NCBI Taxonomy: 435689

Trachystylis stradbrokensis (ncbi_taxid: 435689)

found 10 associated metabolites at species taxonomy rank level.

Ancestor: Trachystylis

Child Taxonomies: none taxonomy data.

Tricin

5,7-Dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4H-1-benzopyran-4-one

C17H14O7 (330.0739494)


[Raw Data] CBA24_Tricin_neg_50eV_1-6_01_1424.txt [Raw Data] CBA24_Tricin_pos_50eV_1-6_01_1397.txt [Raw Data] CBA24_Tricin_neg_10eV_1-6_01_1368.txt [Raw Data] CBA24_Tricin_pos_40eV_1-6_01_1396.txt [Raw Data] CBA24_Tricin_pos_20eV_1-6_01_1394.txt [Raw Data] CBA24_Tricin_neg_30eV_1-6_01_1422.txt [Raw Data] CBA24_Tricin_neg_20eV_1-6_01_1421.txt [Raw Data] CBA24_Tricin_pos_10eV_1-6_01_1357.txt [Raw Data] CBA24_Tricin_pos_30eV_1-6_01_1488.txt [Raw Data] CBA24_Tricin_neg_40eV_1-6_01_1423.txt Tricin is a natural flavonoid present in large amounts in Triticum aestivum. Tricin can inhibit human cytomegalovirus (HCMV) replication by inhibiting CDK9. Tricin inhibits the proliferation and invasion of C6 glioma cells via the upregulation of focal-adhesion-finase (FAK)-targeting microRNA-7[1][2][3]. Tricin is a natural flavonoid present in large amounts in Triticum aestivum. Tricin can inhibit human cytomegalovirus (HCMV) replication by inhibiting CDK9. Tricin inhibits the proliferation and invasion of C6 glioma cells via the upregulation of focal-adhesion-finase (FAK)-targeting microRNA-7[1][2][3].

   

Cyanidin

1-benzopyrylium, 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-, chloride (1:1)

[C15H11O6]+ (287.05556060000004)


Cyanidin, also known as cyanidin chloride (CAS: 528-58-5), belongs to the class of organic compounds known as 7-hydroxyflavonoids. These are flavonoids that bear one hydroxyl group at the C-7 position of the flavonoid skeleton. Thus, cyanidin is considered to be a flavonoid lipid molecule. Cyanidin is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Cyanidin (and its glycosides) is the most commonly occurring of the anthocyanins, a widespread group of pigments responsible for the red-blue colour of many fruits and vegetables (PMID: 14711454). BioTransformer predicts that cyanidin is a product of cyanidin 3-​glucoside metabolism via a glycoside-hydrolysis reaction occurring in human gut microbiota and catalyzed by the EC.3.2.1.X enzyme (PMID: 30612223). Widely distributed anthocyanidin, found especies in Vaccinium subspecies (blueberries, bilberries, whortleberries), cherries, raspberries, red onions, red wine and black tea. Cyanidin is found in many foods, some of which are papaya, hyacinth bean, sweet basil, and abalone.

   

cyanidin

3,5,7,3,4-pentahydroxyflavylium

C15H11O6+ (287.05556060000004)


   

Tricin

4H-1-BENZOPYRAN-4-ONE, 5,7-DIHYDROXY-2-(4-HYDROXY-3,5-DIMETHOXYPHENYL)-

C17H14O7 (330.0739494)


3,5-di-O-methyltricetin is the 3,5-di-O-methyl ether of tricetin. Known commonly as tricin, it is a constituent of rice bran and has been found to potently inhibit colon cancer cell growth. It has a role as an EC 1.14.99.1 (prostaglandin-endoperoxide synthase) inhibitor and a metabolite. It is a trihydroxyflavone, a dimethoxyflavone and a member of 3-methoxyflavones. It is functionally related to a tricetin. It is a conjugate acid of a 3,5-di-O-methyltricetin(1-). Tricin is a natural product found in Carex fraseriana, Smilax bracteata, and other organisms with data available. See also: Arnica montana Flower (part of); Elymus repens root (part of). The 3,5-di-O-methyl ether of tricetin. Known commonly as tricin, it is a constituent of rice bran and has been found to potently inhibit colon cancer cell growth. Isolated from Triticum dicoccum (emmer). Tricin 5-diglucoside is found in wheat and cereals and cereal products. From leaves of Oryza sativa (rice). 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one, also known as 3,5-O-dimethyltricetin or 5,7,4-trihydroxy-3,5-dimethoxy-flavone, is a member of the class of compounds known as 3-o-methylated flavonoids. 3-o-methylated flavonoids are flavonoids with methoxy groups attached to the C3 atom of the flavonoid backbone. Thus, 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one is considered to be a flavonoid lipid molecule. 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one can be synthesized from tricetin. 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one is also a parent compound for other transformation products, including but not limited to, tricin 7-O-glucoside, 4-O-beta-glucosyl-7-O-(6-O-sinapoylglucosyl)tricin, and tricin 7-O-(6-O-malonyl)-beta-D-glucopyranoside. 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one can be found in barley, common wheat, oat, and rice, which makes 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one a potential biomarker for the consumption of these food products. Tricin is a natural flavonoid present in large amounts in Triticum aestivum. Tricin can inhibit human cytomegalovirus (HCMV) replication by inhibiting CDK9. Tricin inhibits the proliferation and invasion of C6 glioma cells via the upregulation of focal-adhesion-finase (FAK)-targeting microRNA-7[1][2][3]. Tricin is a natural flavonoid present in large amounts in Triticum aestivum. Tricin can inhibit human cytomegalovirus (HCMV) replication by inhibiting CDK9. Tricin inhibits the proliferation and invasion of C6 glioma cells via the upregulation of focal-adhesion-finase (FAK)-targeting microRNA-7[1][2][3].