye Tian, Oskar Laaksonen, Heta Haikonen, Anita Vanag, Huma Ejaz, Kaisa Linderborg, Saila Karhu, Baoru Yang. Compositional Diversity among Blackcurrant ( Ribes nigrum) Cultivars Originating from European Countries.
Journal of agricultural and food chemistry.
2019 May; 67(19):5621-5633. doi:
10.1021/acs.jafc.9b00033
. [PMID: 31013088] - Fernanda Fernandez-Aulis, Liliana Hernandez-Vazquez, Guillermo Aguilar-Osorio, Daniel Arrieta-Baez, Arturo Navarro-Ocana. Extraction and Identification of Anthocyanins in Corn Cob and Corn Husk from Cacahuacintle Maize.
Journal of food science.
2019 May; 84(5):954-962. doi:
10.1111/1750-3841.14589
. [PMID: 30994936] - Yanfang Liu, Jianhua Zhang, Xiaohong Yang, Jiangmin Wang, Yangang Li, Peng Zhang, Jin Mao, Qingmei Huang, Hao Tang. Diversity in flower colorations of Ranunculus asiaticus L. revealed by anthocyanin biosynthesis pathway in view of gene composition, gene expression patterns, and color phenotype.
Environmental science and pollution research international.
2019 May; 26(14):13785-13794. doi:
10.1007/s11356-018-2779-3
. [PMID: 30145754] - Panneerselvam Vijayaraj, Hiroyuki Nakagawa, Kohji Yamaki. Cyanidin and cyanidin-3-glucoside derived from Vigna unguiculata act as noncompetitive inhibitors of pancreatic lipase.
Journal of food biochemistry.
2019 03; 43(3):e12774. doi:
10.1111/jfbc.12774
. [PMID: 31353559] - Guillermo Cásedas, Amber C Bennett, E González-Burgos, M P Gómez-Serranillos, Víctor López, Carine Smith. Polyphenol-associated oxidative stress and inflammation in a model of LPS-induced inflammation in glial cells: do we know enough for responsible compounding?.
Inflammopharmacology.
2019 Feb; 27(1):189-197. doi:
10.1007/s10787-018-0549-y
. [PMID: 30547263] - Liga Saulite, Kaspars Jekabsons, Maris Klavins, Ruta Muceniece, Una Riekstina. Effects of malvidin, cyanidin and delphinidin on human adipose mesenchymal stem cell differentiation into adipocytes, chondrocytes and osteocytes.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2019 Feb; 53(?):86-95. doi:
10.1016/j.phymed.2018.09.029
. [PMID: 30668416] - Hwan-Hee Jang, Heon-Woong Kim, Su-Yeon Kim, Sang-Mi Kim, Jung-Bong Kim, Young-Min Lee. In vitro and in vivo hypoglycemic effects of cyanidin 3-caffeoyl-p-hydroxybenzoylsophoroside-5-glucoside, an anthocyanin isolated from purple-fleshed sweet potato.
Food chemistry.
2019 Jan; 272(?):688-693. doi:
10.1016/j.foodchem.2018.08.010
. [PMID: 30309599] - Biplav Shrestha, Ramesh Prasad Pandey, Sumangala Darsandhari, Prakash Parajuli, Jae Kyung Sohng. Combinatorial approach for improved cyanidin 3-O-glucoside production in Escherichia coli.
Microbial cell factories.
2019 Jan; 18(1):7. doi:
10.1186/s12934-019-1056-6
. [PMID: 30654816] - Muhammad Nadeem, Bilal Haider Abbasi, Muhammad Younas, Waqar Ahmad, Adnan Zahir, Christophe Hano. LED-enhanced biosynthesis of biologically active ingredients in callus cultures of Ocimum basilicum.
Journal of photochemistry and photobiology. B, Biology.
2019 Jan; 190(?):172-178. doi:
10.1016/j.jphotobiol.2018.09.011
. [PMID: 30268421] - Sheng Fang, Fubin Lin, Daofeng Qu, Xianrui Liang, Liping Wang. Characterization of Purified Red Cabbage Anthocyanins: Improvement in HPLC Separation and Protective Effect against H₂O₂-Induced Oxidative Stress in HepG2 Cells.
Molecules (Basel, Switzerland).
2018 Dec; 24(1):. doi:
10.3390/molecules24010124
. [PMID: 30602654] - Christiane Schön, Roland Wacker, Antje Micka, Jasmin Steudle, Stefanie Lang, Bernd Bonnländer. Bioavailability Study of Maqui Berry Extract in Healthy Subjects.
Nutrients.
2018 Nov; 10(11):. doi:
10.3390/nu10111720
. [PMID: 30423989] - Na-Hyun Kim, Jonghwan Jegal, Yun Na Kim, Dong-Min Chung, Jeong-Doo Heo, Jung-Rae Rho, Min Hye Yang, Eun Ju Jeong. Antiobesity Effect of Fermented Chokeberry Extract in High-Fat Diet-Induced Obese Mice.
Journal of medicinal food.
2018 Nov; 21(11):1113-1119. doi:
10.1089/jmf.2017.4124
. [PMID: 30457472] - Sylwia Cyboran-Mikołajczyk, Piotr Jurkiewicz, Martin Hof, Halina Kleszczyńska. The Impact of O-Glycosylation on Cyanidin Interaction with POPC Membranes: Structure-Activity Relationship.
Molecules (Basel, Switzerland).
2018 Oct; 23(11):. doi:
10.3390/molecules23112771
. [PMID: 30366469] - Chunsha Zhang, Xiaojie Li, Zongxiang Zhan, Linjiao Cao, Aisong Zeng, Guojun Chang, Yi Liang. Transcriptome Sequencing and Metabolism Analysis Reveals the role of Cyanidin Metabolism in Dark-red Onion (Allium cepa L.) Bulbs.
Scientific reports.
2018 09; 8(1):14109. doi:
10.1038/s41598-018-32472-5
. [PMID: 30237461] - Paula Henarejos-Escudero, Berenice Guadarrama-Flores, Francisco García-Carmona, Fernando Gandía-Herrero. Digestive glands extraction and precise pigment analysis support the exclusion of the carnivorous plant Dionaea muscipula Ellis from the Caryophyllales order.
Plant science : an international journal of experimental plant biology.
2018 Sep; 274(?):342-348. doi:
10.1016/j.plantsci.2018.06.013
. [PMID: 30080622] - Elena Daveri, Eleonora Cremonini, Angela Mastaloudis, Shelly N Hester, Steven M Wood, Andrew L Waterhouse, Mauri Anderson, Cesar G Fraga, Patricia I Oteiza. Cyanidin and delphinidin modulate inflammation and altered redox signaling improving insulin resistance in high fat-fed mice.
Redox biology.
2018 09; 18(?):16-24. doi:
10.1016/j.redox.2018.05.012
. [PMID: 29890336] - Guillermo Cásedas, Elena González-Burgos, Carine Smith, Víctor López, María Pilar Gómez-Serranillos. Regulation of redox status in neuronal SH-SY5Y cells by blueberry (Vaccinium myrtillus L.) juice, cranberry (Vaccinium macrocarpon A.) juice and cyanidin.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2018 Aug; 118(?):572-580. doi:
10.1016/j.fct.2018.05.066
. [PMID: 29860017] - Rocio González-Barrio, María Jesús Periago, Cristina Luna-Recio, Francisco Javier Garcia-Alonso, Inmaculada Navarro-González. Chemical composition of the edible flowers, pansy (Viola wittrockiana) and snapdragon (Antirrhinum majus) as new sources of bioactive compounds.
Food chemistry.
2018 Jun; 252(?):373-380. doi:
10.1016/j.foodchem.2018.01.102
. [PMID: 29478556] - Kai Feng, Zhi-Sheng Xu, Jie-Xia Liu, Jing-Wen Li, Feng Wang, Ai-Sheng Xiong. Isolation, purification, and characterization of AgUCGalT1, a galactosyltransferase involved in anthocyanin galactosylation in purple celery (Apium graveolens L.).
Planta.
2018 Jun; 247(6):1363-1375. doi:
10.1007/s00425-018-2870-5
. [PMID: 29520459] - Pavel A Zykin, Elena A Andreeva, Anna N Lykholay, Natalia V Tsvetkova, Anatoly V Voylokov. Anthocyanin Composition and Content in Rye Plants with Different Grain Color.
Molecules (Basel, Switzerland).
2018 Apr; 23(4):. doi:
10.3390/molecules23040948
. [PMID: 29671758] - Claudia C Gras, Karola Bause, Sebastian Leptihn, Reinhold Carle, Ralf M Schweiggert. Effect of chlorogenic acid on spectral properties and stability of acylated and non-acylated cyanidin-3-O-glycosides.
Food chemistry.
2018 Feb; 240(?):940-950. doi:
10.1016/j.foodchem.2017.07.137
. [PMID: 28946365] - Xiaobing Liu, Dangling Zhang, Yaxing Hao, Qian Liu, Yuqi Wu, Xin Liu, Jing Luo, Tao Zhou, Bishao Sun, Xing Luo, Jie Xu, Qingqing Wang, Zhenxing Yang, Longkun Li. Cyanidin Curtails Renal Cell Carcinoma Tumorigenesis.
Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology.
2018; 46(6):2517-2531. doi:
10.1159/000489658
. [PMID: 29742507] - Ranjetta Poobathy, Rahmad Zakaria, Vikneswaran Murugaiyah, Sreeramanan Subramaniam. Autofluorescence study and selected cyanidin quantification in the Jewel orchids Anoectochilus sp. and Ludisia discolor.
PloS one.
2018; 13(4):e0195642. doi:
10.1371/journal.pone.0195642
. [PMID: 29649288] - Önder Aybastıer, Sam Dawbaa, Cevdet Demir. Investigation of antioxidant ability of grape seeds extract to prevent oxidatively induced DNA damage by gas chromatography-tandem mass spectrometry.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2018 Jan; 1072(?):328-335. doi:
10.1016/j.jchromb.2017.11.044
. [PMID: 29223045] - Swathi Putta, Nagendra Sastry Yarla, Eswar Kumar K, Dhananjaya Bhadrapura Lakkappa, Mohammad A Kamal, Luciana Scotti, Marcus T Scotti, Ghulam Md Ashraf, B Sasi Bhusana Rao, Sarala Kumari D, Gorla V Reddy, Vadim V Tarasov, Sarat Babu Imandi, Gjumrakch Aliev. Preventive and Therapeutic Potentials of Anthocyanins in Diabetes and Associated Complications.
Current medicinal chemistry.
2018; 25(39):5347-5371. doi:
10.2174/0929867325666171206101945
. [PMID: 29210634] - H Du, L Lai, F Wang, W Sun, L Zhang, X Li, L Wang, L Jiang, Y Zheng. Characterisation of flower colouration in 30 Rhododendron species via anthocyanin and flavonol identification and quantitative traits.
Plant biology (Stuttgart, Germany).
2018 Jan; 20(1):121-129. doi:
10.1111/plb.12649
. [PMID: 29054107] - Pema Raj, Jason L McCallum, Christopher Kirby, Gurman Grewal, Liping Yu, Jeffrey T Wigle, Thomas Netticadan. Effects of cyanidin 3-0-glucoside on cardiac structure and function in an animal model of myocardial infarction.
Food & function.
2017 Nov; 8(11):4089-4099. doi:
10.1039/c7fo00709d
. [PMID: 28990610] - Maria J Carvalho, Carla S Gouveia, Ana C Vieira, Ana C Pereira, Miguel  Carvalho, José C Marques. Nutritional and Phytochemical Composition of Vaccinium padifolium Sm Wild Berries and Radical Scavenging Activity.
Journal of food science.
2017 Nov; 82(11):2554-2561. doi:
10.1111/1750-3841.13928
. [PMID: 28960302] - Mannfred M A Boehm, Dario I Ojeda, Quentin C B Cronk. Dissecting the 'bacon and eggs' phenotype: transcriptomics of post-anthesis colour change in Lotus.
Annals of botany.
2017 10; 120(4):563-575. doi:
10.1093/aob/mcx090
. [PMID: 28981620] - Suhong Li, Yingfeng An, Weina Fu, Xiao Sun, Wenjie Li, Tuoping Li. Changes in anthocyanins and volatile components of purple sweet potato fermented alcoholic beverage during aging.
Food research international (Ottawa, Ont.).
2017 10; 100(Pt 2):235-240. doi:
10.1016/j.foodres.2017.08.041
. [PMID: 28888446] - Zhenhua Xu, Kashif Mahmood, Steven J Rothstein. ROS Induces Anthocyanin Production Via Late Biosynthetic Genes and Anthocyanin Deficiency Confers the Hypersensitivity to ROS-Generating Stresses in Arabidopsis.
Plant & cell physiology.
2017 Aug; 58(8):1364-1377. doi:
10.1093/pcp/pcx073
. [PMID: 28586465] - Hany Bashandy, Teemu H Teeri. Genetically engineered orange petunias on the market.
Planta.
2017 Aug; 246(2):277-280. doi:
10.1007/s00425-017-2722-8
. [PMID: 28647812] - Tanyawan Suantawee, Sara T Elazab, Walter H Hsu, Shaomian Yao, Henrique Cheng, Sirichai Adisakwattana. Cyanidin Stimulates Insulin Secretion and Pancreatic β-Cell Gene Expression through Activation of l-type Voltage-Dependent Ca2+ Channels.
Nutrients.
2017 Jul; 9(8):. doi:
10.3390/nu9080814
. [PMID: 28788070] - Hridya Hemachandran, Amrita Anantharaman, Sankari Mohan, Gopalakrishnan Mohan, D Thirumal Kumar, Diksha Dey, Drishty Kumar, Priyanka Dey, Amrita Choudhury, C George Priya Doss, Siva Ramamoorthy. Unraveling the inhibition mechanism of cyanidin-3-sophoroside on polyphenol oxidase and its effect on enzymatic browning of apples.
Food chemistry.
2017 Jul; 227(?):102-110. doi:
10.1016/j.foodchem.2017.01.041
. [PMID: 28274409] - Ganna Petruk, Anna Illiano, Rita Del Giudice, Assunta Raiola, Angela Amoresano, Maria Manuela Rigano, Renata Piccoli, Daria Maria Monti. Malvidin and cyanidin derivatives from açai fruit (Euterpe oleracea Mart.) counteract UV-A-induced oxidative stress in immortalized fibroblasts.
Journal of photochemistry and photobiology. B, Biology.
2017 Jul; 172(?):42-51. doi:
10.1016/j.jphotobiol.2017.05.013
. [PMID: 28527426] - Cristina Sgherri, Usue Pérez-López, Francesco Micaelli, Jon Miranda-Apodaca, Amaia Mena-Petite, Alberto Muñoz-Rueda, Mike Frank Quartacci. Elevated CO2 and salinity are responsible for phenolics-enrichment in two differently pigmented lettuces.
Plant physiology and biochemistry : PPB.
2017 Jun; 115(?):269-278. doi:
10.1016/j.plaphy.2017.04.006
. [PMID: 28411511] - Volodymyr S Fedenko, Sergiy A Shemet, Marco Landi. UV-vis spectroscopy and colorimetric models for detecting anthocyanin-metal complexes in plants: An overview of in vitro and in vivo techniques.
Journal of plant physiology.
2017 May; 212(?):13-28. doi:
10.1016/j.jplph.2017.02.001
. [PMID: 28242414] - Elizabeth W McCarthy, Andrea E Berardi, Stacey D Smith, Amy Litt. Related allopolyploids display distinct floral pigment profiles and transgressive pigments.
American journal of botany.
2017 Jan; 104(1):92-101. doi:
10.3732/ajb.1600350
. [PMID: 28057690] - Tanyawan Suantawee, Henrique Cheng, Sirichai Adisakwattana. Protective effect of cyanidin against glucose- and methylglyoxal-induced protein glycation and oxidative DNA damage.
International journal of biological macromolecules.
2016 Dec; 93(Pt A):814-821. doi:
10.1016/j.ijbiomac.2016.09.059
. [PMID: 27645922] - Gustavo A Camelo-Méndez, Edith Agama-Acevedo, Mirna M Sanchez-Rivera, Luis A Bello-Pérez. Effect on in vitro starch digestibility of Mexican blue maize anthocyanins.
Food chemistry.
2016 Nov; 211(?):281-4. doi:
10.1016/j.foodchem.2016.05.024
. [PMID: 27283633] - Milica M Pantelić, Dragana Č Dabić Zagorac, Sonja M Davidović, Slavica R Todić, Zoran S Bešlić, Uroš M Gašić, Živoslav Lj Tešić, Maja M Natić. Identification and quantification of phenolic compounds in berry skin, pulp, and seeds in 13 grapevine varieties grown in Serbia.
Food chemistry.
2016 Nov; 211(?):243-52. doi:
10.1016/j.foodchem.2016.05.051
. [PMID: 27283628] - Cláudia Marques, Iva Fernandes, Sónia Norberto, Carla Sá, Diana Teixeira, Victor de Freitas, Nuno Mateus, Conceição Calhau, Ana Faria. Pharmacokinetics of blackberry anthocyanins consumed with or without ethanol: A randomized and crossover trial.
Molecular nutrition & food research.
2016 11; 60(11):2319-2330. doi:
10.1002/mnfr.201600143
. [PMID: 27306520] - Paulina Strugała, Anna Dudra, Janina Gabrielska. Interaction between Mimic Lipid Membranes and Acylated and Nonacylated Cyanidin and Its Bioactivity.
Journal of agricultural and food chemistry.
2016 Oct; 64(39):7414-7422. doi:
10.1021/acs.jafc.6b03066
. [PMID: 27624410] - Amol N Nankar, Barry Dungan, Neil Paz, Nilusha Sudasinghe, Tanner Schaub, F Omar Holguin, Richard C Pratt. Quantitative and qualitative evaluation of kernel anthocyanins from southwestern United States blue corn.
Journal of the science of food and agriculture.
2016 Oct; 96(13):4542-52. doi:
10.1002/jsfa.7671
. [PMID: 26879128] - Chengyong Feng, Shang Su, Lijin Wang, Jie Wu, Zhongqiu Tang, Yanjun Xu, Qingyan Shu, Liangsheng Wang. Antioxidant capacities and anthocyanin characteristics of the black-red wild berries obtained in Northeast China.
Food chemistry.
2016 Aug; 204(?):150-158. doi:
10.1016/j.foodchem.2016.02.122
. [PMID: 26988488] - Jingjing Liao, Jian Zang, Fei Yuan, Shuang Liu, Yibo Zhang, Haiyan Li, Zhongyun Piao, Hongbo Li. Identification and analysis of anthocyanin components in fruit color variation in Schisandra chinensis.
Journal of the science of food and agriculture.
2016 Jul; 96(9):3213-9. doi:
10.1002/jsfa.7503
. [PMID: 26493497]