Kaempferitrin (BioDeep_00000000294)

Main id: BioDeep_00000400286

Secondary id: BioDeep_00000270398

human metabolite PANOMIX_OTCML-2023 natural product


代谢物信息卡片


7-((6-deoxy-alpha-L-mannopyranosyl)oxy)-5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-1-benzopyran-3-yl 6-deoxy-alpha-L-mannopyranoside

化学式: C27H30O14 (578.1635)
中文名称: 山奈苷
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: c1(cc(c2c(c1)oc(c(c2=O)O[C@@H]1O[C@H]([C@@H]([C@H]([C@@H]1O)O)O)C)c1ccc(cc1)O)O)O[C@H]1[C@H]([C@H]([C@H]([C@@H](O1)C)O)O)O
InChI: InChI=1S/C27H30O14/c1-9-17(30)20(33)22(35)26(37-9)39-13-7-14(29)16-15(8-13)40-24(11-3-5-12(28)6-4-11)25(19(16)32)41-27-23(36)21(34)18(31)10(2)38-27/h3-10,17-18,20-23,26-31,33-36H,1-2H3/t9-,10-,17-,18-,20+,21+,22+,23+,26-,27-/m0/s1

描述信息

Kaempferol 3,7-di-O-alpha-L-rhamnoside is a glycosyloxyflavone that is kaempferol attached to alpha-L-rhamnopyranosyl residues at positions 3 and 7 respectively via glycosidic linkages. It has been isolated from the aerial parts of Vicia faba and Lotus edulis. It has a role as a bone density conservation agent, a hypoglycemic agent, an immunomodulator, an anti-inflammatory agent, an antineoplastic agent, a plant metabolite, an apoptosis inducer and an antidepressant. It is an alpha-L-rhamnoside, a monosaccharide derivative, a dihydroxyflavone, a glycosyloxyflavone and a polyphenol. It is functionally related to a kaempferol.
Kaempferitrin is a natural product found in Ficus septica, Cleome amblyocarpa, and other organisms with data available.
See also: Selenicereus grandiflorus stem (part of).
A glycosyloxyflavone that is kaempferol attached to alpha-L-rhamnopyranosyl residues at positions 3 and 7 respectively via glycosidic linkages. It has been isolated from the aerial parts of Vicia faba and Lotus edulis.
Kaempferitrin is found in linden. Kaempferitrin is a chemical compound. It can be isolated from the leaves of Hedyotis verticillata.
Kaempferitrin is a natural flavonoid, possesses antinociceptive, anti-inflammatory, anti-diabetic, antitumoral and chemopreventive effects, and activates insulin signaling pathway.
Kaempferitrin is a natural flavonoid, possesses antinociceptive, anti-inflammatory, anti-diabetic, antitumoral and chemopreventive effects, and activates insulin signaling pathway.

同义名列表

62 个代谢物同义名

7-((6-deoxy-alpha-L-mannopyranosyl)oxy)-5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-1-benzopyran-3-yl 6-deoxy-alpha-L-mannopyranoside; 5-Hydroxy-2-(4-hydroxyphenyl)-3,7-bis(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one; 3-[(6-deoxy-alpha-L-mannopyranosyl)oxy]-5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-7-yl 6-deoxy-alpha-L-mannopyranoside; 3-((6-deoxy-alpha-L-mannopyranosyl)oxy)-5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-7-yl 6-deoxy-alpha-L-mannopyranoside; 5-hydroxy-2-(4-hydroxyphenyl)-3,7-bis({[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy})-4H-chromen-4-one; 5-hydroxy-2-(4-hydroxyphenyl)-3,7-bis[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy]chromen-4-one; 4H-1-BENZOPYRAN-4-ONE, 3,7-BIS((6-DEOXY-.ALPHA.-L-MANNOPYRANOSYL)OXY)-5-HYDROXY-2-(4-HYDROXYPHENYL)-; 4H-1-Benzopyran-4-one, 3,7-bis((6-deoxy-alpha-L-mannopyranosyl)oxy)-5-hydroxy-2-(4-hydroxyphenyl)-; 3,7-Bis((6-deoxy-alpha-L-mannopyranosyl)oxy)-5-hydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one; 3,7-Bis((6-deoxy-a-L-mannopyranosyl)oxy)-5-hydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one; 3,7-Bis((6-deoxy-α-L-mannopyranosyl)oxy)-5-hydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one; 3,7-bis-(alpha-6-deoxymannopyranosyloxy)-5-hydroxy-2-(4-hydroxyphenyl)chromen-4-one; kaempferol-3-O-alpha-L-rhamnopyranoside-7-O-alpha-L-rhamnopyranoside; Kaempferol 3-O-alpha-L-rhamnopyranoside 7-O-alpha-L-rhamnopyranoside; kaempferol 3-O-alpha-L-rhamnopyranosyl-7-O-alpha-L-rhamnopyranoside; Kaempferol 3-O-α-L-rhamnopyranoside 7-O-α-L-rhamnopyranoside; Kaempferol 3-O-a-L-rhamnopyranosyl-7-O-a-L-rhamnopyranoside; Kaempferol 3-O-α-L-rhamnopyranosyl-7-O-α-L-rhamnopyranoside; 3,4’,5,7-Tetrahydroxyflavone 3,7-dirhamnoside; 3,4,5,7-Tetrahydroxyflavone 3,7-dirhamnoside; 4-18-00-03292 (Beilstein Handbook Reference); Kaempferol 3,7-di-O-alpha-L-rhamnopyranoside; Kaempferol 3,7-di-O-alpha-rhamnopyranoside; Kaempferol 3,7-di-alpha-L-rhamnopyranoside; Kaempferol 3-O-rhamnoside 7-O-rhamnoside; Kaempferol 3,7-di-O-α-L-rhamnopyranoside; kaempferol-3,7-bis-O-alpha-L-rhamnoside; kaempferol 3,7-di-O-alpha-L-rhamnoside; Kaempferol 3,7-di-α-L-rhamnopyranoside; kaempferol-3,7-O-(alpha)-dirhamnoside; Kaempferol 3,7-O-alpha-L-dirhamnoside; kaempferol-3,7-O-alpha-L-dirhamnoside; Kaempferol 3,7-di-alpha-L-rhamnoside; Kaempferol 3,7-di-O-rhamnopyranoside; Kaempferol 3,7-di-O-α-L-rhamnoside; Kaempferol 3,7-di-O-a-L-rhamnoside; Kaempferol-3,7-O-a-L-dirhamnoside; Kaempferol-3,7-O-α-L-dirhamnoside; Kaempferol 3,7-O-α-L-dirhamnoside; Kaempferol 3,7-di-α-L-rhamnoside; KAEMPFEROL 3,7-DIRHAMNOSIDE [MI]; Kaempferol 3,7-di-O-rhamnoside; Kaempferol 3,7-bisrhamnoside; Kaempferitrin, >=97\\% (NMR); kaempferol 3,7-dirhamnoside; kaempferol-3,7-dirhamnoside; Kaempferol-3,7-O-dirhamnose; Kaempferol-dirhamnoside; LESPEDIN [WHO-DD]; Grosvenorine II; UNII-VPV01U3R59; Karempferitrin; Kaempferitrin; MEGxp0_000567; Lespenephryl; lespenephril; ACon1_000073; KAEMFERITRIN; lespenefril; VPV01U3R59; Lespedin; Kaempferitrin



数据库引用编号

26 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

3 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(3)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

336 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 6 AKT1, ANXA5, IRS1, MAPK14, MTOR, PIK3C3
Peripheral membrane protein 4 ANXA5, CYP27A1, GORASP1, MTOR
Endosome membrane 1 INSR
Endoplasmic reticulum membrane 1 MTOR
Mitochondrion membrane 1 CYP27A1
Cytoplasmic vesicle, autophagosome 1 PIK3C3
Nucleus 5 AKT1, IRS1, MAPK14, MPO, MTOR
autophagosome 1 PIK3C3
cytosol 8 AKT1, ANXA5, GPT, IRS1, MAPK14, MTOR, PIK3C3, SLC2A4
dendrite 2 HTR1A, MTOR
phagocytic vesicle 1 MTOR
phosphatidylinositol 3-kinase complex, class III 1 PIK3C3
trans-Golgi network 1 SLC2A4
nucleoplasm 5 AKT1, IRS1, MAPK14, MPO, MTOR
Cell membrane 6 AKT1, CD19, HTR1A, INSR, SLC2A4, TNF
Cytoplasmic side 2 GORASP1, MTOR
lamellipodium 1 AKT1
Multi-pass membrane protein 2 HTR1A, SLC2A4
Golgi apparatus membrane 2 GORASP1, MTOR
Synapse 1 HTR1A
cell cortex 1 AKT1
cell surface 3 ADIPOQ, KLRB1, TNF
glutamatergic synapse 3 AKT1, MAPK14, PIK3C3
Golgi apparatus 1 GORASP1
Golgi membrane 3 GORASP1, INS, MTOR
lysosomal membrane 1 MTOR
mitochondrial inner membrane 1 CYP27A1
neuronal cell body 1 TNF
postsynapse 1 AKT1
sarcolemma 2 ANXA5, SLC2A4
Lysosome 3 INSR, MPO, MTOR
Presynapse 1 SLC2A4
endosome 1 PIK3C3
plasma membrane 9 AKT1, CD19, HTR1A, IFNLR1, INSR, IRS1, KLRB1, SLC2A4, TNF
Membrane 9 AKT1, ANXA5, CD19, IFNLR1, INSR, KLRB1, MTOR, PIK3C3, SLC2A4
axon 1 INSR
caveola 2 INSR, IRS1
extracellular exosome 6 ANXA5, CD19, GPT, INSR, MPO, SLC2A4
Lysosome membrane 1 MTOR
endoplasmic reticulum 1 ADIPOQ
extracellular space 5 ADIPOQ, IL6, INS, MPO, TNF
perinuclear region of cytoplasm 1 SLC2A4
mitochondrion 2 CYP27A1, MAPK14
protein-containing complex 2 AKT1, CD19
intracellular membrane-bounded organelle 2 IRS1, MPO
Microsome membrane 1 MTOR
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 3 CD19, IFNLR1, INSR
Secreted 3 ADIPOQ, IL6, INS
extracellular region 7 ADIPOQ, ANXA5, IL6, INS, MAPK14, MPO, TNF
Mitochondrion outer membrane 1 MTOR
mitochondrial outer membrane 1 MTOR
neuronal cell body membrane 1 INSR
mitochondrial matrix 1 CYP27A1
external side of plasma membrane 5 ANXA5, CD19, INSR, SLC2A4, TNF
multivesicular body 1 SLC2A4
T-tubule 1 SLC2A4
microtubule cytoskeleton 1 AKT1
midbody 1 PIK3C3
cell-cell junction 1 AKT1
clathrin-coated pit 1 SLC2A4
recycling endosome 1 TNF
Single-pass type II membrane protein 2 KLRB1, TNF
vesicle 1 AKT1
Cytoplasm, perinuclear region 1 SLC2A4
Mitochondrion inner membrane 1 CYP27A1
Membrane raft 3 CD19, SLC2A4, TNF
focal adhesion 1 ANXA5
spindle 1 AKT1
GABA-ergic synapse 1 PIK3C3
cis-Golgi network 1 GORASP1
Peroxisome 1 PIK3C3
collagen trimer 1 ADIPOQ
sarcoplasmic reticulum 1 SLC2A4
Nucleus, PML body 1 MTOR
PML body 1 MTOR
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
collagen-containing extracellular matrix 2 ADIPOQ, ANXA5
secretory granule 1 MPO
axoneme 1 PIK3C3
nuclear speck 1 MAPK14
Late endosome 2 INSR, PIK3C3
receptor complex 1 INSR
Zymogen granule membrane 1 ANXA5
ciliary basal body 1 AKT1
phagocytic cup 1 TNF
phagocytic vesicle membrane 1 PIK3C3
spindle pole 1 MAPK14
nuclear envelope 1 MTOR
Endomembrane system 2 MTOR, SLC2A4
endosome lumen 1 INS
phagophore assembly site 1 PIK3C3
phosphatidylinositol 3-kinase complex, class III, type I 1 PIK3C3
phosphatidylinositol 3-kinase complex, class III, type II 1 PIK3C3
Cytoplasmic vesicle membrane 1 SLC2A4
Cell projection, dendrite 1 HTR1A
azurophil granule 1 MPO
clathrin-coated vesicle 1 SLC2A4
trans-Golgi network transport vesicle 1 SLC2A4
ficolin-1-rich granule lumen 1 MAPK14
secretory granule lumen 2 INS, MAPK14
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 IL6, INS
transport vesicle 1 INS
azurophil granule lumen 1 MPO
Endoplasmic reticulum-Golgi intermediate compartment membrane 2 GORASP1, INS
presynaptic endosome 1 PIK3C3
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
vesicle membrane 2 ANXA5, SLC2A4
phagocytic vesicle lumen 1 MPO
dendrite membrane 1 INSR
Cytoplasmic vesicle, phagosome 1 MTOR
postsynaptic endosome 1 PIK3C3
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
Autolysosome 1 PIK3C3
interleukin-6 receptor complex 1 IL6
insulin receptor complex 2 INSR, IRS1
endothelial microparticle 1 ANXA5
insulin-responsive compartment 1 SLC2A4
interleukin-28 receptor complex 1 IFNLR1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Min Su, Zhimin Li, Siyu Zhou, Hong Zhang, Ying Xiao, Wei Li, Hongli Shang, Jiao Li. Kaempferitrin, a major compound from ethanol extract of Chenopodium ambrosioides, exerts antitumour and hepatoprotective effects in the mice model of human liver cancer xenografts. The Journal of pharmacy and pharmacology. 2023 May; ?(?):. doi: 10.1093/jpp/rgad046. [PMID: 37203217]
  • Zhen Li, Qiang Huang, Yu Zheng, Yong Zhang, Bin Liu, Wenkai Shi, Zhijiang Zeng. Kaempferitrin: A Flavonoid Marker to Distinguish Camellia oleifera Honey. Nutrients. 2023 Jan; 15(2):. doi: 10.3390/nu15020435. [PMID: 36678306]
  • Bhanuvalli R Shamprasad, Robert Lotha, Saisubramanian Nagarajan, Arvind Sivasubramanian. Metal nanoparticles functionalized with nutraceutical Kaempferitrin from edible Crotalaria juncea, exert potent antimicrobial and antibiofilm effects against Methicillin-resistant Staphylococcus aureus. Scientific reports. 2022 04; 12(1):7061. doi: 10.1038/s41598-022-11004-2. [PMID: 35487931]
  • Danuta Jantas, Janusz Malarz, Thanh Nguyen Le, Anna Stojakowska. Neuroprotective Properties of Kempferol Derivatives from Maesa membranacea against Oxidative Stress-Induced Cell Damage: An Association with Cathepsin D Inhibition and PI3K/Akt Activation. International journal of molecular sciences. 2021 Sep; 22(19):. doi: 10.3390/ijms221910363. [PMID: 34638702]
  • Wei-Chi Ku, Badrinathan Sridharan, Jiann-Yeu Chen, Jen-Ying Li, Shu-Yu Yang, Meng-Jen Lee. Kaempferitrin-Treated HepG2 Differentially Expressed Exosomal Markers and Affect Extracellular Vesicle Sizes in the Secretome. Biomolecules. 2021 01; 11(2):. doi: 10.3390/biom11020187. [PMID: 33572893]
  • Dinesh Kumar Patel. Pharmacological Activities and Therapeutic Potential of Kaempferitrin in Medicine for the Treatment of Human Disorders: A Review of Medicinal Importance and Health Benefits. Cardiovascular & hematological disorders drug targets. 2021; 21(2):104-114. doi: 10.2174/1871529x21666210812111931. [PMID: 34387174]
  • Camile Cecconi Cechinel-Zanchett, Rita de Cássia Melo Vilhena de Andrade Fonseca da Silva, Adrielli Tenfen, Diogo Alexandre Siebert, Gustavo Micke, Luciano Vitali, Valdir Cechinel-Filho, Sérgio Faloni de Andrade, Priscila de Souza. Bauhinia forficata link, a Brazilian medicinal plant traditionally used to treat cardiovascular disorders, exerts endothelium-dependent and independent vasorelaxation in thoracic aorta of normotensive and hypertensive rats. Journal of ethnopharmacology. 2019 Oct; 243(?):112118. doi: 10.1016/j.jep.2019.112118. [PMID: 31351191]
  • Júlia Harumi Iyda, Ângela Fernandes, Flávio Dias Ferreira, Maria José Alves, Tânia C S P Pires, Lillian Barros, Joana S Amaral, Isabel C F R Ferreira. Chemical composition and bioactive properties of the wild edible plant Raphanus raphanistrum L. Food research international (Ottawa, Ont.). 2019 07; 121(?):714-722. doi: 10.1016/j.foodres.2018.12.046. [PMID: 31108800]
  • Wei-Chi Ku, Yi-Ling Chang, Sheng-Fa Wu, Hui-Nung Shih, Yew-Min Tzeng, Hui-Ru Kuo, Kai-Ming Chang, Dinesh Chandra Agrawal, Bing-Lan Liu, Chin-An Chang, Siendong Huang, Meng-Jen Lee. A comparative proteomic study of secretomes in kaempferitrin-treated CTX TNA2 astrocytic cells. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2017 Dec; 36(?):137-144. doi: 10.1016/j.phymed.2017.09.015. [PMID: 29157807]
  • Tan Phat Nguyen, Cong Luan Tran, Chi Hung Vuong, Thi Hong Tuoi Do, Tien Dung Le, Dinh Tri Mai, Nhat Minh Phan. Flavonoids with hepatoprotective activity from the leaves of Cleome viscosa L. Natural product research. 2017 Nov; 31(22):2587-2592. doi: 10.1080/14786419.2017.1283497. [PMID: 28135851]
  • Priscila de Souza, Luisa Mota da Silva, Thaise Boeing, Lincon Bordignon Somensi, Camile Cecconi Cechinel-Zanchett, Adriana Campos, Clarissa de Medeiros Amorim Krueger, Jairo Kenupp Bastos, Valdir Cechinel-Filho, Sérgio Faloni de Andrade. Influence of Prostanoids in the Diuretic and Natriuretic Effects of Extracts and Kaempferitrin from Bauhinia forficata Link Leaves in Rats. Phytotherapy research : PTR. 2017 Oct; 31(10):1521-1528. doi: 10.1002/ptr.5876. [PMID: 28752576]
  • Ma Eva González-Trujano, Fabiola Domínguez, Gimena Pérez-Ortega, Miguel Aguillón, David Martínez-Vargas, Salvador Almazán-Alvarado, Adrián Martínez. Justicia spicigera Schltdl. and kaempferitrin as potential anticonvulsant natural products. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2017 Aug; 92(?):240-248. doi: 10.1016/j.biopha.2017.05.075. [PMID: 28551543]
  • Nawaporn Onkokesung, Michael Reichelt, Arjen van Doorn, Robert C Schuurink, Marcel Dicke. Differential Costs of Two Distinct Resistance Mechanisms Induced by Different Herbivore Species in Arabidopsis. Plant physiology. 2016 Feb; 170(2):891-906. doi: 10.1104/pp.15.01780. [PMID: 26603653]
  • Xue-Qin Ma, Ting Han, Xia Zhang, Jin-Zhong Wu, Khalid Rahman, Lu-Ping Qin, Cheng-Jian Zheng. Kaempferitrin prevents bone lost in ovariectomized rats. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2015 Dec; 22(13):1159-62. doi: 10.1016/j.phymed.2015.09.003. [PMID: 26598914]
  • Julia Cassani, Ana María Dorantes-Barrón, Lilian Mayagoitia Novales, Guadalupe Alva Real, Rosa Estrada-Reyes. Anti-depressant-like effect of kaempferitrin isolated from Justicia spicigera Schltdl (Acanthaceae) in two behavior models in mice: evidence for the involvement of the serotonergic system. Molecules (Basel, Switzerland). 2014 Dec; 19(12):21442-61. doi: 10.3390/molecules191221442. [PMID: 25532842]
  • Shicheng Zhao, Xiaohua Li, Dong Ha Cho, Mariadhas Valan Arasu, Naif Abdullah Al-Dhabi, Sang Un Park. Accumulation of kaempferitrin and expression of phenyl-propanoid biosynthetic genes in kenaf (Hibiscus cannabinus). Molecules (Basel, Switzerland). 2014 Oct; 19(10):16987-97. doi: 10.3390/molecules191016987. [PMID: 25342553]
  • Daniel Da Silva, Livia Marques Casanova, Mariah Celestino Marcondes, Jair Machado Espindola-Netto, Larissa Pereira Paixão, Giany Oliveira De Melo, Patricia Zancan, Mauro Sola-Penna, Sônia Soares Costa. Antidiabetic activity of Sedum dendroideum: metabolic enzymes as putative targets for the bioactive flavonoid kaempferitrin. IUBMB life. 2014 May; 66(5):361-70. doi: 10.1002/iub.1270. [PMID: 24817132]
  • Nawaporn Onkokesung, Michael Reichelt, Arjen van Doorn, Robert C Schuurink, Joop J A van Loon, Marcel Dicke. Modulation of flavonoid metabolites in Arabidopsis thaliana through overexpression of the MYB75 transcription factor: role of kaempferol-3,7-dirhamnoside in resistance to the specialist insect herbivore Pieris brassicae. Journal of experimental botany. 2014 May; 65(8):2203-17. doi: 10.1093/jxb/eru096. [PMID: 24619996]
  • Bing Jiang, Cheng Chi, Yao-wu Fu, Qi-zhong Zhang, Gao-xue Wang. In vivo anthelmintic effect of flavonol rhamnosides from Dryopteris crassirhizoma against Dactylogyrus intermedius in goldfish (Carassius auratus). Parasitology research. 2013 Dec; 112(12):4097-104. doi: 10.1007/s00436-013-3600-3. [PMID: 24013342]
  • Maria Del Carmen Juárez-Vázquez, Angel Josabad Alonso-Castro, Alejandro García-Carrancá. Kaempferitrin induces immunostimulatory effects in vitro. Journal of ethnopharmacology. 2013 Jun; 148(1):337-40. doi: 10.1016/j.jep.2013.03.072. [PMID: 23588095]
  • Rolffy Ortiz-Andrade, Angel Cabañas-Wuan, Víctor E Arana-Argáez, Angel Josabad Alonso-Castro, Rocio Zapata-Bustos, Luis A Salazar-Olivo, Fabiola Domínguez, Marco Chávez, Candy Carranza-Álvarez, Alejandro García-Carrancá. Antidiabetic effects of Justicia spicigera Schltdl (Acanthaceae). Journal of ethnopharmacology. 2012 Sep; 143(2):455-62. doi: 10.1016/j.jep.2012.06.043. [PMID: 22819688]
  • Ting-Yu Lin, Jiunn-Wang Liao, Shang-Tzen Chang, Sheng-Yang Wang. Antidyslipidemic activity of hot-water extracts from leaves of Cinnamomum osmophloeum Kaneh. Phytotherapy research : PTR. 2011 Sep; 25(9):1317-22. doi: 10.1002/ptr.3408. [PMID: 21308822]
  • Chia-Lin Lee, Yung-Chih Liao, Tsong-Long Hwang, Chin-Chung Wu, Fang-Rong Chang, Yang-Chang Wu. Ixorapeptide I and ixorapeptide II, bioactive peptides isolated from Ixora coccinea. Bioorganic & medicinal chemistry letters. 2010 Dec; 20(24):7354-7. doi: 10.1016/j.bmcl.2010.10.058. [PMID: 21106454]
  • Ho Sik Rho, Soo Mi Ahn, Bum Chun Lee, Myung Kyoo Kim, Amal Kumar Ghimeray, Cheng Wu Jin, Dong Ha Cho. Changes in flavonoid content and tyrosinase inhibitory activity in kenaf leaf extract after far-infrared treatment. Bioorganic & medicinal chemistry letters. 2010 Dec; 20(24):7534-6. doi: 10.1016/j.bmcl.2010.09.082. [PMID: 21050756]
  • Yu Zhang, Ting-Ting Zhang. Studies on the chemical constituents from the stem and leaves of Tagetes erecta. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2010 Sep; 33(9):1412-4. doi: . [PMID: 21235096]
  • Luisa Helena Cazarolli, Leila Zanatta, Ana Paula Jorge, Eliandra de Sousa, Heros Horst, Viviane Mara Woehl, Moacir Geraldo Pizzolatti, Bruno Szpoganicz, Fátima Regina Mena Barreto Silva. Follow-up studies on glycosylated flavonoids and their complexes with vanadium: their anti-hyperglycemic potential role in diabetes. Chemico-biological interactions. 2006 Nov; 163(3):177-91. doi: 10.1016/j.cbi.2006.07.010. [PMID: 16963010]
  • Thiátira S D B Pinheiro, Loana A P Johansson, Moacir G Pizzolatti, Maique W Biavatti. Comparative assessment of kaempferitrin from medicinal extracts of Bauhinia forficata link. Journal of pharmaceutical and biomedical analysis. 2006 May; 41(2):431-6. doi: 10.1016/j.jpba.2005.12.010. [PMID: 16423486]
  • Ana Paula Jorge, Heros Horst, Eliandra de Sousa, Moacir Geraldo Pizzolatti, Fátima Regina Mena Barreto Silva. Insulinomimetic effects of kaempferitrin on glycaemia and on 14C-glucose uptake in rat soleus muscle. Chemico-biological interactions. 2004 Oct; 149(2-3):89-96. doi: 10.1016/j.cbi.2004.07.001. [PMID: 15501431]
  • Eliandra de Sousa, Leila Zanatta, Ilana Seifriz, Tânia Beatriz Creczynski-Pasa, Moacir Geraldo Pizzolatti, Bruno Szpoganicz, Fátima Regina Mena Barreto Silva. Hypoglycemic effect and antioxidant potential of kaempferol-3,7-O-(alpha)-dirhamnoside from Bauhinia forficata leaves. Journal of natural products. 2004 May; 67(5):829-32. doi: 10.1021/np030513u. [PMID: 15165145]
  • K L da Silva, M W Biavatti, S N Leite, R A Yunes, F Delle Monache, V Cechinel Filho. Phytochemical and pharmacognositc investigation of Bauhinia forficata Link (Leguminosae). Zeitschrift fur Naturforschung. C, Journal of biosciences. 2000 May; 55(5-6):478-80. doi: 10.1515/znc-2000-5-627. [PMID: 10928563]
  • W Yan, Y Fu, Y Ma, Y Li, X Zhang, F Xin. [Studies on flavones of Epimedium bevicorum Maxim]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 1998 Dec; 23(12):735-6, 764. doi: ". [PMID: 12242823]
  • I B Kulagin. [A case of acute renal failure after rifampicin use]. Klinicheskaia meditsina. 1994; 72(2):70-1. doi: NULL. [PMID: 8015255]
  • I Lambev, K Simeonova, L Sedmakova, I Krushkov, D Dimitrov. [Therapeutic activity of nephroton, lespenefril and furosemide in experimental azotemia]. Eksperimentalna meditsina i morfologiia. 1985; 24(4):27-35. doi: NULL. [PMID: 3833521]
  • I Lambev, K Simeonova, I Krushkov, M Leseva, A Georgiev. [Comparative study of the antihyperazotemic activity of the phytopreparations nephroton, canephron and lespenephril]. Eksperimentalna meditsina i morfologiia. 1984; 23(2):91-6. doi: NULL. [PMID: 6468335]
  • I Lambev. [Diuretic, antihyperazotemic and antiexudative activity of fresh and stored nephroton]. Eksperimentalna meditsina i morfologiia. 1984; 23(4):210-5. doi: ". [PMID: 6525974]