Violaxanthin (BioDeep_00000003679)
Secondary id: BioDeep_00000228949, BioDeep_00000402897
human metabolite PANOMIX_OTCML-2023 Endogenous natural product
代谢物信息卡片
化学式: C40H56O4 (600.4178)
中文名称: 紫黄质(非对映异构体混合物), 紫黄素
谱图信息:
最多检出来源 Homo sapiens(feces) 24.87%
分子结构信息
SMILES: CC(/C=C/C=C(C)/C=C/[C@@]12O[C@]1(C)C[C@@H](O)CC2(C)C)=C\C=C\C=C(C)\C=C\C=C(C)\C=C\[C@@]12O[C@]1(C)C[C@@H](O)CC2(C)C
InChI: InChI=1S/C40H56O4/c1-29(17-13-19-31(3)21-23-39-35(5,6)25-33(41)27-37(39,9)43-39)15-11-12-16-30(2)18-14-20-32(4)22-24-40-36(7,8)26-34(42)28-38(40,10)44-40/h11-24,33-34,41-42H,25-28H2,1-10H3/b12-11+,17-13+,18-14+,23-21+,24-22+,29-15+,30-16+,31-19+,32-20+
描述信息
Violaxanthin belongs to the class of organic compounds known as xanthophylls. These are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Xanthophylls arise by oxygenation of the carotene backbone. Thus, violaxanthin is considered to be an isoprenoid lipid molecule. Violaxanthin is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Violaxanthin is an orange-coloured pigment that is found in brown algae and various plants (e.g. pansies). It is biosynthesized from the epoxidation of zeaxanthin. Violaxanthin is a food additive that is only approved for use in Australia and New Zealand (INS: 161e) (PMID: 29890662).
3 (violaxanthin, zeaxanthin and antheraxanthin) participate in series of photo-induced interconversions known as violaxanthin cycle; Xanthophyll; a carotene epoxide that is precursor to capsanthin; cleavage of 9-cis-epoxycarotenoids (violaxanthin) to xanthoxin, catalyzed by 9-cis-epoxycarotenoid dioxygenase, is the key regulatory step of abscisic acid biosynthesis; one of 3 xanthophylls involved in evolution of plastids of green plants (oxygen evolution). (all-E)-Violaxanthin is found in many foods, some of which are orange bell pepper, passion fruit, pepper (c. annuum), and italian sweet red pepper.
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
同义名列表
19 个代谢物同义名
(1R,3S,6S)-6-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol; (3S,3’S,5R,5’r,6S,6’s)-5,6:5’,6’-diepoxy-5,5’,6,6’-tetrahydro-β,β-carotene-3,3’-diol; (3S,3s,5R,5r,6S,6s)-5,6:5,6-Diepoxy-5,5,6,6-tetrahydro-beta,beta-carotene-3,3-diol; (3S,5R,6S,3s,5r,6s)-5,6,5,6-DIEPOXY-5,6,5,6-tetrahydro-BETA,BETA-carotene-3,3-diol; (3S,5R,6S,3s,5r,6s)-5,6,5,6-DIEPOXY-5,6,5,6-tetrahydro-β,β-carotene-3,3-diol; (3S,5R,6S,3s,5r,6s)-5,6,5,6-DIEPOXY-5,6,5,6-tetrahydro-b,b-carotene-3,3-diol; (3S,3s,5R,5r,6S,6s)-5,6:5,6-Diepoxy-5,5,6,6-tetrahydro-b,b-carotene-3,3-diol; (3S,3s,5R,5r,6S,6s)-5,6:5,6-Diepoxy-5,5,6,6-tetrahydro-β,β-carotene-3,3-diol; 5,6:5′,6′-diepoxy-5,5′,6,6′-tetrahydro-beta-carotene-3,3′-diol; 5,6:5′,6′-diepoxy-5,5′,6,6′-tetrahydro-β-carotene-3,3′-diol; 5,6:5,6-Diepoxy-5,5,6,6- tetrahydro-beta-carotene-3,3-diol; all-trans-Violaxanthin; Zeaxanthin diepoxide; (all-E)-Violaxanthin; trans-Violaxanthin; all-e-Violaxanthin; Violaxanthin; e 161E; Violaxanthin
数据库引用编号
21 个数据库交叉引用编号
- ChEBI: CHEBI:35288
- KEGG: C08614
- PubChem: 448438
- PubChem: 179930
- HMDB: HMDB0003101
- Metlin: METLIN3672
- DrugBank: DB03460
- Wikipedia: Violaxanthin
- MetaCyc: CPD1F-133
- KNApSAcK: C00003787
- foodb: FDB015879
- chemspider: 395237
- CAS: 126-29-4
- PMhub: MS000010875
- PubChem: 10807
- LipidMAPS: LMPR01070282
- PDB-CCD: XAT
- 3DMET: B02268
- NIKKAJI: J8.626F
- KNApSAcK: 35288
- LOTUS: LTS0102265
分类词条
相关代谢途径
Reactome(0)
BioCyc(6)
PlantCyc(4)
代谢反应
728 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(8)
- capsanthin and capsorubin biosynthesis:
violaxanthin ⟶ capsorubin
- abscisic acid biosynthesis:
9'-cis-neoxanthin + O2 ⟶ (3S,5R,6R)-3,5-dihydroxy-6,7-didehydro-5,6-dihydro-12'-apo-β-caroten-12'-al + 2-cis,4-trans-xanthoxin
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
γ-carotene ⟶ β-carotene
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + 4,9-dimethyldodeca-2,4,6,8,10-pentaene-1,12-dial
- superpathway of carotenoid biosynthesis:
all-trans-β-carotene + H+ + NADH + O2 ⟶ β-cryptoxanthin + H2O + NAD+
- zeaxanthin, antheraxanthin and violaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
WikiPathways(0)
Plant Reactome(234)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Carotenoid biosynthesis:
Oxygen + beta-cryptoxanthin + hydrogen donor ⟶ H2O + hydrogen acceptor + zeaxanthin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
gamma-carotene ⟶ beta-carotene
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
gamma-carotene ⟶ beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
gamma-carotene ⟶ beta-carotene
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + hydrogen donor + neurosporene ⟶ H2O + hydrogen acceptor + lycopene
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
gamma-carotene ⟶ beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- Carotenoid biosynthesis:
gamma-carotene ⟶ beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
L-Phe ⟶ ammonia + trans-cinnamate
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
INOH(0)
PlantCyc(486)
- capsanthin and capsorubin biosynthesis:
violaxanthin ⟶ capsorubin
- capsanthin and capsorubin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + antheraxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + violaxanthin
- capsanthin and capsorubin biosynthesis:
violaxanthin ⟶ capsorubin
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
9'-cis-neoxanthin + O2 ⟶ (3S,5R,6R)-3,5-dihydroxy-6,7-didehydro-5,6-dihydro-12'-apo-β-caroten-12'-al + 2-cis,4-trans-xanthoxin
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
9'-cis-neoxanthin + O2 ⟶ (3S,5R,6R)-3,5-dihydroxy-6,7-didehydro-5,6-dihydro-12'-apo-β-caroten-12'-al + 2-cis,4-trans-xanthoxin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
γ-carotene ⟶ β-carotene
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
2-cis,4-trans-xanthoxin + NAD+ ⟶ (+)-cis-abscisic aldehyde + H+ + NADH
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
γ-carotene ⟶ β-carotene
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- neoxanthin biosynthesis:
violaxanthin ⟶ trans-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
violaxanthin ⟶ trans-neoxanthin
- neoxanthin biosynthesis:
violaxanthin ⟶ trans-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- abscisic acid biosynthesis:
(+)-cis-abscisic aldehyde + H2O + O2 ⟶ 2-cis-abscisate + H+ + hydrogen peroxide
- neoxanthin biosynthesis:
violaxanthin ⟶ trans-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
15-cis-phytoene + a plastoquinone ⟶ 15,9'-di-cis-phytofluene + a plastoquinol
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- abscisic acid biosynthesis:
2-cis,4-trans-xanthoxin + NAD+ ⟶ (+)-cis-abscisic aldehyde + H+ + NADH
- superpathway of carotenoid biosynthesis in plants:
prephytoene diphosphate ⟶ 15-cis-phytoene + diphosphate
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- neoxanthin biosynthesis:
trans-neoxanthin ⟶ 9'-cis-neoxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + antheraxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + violaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + violaxanthin ⟶ H2O + L-dehydro-ascorbate + antheraxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + antheraxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + violaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + zeaxanthin ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + antheraxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + antheraxanthin ⟶ H2O + L-dehydro-ascorbate + zeaxanthin
- violaxanthin, antheraxanthin and zeaxanthin interconversion:
H+ + L-ascorbate + violaxanthin ⟶ H2O + L-dehydro-ascorbate + antheraxanthin
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + all-trans-10'-apo-β-carotenal
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + all-trans-10'-apo-β-carotenal
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + 4,9-dimethyldodeca-2,4,6,8,10-pentaene-1,12-dial
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + all-trans-10'-apo-β-carotenal
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
652 个相关的物种来源信息
- 4022 - Acer: LTS0102265
- 66201 - Acer palmatum: 10.1271/BBB1961.49.1211
- 66201 - Acer palmatum: LTS0102265
- 13817 - Adiantum: LTS0102265
- 13818 - Adiantum capillus-veneris: 10.1016/0305-1978(85)90030-4
- 13818 - Adiantum capillus-veneris: LTS0102265
- 446141 - Adiantum venustum: 10.1016/0305-1978(85)90030-4
- 446141 - Adiantum venustum: LTS0102265
- 162061 - Aegagropila: LTS0102265
- 162062 - Aegagropila linnaei: 10.1111/J.1529-8817.2004.03210.X
- 162062 - Aegagropila linnaei: LTS0102265
- 39130 - Agastache: LTS0102265
- 39269 - Agastache foeniculum: 10.1080/10412905.1992.9698114
- 39269 - Agastache foeniculum: LTS0102265
- 272680 - Aglaomorpha sparsisora: 10.1016/0305-1978(85)90030-4
- 4678 - Allium: LTS0102265
- 1174972 - Allium rotundum: 10.1007/S10600-009-9452-5
- 1174972 - Allium rotundum: LTS0102265
- 25641 - Aloe: LTS0102265
- 45385 - Aloe arborescens: 10.1007/BF00579168
- 45385 - Aloe arborescens: LTS0102265
- 3563 - Amaranthaceae: LTS0102265
- 4668 - Amaryllidaceae: LTS0102265
- 4011 - Anacardiaceae: LTS0102265
- 222489 - Anadyomenaceae: LTS0102265
- 47527 - Anodonta: LTS0102265
- 47528 - Anodonta cygnea: 10.1016/0006-3002(53)90218-2
- 47528 - Anodonta cygnea: LTS0102265
- 4037 - Apiaceae: LTS0102265
- 6499 - Aplysia: LTS0102265
- 144767 - Aplysia fasciata: 10.1016/0305-0491(84)90180-9
- 144767 - Aplysia fasciata: LTS0102265
- 6498 - Aplysiidae: LTS0102265
- 3701 - Arabidopsis: LTS0102265
- 3702 - Arabidopsis thaliana: 10.1016/J.CHROMA.2006.04.033
- 3702 - Arabidopsis thaliana: LTS0102265
- 185009 - Arnoldiella kosterae: 10.1111/J.1529-8817.2004.03210.X
- 661339 - Aronia melanocarpa: 10.1111/J.1365-2621.1989.TB04709.X
- 4890 - Ascomycota: LTS0102265
- 52968 - Ascophyllum: LTS0102265
- 52969 - Ascophyllum nodosum:
- 52969 - Ascophyllum nodosum: 10.1016/0305-1978(94)90112-0
- 52969 - Ascophyllum nodosum: 10.3891/ACTA.CHEM.SCAND.28B-0485
- 52969 - Ascophyllum nodosum: LTS0102265
- 40552 - Asparagaceae: LTS0102265
- 4685 - Asparagus: LTS0102265
- 77334 - Asparagus falcatus: 10.1021/NP0101447
- 77334 - Asparagus falcatus: LTS0102265
- 51383 - Asphodelaceae: LTS0102265
- 41972 - Aspleniaceae: 10.1016/0305-1978(85)90030-4
- 41972 - Aspleniaceae: LTS0102265
- 32071 - Asplenium: 10.1016/0305-1978(85)90030-4
- 32071 - Asplenium: LTS0102265
- 147934 - Asplenium aethiopicum: LTS0102265
- 78367 - Asplenium australasicum: 10.1016/0305-1978(85)90030-4
- 78367 - Asplenium australasicum: LTS0102265
- 29642 - Asplenium nidus: 10.1016/0305-1978(85)90030-4
- 29642 - Asplenium nidus: LTS0102265
- 1352538 - Asplenium obovatum: 10.1016/0305-1978(85)90030-4
- 41964 - Asplenium scolopendrium: LTS0102265
- 2959658 - Asplenium scolopendrium var. scolopendrium: LTS0102265
- 1521210 - Asplenium sulcatum: 10.1016/0305-1978(85)90030-4
- 78464 - Asplenium trichomanes: 10.1016/0305-1978(85)90030-4
- 78464 - Asplenium trichomanes: LTS0102265
- 4210 - Asteraceae: LTS0102265
- 1203520 - Athyriaceae: LTS0102265
- 32109 - Athyrium: LTS0102265
- 32110 - Athyrium filix-femina: 10.1016/0305-1978(85)90030-4
- 32110 - Athyrium filix-femina: LTS0102265
- 3078 - Auxenochlorella pyrenoidosa: 10.1016/J.CHROMA.2005.10.055
- 25692 - Balsaminaceae: LTS0102265
- 185013 - Basicladia: 10.1111/J.1529-8817.2004.03210.X
- 185013 - Basicladia: LTS0102265
- 162066 - Basicladia okamurae: 10.1111/J.1529-8817.2004.03210.X
- 1525212 - Bathycoccaceae: LTS0102265
- 41874 - Bathycoccus: LTS0102265
- 41875 - Bathycoccus prasinos: 10.1016/S0031-9422(96)00650-4
- 41875 - Bathycoccus prasinos: LTS0102265
- 6544 - Bivalvia: LTS0102265
- 29600 - Blechnaceae: LTS0102265
- 29605 - Blechnum: LTS0102265
- 32073 - Blechnum occidentale: 10.1016/0305-1978(85)90030-4
- 32073 - Blechnum occidentale: LTS0102265
- 3184 - Boodleaceae: LTS0102265
- 38879 - Botryococcaceae: LTS0102265
- 38880 - Botryococcus: LTS0102265
- 38881 - Botryococcus braunii: LTS0102265
- 3705 - Brassica: LTS0102265
- 3707 - Brassica juncea: 10.1271/BBB1961.49.1211
- 3707 - Brassica juncea: LTS0102265
- 3712 - Brassica oleracea:
- 3712 - Brassica oleracea: 10.1021/JF980823W
- 3712 - Brassica oleracea: 10.1271/BBB1961.49.1211
- 3712 - Brassica oleracea: LTS0102265
- 3700 - Brassicaceae: LTS0102265
- 4441 - Camellia: LTS0102265
- 385388 - Camellia oleifera: 10.1007/BF00607557
- 385388 - Camellia oleifera: LTS0102265
- 182300 - Camellia sasanqua: 10.1007/BF00607557
- 182300 - Camellia sasanqua: LTS0102265
- 4071 - Capsicum: LTS0102265
- 4072 - Capsicum annuum:
- 4072 - Capsicum annuum: LTS0102265
- 3648 - Carica: LTS0102265
- 3649 - Carica papaya: 10.1007/BF00605219
- 3649 - Carica papaya: LTS0102265
- 3647 - Caricaceae: LTS0102265
- 4305 - Celastraceae: LTS0102265
- 85180 - Celastrus: LTS0102265
- 85181 - Celastrus orbiculatus: 10.1016/J.PHYTOCHEM.2009.04.018
- 85181 - Celastrus orbiculatus: LTS0102265
- 3185 - Chaetomorpha: LTS0102265
- 221831 - Chaetomorpha aerea: 10.1111/J.1529-8817.2004.03210.X
- 162064 - Chaetomorpha crassa: 10.1111/J.1529-8817.2004.03210.X
- 162064 - Chaetomorpha crassa: LTS0102265
- 162065 - Chaetomorpha linum: 10.1111/J.1529-8817.2004.03210.X
- 162065 - Chaetomorpha linum: LTS0102265
- 13778 - Chara: LTS0102265
- 1658599 - Chara aculeolata: 10.1016/S0304-3770(99)00095-9
- 69330 - Chara aspera: 10.1016/S0304-3770(99)00095-9
- 69330 - Chara aspera: LTS0102265
- 69334 - Chara contraria: 10.1016/S0304-3770(99)00095-9
- 69334 - Chara contraria: LTS0102265
- 69338 - Chara globularis: 10.1016/S0304-3770(99)00095-9
- 69338 - Chara globularis: LTS0102265
- 1658605 - Chara gymnophylla: 10.1016/S0304-3770(99)00095-9
- 1658605 - Chara gymnophylla: LTS0102265
- 37303 - Chara hispida: 10.1016/S0304-3770(99)00095-9
- 37303 - Chara hispida: LTS0102265
- 1304952 - Chara intermedia: 10.1016/S0304-3770(99)00095-9
- 1304952 - Chara intermedia: LTS0102265
- 1304951 - Chara rudis: 10.1016/S0304-3770(99)00095-9
- 1304951 - Chara rudis: LTS0102265
- 69346 - Chara tomentosa: 10.1016/S0304-3770(99)00095-9
- 69346 - Chara tomentosa: LTS0102265
- 55564 - Chara vulgaris: 10.1016/S0304-3770(99)00095-9
- 55564 - Chara vulgaris: LTS0102265
- 3146 - Characeae: LTS0102265
- 304574 - Charophyceae: LTS0102265
- 658124 - Chattonellaceae: LTS0102265
- 1804623 - Chenopodiaceae: LTS0102265
- 3051 - Chlamydomonadaceae: LTS0102265
- 3052 - Chlamydomonas: LTS0102265
- 3055 - Chlamydomonas reinhardtii: 10.1104/PP.39.4.680
- 3055 - Chlamydomonas reinhardtii: LTS0102265
- 3071 - Chlorella: LTS0102265
- 3077 - Chlorella vulgaris: 10.1016/J.CHROMA.2005.10.055
- 35461 - Chlorellaceae: LTS0102265
- 3090 - Chlorococcaceae: LTS0102265
- 44649 - Chlorococcum: LTS0102265
- 1521711 - Chlorococcum citriforme: 10.1016/S0168-1656(99)00178-9
- 1521711 - Chlorococcum citriforme: LTS0102265
- 35429 - Chlorodendraceae: LTS0102265
- 1524962 - Chlorodendrophyceae: LTS0102265
- 3166 - Chlorophyceae: LTS0102265
- 3041 - Chlorophyta: LTS0102265
- 31302 - Chromochloris zofingiensis: 10.1016/S0168-1656(99)00178-9
- 2706 - Citrus: LTS0102265
- 558547 - Citrus deliciosa:
- 135197 - Citrus junos: 10.1007/BF00598603
- 135197 - Citrus junos: LTS0102265
- 171249 - Citrus limonia: LTS0102265
- 85571 - Citrus reticulata:
- 85571 - Citrus reticulata: 10.1016/0031-9422(83)83012-X
- 85571 - Citrus reticulata: 10.1021/JF960057Y
- 85571 - Citrus reticulata: LTS0102265
- 2711 - Citrus sinensis: 10.1002/CHIN.199024283
- 2711 - Citrus sinensis: LTS0102265
- 5199 - Cladonia: 10.1002/FEDR.19911020518
- 5199 - Cladonia: LTS0102265
- 184094 - Cladonia cornuta: 10.1016/0305-1978(85)90064-X
- 184094 - Cladonia cornuta: LTS0102265
- 184097 - Cladonia deformis: 10.1016/0305-1978(85)90064-X
- 184097 - Cladonia deformis: LTS0102265
- 184101 - Cladonia foliacea: 10.1016/0305-1978(88)90082-8
- 184101 - Cladonia foliacea: LTS0102265
- 174060 - Cladonia furcata: 10.1016/0305-1978(85)90064-X
- 174060 - Cladonia furcata: LTS0102265
- 111670 - Cladonia rangiferina: 10.1016/0305-1978(85)90064-X
- 111670 - Cladonia rangiferina: LTS0102265
- 174071 - Cladonia scabriuscula: 10.1016/0305-1978(85)90064-X
- 174071 - Cladonia scabriuscula: LTS0102265
- 174045 - Cladonia stellaris: 10.1016/0305-1978(85)90064-X
- 174045 - Cladonia stellaris: LTS0102265
- 5198 - Cladoniaceae: LTS0102265
- 34125 - Cladophora: LTS0102265
- 34126 - Cladophora albida: 10.1111/J.1529-8817.2004.03210.X
- 34126 - Cladophora albida: LTS0102265
- 34128 - Cladophora coelothrix: 10.1111/J.1529-8817.2004.03210.X
- 34128 - Cladophora coelothrix: LTS0102265
- 162068 - Cladophora glomerata: 10.1111/J.1529-8817.2004.03210.X
- 162068 - Cladophora glomerata: LTS0102265
- 34134 - Cladophora sericea: 10.1111/J.1529-8817.2004.03210.X
- 34134 - Cladophora sericea: LTS0102265
- 34136 - Cladophora vagabunda: 10.1111/J.1529-8817.2004.03210.X
- 34136 - Cladophora vagabunda: LTS0102265
- 35436 - Cladophoraceae: LTS0102265
- 34122 - Cladophoropsis: LTS0102265
- 162054 - Cladophoropsis fasciculatus: 10.1111/J.1529-8817.2004.03210.X
- 162054 - Cladophoropsis fasciculatus: LTS0102265
- 34123 - Cladophoropsis membranacea: 10.1111/J.1529-8817.2004.03210.X
- 34123 - Cladophoropsis membranacea: LTS0102265
- 55408 - Coelastrum: LTS0102265
- 795112 - Coelastrum proboscideum: 10.1016/S0168-1656(99)00178-9
- 795112 - Coelastrum proboscideum: LTS0102265
- 13442 - Coffea: LTS0102265
- 13443 - Coffea arabica: 10.1016/J.PLAPHY.2010.02.007
- 13443 - Coffea arabica: LTS0102265
- 49390 - Coffea canephora: 10.1016/J.PLAPHY.2010.02.007
- 49390 - Coffea canephora: LTS0102265
- 3954 - Combretaceae: LTS0102265
- 29597 - Coniogramme: LTS0102265
- 29598 - Coniogramme japonica: 10.1016/0305-1978(85)90030-4
- 29598 - Coniogramme japonica: LTS0102265
- 13464 - Crepis: LTS0102265
- 55615 - Crepis tectorum: 10.1007/BF00580095
- 55615 - Crepis tectorum: LTS0102265
- 3660 - Cucurbita: LTS0102265
- 3661 - Cucurbita maxima: 10.1016/S0031-9422(00)83753-X
- 3661 - Cucurbita maxima: LTS0102265
- 3650 - Cucurbitaceae: LTS0102265
- 3367 - Cupressaceae: LTS0102265
- 84613 - Cyrtomium: LTS0102265
- 84614 - Cyrtomium falcatum: 10.1016/0305-1978(85)90030-4
- 84614 - Cyrtomium falcatum: LTS0102265
- 1203500 - Cystopteridaceae: LTS0102265
- 32111 - Cystopteris: LTS0102265
- 1328777 - Cystopteris bulbifera: 10.1016/0305-1978(85)90030-4
- 1328777 - Cystopteris bulbifera: LTS0102265
- 32112 - Cystopteris fragilis: 10.1016/0305-1978(85)90030-4
- 32112 - Cystopteris fragilis: LTS0102265
- 872508 - Cystopteris sudetica: 10.1016/0305-1978(85)90030-4
- 872508 - Cystopteris sudetica: LTS0102265
- 4038 - Daucus: LTS0102265
- 4039 - Daucus carota: 10.1271/BBB1961.49.1211
- 4039 - Daucus carota: LTS0102265
- 32084 - Dennstaedtiaceae: LTS0102265
- 77547 - Desmodesmus abundans: 10.1016/S0168-1656(99)00178-9
- 13492 - Diospyros: LTS0102265
- 35925 - Diospyros kaki:
- 35925 - Diospyros kaki: 10.1007/BF00597795
- 35925 - Diospyros kaki: 10.1007/BF00597870
- 35925 - Diospyros kaki: 10.1111/J.1365-2621.1960.TB00012.X
- 35925 - Diospyros kaki: LTS0102265
- 455304 - Diphasiastrum: LTS0102265
- 34168 - Diphasiastrum complanatum: LTS0102265
- 37432 - Diphasiastrum tristachyum: 10.1016/0305-1978(85)90030-4
- 37432 - Diphasiastrum tristachyum: LTS0102265
- 187348 - Drynaria: LTS0102265
- 29607 - Dryopteridaceae: LTS0102265
- 3287 - Dryopteris: LTS0102265
- 239547 - Dryopteris affinis: 10.1016/0305-1978(85)90030-4
- 239548 - Dryopteris borreri: 10.1016/0305-1978(85)90030-4
- 239548 - Dryopteris borreri: LTS0102265
- 239555 - Dryopteris carthusiana: 10.1016/0305-1978(85)90030-4
- 239555 - Dryopteris carthusiana: LTS0102265
- 239561 - Dryopteris dilatata: 10.1016/0305-1978(85)90030-4
- 239561 - Dryopteris dilatata: LTS0102265
- 239563 - Dryopteris expansa: 10.1016/0305-1978(85)90030-4
- 239563 - Dryopteris expansa: LTS0102265
- 239607 - Dryopteris wallichiana: 10.1016/0305-1978(85)90030-4
- 239607 - Dryopteris wallichiana: LTS0102265
- 3044 - Dunaliella: LTS0102265
- 3047 - Dunaliella tertiolecta: 10.3390/MD9050819
- 3047 - Dunaliella tertiolecta: LTS0102265
- 3043 - Dunaliellaceae: LTS0102265
- 19955 - Ebenaceae: LTS0102265
- 7586 - Echinodermata: LTS0102265
- 3256 - Equisetaceae: LTS0102265
- 3257 - Equisetum: LTS0102265
- 3258 - Equisetum arvense: 10.1016/0305-1978(85)90030-4
- 3258 - Equisetum arvense: LTS0102265
- 231680 - Equisetum fluviatile: 10.1016/0305-1978(85)90030-4
- 231680 - Equisetum fluviatile: LTS0102265
- 3262 - Equisetum hyemale: 10.1016/0305-1978(85)90030-4
- 3262 - Equisetum hyemale: LTS0102265
- 113538 - Equisetum palustre: 10.1016/0305-1978(85)90030-4
- 113538 - Equisetum palustre: LTS0102265
- 231681 - Equisetum pratense: 10.1016/0305-1978(85)90030-4
- 231681 - Equisetum pratense: LTS0102265
- 231679 - Equisetum sylvaticum: 10.1016/0305-1978(85)90030-4
- 231679 - Equisetum sylvaticum: LTS0102265
- 3260 - Equisetum telmateia: 10.1016/0305-1978(85)90030-4
- 3260 - Equisetum telmateia: LTS0102265
- 4345 - Ericaceae: LTS0102265
- 3466 - Eschscholzia: LTS0102265
- 3467 - Eschscholzia californica: 10.1021/NP0000670
- 3467 - Eschscholzia californica: LTS0102265
- 3038 - Euglena: LTS0102265
- 1131320 - Euglenaceae: LTS0102265
- 3035 - Euglenida: LTS0102265
- 2704141 - Euglenophyceae: LTS0102265
- 2759 - Eukaryota: LTS0102265
- 4306 - Euonymus: LTS0102265
- 212708 - Euonymus japonicus: 10.1271/BBB1961.49.1211
- 212708 - Euonymus japonicus: LTS0102265
- 5747 - Eustigmatophyceae: LTS0102265
- 3803 - Fabaceae: LTS0102265
- 94617 - Fibrocapsa japonica: 10.1016/0305-0491(84)90181-0
- 3010 - Fucaceae: LTS0102265
- 3011 - Fucus: LTS0102265
- 87148 - Fucus serratus:
- 87148 - Fucus serratus: 10.1016/0305-1978(94)90112-0
- 87148 - Fucus serratus: 10.3891/ACTA.CHEM.SCAND.28B-0485
- 87148 - Fucus serratus: LTS0102265
- 49266 - Fucus vesiculosus:
- 49266 - Fucus vesiculosus: 10.1016/0305-1978(94)90112-0
- 49266 - Fucus vesiculosus: 10.3891/ACTA.CHEM.SCAND.28B-0485
- 49266 - Fucus vesiculosus: LTS0102265
- 4751 - Fungi: LTS0102265
- 6448 - Gastropoda: LTS0102265
- 3310 - Ginkgo: LTS0102265
- 3311 - Ginkgo biloba: 10.1111/J.1438-8677.1992.TB00261.X
- 3311 - Ginkgo biloba: LTS0102265
- 3309 - Ginkgoaceae: LTS0102265
- 29811 - Ginkgoopsida: LTS0102265
- 3846 - Glycine: LTS0102265
- 3847 - Glycine max: 10.1271/BBB1961.49.1211
- 3847 - Glycine max: LTS0102265
- 32115 - Gymnocarpium: LTS0102265
- 32116 - Gymnocarpium dryopteris: 10.1016/0305-1978(85)90030-4
- 32116 - Gymnocarpium dryopteris: LTS0102265
- 35484 - Haematococcaceae: LTS0102265
- 44744 - Haematococcus: LTS0102265
- 44745 - Haematococcus lacustris: 10.1016/0031-9422(81)83094-4
- 16107 - Hemerocallis: LTS0102265
- 34190 - Hemerocallis fulva: LTS0102265
- 213590 - Hemerocallis fulva var. angustifolia: 10.1021/JF000956T
- 213590 - Hemerocallis fulva var. angustifolia: LTS0102265
- 9606 - Homo sapiens: -
- 37428 - Huperzia: LTS0102265
- 70001 - Huperzia selago: 10.1016/0305-1978(85)90030-4
- 70001 - Huperzia selago: LTS0102265
- 35939 - Impatiens: LTS0102265
- 127129 - Impatiens noli-tangere: 10.1002/HLCA.19760590440
- 127129 - Impatiens noli-tangere: LTS0102265
- 26339 - Iridaceae: LTS0102265
- 26378 - Iris: LTS0102265
- 82213 - Iris pseudacorus: 10.1042/BJ0390211
- 82213 - Iris pseudacorus: LTS0102265
- 4235 - Lactuca: LTS0102265
- 75943 - Lactuca serriola: 10.1271/BBB1961.49.1211
- 75943 - Lactuca serriola: LTS0102265
- 4136 - Lamiaceae: LTS0102265
- 33637 - Laminaria: LTS0102265
- 80365 - Laminaria digitata:
- 80365 - Laminaria digitata: 10.1016/0305-1978(94)90112-0
- 80365 - Laminaria digitata: 10.3891/ACTA.CHEM.SCAND.28B-0485
- 80365 - Laminaria digitata: LTS0102265
- 33636 - Laminariaceae: LTS0102265
- 147547 - Lecanoromycetes: LTS0102265
- 4447 - Liliopsida: LTS0102265
- 129109 - Lobariaceae: LTS0102265
- 32137 - Lomariopsidaceae: LTS0102265
- 3963 - Loranthaceae: LTS0102265
- 162069 - Lychaete japonica: 10.1111/J.1529-8817.2004.03210.X
- 162070 - Lychaete ohkuboana: 10.1111/J.1529-8817.2004.03210.X
- 34130 - Lychaete pellucida: 10.1111/J.1529-8817.2004.03210.X
- 3250 - Lycopodiaceae: LTS0102265
- 1521260 - Lycopodiopsida: LTS0102265
- 3251 - Lycopodium: LTS0102265
- 3252 - Lycopodium clavatum: 10.1016/0305-1978(85)90030-4
- 3252 - Lycopodium clavatum: LTS0102265
- 3398 - Magnoliopsida: LTS0102265
- 41873 - Mamiellaceae: LTS0102265
- 1035538 - Mamiellophyceae: LTS0102265
- 23461 - Mangifera: LTS0102265
- 29780 - Mangifera indica:
- 29780 - Mangifera indica: 10.1016/S0031-9422(03)00466-7
- 29780 - Mangifera indica: 10.1021/JF960276J
- 29780 - Mangifera indica: 10.1021/JF9702860
- 29780 - Mangifera indica: LTS0102265
- 13607 - Mantoniella: LTS0102265
- 13608 - Mantoniella squamata:
- 13608 - Mantoniella squamata: 10.1016/0305-1978(95)00075-5
- 13608 - Mantoniella squamata: 10.1016/S0031-9422(96)00650-4
- 13608 - Mantoniella squamata: LTS0102265
- 3370 - Metasequoia: LTS0102265
- 3371 - Metasequoia glyptostroboides: 10.1016/0305-1978(87)90003-2
- 3371 - Metasequoia glyptostroboides: LTS0102265
- 33208 - Metazoa: LTS0102265
- 2511165 - Microchloropsis salina: 10.1080/00071618200650061
- 34137 - Microdictyon: LTS0102265
- 34138 - Microdictyon boergesenii: 10.1111/J.1529-8817.2004.03210.X
- 34138 - Microdictyon boergesenii: LTS0102265
- 32096 - Microlepia: LTS0102265
- 449865 - Microlepia speluncae: 10.1016/0305-1978(85)90030-4
- 449865 - Microlepia speluncae: LTS0102265
- 21013 - Mimosa: LTS0102265
- 148708 - Mimosa aculeaticarpa: LTS0102265
- 148709 - Mimosa aculeaticarpa var. biuncifera: 10.1007/BF00596768
- 6447 - Mollusca: LTS0102265
- 3671 - Momordica: LTS0102265
- 3673 - Momordica charantia: 10.1016/S0031-9422(99)00174-0
- 3673 - Momordica charantia: LTS0102265
- 425072 - Monodopsidaceae: LTS0102265
- 114063 - Muriella: LTS0102265
- 1236197 - Muriella decolor: 10.1016/S0168-1656(99)00178-9
- 1236197 - Muriella decolor: LTS0102265
- 1055024 - Muriellopsis: 10.1016/S0168-1656(99)00178-9
- 1055024 - Muriellopsis: LTS0102265
- 5748 - Nannochloropsis: LTS0102265
- 43925 - Nannochloropsis oculata: 10.1080/00071618200650061
- 43925 - Nannochloropsis oculata: LTS0102265
- 1158267 - Neospongiococcum: LTS0102265
- 1158268 - Neospongiococcum gelatinosum: 10.1016/S0168-1656(99)00178-9
- 1158268 - Neospongiococcum gelatinosum: LTS0102265
- 32151 - Nephrolepidaceae: LTS0102265
- 32152 - Nephrolepis: LTS0102265
- 34165 - Nephrolepis exaltata: 10.1016/0305-1978(85)90030-4
- 34165 - Nephrolepis exaltata: LTS0102265
- 48858 - Nephroma: LTS0102265
- 203386 - Nephroma laevigatum: 10.1016/0305-1978(88)90082-8
- 203386 - Nephroma laevigatum: LTS0102265
- 48857 - Nephromataceae: LTS0102265
- 2682465 - Nephroselmidaceae: LTS0102265
- 1242998 - Nephroselmidophyceae: LTS0102265
- 31311 - Nephroselmis: LTS0102265
- 31312 - Nephroselmis olivacea: 10.1016/S0031-9422(96)00650-4
- 31312 - Nephroselmis olivacea: LTS0102265
- 156128 - Nephroselmis pyriformis: 10.1016/S0031-9422(96)00650-4
- 156128 - Nephroselmis pyriformis: LTS0102265
- 344402 - Nephroselmis rotunda:
- 344402 - Nephroselmis rotunda: 10.1016/0305-1978(95)00075-5
- 344402 - Nephroselmis rotunda: 10.1016/S0031-9422(96)00650-4
- 344402 - Nephroselmis rotunda: LTS0102265
- 3148 - Nitella: LTS0102265
- 97465 - Nitella opaca: 10.1016/S0304-3770(99)00095-9
- 97465 - Nitella opaca: LTS0102265
- 2696291 - Ochrophyta: LTS0102265
- 82999 - Olisthodiscus: LTS0102265
- 83000 - Olisthodiscus luteus: 10.1016/0305-0491(81)90110-3
- 83000 - Olisthodiscus luteus: LTS0102265
- 3280 - Onoclea: LTS0102265
- 3281 - Onoclea sensibilis: 10.1016/0305-1978(85)90030-4
- 3281 - Onoclea sensibilis: LTS0102265
- 693794 - Onocleaceae: LTS0102265
- 3070 - Oocystaceae: LTS0102265
- 174657 - Oreopteris: LTS0102265
- 174658 - Oreopteris limbosperma: 10.1016/0305-1978(85)90030-4
- 174658 - Oreopteris limbosperma: LTS0102265
- 91896 - Orobanchaceae: LTS0102265
- 36747 - Orobanche: LTS0102265
- 223119 - Orobanche owerinii: 10.1007/BF00579085
- 223119 - Orobanche owerinii: LTS0102265
- 2201463 - Palmophyllophyceae: LTS0102265
- 694376 - Panzerina: LTS0102265
- 694377 - Panzerina lanata: 10.1007/S10600-011-0065-4
- 694377 - Panzerina lanata: LTS0102265
- 3465 - Papaveraceae: LTS0102265
- 78060 - Parmeliaceae: LTS0102265
- 3684 - Passiflora: 10.1021/JF9801724
- 3684 - Passiflora: LTS0102265
- 78168 - Passiflora edulis: 10.1021/JF9801724
- 78168 - Passiflora edulis: LTS0102265
- 3683 - Passifloraceae: LTS0102265
- 37461 - Pellaea: LTS0102265
- 414639 - Pellaea atropurpurea: 10.1016/0305-1978(85)90030-4
- 414639 - Pellaea atropurpurea: LTS0102265
- 48071 - Pelvetia: LTS0102265
- 74467 - Pelvetia canaliculata:
- 74467 - Pelvetia canaliculata: 10.1016/0305-1978(94)90112-0
- 74467 - Pelvetia canaliculata: 10.3891/ACTA.CHEM.SCAND.28B-0485
- 74467 - Pelvetia canaliculata: LTS0102265
- 48385 - Perilla: LTS0102265
- 48386 - Perilla frutescens: 10.1271/BBB1961.49.1211
- 48386 - Perilla frutescens: LTS0102265
- 4042 - Petroselinum: LTS0102265
- 4043 - Petroselinum crispum: 10.1007/BF02258976
- 4043 - Petroselinum crispum: LTS0102265
- 663597 - Petroselinum crispum: 10.1007/BF02258976
- 2870 - Phaeophyceae: LTS0102265
- 218619 - Phlebodium: LTS0102265
- 218620 - Phlebodium aureum: 10.1016/0305-1978(85)90030-4
- 218620 - Phlebodium aureum: LTS0102265
- 58019 - Pinopsida: LTS0102265
- 162057 - Pithophora: 10.1111/J.1529-8817.2004.03210.X
- 162057 - Pithophora: LTS0102265
- 926346 - Pithophoraceae: LTS0102265
- 23121 - Pittosporaceae: LTS0102265
- 23129 - Pittosporum: LTS0102265
- 43073 - Pittosporum tobira:
- 43073 - Pittosporum tobira: 10.1021/NP070650H
- 43073 - Pittosporum tobira: 10.1248/CPB.49.985
- 43073 - Pittosporum tobira: LTS0102265
- 61309 - Platycerium: LTS0102265
- 85331 - Platycerium alcicorne: 10.1016/0305-1978(85)90030-4
- 85331 - Platycerium alcicorne: LTS0102265
- 4479 - Poaceae: LTS0102265
- 1486889 - Polyblepharides amylifera: 10.1016/S0031-9422(96)00650-4
- 3275 - Polypodiaceae: LTS0102265
- 241806 - Polypodiopsida: LTS0102265
- 38352 - Polypodium: LTS0102265
- 872808 - Polypodium virginianum: 10.1016/0305-1978(85)90030-4
- 872808 - Polypodium virginianum: LTS0102265
- 58048 - Polypodium vulgare: 10.1016/0305-1978(85)90030-4
- 58048 - Polypodium vulgare: LTS0102265
- 3278 - Polystichum: 10.1016/0305-1978(85)90030-4
- 3278 - Polystichum: LTS0102265
- 207866 - Polystichum luctuosum: 10.1016/0305-1978(85)90030-4
- 207866 - Polystichum luctuosum: LTS0102265
- 207876 - Polystichum tsus-simense: 10.1016/0305-1978(85)90030-4
- 207876 - Polystichum tsus-simense: LTS0102265
- 2201465 - Prasinococcaceae: LTS0102265
- 110669 - Prasinococcus: LTS0102265
- 156131 - Prasinococcus capsulatus: 10.1016/S0031-9422(96)00650-4
- 156131 - Prasinococcus capsulatus: LTS0102265
- 235511 - Protousnea: 10.1002/FEDR.200411068
- 235511 - Protousnea: LTS0102265
- 3754 - Prunus: LTS0102265
- 3760 - Prunus persica: 10.1016/S0031-9422(00)81842-7
- 3760 - Prunus persica: LTS0102265
- 3759 - Prunus yedoensis: 10.1271/BBB1961.49.1211
- 3759 - Prunus yedoensis: LTS0102265
- 162067 - Pseudocladophora conchopheria: 10.1111/J.1529-8817.2004.03210.X
- 185010 - Pseudocladophora horii: 10.1111/J.1529-8817.2004.03210.X
- 42696 - Pseudomuriella aurantiaca: 10.1016/S0168-1656(99)00178-9
- 13819 - Pteridaceae: LTS0102265
- 32100 - Pteridium: LTS0102265
- 32101 - Pteridium aquilinum: 10.1016/0305-1978(85)90030-4
- 32101 - Pteridium aquilinum: LTS0102265
- 13820 - Pteris: LTS0102265
- 491155 - Pteris longifolia: 10.1016/0305-1978(85)90030-4
- 491155 - Pteris longifolia: LTS0102265
- 262952 - Pteris tremula: 10.1016/0305-1978(85)90030-4
- 262952 - Pteris tremula: LTS0102265
- 13821 - Pteris vittata: 10.1016/0305-1978(85)90030-4
- 2682468 - Pyramimonadaceae: LTS0102265
- 2704063 - Pyramimonadophyceae: LTS0102265
- 36882 - Pyramimonas: LTS0102265
- 36894 - Pyramimonas parkeae: 10.1111/J.1529-8817.2009.00660.X
- 36894 - Pyramimonas parkeae: LTS0102265
- 3766 - Pyrus: LTS0102265
- 23211 - Pyrus communis: 10.1007/BF00598399
- 23211 - Pyrus communis: LTS0102265
- 56479 - Ramalina: LTS0102265
- 859456 - Ramalina capitata: 10.1006/LICH.1995.0012
- 859456 - Ramalina capitata: LTS0102265
- 56478 - Ramalinaceae: LTS0102265
- 3725 - Raphanus: LTS0102265
- 3726 - Raphanus sativus:
- 3726 - Raphanus sativus: 10.1271/BBB1961.49.1211
- 3726 - Raphanus sativus: LTS0102265
- 38410 - Raphidophyceae: LTS0102265
- 162072 - Rhizoclonium: LTS0102265
- 162073 - Rhizoclonium grande: 10.1111/J.1529-8817.2004.03210.X
- 162073 - Rhizoclonium grande: LTS0102265
- 4346 - Rhododendron: LTS0102265
- 75581 - Rhododendron indicum: 10.1271/BBB1961.49.1211
- 75581 - Rhododendron indicum: LTS0102265
- 74635 - Rosa canina: 10.1111/J.1365-2621.1989.TB04709.X
- 74645 - Rosa rugosa: 10.1111/J.1365-2621.1989.TB04709.X
- 3745 - Rosaceae: LTS0102265
- 24966 - Rubiaceae: LTS0102265
- 23513 - Rutaceae: LTS0102265
- 309357 - Saccharina: LTS0102265
- 309358 - Saccharina latissima: 10.1016/0305-1978(94)90112-0
- 309358 - Saccharina latissima: LTS0102265
- 3958 - Santalaceae: LTS0102265
- 23672 - Sapindaceae: LTS0102265
- 3086 - Scenedesmaceae: LTS0102265
- 35439 - Siphonocladaceae: LTS0102265
- 34139 - Siphonocladus: LTS0102265
- 34140 - Siphonocladus tropicus: 10.1111/J.1529-8817.2004.03210.X
- 34140 - Siphonocladus tropicus: LTS0102265
- 4070 - Solanaceae: LTS0102265
- 4107 - Solanum: LTS0102265
- 4113 - Solanum tuberosum:
- 4113 - Solanum tuberosum: 10.1021/JF0257953
- 4113 - Solanum tuberosum: LTS0102265
- 3561 - Spinacia: LTS0102265
- 3562 - Spinacia oleracea: 10.1016/J.FOODCHEM.2007.11.056
- 3562 - Spinacia oleracea: LTS0102265
- 1965351 - Spinulum: LTS0102265
- 13840 - Spinulum annotinum: LTS0102265
- 137528 - Sticta: LTS0102265
- 243211 - Sticta canariensis: 10.1016/0305-1978(88)90082-8
- 243211 - Sticta canariensis: LTS0102265
- 35493 - Streptophyta: LTS0102265
- 114457 - Struthiopteris spicant: 10.1016/0305-1978(85)90030-4
- 39992 - Terminalia: LTS0102265
- 39993 - Terminalia catappa: 10.1111/J.1365-2621.2001.TB15182.X
- 39993 - Terminalia catappa: LTS0102265
- 2682555 - Tetracystaceae: LTS0102265
- 44653 - Tetracystis: 10.1016/S0168-1656(99)00178-9
- 44653 - Tetracystis: LTS0102265
- 1158272 - Tetracystis tetraspora: 10.1016/S0168-1656(99)00178-9
- 3164 - Tetraselmis:
- 3164 - Tetraselmis: 10.1016/0305-1978(95)00075-5
- 3164 - Tetraselmis: 10.1016/S0031-9422(96)00650-4
- 3164 - Tetraselmis: LTS0102265
- 41888 - Tetraselmis marina: 10.1111/J.1529-8817.2009.00660.X
- 41888 - Tetraselmis marina: LTS0102265
- 1764268 - Tetraselmis rubens: 10.1111/J.1529-8817.2009.00660.X
- 1764268 - Tetraselmis rubens: LTS0102265
- 3161 - Tetraselmis subcordiformis: 10.1111/J.1529-8817.2009.00660.X
- 3161 - Tetraselmis subcordiformis: LTS0102265
- 270643 - Tetraselmis suecica: 10.1111/J.1529-8817.2009.00660.X
- 270643 - Tetraselmis suecica: LTS0102265
- 445571 - Tetraselmis tetrathele: 10.1111/J.1529-8817.2009.00660.X
- 445571 - Tetraselmis tetrathele: LTS0102265
- 27065 - Theaceae: LTS0102265
- 29616 - Thelypteridaceae: LTS0102265
- 29617 - Thelypteris: LTS0102265
- 29618 - Thelypteris palustris: 10.1016/0305-1978(85)90030-4
- 29618 - Thelypteris palustris: LTS0102265
- 1132572 - Thelypteris palustris var. pubescens: 10.1016/0305-1978(85)90030-4
- 1132572 - Thelypteris palustris var. pubescens: LTS0102265
- 58023 - Tracheophyta: LTS0102265
- 75966 - Trebouxiophyceae: LTS0102265
- 33103 - Ulvophyceae: LTS0102265
- 47526 - Unionidae: LTS0102265
- 3500 - Urtica: LTS0102265
- 3501 - Urtica dioica: 10.1086/332998
- 3501 - Urtica dioica: LTS0102265
- 3499 - Urticaceae: LTS0102265
- 13757 - Viola: LTS0102265
- 214053 - Viola tricolor:
- 214053 - Viola tricolor: 10.1002/CBER.19310640223
- 214053 - Viola tricolor: 10.1016/0031-9422(80)87027-0
- 214053 - Viola tricolor: 10.1111/TPJ.12451
- 214053 - Viola tricolor: LTS0102265
- 24921 - Violaceae: LTS0102265
- 33090 - Viridiplantae: LTS0102265
- 1003255 - Viscaceae: LTS0102265
- 3971 - Viscum: LTS0102265
- 3972 - Viscum album: 10.1055/S-1999-14089
- 3972 - Viscum album: LTS0102265
- 3602 - Vitaceae: LTS0102265
- 3603 - Vitis: LTS0102265
- 29760 - Vitis vinifera:
- 29760 - Vitis vinifera: 10.1007/BF00574814
- 29760 - Vitis vinifera: 10.1021/JF034275K
- 29760 - Vitis vinifera: LTS0102265
- 162075 - Wittrockiella: LTS0102265
- 912166 - Wittrockiella amphibia: 10.1111/J.1529-8817.2004.03210.X
- 912166 - Wittrockiella amphibia: LTS0102265
- 162076 - Wittrockiella lyallii: 10.1111/J.1529-8817.2004.03210.X
- 162076 - Wittrockiella lyallii: LTS0102265
- 185011 - Wittrockiella paradoxa: 10.1111/J.1529-8817.2004.03210.X
- 185011 - Wittrockiella paradoxa: LTS0102265
- 246271 - Woodsiaceae: LTS0102265
- 2833 - Xanthophyceae: LTS0102265
- 4575 - Zea: LTS0102265
- 4577 - Zea mays:
- 4577 - Zea mays: 10.1007/BF00391272
- 4577 - Zea mays: 10.1271/BBB1961.49.1211
- 4577 - Zea mays: LTS0102265
- 27257 - Zostera: LTS0102265
- 29655 - Zostera marina: 10.1371/JOURNAL.PONE.0081058
- 29655 - Zostera marina: LTS0102265
- 27254 - Zosteraceae: LTS0102265
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Jia Wang, Xiao Zhou, Kexin Li, Herong Wang, Chenglong Zhang, Yi Shi, Mingdong Yao, Ying Wang, Wenhai Xiao. Systems Metabolic Engineering for Efficient Violaxanthin Production in Yeast.
Journal of agricultural and food chemistry.
2024 May; 72(18):10459-10468. doi:
10.1021/acs.jafc.4c01240
. [PMID: 38666490] - Zoltán Tolnai, Himani Sharma, Vilmos Soós. D27-like carotenoid isomerases: at the crossroads of strigolactone and abscisic acid biosynthesis.
Journal of experimental botany.
2024 Feb; 75(4):1148-1158. doi:
10.1093/jxb/erad475
. [PMID: 38006582] - Sushil S Changan, Vaibhav Kumar, Aruna Tyagi. Expression pattern of candidate genes and their correlation with various metabolites of abscisic acid biosynthetic pathway under drought stress in rice.
Physiologia plantarum.
2023 Nov; 175(6):e14102. doi:
10.1111/ppl.14102
. [PMID: 38148246] - Dong Xinrui, Liu Bo, Bao Yihong, Liu Weifeng, Tao Yong. Metabolic engineering of Escherichia coli for high-level production of violaxanthin.
Microbial cell factories.
2023 Jun; 22(1):115. doi:
10.1186/s12934-023-02098-y
. [PMID: 37344799] - Giorgio Perin, Alessandra Bellan, Tim Michelberger, Dagmar Lyska, Setsuko Wakao, Krishna K Niyogi, Tomas Morosinotto. Modulation of xanthophyll cycle impacts biomass productivity in the marine microalga Nannochloropsis.
Proceedings of the National Academy of Sciences of the United States of America.
2023 Jun; 120(25):e2214119120. doi:
10.1073/pnas.2214119120
. [PMID: 37307488] - Uthman O Badmus, Gaia Crestani, Natalie Cunningham, Michel Havaux, Otmar Urban, Marcel A K Jansen. UV Radiation Induces Specific Changes in the Carotenoid Profile of Arabidopsis thaliana.
Biomolecules.
2022 12; 12(12):. doi:
10.3390/biom12121879
. [PMID: 36551307] - Zsolt Gulyás, Blanka Moncsek, Kamirán Áron Hamow, Pál Stráner, Zoltán Tolnai, Eszter Badics, Norbert Incze, Éva Darkó, Valéria Nagy, András Perczel, László Kovács, Vilmos Soós. D27-LIKE1 isomerase has a preference towards trans/cis and cis/cis conversions of carotenoids in Arabidopsis.
The Plant journal : for cell and molecular biology.
2022 12; 112(6):1377-1395. doi:
10.1111/tpj.16017
. [PMID: 36308414] - Donatella Carbonera, Alessandro Agostini, Marco Bortolus, Luca Dall'Osto, Roberto Bassi. Violaxanthin and Zeaxanthin May Replace Lutein at the L1 Site of LHCII, Conserving the Interactions with Surrounding Chlorophylls and the Capability of Triplet-Triplet Energy Transfer.
International journal of molecular sciences.
2022 Apr; 23(9):. doi:
10.3390/ijms23094812
. [PMID: 35563202] - Maria Dolores Garcia Molina, Ermelinda Botticella, Romina Beleggia, Samuela Palombieri, Pasquale De Vita, Stefania Masci, Domenico Lafiandra, Francesco Sestili. Enrichment of provitamin A content in durum wheat grain by suppressing β-carotene hydroxylase 1 genes with a TILLING approach.
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik.
2021 Dec; 134(12):4013-4024. doi:
10.1007/s00122-021-03944-6
. [PMID: 34477900] - Petra Skotnicová, Hristina Staleva-Musto, Valentyna Kuznetsova, David Bína, Minna M Konert, Shan Lu, Tomáš Polívka, Roman Sobotka. Plant LHC-like proteins show robust folding and static non-photochemical quenching.
Nature communications.
2021 11; 12(1):6890. doi:
10.1038/s41467-021-27155-1
. [PMID: 34824207] - Minjung Son, Raymundo Moya, Alberta Pinnola, Roberto Bassi, Gabriela S Schlau-Cohen. Protein-Protein Interactions Induce pH-Dependent and Zeaxanthin-Independent Photoprotection in the Plant Light-Harvesting Complex, LHCII.
Journal of the American Chemical Society.
2021 10; 143(42):17577-17586. doi:
10.1021/jacs.1c07385
. [PMID: 34648708] - Ewa Surówka, Dariusz Latowski, Michał Dziurka, Magdalena Rys, Anna Maksymowicz, Iwona Żur, Monika Olchawa-Pajor, Christine Desel, Monika Krzewska, Zbigniew Miszalski. ROS-Scavengers, Osmoprotectants and Violaxanthin De-Epoxidation in Salt-Stressed Arabidopsis thaliana with Different Tocopherol Composition.
International journal of molecular sciences.
2021 Oct; 22(21):. doi:
10.3390/ijms222111370
. [PMID: 34768798] - Reimund Goss, Christian Schwarz, Monique Matzner, Christian Wilhelm. Influence of the compatible solute sucrose on thylakoid membrane organization and violaxanthin de-epoxidation.
Planta.
2021 Aug; 254(3):52. doi:
10.1007/s00425-021-03699-w
. [PMID: 34392410] - Ocsana Opriş, Florina Copaciu, Maria Loredana Soran, Ülo Niinemets, Lucian Copolovici. Content of Carotenoids, Violaxanthin and Neoxanthin in Leaves of Triticum aestivum Exposed to Persistent Environmental Pollutants.
Molecules (Basel, Switzerland).
2021 Jul; 26(15):. doi:
10.3390/molecules26154448
. [PMID: 34361600] - Wei Huang, Hong Hu, Shi-Bao Zhang. Photosynthetic regulation under fluctuating light at chilling temperature in evergreen and deciduous tree species.
Journal of photochemistry and photobiology. B, Biology.
2021 Jun; 219(?):112203. doi:
10.1016/j.jphotobiol.2021.112203
. [PMID: 33957467] - Gang Ma, Lancui Zhang, Yurika Kitaya, Mao Seoka, Rin Kudaka, Masaki Yahata, Kazuki Yamawaki, Takehiko Shimada, Hiroshi Fujii, Tomoko Endo, Masaya Kato. Blue LED light induces regreening in the flavedo of Valencia orange in vitro.
Food chemistry.
2021 Jan; 335(?):127621. doi:
10.1016/j.foodchem.2020.127621
. [PMID: 32738533] - Geniane Schneider, Félix L Figueroa, Julia Vega, Antonio Avilés, Patricia Chaves, Paulo Antunes Horta, Nathalie Korbee, José Bonomi-Barufi. Physiological and biochemical responses driven by different UV-visible radiation in Osmundea pinnatifida (Hudson) Stackhouse (Rhodophyta).
Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.
2020 Dec; 19(12):1650-1664. doi:
10.1039/d0pp00135j
. [PMID: 33030484] - Yingjun Liu, Shenhua Ye, Gaigai Yuan, Xiaowei Ma, Shuangping Heng, Bin Yi, Chaozhi Ma, Jinxiong Shen, Jinxing Tu, Tingdong Fu, Jing Wen. Gene silencing of BnaA09.ZEP and BnaC09.ZEP confers orange color in Brassica napus flowers.
The Plant journal : for cell and molecular biology.
2020 11; 104(4):932-949. doi:
10.1111/tpj.14970
. [PMID: 32808386] - Margherita Lapillo, Edoardo Cignoni, Lorenzo Cupellini, Benedetta Mennucci. The energy transfer model of nonphotochemical quenching: Lessons from the minor CP29 antenna complex of plants.
Biochimica et biophysica acta. Bioenergetics.
2020 11; 1861(11):148282. doi:
10.1016/j.bbabio.2020.148282
. [PMID: 32721398] - F Goecke, J Noda, M Paliocha, H R Gislerød. Revision of Coelastrella (Scenedesmaceae, Chlorophyta) and first register of this green coccoid microalga for continental Norway.
World journal of microbiology & biotechnology.
2020 Sep; 36(10):149. doi:
10.1007/s11274-020-02897-0
. [PMID: 32914262] - Yanting Zhong, Xiaoying Pan, Ruifeng Wang, Jiuliang Xu, Jingyu Guo, Tingxue Yang, Jianyu Zhao, Faisal Nadeem, Xiaoting Liu, Hongyan Shan, Yanjun Xu, Xuexian Li. ZmCCD10a Encodes a Distinct Type of Carotenoid Cleavage Dioxygenase and Enhances Plant Tolerance to Low Phosphate.
Plant physiology.
2020 09; 184(1):374-392. doi:
10.1104/pp.20.00378
. [PMID: 32586893] - Ondřej Dlouhý, Irena Kurasová, Václav Karlický, Uroš Javornik, Primož Šket, Nia Z Petrova, Sashka B Krumova, Janez Plavec, Bettina Ughy, Vladimír Špunda, Győző Garab. Modulation of non-bilayer lipid phases and the structure and functions of thylakoid membranes: effects on the water-soluble enzyme violaxanthin de-epoxidase.
Scientific reports.
2020 07; 10(1):11959. doi:
10.1038/s41598-020-68854-x
. [PMID: 32686730] - Vicente F Cataldo, Natalia Arenas, Valeria Salgado, Conrado Camilo, Francisco Ibáñez, Eduardo Agosin. Heterologous production of the epoxycarotenoid violaxanthin in Saccharomyces cerevisiae.
Metabolic engineering.
2020 05; 59(?):53-63. doi:
10.1016/j.ymben.2020.01.006
. [PMID: 32001334] - O Dautermann, D Lyska, J Andersen-Ranberg, M Becker, J Fröhlich-Nowoisky, H Gartmann, L C Krämer, K Mayr, D Pieper, L M Rij, H M-L Wipf, K K Niyogi, M Lohr. An algal enzyme required for biosynthesis of the most abundant marine carotenoids.
Science advances.
2020 03; 6(10):eaaw9183. doi:
10.1126/sciadv.aaw9183
. [PMID: 32181334] - Jiangtao Zhou, Sergey Sekatskii, Renata Welc, Giovanni Dietler, Wieslaw I Gruszecki. The role of xanthophylls in the supramolecular organization of the photosynthetic complex LHCII in lipid membranes studied by high-resolution imaging and nanospectroscopy.
Biochimica et biophysica acta. Bioenergetics.
2020 02; 1861(2):148117. doi:
10.1016/j.bbabio.2019.148117
. [PMID: 31734197] - Miho Takemura, Akiko Kubo, Yuki Higuchi, Takashi Maoka, Takehiko Sahara, Katsuro Yaoi, Kohji Ohdan, Daisuke Umeno, Norihiko Misawa. Pathway engineering for efficient biosynthesis of violaxanthin in Escherichia coli.
Applied microbiology and biotechnology.
2019 Dec; 103(23-24):9393-9399. doi:
10.1007/s00253-019-10182-w
. [PMID: 31673744] - Monika Olchawa-Pajor, Monika Bojko, Wojciech Strzałka, Kazimierz Strzałka, Dariusz Latowski. Violaxanthin conversion by recombinant diatom and plant de-epoxidases, expressed in Escherichia coli - comparative analysis.
Acta biochimica Polonica.
2019 Jul; 66(3):249-255. doi:
10.18388/abp.2019_2831
. [PMID: 31279328] - Grzegorz Fiutak, Magdalena Michalczyk, Magda Filipczak-Fiutak, Leszek Fiedor, Krzysztof Surówka. The impact of LED lighting on the yield, morphological structure and some bioactive components in alfalfa (Medicago sativa L.) sprouts.
Food chemistry.
2019 Jul; 285(?):53-58. doi:
10.1016/j.foodchem.2019.01.086
. [PMID: 30797375] - Yanyan Su. The effect of different light regimes on pigments in Coscinodiscus granii.
Photosynthesis research.
2019 Jun; 140(3):301-310. doi:
10.1007/s11120-018-0608-7
. [PMID: 30478709] - Marijonas Tutkus, Francesco Saccon, Jevgenij Chmeliov, Oskaras Venckus, Ignas Ciplys, Alexander V Ruban, Leonas Valkunas. Single-molecule microscopy studies of LHCII enriched in Vio or Zea.
Biochimica et biophysica acta. Bioenergetics.
2019 06; 1860(6):499-507. doi:
10.1016/j.bbabio.2019.05.002
. [PMID: 31055058] - Daniele Bobrowski Rodrigues, Adriana Zerlotti Mercadante, Lilian Regina Barros Mariutti. Marigold carotenoids: Much more than lutein esters.
Food research international (Ottawa, Ont.).
2019 05; 119(?):653-664. doi:
10.1016/j.foodres.2018.10.043
. [PMID: 30884700] - Raquel Esteban, Javier Buezo, José M Becerril, José I García-Plazaola. Modified Atmosphere Packaging and Dark/Light Refrigerated Storage in Green Leafy Vegetables Have an Impact on Nutritional Value.
Plant foods for human nutrition (Dordrecht, Netherlands).
2019 Mar; 74(1):99-106. doi:
10.1007/s11130-018-0705-y
. [PMID: 30610553] - David Bína, Milan Durchan, Valentyna Kuznetsova, František Vácha, Radek Litvín, Tomáš Polívka. Energy transfer dynamics in a red-shifted violaxanthin-chlorophyll a light-harvesting complex.
Biochimica et biophysica acta. Bioenergetics.
2019 02; 1860(2):111-120. doi:
10.1016/j.bbabio.2018.11.006
. [PMID: 30414929] - Jenny Ruales, Nieves Baenas, Diego A Moreno, Carla M Stinco, Antonio J Meléndez-Martínez, Almudena García-Ruiz. Biological Active Ecuadorian Mango 'Tommy Atkins' Ingredients-An Opportunity to Reduce Agrowaste.
Nutrients.
2018 Aug; 10(9):. doi:
10.3390/nu10091138
. [PMID: 30134635] - Matthias Karadar, Gilbert Neuner, Ilse Kranner, Andreas Holzinger, Othmar Buchner. Solar irradiation levels during simulated long- and short-term heat waves significantly influence heat survival, pigment and ascorbate composition, and free radical scavenging activity in alpine Vaccinium gaultherioides.
Physiologia plantarum.
2018 Jun; 163(2):211-230. doi:
10.1111/ppl.12686
. [PMID: 29274132] - Maricella K Gomez, Jashbir Singh, Pratibha Acharya, G K Jayaprakasha, Bhimanagouda S Patil. Identification and Quantification of Phytochemicals, Antioxidant Activity, and Bile Acid-Binding Capacity of Garnet Stem Dandelion (Taraxacum officinale).
Journal of food science.
2018 Jun; 83(6):1569-1578. doi:
10.1111/1750-3841.14169
. [PMID: 29802721] - Lars Nichelmann, Wolfgang Bilger. Quantification of light screening by anthocyanins in leaves of Berberis thunbergii.
Planta.
2017 Dec; 246(6):1069-1082. doi:
10.1007/s00425-017-2752-2
. [PMID: 28801823] - Manuel J Llansola-Portoles, Radek Litvin, Cristian Ilioaia, Andrew A Pascal, David Bina, Bruno Robert. Pigment structure in the violaxanthin-chlorophyll-a-binding protein VCP.
Photosynthesis research.
2017 Oct; 134(1):51-58. doi:
10.1007/s11120-017-0407-6
. [PMID: 28677008] - Arianna C Chan-León, Humberto Estrella-Maldonado, Pascal Dubé, Gabriela Fuentes Ortiz, Francisco Espadas-Gil, Carlos Talavera May, Jorge Ramírez Prado, Yves Desjardins, Jorge M Santamaría. The high content of β-carotene present in orange-pulp fruits of Carica papaya L. is not correlated with a high expression of the CpLCY-β2 gene.
Food research international (Ottawa, Ont.).
2017 10; 100(Pt 2):45-56. doi:
10.1016/j.foodres.2017.08.017
. [PMID: 28888458] - Boris Zorin, Dipasmita Pal-Nath, Alexandr Lukyanov, Sviatlana Smolskaya, Sofiya Kolusheva, Shoshana Didi-Cohen, Sammy Boussiba, Zvi Cohen, Inna Khozin-Goldberg, Alexei Solovchenko. Arachidonic acid is important for efficient use of light by the microalga Lobosphaera incisa under chilling stress.
Biochimica et biophysica acta. Molecular and cell biology of lipids.
2017 Sep; 1862(9):853-868. doi:
10.1016/j.bbalip.2017.04.008
. [PMID: 28504210] - Ke Wang, Wenfeng Tu, Cheng Liu, Yan Rao, Zhimin Gao, Chunhong Yang. 9-cis-Neoxanthin in Light Harvesting Complexes of Photosystem II Regulates the Binding of Violaxanthin and Xanthophyll Cycle.
Plant physiology.
2017 May; 174(1):86-96. doi:
10.1104/pp.17.00029
. [PMID: 28320865] - Reimund Goss, Anne Greifenhagen, Juliane Bergner, Daniela Volke, Ralf Hoffmann, Christian Wilhelm, Susann Schaller-Laudel. Direct isolation of a functional violaxanthin cycle domain from thylakoid membranes of higher plants.
Planta.
2017 Apr; 245(4):793-806. doi:
10.1007/s00425-016-2645-9
. [PMID: 28025675] - Michiko Araki, Naoko Kaku, Momoko Harada, Yuka Ando, Risa Yamaguchi, Kazutoshi Shindo. Production of Auroxanthins from Violaxanthin and 9-cis-Violaxanthin by Acidic Treatment and the Antioxidant Activities of Violaxanthin, 9-cis-Violaxanthin, and Auroxanthins.
Journal of agricultural and food chemistry.
2016 Dec; 64(49):9352-9355. doi:
10.1021/acs.jafc.6b04506
. [PMID: 27960276] - Alberta Pinnola, Hristina Staleva-Musto, Stefano Capaldi, Matteo Ballottari, Roberto Bassi, Tomáš Polívka. Electron transfer between carotenoid and chlorophyll contributes to quenching in the LHCSR1 protein from Physcomitrella patens.
Biochimica et biophysica acta.
2016 12; 1857(12):1870-1878. doi:
10.1016/j.bbabio.2016.09.001
. [PMID: 27614061] - Manuel J Llansola-Portoles, Chiasa Uragami, Andrew A Pascal, David Bina, Radek Litvin, Bruno Robert. Pigment structure in the FCP-like light-harvesting complex from Chromera velia.
Biochimica et biophysica acta.
2016 11; 1857(11):1759-1765. doi:
10.1016/j.bbabio.2016.08.006
. [PMID: 27544823] - Lijie Zhong, Karl-Erik Gustavsson, Stina Oredsson, Bartosz Głąb, Jenny Lindberg Yilmaz, Marie E Olsson. Determination of free and esterified carotenoid composition in rose hip fruit by HPLC-DAD-APCI(+)-MS.
Food chemistry.
2016 Nov; 210(?):541-50. doi:
10.1016/j.foodchem.2016.05.002
. [PMID: 27211680] - Erik Ingmar Hallin, Kuo Guo, Hans-Erik Åkerlund. Functional and structural characterization of domain truncated violaxanthin de-epoxidase.
Physiologia plantarum.
2016 Aug; 157(4):414-21. doi:
10.1111/ppl.12428
. [PMID: 26864799] - Erik Ingmar Hallin, Mahmudul Hasan, Kuo Guo, Hans-Erik Åkerlund. Molecular studies on structural changes and oligomerisation of violaxanthin de-epoxidase associated with the pH-dependent activation.
Photosynthesis research.
2016 Jul; 129(1):29-41. doi:
10.1007/s11120-016-0261-y
. [PMID: 27116125] - Wojciech Grudzinski, Ewa Janik, Joanna Bednarska, Renata Welc, Monika Zubik, Karol Sowinski, Rafal Luchowski, Wieslaw I Gruszecki. Light-Driven Reconfiguration of a Xanthophyll Violaxanthin in the Photosynthetic Pigment-Protein Complex LHCII: A Resonance Raman Study.
The journal of physical chemistry. B.
2016 05; 120(19):4373-82. doi:
10.1021/acs.jpcb.6b01641
. [PMID: 27133785] - Lars Nichelmann, Matthias Schulze, Werner B Herppich, Wolfgang Bilger. A simple indicator for non-destructive estimation of the violaxanthin cycle pigment content in leaves.
Photosynthesis research.
2016 May; 128(2):183-93. doi:
10.1007/s11120-016-0218-1
. [PMID: 26803612] - Gürkan Keşan, Radek Litvín, David Bína, Milan Durchan, Václav Šlouf, Tomáš Polívka. Efficient light-harvesting using non-carbonyl carotenoids: Energy transfer dynamics in the VCP complex from Nannochloropsis oceanica.
Biochimica et biophysica acta.
2016 Apr; 1857(4):370-9. doi:
10.1016/j.bbabio.2015.12.011
. [PMID: 26744091] - Radek Kaňa, Eva Kotabová, Jana Kopečná, Eliška Trsková, Erica Belgio, Roman Sobotka, Alexander V Ruban. Violaxanthin inhibits nonphotochemical quenching in light-harvesting antenna of Chromera velia.
FEBS letters.
2016 04; 590(8):1076-85. doi:
10.1002/1873-3468.12130
. [PMID: 26988983] - Ewa Janik, Joanna Bednarska, Monika Zubik, Karol Sowinski, Rafal Luchowski, Wojciech Grudzinski, Dariusz Matosiuk, Wieslaw I Gruszecki. The xanthophyll cycle pigments, violaxanthin and zeaxanthin, modulate molecular organization of the photosynthetic antenna complex LHCII.
Archives of biochemistry and biophysics.
2016 Feb; 592(?):1-9. doi:
10.1016/j.abb.2016.01.003
. [PMID: 26773208] - Elodie Merlier, Gabriel Hmimina, Eric Dufrêne, Kamel Soudani. Explaining the variability of the photochemical reflectance index (PRI) at the canopy-scale: Disentangling the effects of phenological and physiological changes.
Journal of photochemistry and photobiology. B, Biology.
2015 Oct; 151(?):161-71. doi:
10.1016/j.jphotobiol.2015.08.006
. [PMID: 26295453] - Pengqi Xu, Lijin Tian, Miroslav Kloz, Roberta Croce. Molecular insights into Zeaxanthin-dependent quenching in higher plants.
Scientific reports.
2015 Sep; 5(?):13679. doi:
10.1038/srep13679
. [PMID: 26323786] - Jun Zhou, Lizhang Zeng, Jian Liu, Da Xing. Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to Sclerotinia sclerotiorum.
PLoS pathogens.
2015 May; 11(5):e1004878. doi:
10.1371/journal.ppat.1004878
. [PMID: 25993128] - Aušra Brazaitytė, Sandra Sakalauskienė, Giedrė Samuolienė, Julė Jankauskienė, Akvilė Viršilė, Algirdas Novičkovas, Ramūnas Sirtautas, Jurga Miliauskienė, Viktorija Vaštakaitė, Laurynas Dabašinskas, Pavelas Duchovskis. The effects of LED illumination spectra and intensity on carotenoid content in Brassicaceae microgreens.
Food chemistry.
2015 Apr; 173(?):600-6. doi:
10.1016/j.foodchem.2014.10.077
. [PMID: 25466065] - Chunfeng Guan, Jing Ji, Xuqiang Zhang, Xiaozhou Li, Chao Jin, Wenzhu Guan, Gang Wang. Positive feedback regulation of a Lycium chinense-derived VDE gene by drought-induced endogenous ABA, and over-expression of this VDE gene improve drought-induced photo-damage in Arabidopsis.
Journal of plant physiology.
2015 Mar; 175(?):26-36. doi:
10.1016/j.jplph.2014.06.022
. [PMID: 25460873] - Zhong Chen, Daniel R Gallie. Ethylene Regulates Energy-Dependent Non-Photochemical Quenching in Arabidopsis through Repression of the Xanthophyll Cycle.
PloS one.
2015; 10(12):e0144209. doi:
10.1371/journal.pone.0144209
. [PMID: 26630486] - Angela Rubio-Moraga, José Luis Rambla, Asun Fernández-de-Carmen, Almudena Trapero-Mozos, Oussama Ahrazem, Diego Orzáez, Antonio Granell, Lourdes Gómez-Gómez. New target carotenoids for CCD4 enzymes are revealed with the characterization of a novel stress-induced carotenoid cleavage dioxygenase gene from Crocus sativus.
Plant molecular biology.
2014 Nov; 86(4-5):555-69. doi:
10.1007/s11103-014-0250-5
. [PMID: 25204497] - Marcus Mann, Paul Hoppenz, Torsten Jakob, Wolfram Weisheit, Maria Mittag, Christian Wilhelm, Reimund Goss. Unusual features of the high light acclimation of Chromera velia.
Photosynthesis research.
2014 Nov; 122(2):159-69. doi:
10.1007/s11120-014-0019-3
. [PMID: 24906888] - Ming Ke Zhang, Mei Ping Zhang, Michael Mazourek, Yaakov Tadmor, Li Li. Regulatory control of carotenoid accumulation in winter squash during storage.
Planta.
2014 Nov; 240(5):1063-74. doi:
10.1007/s00425-014-2147-6
. [PMID: 25139277] - Xu Wei, Chunxian Chen, Qibin Yu, Antoine Gady, Yuan Yu, Guolu Liang, Frederick G Gmitter. Comparison of carotenoid accumulation and biosynthetic gene expression between Valencia and Rohde Red Valencia sweet oranges.
Plant science : an international journal of experimental plant biology.
2014 Oct; 227(?):28-36. doi:
10.1016/j.plantsci.2014.06.016
. [PMID: 25219303] - Hadar Neuman, Navot Galpaz, Francis X Cunningham, Dani Zamir, Joseph Hirschberg. The tomato mutation nxd1 reveals a gene necessary for neoxanthin biosynthesis and demonstrates that violaxanthin is a sufficient precursor for abscisic acid biosynthesis.
The Plant journal : for cell and molecular biology.
2014 Apr; 78(1):80-93. doi:
10.1111/tpj.12451
. [PMID: 24506237] - Rebeca Cruz, Teresa Gomes, Anabela Ferreira, Eulália Mendes, Paula Baptista, Sara Cunha, José Alberto Pereira, Elsa Ramalhosa, Susana Casal. Antioxidant activity and bioactive compounds of lettuce improved by espresso coffee residues.
Food chemistry.
2014 Feb; 145(?):95-101. doi:
10.1016/j.foodchem.2013.08.038
. [PMID: 24128454] - Rashidi Othman, Fatimah Azzahra Mohd Zaifuddin, Norazian Mohd Hassan. Carotenoid biosynthesis regulatory mechanisms in plants.
Journal of oleo science.
2014; 63(8):753-60. doi:
10.5650/jos.ess13183
. [PMID: 25017864] - Zhimin Gao, Qing Liu, Bo Zheng, Ying Chen. Molecular characterization and primary functional analysis of PeVDE, a violaxanthin de-epoxidase gene from bamboo (Phyllostachys edulis).
Plant cell reports.
2013 Sep; 32(9):1381-91. doi:
10.1007/s00299-013-1450-1
. [PMID: 23640082] - Alberta Pinnola, Luca Dall'Osto, Caterina Gerotto, Tomas Morosinotto, Roberto Bassi, Alessandro Alboresi. Zeaxanthin binds to light-harvesting complex stress-related protein to enhance nonphotochemical quenching in Physcomitrella patens.
The Plant cell.
2013 Sep; 25(9):3519-34. doi:
10.1105/tpc.113.114538
. [PMID: 24014548] - Carmela Rosaria Guadagno, Marina Della Greca, Amalia Virzo De Santo, Nicola D'Ambrosio. NMR (¹H) analysis of crude extracts detects light stress in Beta vulgaris and Spinacia oleracea leaves.
Photosynthesis research.
2013 Jul; 115(2-3):115-22. doi:
10.1007/s11120-013-9833-2
. [PMID: 23661197] - Beatriz Fernández-Marín, Ilse Kranner, María San Sebastián, Unai Artetxe, José Manuel Laza, José Luis Vilas, Hugh W Pritchard, Jayanthi Nadajaran, Fátima Míguez, José María Becerril, José Ignacio García-Plazaola. Evidence for the absence of enzymatic reactions in the glassy state. A case study of xanthophyll cycle pigments in the desiccation-tolerant moss Syntrichia ruralis.
Journal of experimental botany.
2013 Jul; 64(10):3033-43. doi:
10.1093/jxb/ert145
. [PMID: 23761488] - Patricia García-Herrera, María Cortes Sánchez-Mata, Montaña Cámara, Javier Tardío, Begoña Olmedilla-Alonso. Carotenoid content of wild edible young shoots traditionally consumed in Spain (Asparagus acutifolius L., Humulus lupulus L., Bryonia dioica Jacq. and Tamus communis L.).
Journal of the science of food and agriculture.
2013 May; 93(7):1692-8. doi:
10.1002/jsfa.5952
. [PMID: 23152306] - José Javier Peguero-Pina, Eustaquio Gil-Pelegrín, Fermín Morales. Three pools of zeaxanthin in Quercus coccifera leaves during light transitions with different roles in rapidly reversible photoprotective energy dissipation and photoprotection.
Journal of experimental botany.
2013 Apr; 64(6):1649-61. doi:
10.1093/jxb/ert024
. [PMID: 23390289] - F Ranalli, A Ranalli, S Contento, M Casanovas, M Antonucci, G Di Simone. Bioactives and nutraceutical phytochemicals naturally occurring in virgin olive oil. The case study of the Nocellara del Belice Italian olive cultivar.
Natural product research.
2013; 27(18):1686-90. doi:
10.1080/14786419.2012.762918
. [PMID: 23356880] - Xiujun Xie, Wenhui Gu, Shan Gao, Shan Lu, Jian Li, Guanghua Pan, Guangce Wang, Songdong Shen. Alternative electron transports participate in the maintenance of violaxanthin De-epoxidase activity of Ulva sp. under low irradiance.
PloS one.
2013; 8(11):e78211. doi:
10.1371/journal.pone.0078211
. [PMID: 24250793] - Ghazi Azzabi, Alberta Pinnola, Nico Betterle, Roberto Bassi, Alessandro Alboresi. Enhancement of non-photochemical quenching in the Bryophyte Physcomitrella patens during acclimation to salt and osmotic stress.
Plant & cell physiology.
2012 Oct; 53(10):1815-25. doi:
10.1093/pcp/pcs124
. [PMID: 22952250] - Susann Schaller, Christian Wilhelm, Kazimierz Strzałka, Reimund Goss. Investigating the interaction between the violaxanthin cycle enzyme zeaxanthin epoxidase and the thylakoid membrane.
Journal of photochemistry and photobiology. B, Biology.
2012 Sep; 114(?):119-25. doi:
10.1016/j.jphotobiol.2012.05.019
. [PMID: 22705077] - Baldo F Cordero, Inmaculada Couso, Rosa Leon, Herminia Rodriguez, Maria Angeles Vargas. Isolation and characterization of a lycopene ε-cyclase gene of Chlorella (Chromochloris) zofingiensis. Regulation of the carotenogenic pathway by nitrogen and light.
Marine drugs.
2012 Sep; 10(9):2069-2088. doi:
10.3390/md10092069
. [PMID: 23118722] - Zhong Chen, Daniel R Gallie. Violaxanthin de-epoxidase is rate-limiting for non-photochemical quenching under subsaturating light or during chilling in Arabidopsis.
Plant physiology and biochemistry : PPB.
2012 Sep; 58(?):66-82. doi:
10.1016/j.plaphy.2012.06.010
. [PMID: 22771437] - Inmaculada Couso, Baldo F Cordero, María Ángeles Vargas, Herminia Rodríguez. Efficient heterologous transformation of Chlamydomonas reinhardtii npq2 mutant with the zeaxanthin epoxidase gene isolated and characterized from Chlorella zofingiensis.
Marine drugs.
2012 Sep; 10(9):1955-1976. doi:
10.3390/md10091955
. [PMID: 23118714] - Korakot Nakkanong, Jing Hua Yang, Ming Fang Zhang. Carotenoid accumulation and carotenogenic gene expression during fruit development in novel interspecific inbred squash lines and their parents.
Journal of agricultural and food chemistry.
2012 Jun; 60(23):5936-44. doi:
10.1021/jf3007135
. [PMID: 22574777] - Ramón Aparicio-Ruiz, Beatriz Gandul-Rojas. Thermal degradation kinetics of neoxanthin, violaxanthin, and antheraxanthin in virgin olive oils.
Journal of agricultural and food chemistry.
2012 May; 60(20):5180-91. doi:
10.1021/jf300332m
. [PMID: 22509927] - Paulina Kuczyńska, Dariusz Latowski, Sylvia Niczyporuk, Monika Olchawa-Pajor, Peter Jahns, Wiesław I Gruszecki, Kazimierz Strzałka. Zeaxanthin epoxidation - an in vitro approach.
Acta biochimica Polonica.
2012; 59(1):105-7. doi:
. [PMID: 22428135]
- Dariusz Latowski, Reimund Goss, Monika Bojko, Kazimierz Strzałka. Violaxanthin and diadinoxanthin de-epoxidation in various model lipid systems.
Acta biochimica Polonica.
2012; 59(1):101-3. doi:
. [PMID: 22428134]
- Beatriz Fernández-Marín, Fátima Míguez, José María Becerril, José Ignacio García-Plazaola. Activation of violaxanthin cycle in darkness is a common response to different abiotic stresses: a case study in Pelvetia canaliculata.
BMC plant biology.
2011 Dec; 11(?):181. doi:
10.1186/1471-2229-11-181
. [PMID: 22269024] - Xiaoying Chen, Wei Li, Qingtao Lu, Xiaogang Wen, Hongwei Li, Tingyun Kuang, Zhensheng Li, Congming Lu. The xanthophyll cycle and antioxidative defense system are enhanced in the wheat hybrid subjected to high light stress.
Journal of plant physiology.
2011 Oct; 168(15):1828-36. doi:
10.1016/j.jplph.2011.05.019
. [PMID: 21737175] - Matthew P Johnson, Anthony P R Brain, Alexander V Ruban. Changes in thylakoid membrane thickness associated with the reorganization of photosystem II light harvesting complexes during photoprotective energy dissipation.
Plant signaling & behavior.
2011 Sep; 6(9):1386-90. doi:
10.4161/psb.6.9.16503
. [PMID: 21847016] - Shizue Matsubara, Yi-Chun Chen, Rosanna Caliandro, Govindjee, Robert M Clegg. Photosystem II fluorescence lifetime imaging in avocado leaves: contributions of the lutein-epoxide and violaxanthin cycles to fluorescence quenching.
Journal of photochemistry and photobiology. B, Biology.
2011 Jul; 104(1-2):271-84. doi:
10.1016/j.jphotobiol.2011.01.003
. [PMID: 21356597] - Ahmad Zia, Matthew P Johnson, Alexander V Ruban. Acclimation- and mutation-induced enhancement of PsbS levels affects the kinetics of non-photochemical quenching in Arabidopsis thaliana.
Planta.
2011 Jun; 233(6):1253-64. doi:
10.1007/s00425-011-1380-5
. [PMID: 21340700] - C N Kobori, L S Huber, C I G L Sarantópoulos, D B Rodriguez-Amaya. Behavior of flavonols and carotenoids of minimally processed kale leaves during storage in passive modified atmosphere packaging.
Journal of food science.
2011 Mar; 76(2):H31-7. doi:
10.1111/j.1750-3841.2010.01988.x
. [PMID: 21535764] - Giulia Bonente, Matteo Ballottari, Thuy B Truong, Tomas Morosinotto, Tae K Ahn, Graham R Fleming, Krishna K Niyogi, Roberto Bassi. Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii.
PLoS biology.
2011 Jan; 9(1):e1000577. doi:
10.1371/journal.pbio.1000577
. [PMID: 21267060] - Nico Betterle, Matteo Ballottari, Rainer Hienerwadel, Luca Dall'Osto, Roberto Bassi. Dynamics of zeaxanthin binding to the photosystem II monomeric antenna protein Lhcb6 (CP24) and modulation of its photoprotection properties.
Archives of biochemistry and biophysics.
2010 Dec; 504(1):67-77. doi:
10.1016/j.abb.2010.05.016
. [PMID: 20494647] - C D P Duffy, M P Johnson, M Macernis, L Valkunas, W Barford, A V Ruban. A theoretical investigation of the photophysical consequences of major plant light-harvesting complex aggregation within the photosynthetic membrane.
The journal of physical chemistry. B.
2010 Nov; 114(46):15244-53. doi:
10.1021/jp106234e
. [PMID: 20964339] - Reimund Goss, Torsten Jakob. Regulation and function of xanthophyll cycle-dependent photoprotection in algae.
Photosynthesis research.
2010 Nov; 106(1-2):103-22. doi:
10.1007/s11120-010-9536-x
. [PMID: 20224940] - Ewa Janik, Waldemar Maksymiec, Wiesław I Gruszecki. The photoprotective mechanisms in Secale cereale leaves under Cu and high light stress condition.
Journal of photochemistry and photobiology. B, Biology.
2010 Oct; 101(1):47-52. doi:
10.1016/j.jphotobiol.2010.06.010
. [PMID: 20655756] - Raquel Esteban, Beñat Olascoaga, José M Becerril, José I García-Plazaola. Insights into carotenoid dynamics in non-foliar photosynthetic tissues of avocado.
Physiologia plantarum.
2010 Sep; 140(1):69-78. doi:
10.1111/j.1399-3054.2010.01385.x
. [PMID: 20487377] - Petr Ilík, Eva Kotabová, Martina Spundová, Ondrej Novák, Radek Kana, Kazimierz Strzałka. Low-light-induced violaxanthin de-epoxidation in shortly preheated leaves: uncoupling from Delta pH-dependent nonphotochemical quenching.
Photochemistry and photobiology.
2010 May; 86(3):722-6. doi:
10.1111/j.1751-1097.2009.00699.x
. [PMID: 20132510] - Susann Schaller, Dariusz Latowski, Małgorzata Jemioła-Rzemińska, Christian Wilhelm, Kazimierz Strzałka, Reimund Goss. The main thylakoid membrane lipid monogalactosyldiacylglycerol (MGDG) promotes the de-epoxidation of violaxanthin associated with the light-harvesting complex of photosystem II (LHCII).
Biochimica et biophysica acta.
2010 Mar; 1797(3):414-24. doi:
10.1016/j.bbabio.2009.12.011
. [PMID: 20035710] - Andrzej Kornas, Elke Fischer-Schliebs, Ulrich Lüttge, Zbigniew Miszalski. Adaptation of the obligate CAM plant Clusia alata to light stress: Metabolic responses.
Journal of plant physiology.
2009 Nov; 166(17):1914-22. doi:
10.1016/j.jplph.2009.06.005
. [PMID: 19592134] - Juan Carlos Melgar, Lucia Guidi, Damiano Remorini, Giovanni Agati, Elena Degl'innocenti, Silvana Castelli, Maria Camilla Baratto, Cecilia Faraloni, Massimiliano Tattini. Antioxidant defences and oxidative damage in salt-treated olive plants under contrasting sunlight irradiance.
Tree physiology.
2009 Sep; 29(9):1187-98. doi:
10.1093/treephys/tpp047
. [PMID: 19608597]