NCBI Taxonomy: 1522775

Thulinella chrysantha (ncbi_taxid: 1522775)

found 164 associated metabolites at species taxonomy rank level.

Ancestor: Thulinella

Child Taxonomies: none taxonomy data.

Chrysosplenetin

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,6,7-trimethoxy-

C19H18O8 (374.1001628)


Chrysosplenetin, also known as quercetagetin 3,6,7,3-tetramethyl ether or 3,6,7,3-tetra-methylquercetagetin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, chrysosplenetin is considered to be a flavonoid lipid molecule. Chrysosplenetin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Chrysosplenetin can be found in german camomile, which makes chrysosplenetin a potential biomarker for the consumption of this food product. Chrysosplenetin is an O-methylated flavonol. It can be found in the root of Berneuxia thibetica and in Chamomilla recutita . Chrysosplenetin is a tetramethoxyflavone that is the 3,6,7,3-tetramethyl ether derivative of quercetagetin. It has a role as an antiviral agent and a plant metabolite. It is a tetramethoxyflavone and a dihydroxyflavone. It is functionally related to a quercetagetin. Chrysosplenetin is a natural product found in Haplophyllum myrtifolium, Cleome amblyocarpa, and other organisms with data available. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1]. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1].

   

Kaempferitrin

7-((6-deoxy-alpha-L-mannopyranosyl)oxy)-5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-1-benzopyran-3-yl 6-deoxy-alpha-L-mannopyranoside

C27H30O14 (578.163548)


Kaempferol 3,7-di-O-alpha-L-rhamnoside is a glycosyloxyflavone that is kaempferol attached to alpha-L-rhamnopyranosyl residues at positions 3 and 7 respectively via glycosidic linkages. It has been isolated from the aerial parts of Vicia faba and Lotus edulis. It has a role as a bone density conservation agent, a hypoglycemic agent, an immunomodulator, an anti-inflammatory agent, an antineoplastic agent, a plant metabolite, an apoptosis inducer and an antidepressant. It is an alpha-L-rhamnoside, a monosaccharide derivative, a dihydroxyflavone, a glycosyloxyflavone and a polyphenol. It is functionally related to a kaempferol. Kaempferitrin is a natural product found in Ficus septica, Cleome amblyocarpa, and other organisms with data available. See also: Selenicereus grandiflorus stem (part of). A glycosyloxyflavone that is kaempferol attached to alpha-L-rhamnopyranosyl residues at positions 3 and 7 respectively via glycosidic linkages. It has been isolated from the aerial parts of Vicia faba and Lotus edulis. Kaempferitrin is found in linden. Kaempferitrin is a chemical compound. It can be isolated from the leaves of Hedyotis verticillata. Kaempferitrin is a natural flavonoid, possesses antinociceptive, anti-inflammatory, anti-diabetic, antitumoral and chemopreventive effects, and activates insulin signaling pathway. Kaempferitrin is a natural flavonoid, possesses antinociceptive, anti-inflammatory, anti-diabetic, antitumoral and chemopreventive effects, and activates insulin signaling pathway.

   

Beta-eudesmol

2-Naphthalenemethanol, 1,2.alpha.,3,4,4a,5,6,7,8,8a.alpha.-decahydro-.alpha.,.alpha.,4a.beta.-trimethyl-8-methylene-

C15H26O (222.1983546)


Beta-eudesmol is a carbobicyclic compound that is trans-decalin substituted at positions 2, 4a, and 8 by 2-hydroxypropan-2-yl, methyl and methylidene groups, respectively (the 2R,4aR,8aS-diastereoisomer). It has a role as a volatile oil component. It is a carbobicyclic compound, a tertiary alcohol and a eudesmane sesquiterpenoid. beta-Eudesmol is a natural product found in Rhododendron calostrotum, Rhododendron lepidotum, and other organisms with data available. See also: Arctium lappa Root (part of); Cannabis sativa subsp. indica top (part of); Pterocarpus marsupium wood (part of). A carbobicyclic compound that is trans-decalin substituted at positions 2, 4a, and 8 by 2-hydroxypropan-2-yl, methyl and methylidene groups, respectively (the 2R,4aR,8aS-diastereoisomer). Beta-Eudesmol is a natural oxygenated sesquiterpene, activates hTRPA1, with an EC50 of 32.5 μM. Beta-Eudesmol increases appetite through TRPA1[1]. Beta-Eudesmol is a natural oxygenated sesquiterpene, activates hTRPA1, with an EC50 of 32.5 μM. Beta-Eudesmol increases appetite through TRPA1[1].

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

beta-Sitosterol 3-O-beta-D-galactopyranoside

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.4389659999999)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. beta-Sitosterol 3-O-beta-D-galactopyranoside is found in herbs and spices. beta-Sitosterol 3-O-beta-D-galactopyranoside is a constituent of Hibiscus sabdariffa (roselle) leaves. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

3-O-Methylkaempferol

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-methoxy-4H-chromen-4-one

C16H12O6 (300.06338519999997)


3-o-methylkaempferol, also known as 5,7,4-trihydroxy-3-methoxyflavone or isokaempferide, is a member of the class of compounds known as 3-o-methylated flavonoids. 3-o-methylated flavonoids are flavonoids with methoxy groups attached to the C3 atom of the flavonoid backbone. Thus, 3-o-methylkaempferol is considered to be a flavonoid lipid molecule. 3-o-methylkaempferol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 3-o-methylkaempferol can be found in common bean and coriander, which makes 3-o-methylkaempferol a potential biomarker for the consumption of these food products.

   

(3S,6E)-Nerolidol

(S-(e))-3,7,11-Trimethyldodeca-1,6,10-trien-3-ol

C15H26O (222.1983546)


(3S,6E)-Nerolidol, also known as nerolidol or peruviol, belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units. Thus, (3S,6E)-nerolidol is considered to be an isoprenoid lipid molecule. (3S,6E)-Nerolidol is an isomer of nerolidol, a naturally occurring sesquiterpene found in the essential oils of many types of plants and flowers. An isomer of nerolidol, a naturally occurring sesquiterpene found in the essential oils of many types of plants and flowers [Wikipedia] Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1].

   

alpha-Cadinol

(1R,4S,4aR,8aR)-1,6-dimethyl-4-(propan-2-yl)-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-ol

C15H26O (222.1983546)


alpha-Cadinol is found in cloves. alpha-Cadinol is a constituent of Juniperus communis (juniper)

   

alpha-Copaene

TRICYCLO(4.4.0.02,7)DEC-3-ENE, 1,3-DIMETHYL-8-(1-METHYLETHYL)-, (1R,2S,6S,7S,8S)-

C15H24 (204.18779039999998)


alpha-Copaene, also known as aglaiene, belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units. alpha-Copaene is possibly neutral. alpha-Copaene is a spice and woody tasting compound that can be found in several food items such as lime, mandarin orange (clementine, tangerine), safflower, and summer savoury, which makes alpha-copaene a potential biomarker for the consumption of these food products. alpha-Copaene can be found in feces and saliva. Alpha-copaene, also known as copaene, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Alpha-copaene is a spice and woody tasting compound and can be found in a number of food items such as lime, mandarin orange (clementine, tangerine), safflower, and summer savory, which makes alpha-copaene a potential biomarker for the consumption of these food products. Alpha-copaene can be found primarily in feces and saliva. 8-Isopropyl-1,3-dimethyltricyclo(4.4.0.02,7)dec-3-ene is a natural product found in Pinus sylvestris var. hamata, Asarum gusk, and other organisms with data available.

   

alpha-Cubebene

(1R,5S,6R,7S,10R)-4,10-dimethyl-7-(propan-2-yl)tricyclo[4.4.0.0^{1,5}]dec-3-ene

C15H24 (204.18779039999998)


alpha-Cubebene is found in cloves. alpha-Cubebene is a constituent of oil of cubeb pepper (Piper cubeba).

   

alpha-Cadinene

1,2,4a,5,6,8a-hexahydro-4,7-Dimethyl-1-(1-methylethyl)-(1S,4ar,8ar)-naphthalene

C15H24 (204.18779039999998)


Constituent of Humulus lupulus (hops). alpha-Cadinene is found in many foods, some of which are dill, alcoholic beverages, hyssop, and sweet bay. alpha-Cadinene is found in alcoholic beverages. alpha-Cadinene is a constituent of Humulus lupulus (hops).

   

beta-Gurjunene

(1aR,4R,4aR,7aR,7bR)-1,1,4-trimethyl-7-methylidene-octahydro-1aH-cyclopropa[e]azulene

C15H24 (204.18779039999998)


Beta-gurjunene is a member of the class of compounds known as 5,10-cycloaromadendrane sesquiterpenoids. 5,10-cycloaromadendrane sesquiterpenoids are aromadendrane sesquiterpenoids that arise from the C5-C10 cyclization of the aromadendrane skeleton. Beta-gurjunene can be found in rosemary and winter savory, which makes beta-gurjunene a potential biomarker for the consumption of these food products.

   

Methylprednisolone

6a_Methylprednisolone

C22H30O5 (374.209313)


H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AB - Glucocorticoids D - Dermatologicals > D10 - Anti-acne preparations > D10A - Anti-acne preparations for topical use > D10AA - Corticosteroids, combinations for treatment of acne D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07A - Corticosteroids, plain > D07AA - Corticosteroids, weak (group i) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid COVID info from DrugBank, clinicaltrial, clinicaltrials, clinical trial, clinical trials D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D005765 - Gastrointestinal Agents > D000932 - Antiemetics D000893 - Anti-Inflammatory Agents D020011 - Protective Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 904; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8731; ORIGINAL_PRECURSOR_SCAN_NO 8728 CONFIDENCE standard compound; INTERNAL_ID 904; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8721; ORIGINAL_PRECURSOR_SCAN_NO 8719 CONFIDENCE standard compound; INTERNAL_ID 904; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8747; ORIGINAL_PRECURSOR_SCAN_NO 8745 CONFIDENCE standard compound; INTERNAL_ID 904; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8759; ORIGINAL_PRECURSOR_SCAN_NO 8757 CONFIDENCE standard compound; INTERNAL_ID 904; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8784; ORIGINAL_PRECURSOR_SCAN_NO 8783 CONFIDENCE standard compound; INTERNAL_ID 904; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8757; ORIGINAL_PRECURSOR_SCAN_NO 8755 CONFIDENCE standard compound; INTERNAL_ID 2810 CONFIDENCE standard compound; INTERNAL_ID 1076 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2621

   

alpha-Cadinene

alpha-Cadinene, (+)-

C15H24 (204.18779039999998)


A cadinene sesquiterpene that consists of 1-(propan-2-yl)-1,2,4a,5,6,8a-hexahydronaphthalene having two methyl substituents at positions 1 and 4 (the 1S,4aS,8aS-configuration). A member of the cadinene family of sesquiterpenes having a 4,7-dimethyl-1-(propan-2-yl)-1,2,4a,5,6,8a-hexahydronaphthalene skeleton with 1S,4aR,8aS-stereochemistry. It is isolated from the essential oils of several plant species.

   

gamma-Muurolene

(+)-gamma-Muurolene

C15H24 (204.18779039999998)


   

Stirrup

InChI=1\C15H26O\c1-13(2)7-5-8-14(3)9-6-10-15(4)11-12-16\h7,9,11,16H,5-6,8,10,12H2,1-4H3\b14-9+,15-11

C15H26O (222.1983546)


C26170 - Protective Agent > C275 - Antioxidant Acquisition and generation of the data is financially supported in part by CREST/JST. Farnesol is a sesquiterpene alcohol that modulates cell-to-cell communication in Candida albicans, and has the activity in inhibiting bacteria. Farnesol is a sesquiterpene alcohol that modulates cell-to-cell communication in Candida albicans, and has the activity in inhibiting bacteria. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2].

   

(R)-(E)-Sulforaphene

ISOTHIOCYANIC ACID, 4-(METHYLSULFINYL)-3-BUTENYL ESTER

C6H9NOS2 (175.0125544)


Mustard oil from Glucoraphenin (see 4-(Methylthio)-3-butenyl glucosinolate KZZ70-M) in radish seeds (Raphanus sativus variety alba). (R)-(E)-Sulforaphene is found in root vegetables. (R)-(E)-Sulforaphene is found in root vegetables. Mustard oil from Glucoraphenin (see 4-(Methylthio)-3-butenyl glucosinolate KZZ70-M) in radish seeds (Raphanus sativus var. alba Sulforaphene is a natural product found in Thulinella chrysantha, Matthiola incana, and Raphanus sativus with data available. Sulforaphene, isolated from radish seeds, exhibits an ED50 against velvetleaf seedlings approximately 2 x 10-4 M. Sulforaphene promotes cancer cells apoptosis and inhibits migration via inhibiting EGFR, p-ERK1/2, NF‐κB and other signals[1][2][3][4]. Sulforaphene, isolated from radish seeds, exhibits an ED50 against velvetleaf seedlings approximately 2 x 10-4 M. Sulforaphene promotes cancer cells apoptosis and inhibits migration via inhibiting EGFR, p-ERK1/2, NF‐κB and other signals[1][2][3][4]. Sulforaphene, isolated from radish seeds, exhibits an ED50 against velvetleaf seedlings approximately 2 x 10-4 M. Sulforaphene promotes cancer cells apoptosis and inhibits migration via inhibiting EGFR, p-ERK1/2, NF‐κB and other signals[1][2][3][4].

   

Nerolidol

[S-(E)]-3,7,11-trimethyldodeca-1,6,10-trien-3-ol

C15H26O (222.1983546)


A component of many essential oils. The (S)-enantiomer is the commoner and occurs mostly as the (S)-(E)-isomer. Flavouring agent. Nerolidol is found in many foods, some of which are coriander, sweet basil, roman camomile, and sweet orange. Nerolidol is found in bitter gourd. Nerolidol is a component of many essential oils. The (S)-enantiomer is the commoner and occurs mostly as the (S)-(E)-isomer. Nerolidol is a flavouring agent Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1].

   

gamma-Muurolene

(1R,4aR,8aS)-7-methyl-4-methylidene-1-(propan-2-yl)-1,2,3,4,4a,5,6,8a-octahydronaphthalene

C15H24 (204.18779039999998)


gamma-Muurolene is found in carrot. gamma-Muurolene is a constituent of Pinus sylvestris (Scotch pine).

   

Erucin

1-Isothiocyanato-4-(methylsulphanyl)butane

C6H11NS2 (161.0332886)


Occurs in seeds of salad rocket. Erucin is found in many foods, some of which are brassicas, cabbage, kohlrabi, and white cabbage. Erucin is found in brassicas. Erucin occurs in seeds of salad rocket.

   

Cadinol

(1R,4S)-1,6-dimethyl-4-(propan-2-yl)-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-ol

C15H26O (222.1983546)


Cadinol is also known as alpha-cadinol. Cadinol is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Cadinol can be found in spearmint, which makes cadinol a potential biomarker for the consumption of this food product. Cadinol is any of several organic compounds with formula C 15H 26O, especially: alpha-cadinol delta-cadinol (torreyol, sesquigoyol, pilgerol, albicaulol) T-cadinol . Cadinol is also known as alpha-cadinol. Cadinol is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Cadinol can be found in spearmint, which makes cadinol a potential biomarker for the consumption of this food product. Cadinol is any of several organic compounds with formula C 15H 26O, especially: α-cadinol δ-cadinol (torreyol, sesquigoyol, pilgerol, albicaulol) T-cadinol .

   

Kaempferol 3-O-beta-glucopyranoside-7-O-alpha-rhamnopyranoside

5-hydroxy-2-(4-hydroxyphenyl)-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-7-{[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-4H-chromen-4-one

C27H30O15 (594.158463)


   

Nerolidol

(E)-3,7,11-Trimethyl-1,6,10-dodecatrien-3-ol, trans-3,7,11-Trimethyl-1,6,10-dodecatrien-3-ol

C15H26O (222.1983546)


Nerolidol is a farnesane sesquiterpenoid that is dodeca-1,6,10-triene which carries methyl groups at positions 3, 7 and 11 and a hydroxy group at position 3. It is a natural product that is present in various flowers and plants with a floral odor. Chemically, it exists in two geometric isomers, trans and cis forms. It is widely used in cosmetics (e.g. shampoos and perfumes), in non-cosmetic products (e.g. detergents and cleansers) and also as a food flavoring agent. It has a role as a flavouring agent, a cosmetic, a pheromone, a neuroprotective agent, an antifungal agent, an anti-inflammatory agent, an antihypertensive agent, an antioxidant, a volatile oil component, an insect attractant and a herbicide. It is a farnesane sesquiterpenoid, a tertiary allylic alcohol and a volatile organic compound. Nerolidol is a natural product found in Xylopia sericea, Rhododendron calostrotum, and other organisms with data available. Nerolidol is found in bitter gourd. Nerolidol is a component of many essential oils. The (S)-enantiomer is the commoner and occurs mostly as the (S)-(E)-isomer. Nerolidol is a flavouring agent. Nerolidol has been shown to exhibit anti-fungal function (A7933).Nerolidol belongs to the family of Sesquiterpenes. These are terpenes with three consecutive isoprene units. A nerolidol in which the double bond at position 6 adopts a trans-configuration. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2].

   

Penduletin

5-Hydroxy-2- (4-hydroxyphenyl) -3,6,7-trimethoxy-4H-1-benzopyran-4-one

C18H16O7 (344.0895986)


   

β-Eudesmol

beta-Eudesmol

C15H26O (222.1983546)


Beta-eudesmol, also known as beta-selinenol, is a member of the class of compounds known as eudesmane, isoeudesmane or cycloeudesmane sesquiterpenoids. Eudesmane, isoeudesmane or cycloeudesmane sesquiterpenoids are sesquiterpenoids with a structure based on the eudesmane skeleton. Beta-eudesmol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-eudesmol is a green and wood tasting compound and can be found in a number of food items such as common walnut, sweet basil, ginkgo nuts, and burdock, which makes beta-eudesmol a potential biomarker for the consumption of these food products. Beta-Eudesmol is a natural oxygenated sesquiterpene, activates hTRPA1, with an EC50 of 32.5 μM. Beta-Eudesmol increases appetite through TRPA1[1]. Beta-Eudesmol is a natural oxygenated sesquiterpene, activates hTRPA1, with an EC50 of 32.5 μM. Beta-Eudesmol increases appetite through TRPA1[1].

   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Jaceosidin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-6-methoxy-

C17H14O7 (330.0739494)


Jaceosidin, also known as 4,5,7-trihydroxy-3,6-dimethoxyflavone, is a member of the class of compounds known as 6-o-methylated flavonoids. 6-o-methylated flavonoids are flavonoids with methoxy groups attached to the C6 atom of the flavonoid backbone. Thus, jaceosidin is considered to be a flavonoid lipid molecule. Jaceosidin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Jaceosidin can be found in lemon verbena, which makes jaceosidin a potential biomarker for the consumption of this food product. Jaceosidin is a flavonoid isolated from Artemisia vestita, induces apoptosis in cancer cells, activates Bax and down-regulates Mcl-1 and c-FLIP expression[1]. Jaceosidin exhibits anti-cancer[2], anti-inflammatory activities, decreases leves of inflammatory markers, and suppresses COX-2 expression and NF-κB activation[3]. Jaceosidin is a flavonoid isolated from Artemisia vestita, induces apoptosis in cancer cells, activates Bax and down-regulates Mcl-1 and c-FLIP expression[1]. Jaceosidin exhibits anti-cancer[2], anti-inflammatory activities, decreases leves of inflammatory markers, and suppresses COX-2 expression and NF-κB activation[3].

   

Lespedin

5-hydroxy-2-(4-hydroxyphenyl)-3,7-bis[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy]chromen-4-one

C27H30O14 (578.163548)


Annotation level-1 Acquisition and generation of the data is financially supported in part by CREST/JST. Kaempferitrin is a natural flavonoid, possesses antinociceptive, anti-inflammatory, anti-diabetic, antitumoral and chemopreventive effects, and activates insulin signaling pathway. Kaempferitrin is a natural flavonoid, possesses antinociceptive, anti-inflammatory, anti-diabetic, antitumoral and chemopreventive effects, and activates insulin signaling pathway.

   

Daucosterol

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.4389659999999)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. A steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

alpha-Cadinol

alpha-Cadinol

C15H26O (222.1983546)


A cadinane sesquiterpenoid that is cadin-4-ene carrying a hydroxy substituent at position 10.

   

Sulforaphene

(1E)-4-Isothiocyanato-1-(methylsulfinyl)-1-butene

C6H9NOS2 (175.0125544)


(r)-(e)-sulforaphene is a member of the class of compounds known as sulfoxides. Sulfoxides are compounds containing a sulfoxide functional group, with the structure RS(=O)R (R,R not H) (r)-(e)-sulforaphene is slightly soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (r)-(e)-sulforaphene can be found in root vegetables, which makes (r)-(e)-sulforaphene a potential biomarker for the consumption of this food product. Acquisition and generation of the data is financially supported in part by CREST/JST.; L Sulforaphene, 99\\\\\% / (-)4-Isothiocyanato-4R-(methylsulfinyl)-1-butene Sulforaphene, isolated from radish seeds, exhibits an ED50 against velvetleaf seedlings approximately 2 x 10-4 M. Sulforaphene promotes cancer cells apoptosis and inhibits migration via inhibiting EGFR, p-ERK1/2, NF‐κB and other signals[1][2][3][4]. Sulforaphene, isolated from radish seeds, exhibits an ED50 against velvetleaf seedlings approximately 2 x 10-4 M. Sulforaphene promotes cancer cells apoptosis and inhibits migration via inhibiting EGFR, p-ERK1/2, NF‐κB and other signals[1][2][3][4]. Sulforaphene, isolated from radish seeds, exhibits an ED50 against velvetleaf seedlings approximately 2 x 10-4 M. Sulforaphene promotes cancer cells apoptosis and inhibits migration via inhibiting EGFR, p-ERK1/2, NF‐κB and other signals[1][2][3][4].

   

Kaempferitrin

Kaempferol-3,7-O-bis-alpha-L-rhamnoside

C27H30O14 (578.163548)


Kaempferitrin is a chemical compound. It can be isolated from the leaves of Hedyotis verticillata. Kaempferitrin is found in tea and linden. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2351 Kaempferitrin is a natural flavonoid, possesses antinociceptive, anti-inflammatory, anti-diabetic, antitumoral and chemopreventive effects, and activates insulin signaling pathway. Kaempferitrin is a natural flavonoid, possesses antinociceptive, anti-inflammatory, anti-diabetic, antitumoral and chemopreventive effects, and activates insulin signaling pathway.

   

Isokaempferide

5,7,4-trihydroxy-3-methoxyflavone

C16H12O6 (300.06338519999997)


   

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-methoxy-4H-chromen-4-one

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-methoxy-4H-chromen-4-one

C16H12O6 (300.06338519999997)


   

(R)-(E)-Sulforaphene

(1E)-4-isothiocyanato-1-methanesulfinylbut-1-ene

C6H9NOS2 (175.0125544)


   

Erucin

1-isothiocyanato-4-(methylsulfanyl)butane

C6H11NS2 (161.0332886)


   

nerolidol

(±)-trans-Nerolidol

C15H26O (222.1983546)


A farnesane sesquiterpenoid that is dodeca-1,6,10-triene which carries methyl groups at positions 3, 7 and 11 and a hydroxy group at position 3. It is a natural product that is present in various flowers and plants with a floral odor. Chemically, it exists in two geometric isomers, trans and cis forms. It is widely used in cosmetics (e.g. shampoos and perfumes), in non-cosmetic products (e.g. detergents and cleansers) and also as a food flavoring agent. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2].

   

alpha-Cubebene

(-)-Alpha-Cubebene

C15H24 (204.18779039999998)


A tricyclic sesquiterpene with formula C15H24, isolated from Hungarian thyme, citrus fruit, chamomile, and several other flowering plants. Constituent of oil of cubeb pepper (Piper cubeba). alpha-Cubebene is found in many foods, some of which are parsley, ginger, nutmeg, and lemon balm.

   

p-Tolunitrile

p-Tolunitrile

C8H7N (117.0578462)


   

473-15-4

InChI=1\C15H26O\c1-11-6-5-8-15(4)9-7-12(10-13(11)15)14(2,3)16\h12-13,16H,1,5-10H2,2-4H3\t12-,13+,15-\m1\s

C15H26O (222.1983546)


Beta-Eudesmol is a natural oxygenated sesquiterpene, activates hTRPA1, with an EC50 of 32.5 μM. Beta-Eudesmol increases appetite through TRPA1[1]. Beta-Eudesmol is a natural oxygenated sesquiterpene, activates hTRPA1, with an EC50 of 32.5 μM. Beta-Eudesmol increases appetite through TRPA1[1].

   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

73464-47-8

1H-Cycloprop(e)azulene, decahydro-1,1,4-trimethyl-7-methylene-, (1aR-(1aalpha,4alpha,4abeta,7abeta,7balpha))-

C15H24 (204.18779039999998)


   

Cadinene

Naphthalene, 1,2,4a,5,8,8a-hexahydro-4,7-dimethyl-1-(1-methylethyl)-, (1S-(1alpha,4abeta,8aalpha))- (9CI)

C15H24 (204.18779039999998)


   

Kaempferol-7-rhamnoside

Kaempferol-7-O-\u03b1-L-rhamnoside

C21H20O10 (432.105642)


Kaempferol-7-O-rhamnoside, isolated from Chimonanthus nitens Oliv. Leaves, is a potent α-glucosidase activity inhibitor. Kaempferol-7-O-rhamnoside has the potential for diabetes[1]. Kaempferol-7-O-rhamnoside, isolated from Chimonanthus nitens Oliv. Leaves, is a potent α-glucosidase activity inhibitor. Kaempferol-7-O-rhamnoside has the potential for diabetes[1].

   

603-56-5

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,6,7-trimethoxy-

C19H18O8 (374.1001628)


Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1]. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1].

   
   

Chrysosplenetin

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,6,7-trimethoxy-

C19H18O8 (374.1001628)


Chrysosplenetin is a tetramethoxyflavone that is the 3,6,7,3-tetramethyl ether derivative of quercetagetin. It has a role as an antiviral agent and a plant metabolite. It is a tetramethoxyflavone and a dihydroxyflavone. It is functionally related to a quercetagetin. Chrysosplenetin is a natural product found in Haplophyllum myrtifolium, Cleome amblyocarpa, and other organisms with data available. A tetramethoxyflavone that is the 3,6,7,3-tetramethyl ether derivative of quercetagetin. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1]. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1].

   

beta-Gurjunene

beta-Gurjunene

C15H24 (204.18779039999998)


A carbotricyclic compound and sesquiterpene that is decahydro-1H-cyclopropa[e]azulene which is substituted by methyl groups at positions 1, 1, and 4, and by a methylidene group at position 7 (the (1aR,4R,4aR,7aR,7bR)- stereoisomer). It has been isolated from several plant species such as Acorus calamus and Pinus peuce.

   

nerolidol isomers

nerolidol isomers

C15H26O (222.1983546)


   

(1r,2s,7s,8s)-8-isopropyl-1,3-dimethyltricyclo[4.4.0.0²,⁷]dec-3-ene

(1r,2s,7s,8s)-8-isopropyl-1,3-dimethyltricyclo[4.4.0.0²,⁷]dec-3-ene

C15H24 (204.18779039999998)


   

(2z,7z)-4-isopropyl-1,7-dimethylcyclodeca-2,7-dien-1-ol

(2z,7z)-4-isopropyl-1,7-dimethylcyclodeca-2,7-dien-1-ol

C15H26O (222.1983546)


   

2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}chromen-4-one

C21H20O11 (448.100557)


   

(1r,4r,4as,8as)-4-isopropyl-1,6-dimethyl-3,4,4a,7,8,8a-hexahydro-2h-naphthalen-1-ol

(1r,4r,4as,8as)-4-isopropyl-1,6-dimethyl-3,4,4a,7,8,8a-hexahydro-2h-naphthalen-1-ol

C15H26O (222.1983546)


   

(1as,4as,7as,7br)-1,1,7-trimethyl-4-methylidene-octahydro-1ah-cyclopropa[e]azulene

(1as,4as,7as,7br)-1,1,7-trimethyl-4-methylidene-octahydro-1ah-cyclopropa[e]azulene

C15H24 (204.18779039999998)


   

(4r,8ar)-4-isopropyl-1,6-dimethyl-3,4,4a,7,8,8a-hexahydronaphthalene

(4r,8ar)-4-isopropyl-1,6-dimethyl-3,4,4a,7,8,8a-hexahydronaphthalene

C15H24 (204.18779039999998)


   

5-hydroxy-2-(4-hydroxyphenyl)-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}chromen-4-one

5-hydroxy-2-(4-hydroxyphenyl)-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}chromen-4-one

C27H30O15 (594.158463)


   

(1r,4s,4ar)-4-isopropyl-1,6-dimethyl-3,4,4a,7,8,8a-hexahydro-2h-naphthalen-1-ol

(1r,4s,4ar)-4-isopropyl-1,6-dimethyl-3,4,4a,7,8,8a-hexahydro-2h-naphthalen-1-ol

C15H26O (222.1983546)


   

4,6-dimethyl-5,6-dihydro-4h-1,3-oxazine-2-thiol

4,6-dimethyl-5,6-dihydro-4h-1,3-oxazine-2-thiol

C6H11NOS (145.05613160000001)


   

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H60O6 (576.4389659999999)


   

1-isothiocyanato-2-methylbutane

1-isothiocyanato-2-methylbutane

C6H11NS (129.0612166)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.386145)


   

(1s,5r,7s,10r)-7-isopropyl-4,10-dimethyltricyclo[4.4.0.0¹,⁵]dec-3-ene

(1s,5r,7s,10r)-7-isopropyl-4,10-dimethyltricyclo[4.4.0.0¹,⁵]dec-3-ene

C15H24 (204.18779039999998)


   

1,1,7-trimethyl-4-methylidene-octahydro-1ah-cyclopropa[e]azulene

1,1,7-trimethyl-4-methylidene-octahydro-1ah-cyclopropa[e]azulene

C15H24 (204.18779039999998)


   

2,7,7,11,12-pentamethyl-15-(2-methyl-5-oxooxolan-2-yl)-5-oxo-6-oxatetracyclo[9.7.0.0²,⁸.0¹²,¹⁶]octadecan-3-yl acetate

2,7,7,11,12-pentamethyl-15-(2-methyl-5-oxooxolan-2-yl)-5-oxo-6-oxatetracyclo[9.7.0.0²,⁸.0¹²,¹⁶]octadecan-3-yl acetate

C29H44O6 (488.3137724)


   

(1s,2r,3r,8r,11r,12r,15s,16r)-2,7,7,11,12-pentamethyl-15-[(2r)-2-methyl-5-oxooxolan-2-yl]-5-oxo-6-oxatetracyclo[9.7.0.0²,⁸.0¹²,¹⁶]octadecan-3-yl acetate

(1s,2r,3r,8r,11r,12r,15s,16r)-2,7,7,11,12-pentamethyl-15-[(2r)-2-methyl-5-oxooxolan-2-yl]-5-oxo-6-oxatetracyclo[9.7.0.0²,⁸.0¹²,¹⁶]octadecan-3-yl acetate

C29H44O6 (488.3137724)


   

(2e,7e)-4-isopropyl-1,7-dimethylcyclodeca-2,7-dien-1-ol

(2e,7e)-4-isopropyl-1,7-dimethylcyclodeca-2,7-dien-1-ol

C15H26O (222.1983546)