Coumarin (BioDeep_00000000093)
Secondary id: BioDeep_00000397992, BioDeep_00000402536, BioDeep_00000859650
human metabolite PANOMIX_OTCML-2023 Toxin Antitumor activity
代谢物信息卡片
化学式: C9H6O2 (146.0368)
中文名称: 香豆素
谱图信息:
最多检出来源 Homo sapiens(plant) 12.89%
Last reviewed on 2024-09-04.
Cite this Page
Coumarin. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/coumarin (retrieved
2024-12-23) (BioDeep RN: BioDeep_00000000093). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1=CC=C2C(=C1)C=CC(=O)O2
InChI: InChI=1S/C9H6O2/c10-9-6-5-7-3-1-2-4-8(7)11-9/h1-6H
描述信息
Coumarin appears as colorless crystals, flakes or colorless to white powder with a pleasant fragrant vanilla odor and a bitter aromatic burning taste. (NTP, 1992)
Coumarin is a chromenone having the keto group located at the 2-position. It has a role as a fluorescent dye, a plant metabolite and a human metabolite.
Coumarin is a natural product found in Eupatorium cannabinum, Eupatorium japonicum, and other organisms with data available.
Coumarin is o hydroxycinnamic acid. Pleasant smelling compound found in many plants and released on wilting. Has anticoagulant activity by competing with Vitamin K.
Coumarin is a chemical compound/poison found in many plants, notably in high concentration in the tonka bean, woodruff, and bison grass. It has a sweet scent, readily recognised as the scent of newly-mown hay. It has clinical value as the precursor for several anticoagulants, notably warfarin. --Wikipedia. Coumarins, as a class, are comprised of numerous naturally occurring benzo-alpha-pyrone compounds with important and diverse physiological activities. The parent compound, coumarin, occurs naturally in many plants, natural spices, and foods such as tonka bean, cassia (bastard cinnamon or Chinese cinnamon), cinnamon, melilot (sweet clover), green tea, peppermint, celery, bilberry, lavender, honey (derived both from sweet clover and lavender), and carrots, as well as in beer, tobacco, wine, and other foodstuffs. Coumarin concentrations in these plants, spices, and foods range from <1 mg/kg in celery, 7000 mg/kg in cinnamon, and up to 87,000 mg/kg in cassia. An estimate of human exposure to coumarin from the diet has been calculated to be 0.02 mg/kg/day. Coumarin is used as an additive in perfumes and fragranced consumer products at concentrations ranging from <0.5\\\\% to 6.4\\\\% in fine fragrances to <0.01\\\\% in detergents. An estimate for systemic exposure of humans from the use of fragranced cosmetic products is 0.04 mg/kg BW/day, assuming complete dermal penetration. The use of coumarin as a food additive was banned by the FDA in 1954 based on reports of hepatotoxicity in rats. Due to its potential hepatotoxic effects in humans, the European Commission restricted coumarin from naturals as a direct food additive to 2 mg/kg food/day, with exceptions granting higher levels for alcoholic beverages, caramel, chewing gum, and certain traditional foods. In addition to human exposure to coumarin from dietary sources and consumer products, coumarin is also used clinically as an antineoplastic and for the treatment of lymphedema and venous insufficiency. Exposure ranges from 11 mg/day for consumption of natural food ingredients to 7 g/day following clinical administration. Although adverse effects in humans following coumarin exposure are rare, and only associated with clinical doses, recent evidence indicates coumarin causes liver tumors in rats and mice and Clara cell toxicity and lung tumors in mice. The multiple effects as well as the ongoing human exposure to coumarin have resulted in a significant research effort focused on understanding the mechanism of coumarin induced toxicity/carcinogenicity and its human relevance. These investigations have revealed significant species differences in coumarin metabolism and toxicity such that the mechanism of coumarin induced effects in rodents, and the relevance of these findings for the safety assessment of coumarin exposure in humans are now better understood. In October 2004, the European Food Safety Authority (EFSA, 2004) reviewed coumarin to establish a tolerable daily intake (TDI) in foods. EFSA issued an opinion indicating that coumarin is not genotoxic, and that a threshold approach to safety assessment was most appropriate. EFSA recommended a TDI of 0 to 0.1 mg/kg BW/day. Including dietary contributions, the total human exposure is estimated to be 0.06 mg/kg/day. As a pharmaceutical, coumarin has been used in diverse applications with a wide variety of dosing regimens. Unlike coumadin and ...
Coumarin belongs to the class of chemicals known as chromenones. Specifically it is a chromenone having the keto group located at the 2-position. A chromenone is a benzene molecule with two adjacent hydrogen atoms replaced by a lactone-like chain forming a second six-membered heterocycle that shares two carbons with the benzene ring. Coumarin is also described as a benzopyrone and is considered as a lactone. Coumarin is a colorless crystalline solid with a bitter taste and sweet odor resembling the scent of vanilla or the scent of newly-mowed or recently cut hay. It is a chemical poison found in many plants where it may serve as a chemical defense against predators. Coumarin occurs naturally in many plants and foods such as the tonka bean, woodruff, bison grass, cassia (bastard cinnamon or Chinese cinnamon), cinnamon, melilot (sweet clover), green tea, peppermint, celery, bilberry, lavender, honey (derived both from sweet clover and lavender), and carrots, as well as in beer, tobacco, wine, and other foodstuffs. Coumarin concentrations in these plants, spices, and foods range from <1 mg/kg in celery, to 7000 mg/kg in cinnamon, and up to 87,000 mg/kg in cassia. An estimate of human exposure to coumarin from the diet has been calculated to be 0.02 mg/kg/day. Coumarin is used as an additive in perfumes and fragranced consumer products at concentrations ranging from <0.5\\\\% To 6.4\\\\% In fine fragrances to <0.01\\\\% In detergents. An estimate for systemic exposure of humans from the use of fragranced cosmetic products is 0.04 mg/kg BW/day, assuming complete dermal penetration. The use of coumarin as a food additive was banned by the FDA in 1954 based on reports of hepatotoxicity in rats. It has clinical value as the precursor for several anticoagulants, notably warfarin. Coumarins, as a class, are comprised of numerous naturally occurring benzo-alpha-pyrone compounds with important and diverse physiological activities. Due to its potential hepatotoxic effects in humans, the European Commission restricted coumarin from naturals as a direct food additive to 2 mg/kg food/day, with exceptions granting higher levels for alcoholic beverages, caramel, chewing gum, and certain traditional foods. In addition to human exposure to coumarin from dietary sources and consumer products, coumarin is also used clinically as an antineoplastic and for the treatment of lymphedema and venous insufficiency. Exposure ranges from 11 mg/day for consumption of natural food ingredients to 7 g/day following clinical administration. Although adverse effects in humans following coumarin exposure are rare, and only associated with clinical doses, recent evidence indicates coumarin causes liver tumors in rats and mice and Clara cell toxicity and lung tumors in mice. The multiple effects as well as the ongoing human exposure to coumarin have resulted in a significant research effort focused on understanding the mechanism of coumarin induced toxicity/carcinogenicity and its human relevance. These investigations have revealed significant species differences in coumarin metabolism and toxicity such that the mechanism of coumarin induced effects in rodents, and the relevance of these findings for the safety assessment of coumarin exposure in humans are now better understood. In October 2004, the European Food Safety Authority (EFSA, 2004) reviewed coumarin to establish a tolerable daily intake (TDI) in foods. EFSA issued an opinion indicating that coumarin is not genotoxic, and that a threshold approach to safety assessment was most appropriate. EFSA recommended a TDI of 0 to 0.1 Mg/kg BW/day. Including dietary contributions, the total human exposure is estimated to be 0.06 Mg/kg/day. As a pharmaceutical, coumarin has been used in diverse applications with a wide variety of dosing regimens. Unlike coumadin and other coumarin derivatives, coumarin has no anti-coagulant activity. However, at low doses (typically 7 to 10 mg/day), coumarin has been used as a venotonic to promote...
C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent
A chromenone having the keto group located at the 2-position.
COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
[Raw Data] CB013_Coumarin_pos_20eV_CB000008.txt
[Raw Data] CB013_Coumarin_pos_30eV_CB000008.txt
[Raw Data] CB013_Coumarin_pos_10eV_CB000008.txt
[Raw Data] CB013_Coumarin_pos_50eV_CB000008.txt
[Raw Data] CB013_Coumarin_pos_40eV_CB000008.txt
Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities.
Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities.
同义名列表
119 个代谢物同义名
2h-1-benzopyran-2-one;coumarin;2h-chromen-2-one;coumarin ;coumarin (2h-1-benzopyran-2-one) (chromen-2-one);2h-1-benzopyran-2-one coumarin 2h-chromen-2-one coumarin coumarin (2h-1-benzopyran-2-one) (chromen-2-one); Coumarin, European Pharmacopoeia (EP) Reference Standard; 2-Propenoic acid, 3-(2-hydroxyphenyl)-, .delta.-lactone; COUMARIN (CONSTITUENT OF CINNAMOMUM CASSIA BARK) [DSC]; COUMARIN (CONSTITUENT OF CINNAMOMUM VERUM BARK) [DSC]; 2-Propenoic acid, 3-(2-hydroxyphenyl)-, delta-lactone; Coumarin, certified reference material, TraceCERT(R); 2-Propenoic acid, 3-(2-hydroxyphenyl)-delta-lactone; Coumarin, primary pharmaceutical reference standard; 2-Propenoic acid, 3-(2-hydroxyphenyl)-, δ-lactone; 2-Propenoate, 3-(2-hydroxyphenyl)-, delta-lactone; 2-Propenoic acid, 3-(2-hydroxyphenyl)-, d-lactone; InChI=1/C9H6O2/c10-9-6-5-7-3-1-2-4-8(7)11-9/h1-6; 2-Propenoate, 3-(2-hydroxyphenyl)-, δ-lactone; 2-Propenoate, 3-(2-hydroxyphenyl)-, D-lactone; 3-(2-Hydroxyphenyl)-2-propenoic delta-lactone; 5-17-10-00143 (Beilstein Handbook Reference); Cinnamic acid, o-hydroxy-, .delta.-lactone; Coumarin, Vetec(TM) reagent grade, >=99\\%; Cinnamic acid, o-hydroxy-, delta-lactone; D3E956C4-9541-4F57-9435-7D915C38E19E; o-hydroxycinnamic acid delta-lactone; o-Hydroxyzimtsaure-lacton [German]; O-Hydroxycinnamic acid δ-lactone; O-Hydroxycinnamate delta-lactone; 2H-chromen-2-one (ACD/Name 4.0); o-Hydroxycinnamic acid lactone; Cinnamic acid, .delta.-lactone; cis-o-Coumaric acid anhydride; cis-o-Coumarinic acid lactone; COUMARIN (PROHIBITED) [FHFI]; O-Hydroxycinnamate δ-lactone; O-Hydroxycinnamate lactone; o-Hydroxyzimtsaure-lacton; cis-O-Coumarinate lactone; o-Hydroxycinnamic lactone; {2H-Benzo[b]pyran-2-one}; 2H-1-Benzopyran, 2-oxo-; Coumarin, >=99\\% (HPLC); o-Coumaric acid lactone; 2H-Benzo[b]pyran-2-one; 2H-Benzo(b)pyran-2-one; 5,6-benzo-alpha-pyrone; Coumarin (prohibited); 2-oxo-2H-1-benzopyran; 2H-1-Benzopyran-2-one; Coumarinic anhydride; 2-Oxo-1,2-benzopyran; 3-(2-hydroxyphenyl)-; Benzo-.alpha.-pyrone; 2H-1-benzopyran-2-on; 2H-Benzopyran-2-one; benzopyrylium olate; Rattex Rodenticide; coumarinac lactone; Tonka bean camphor; 1-Benzopyran-2-one; 2H-Chromen-2-one #; Benzo-alpha-pyrone; 5,6-Benzo-2-pyrone; Coumarinic lactone; alpha-benzopyrone; Venalot mono (TN); Coumarin Phenolic; COUMARINUM [HPUS]; a 1,2-benzopyrone; 2h-chromene-2-one; COUMARIN [WHO-DD]; Spectrum4_001818; 2H-Chromen-2-one; Spectrum5_000555; Coumarin, >=98\\%; Spectrum3_001772; 1, 2-Benzopyrone; COUMARIN (MART.); Spectrum2_000303; COUMARIN [MART.]; UNII-A4VZ22K1WT; COUMARIN [HSDB]; COUMARIN (IARC); COUMARIN [INCI]; Kumarin [Czech]; 1,2-benzopyrone; COUMARIN [IARC]; Tox21_111141_1; Benzo-a-pyrone; Benzo-α-pyrone; Coumarin (DCF); COUMARIN [MI]; Coumarin [NF]; chromen-2-one; benzopyranone; WLN: T66 BOVJ; KBio2_006952; Tox21_111141; KBio3_002764; Tox21_202427; KBio2_004384; KBio2_001816; NCI60_041938; Tox21_300057; Venalot mono; CAS-91-64-5; chromen-one; Coumarinum; chromenone; A4VZ22K1WT; a coumarin; d-lactone; AI3-00753; Coumarine; coumarin-; Coumarin; cumarin; Kumarin; Rattex; COU; Coumarin; Coumarin
数据库引用编号
33 个数据库交叉引用编号
- ChEBI: CHEBI:28794
- KEGG: C05851
- KEGGdrug: D07751
- KEGGdrug: D81844
- PubChem: 323
- HMDB: HMDB0001218
- Metlin: METLIN3525
- DrugBank: DB04665
- ChEMBL: CHEMBL6466
- Wikipedia: Coumarin
- MeSH: coumarin
- ChemIDplus: 0000091645
- MetaCyc: COUMARIN
- KNApSAcK: C00002460
- foodb: FDB011938
- chemspider: 13848793
- CAS: 91-64-5
- MoNA: FIO00037
- MoNA: FIO00033
- MoNA: FIO00036
- MoNA: FIO00035
- MoNA: FIO00034
- medchemexpress: HY-N0709
- PMhub: MS000006895
- MetaboLights: MTBLC28794
- PDB-CCD: COU
- 3DMET: B00867
- NIKKAJI: J3.218B
- RefMet: Coumarin
- PubChem: 8144
- KNApSAcK: 28794
- LOTUS: LTS0069773
- wikidata: Q111812
分类词条
相关代谢途径
Reactome(7)
代谢反应
182 个相关的代谢反应过程信息。
Reactome(57)
- Olfactory Signaling Pathway:
GTP + odorant:Olfactory Receptor:GNAL:GDP:GNB1:GNG13 ⟶ GDP + odorant:Olfactory Receptor:GNAL:GTP:GNB1:GNG13
- Sensory Perception:
GTP + odorant:Olfactory Receptor:GNAL:GDP:GNB1:GNG13 ⟶ GDP + odorant:Olfactory Receptor:GNAL:GTP:GNB1:GNG13
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Cytochrome P450 - arranged by substrate type:
ANDST + H+ + Oxygen + TPNH ⟶ H2O + HCOOH + TPN + estrone
- Xenobiotics:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Cytochrome P450 - arranged by substrate type:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Xenobiotics:
EtOH + H+ + Oxygen + TPNH ⟶ CH3CHO + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase I - Functionalization of compounds:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Cytochrome P450 - arranged by substrate type:
ANDST + H+ + Oxygen + TPNH ⟶ H2O + HCOOH + TPN + estrone
- Xenobiotics:
DEXM + H+ + Oxygen + TPNH ⟶ CH2O + DEXT + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
CAF + H+ + Oxygen + TPNH ⟶ CH2O + H2O + Paraxanthine + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
BioCyc(4)
- coumarin metabolism (to melilotic acid):
H2O + dihydrocoumarin ⟶ H+ + melilotate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ β-D-glucose + coumarinate
WikiPathways(0)
Plant Reactome(3)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
INOH(0)
PlantCyc(117)
- coumarin metabolism (to melilotic acid):
H+ + NADPH + coumarin ⟶ 3,4-dihydrocoumarin + NADP+
- coumarin metabolism (to melilotic acid):
3,4-dihydrocoumarin + H2O ⟶ H+ + melilotate
- coumarin metabolism (to melilotic acid):
3,4-dihydrocoumarin + H2O ⟶ H+ + melilotate
- coumarin metabolism (to melilotic acid):
3,4-dihydrocoumarin + H2O ⟶ H+ + melilotate
- coumarin metabolism (to melilotic acid):
3,4-dihydrocoumarin + H2O ⟶ H+ + melilotate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
H+ + coumarinate ⟶ H2O + coumarin
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
H+ + coumarinate ⟶ H2O + coumarin
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
H+ + NADPH + O2 + cinnamate ⟶ trans-2-coumarate + H2O + NADP+
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(0)
PharmGKB(0)
119 个相关的物种来源信息
- 63345 - Achlys triphylla: 10.1021/JA01958A026
- 2732720 - Acourtia cordata: 10.1002/MRC.1284
- 68299 - Ageratum conyzoides: 10.1002/FFJ.2730080504
- 2653732 - Ageratum corymbosum: 10.1016/0031-9422(92)83647-H
- 1747108 - Agrianthus pungens: 10.1016/S0031-9422(00)83841-8
- 57912 - Agrimonia Eupatoria: -
- 446321 - Althaea armeniaca:
- 145745 - Althaea officinalis: 10.1007/BF00630189
- 149628 - Amburana cearensis:
- 99027 - Anthemis: 10.1515/ZNC-2003-9-1014
- 286619 - Anthoxanthum nitens:
- 3702 - Arabidopsis thaliana: 10.1371/JOURNAL.PONE.0163572
- 35608 - Artemisia annua:
- 35608 - Artemisia Annua L.: -
- 714449 - Artemisia anomala: 10.4268/CJCMM20141334
- 259893 - Artemisia argyi Lévl.et Vant.: -
- 637481 - Artemisia keiskeana: 10.1007/BF00574599
- 401909 - Artemisia laciniata: 10.1016/0031-9422(86)80021-8
- 1579220 - Artemisia lehmanniana: 10.1007/BF02238337
- 86312 - Artemisia ludoviciana: 10.1016/0031-9422(86)80021-8
- 72350 - Artemisia reptans: 10.1016/S0031-9422(00)89536-9
- 205374 - Artemisia rutifolia: 10.1016/0031-9422(86)80021-8
- 4220 - Artemisia vulgaris: 10.1007/BF00574599
- 4499 - Avena fatua: 10.1016/0031-9422(91)83614-Q
- 3712 - Brassica oleracea: 10.1002/JSFA.8876
- 2559793 - Bulbophyllum schillerianum: 10.1007/S10600-009-9393-Z
- 47643 - Caragana frutex: 10.1007/BF00575186
- 13427 - Cichorium intybus: 10.1016/S0031-9422(00)83015-0
- 119260 - Cinnamomum aromaticum:
- 119261 - Cinnamomum burmanni: 10.1007/S10600-012-0139-Y
- 1155220 - Cinnamomum iners:
- 977952 - Cinnamomum macrostemon: 10.1007/S10600-012-0139-Y
- 119266 - Cinnamomum sieboldii: 10.1248/YAKUSHI1947.106.1_17
- 128608 - Cinnamomum verum:
- 2047775 - Cinnamomum yabunikkei: 10.1007/S10600-010-9537-1
- 94007 - Cnidium monnieri: 10.1021/NP990522W
- 4047 - Coriandrum sativum: 10.1016/J.ARABJC.2013.12.011
- 16906 - Cornus Officinalis Sieb. Et Zucc.: -
- 2580221 - Cryptocarya amygdalina: 10.1002/JCCS.200200041
- 136217 - Curcuma longa: 10.1016/0021-9673(96)00103-3
- 512623 - Cyperus rotundus: 10.1016/J.JEP.2011.02.025
- 2783874 - Daphne mucronata: 10.1080/10286021003610144
- 4039 - Daucus carota L.: -
- 179349 - Dendrobium aurantiacum: 10.1007/S10600-009-9393-Z
- 180501 - Dendrobium chryseum:
- 288950 - Dianthus superbus: 10.1016/J.CANEP.2011.09.004
- 53873 - Dipteryx odorata:
- 155764 - Eucalyptus viminalis: 10.1007/S10600-009-9388-9
- 102770 - Eupatorium cannabinum: 10.1021/NP100923Z
- 102772 - Eupatorium chinense: 10.1080/00021369.1980.10864436
- 330892 - Eupatorium fortunei: 10.1055/S-2006-959741
- 103751 - Eupatorium japonicum: 10.1080/00021369.1980.10864436
- 3617 - Fagopyrum esculentum: -
- 38874 - Fraxinus ornus: 10.1002/PCA.2800040207
- 35899 - Galium odoratum: 10.1002/ARDP.19252631103
- 167663 - Gliricidia sepium: 10.1007/BF00982301
- 239185 - Halocnemum strobilaceum: 10.1016/S0367-326X(00)00301-4
- 452771 - Haplophyllum buxbaumii: 10.1021/NP50052A032
- 3981 - Hevea brasiliensis: 10.1006/PMPP.1995.1053
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 524030 - Hydnellum suaveolens:
- 79362 - Hydrophyllum tenuipes: 10.1002/J.1537-2197.1979.TB06321.X
- 4134 - Hydrophyllum virginianum: 10.1002/J.1537-2197.1979.TB06321.X
- 43503 - Ixora coccinea: 10.1016/J.BMCL.2010.10.058
- 125586 - Koenigia alpina: 10.1007/BF00599015
- 39329 - Lavandula angustifolia: 10.1016/S0031-9422(00)80692-5
- 39331 - Lavandula latifolia:
- 85864 - Magnolia Officinalis Rehd Et Wils\uff0e: -
- 145819 - Mantisalca salmantica: 10.1007/BF00630089
- 98504 - Matricaria chamomilla: 10.1007/BF00629946
- 47082 - Melilotus albus:
- 1155344 - Melilotus altissimus:
- 1279044 - Melilotus messanensis: 10.1055/S-0028-1097913
- 47083 - Melilotus officinalis:
- 1073848 - Mikania glomerata:
- 1049779 - Mikania laevigata:
- 192012 - Mikania micrantha: 10.1055/S-2006-962638
- 59334 - Orchis italica: 10.1021/NP50046A043
- 59339 - Orchis militaris: 10.1021/NP50046A043
- 182415 - Ostericum grosseserratum: 10.3724/SP.J.1009.2010.00264
- 1751005 - Petchia erythrocarpa: 10.1016/S0031-9422(00)88808-1
- 3885 - Phaseolus vulgaris: 10.1021/JF00069A019
- 33090 - Plants: -
- 174549 - Polygala senega: 10.1002/FFJ.2730100408
- 57940 - Potentilla erecta: 10.1007/BF00598776
- 129217 - Prunus mahaleb:
- 3760 - Prunus persica: 10.1007/BF00579835
- 32101 - Pteridium aquilinum: 10.1016/0305-1978(95)00071-2
- 81513 - Pterocaulon: 10.1016/J.EJMECH.2012.09.007
- 141212 - Rhododendron formosanum: 10.1002/MRC.1844
- 52310 - Rudbeckia laciniata: 10.1007/SPRINGERREFERENCE_40729
- 52307 - Rudbeckia subtomentosa: 10.1055/S-2006-960962
- 52309 - Rudbeckia triloba: 10.1055/S-2006-960962
- 23513 - Rutaceae: 10.1351/PAC200173030617
- 92927 - Sarcandra glabra: 10.1016/0031-9422(96)00352-4
- 182070 - Saxifraga Stolonifera: -
- 1161150 - Scabiosa comosa: 10.1007/BF00564813
- 202097 - Scapholeberis mucronata: 10.1080/10286021003610144
- 1538674 - Sempervivum ruthenicum: 10.1007/BF00565316
- 63039 - Seseli peucedanoides: 10.1007/BF00579495
- 459154 - Simaba orinocensis: 10.1055/S-2007-969512
- 354518 - Skimmia laureola: 10.1016/S0031-9422(00)81759-8
- 49657 - Smilax China: -
- 1883 - Streptomyces: 10.1007/S00425-015-2460-8
- 761071 - Tabernaemontana glandulosa: 10.1016/S0031-9422(00)89602-8
- 46417 - Tetrapanax papyrifer: 10.1021/NP050185T
- 79022 - Thapsia garganica: 10.1055/S-2006-960216
- 49992 - Thymus vulgaris: 10.1055/S-2006-960081
- 40145 - Tricholoma matsutake:
- 78479 - Trollius Chinensis: -
- 196007 - Ursinia trifida: 10.1016/0031-9422(92)80176-F
- 1144408 - Uvaria afzelii: 10.1021/JO00328A017
- 51239 - Vanilla planifolia:
- 237931 - Viburnum cylindricum: 10.1002/HLCA.200800420
- 263927 - Yponomeuta mahalebellus: 10.1007/BF01041730
- 2567738 - Yponomeuta padella: 10.1007/BF01041730
- 460985 - Zosima korovinii: 10.1007/BF00579440
- 33090 - 肉桂: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Kaiyue Liu, Fuliang Song, Jie Wang, Xingrui Wang, Chun Kan. A V-shaped bis-coumarin based fluorescence probe for F- detection in tea infusions and potable water and bioimaging applications in living systems.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2024 Aug; 316(?):124349. doi:
10.1016/j.saa.2024.124349
. [PMID: 38692107] - Fahed A Aloufi, Hamada AbdElgawad, Riyadh F Halawani, Mansour A Balkhyour, Abdelrahim H A Hassan. Selenium nanoparticles induce coumarin metabolism and essential oil production in Trachyspermum ammi under future climate CO2 conditions.
Plant physiology and biochemistry : PPB.
2024 Jun; 211(?):108705. doi:
10.1016/j.plaphy.2024.108705
. [PMID: 38714128] - Megan DeLoose, Huikyong Cho, Nadia Bouain, Ilyeong Choi, Chanakan Prom-U-Thai, Zaigham Shahzad, Luqing Zheng, Hatem Rouached. PDR9 allelic variation and MYB63 modulate nutrient-dependent coumarin homeostasis in Arabidopsis.
The Plant journal : for cell and molecular biology.
2024 Mar; 117(6):1716-1727. doi:
10.1111/tpj.16678
. [PMID: 38361338] - Sunbula Atolikshoeva, Jun Li, Jiangyu Zhao, Sodik Numonov, Haji Akber Aisa. New coumarin from the roots of Prangos pabularia growing wild in Tajikistan.
Natural product research.
2024 Jan; 38(1):1-9. doi:
10.1080/14786419.2022.2102627
. [PMID: 35895127] - Vanessa Paffrath, Yudelsy A Tandron Moya, Günther Weber, Nicolaus von Wirén, Ricardo F H Giehl. A major role of coumarin-dependent ferric iron reduction in strategy I-type iron acquisition in Arabidopsis.
The Plant cell.
2023 Nov; ?(?):. doi:
10.1093/plcell/koad279
. [PMID: 38016103] - Alexander Beesley, Sebastian F Beyer, Verena Wanders, Sophie Levecque, Sandra Bredenbruch, Samer S Habash, A Sylvia S Schleker, Jochem Gätgens, Marco Oldiges, Holger Schultheiss, Uwe Conrath, Caspar J G Langenbach. Engineered coumarin accumulation reduces mycotoxin-induced oxidative stress and disease susceptibility.
Plant biotechnology journal.
2023 Aug; ?(?):. doi:
10.1111/pbi.14144
. [PMID: 37578146] - Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products.
ACS pharmacology & translational science.
2023 May; 6(5):683-701. doi:
10.1021/acsptsci.2c00194
. [PMID: 37200814] - Seol Jang, Ami Lee, Youn-Hwan Hwang. Chemical Profile Determination and Quantitative Analysis of Components in Oryeong-san Using UHPLC-Q-Orbitrap-MS and UPLC-TQ-MS/MS.
Molecules (Basel, Switzerland).
2023 Apr; 28(9):. doi:
10.3390/molecules28093685
. [PMID: 37175095] - Yerlan M Suleimen, Rani A Jose, Raigul N Suleimen, Margarita Y Ishmuratova, Suzanne Toppet, Wim Dehaen, Aisha A Alsfouk, Eslam B Elkaeed, Ibrahim H Eissa, Ahmed M Metwaly. Isolation and In Silico SARS-CoV-2 Main Protease Inhibition Potential of Jusan Coumarin, a New Dicoumarin from Artemisia glauca.
Molecules (Basel, Switzerland).
2022 Mar; 27(7):. doi:
10.3390/molecules27072281
. [PMID: 35408682] - Fanxin Zeng, Tao Lu, Jie Wang, Xuliang Nie, Wanming Xiong, Zhongping Yin, Dayong Peng. Design, Synthesis and Bioactivity Evaluation of Coumarin-BMT Hybrids as New Acetylcholinesterase Inhibitors.
Molecules (Basel, Switzerland).
2022 Mar; 27(7):. doi:
10.3390/molecules27072142
. [PMID: 35408542] - Wanjun Gong, Lingdong Jiang, Yanxia Zhu, Mengna Jiang, Danyang Chen, Zhaokui Jin, Shucun Qin, Zhiqiang Yu, Qianjun He. An Activity-Based Ratiometric Fluorescent Probe for In Vivo Real-Time Imaging of Hydrogen Molecules.
Angewandte Chemie (International ed. in English).
2022 02; 61(9):e202114594. doi:
10.1002/anie.202114594
. [PMID: 34921480] - Yanyan Zhao, Wen Shi, Xiaohua Li, Huimin Ma. Recent advances in fluorescent probes for lipid droplets.
Chemical communications (Cambridge, England).
2022 Feb; 58(10):1495-1509. doi:
10.1039/d1cc05717k
. [PMID: 35019910] - Jeelan Basha Shaik, Yelamanda Rao Kandrakonda, Monika Kallubai, Navya Naidu Gajula, Shreya Dubey, Bindu Madhava Reddy Aramati, Rajagopal Subramanyam, Gangaiah Damu Amooru. Deciphering the AChE-binding mechanism with multifunctional tricyclic coumarin anti-Alzheimer's agents using biophysical and bioinformatics approaches and evaluation of their modulating effect on Amyloidogenic peptide assembly.
International journal of biological macromolecules.
2021 Dec; 193(Pt B):1409-1420. doi:
10.1016/j.ijbiomac.2021.10.204
. [PMID: 34740688] - Meiling Luo, Qiao Li, Ping Shen, Shengli Hu, Junyu Wang, Zhou Wu, Zhenhong Su. Coumarin 1,4-enedione for selective detection of hydrazine in aqueous solution and fluorescence imaging in living cells.
Analytical and bioanalytical chemistry.
2021 Dec; 413(30):7541-7548. doi:
10.1007/s00216-021-03719-4
. [PMID: 34783881] - Lei Liu, Li-Peng Shan, Ming-Yang Xue, Jian-Fei Lu, Yang Hu, Guang-Lu Liu, Jiong Chen. Potential application of antiviral coumarin in aquaculture against IHNV infection by reducing viral adhesion to the epithelial cell surface.
Antiviral research.
2021 11; 195(?):105192. doi:
10.1016/j.antiviral.2021.105192
. [PMID: 34687821] - Seyed Jamal Alavi, Amir Zebarjadi, Mahdi Hosseini Bafghi, Hossein Orafai, Hamid Sadeghian. O-prenylated carbostyrils as a novel class of 15-lipoxygenase inhibitors: Synthesis, characterization, and inhibitory assessment.
Chemical biology & drug design.
2021 11; 98(5):894-902. doi:
10.1111/cbdd.13944
. [PMID: 34453501] - Y Fakri Mustafa, R Riyadh Khalil, E Tareq Mohammed, M K Bashir, M Khudhayer Oglah. Effects of Structural Manipulation on the Bioactivity of some Coumarin-Based Products.
Archives of Razi Institute.
2021 11; 76(5):1297-1305. doi:
10.22092/ari.2021.356100.1776
. [PMID: 35355735] - Xuezhe Piao, Hee Sun Byun, So-Ra Lee, Eunjin Ju, Kyeong Ah Park, Kyung-Cheol Sohn, Khong Trong Quan, Jinbae Lee, MinKyun Na, Gang Min Hur. 8-Geranylumbelliferone isolated from Paramignya trimera triggers RIPK1/RIPK3-dependent programmed cell death upon TNFR1 ligation.
Biochemical pharmacology.
2021 10; 192(?):114733. doi:
10.1016/j.bcp.2021.114733
. [PMID: 34411570] - Hui Ren, Wen Yao, Qun Wei, Jun Zhang, BaoXiang Zhao, JunYing Miao. Identification of a new autophagy inhibitor targeting lipid droplets in vascular endothelial cells.
Biochemical and biophysical research communications.
2021 09; 571(?):195-200. doi:
10.1016/j.bbrc.2021.07.078
. [PMID: 34330064] - Julien Ihssen, Greta Faccio, Chunyan Yao, Teja Sirec, Urs Spitz. Fluorogenic in vitro activity assay for the main protease Mpro from SARS-CoV-2 and its adaptation to the identification of inhibitors.
STAR protocols.
2021 09; 2(3):100793. doi:
10.1016/j.xpro.2021.100793
. [PMID: 34423318] - Xiping Xu, Yaru Yan, Wenqian Huang, Ting Mo, Xiaohui Wang, Juan Wang, Jun Li, Shepo Shi, Xiao Liu, Pengfei Tu. Molecular cloning and biochemical characterization of a new coumarin glycosyltransferase CtUGT1 from Cistanche tubulosa.
Fitoterapia.
2021 Sep; 153(?):104995. doi:
10.1016/j.fitote.2021.104995
. [PMID: 34293438] - Zain H Mohamed, Cosima Rhein, Benjamin Schmid, Philipp Tripal, Johannes Kornhuber, Christoph Arenz. Synthesis and characterization of a new two photon excitable acid sphingomyelinase FRET probe.
Bioorganic & medicinal chemistry.
2021 08; 44(?):116303. doi:
10.1016/j.bmc.2021.116303
. [PMID: 34280850] - Isabel Cristina da Costa Araldi, Thiele Piber de Souza, Marina de Souza Vencato, Thainara de Andrade Fortes, Camila Benaduce Emanuelli Mello, Juliana Sorraila de Oliveira, Guilherme Lopes Dornelles, Cinthia Melazzo de Andrade, Roberto Marinho Maciel, Cristiane Cademartori Danesi, Amanda Leitão Gindri, Alencar Kolinski Machado, Liliane de Freitas Bauermann. Preclinical safety assessment of the crude extract from Sida rhombifolia L. aerial parts in experimental models of acute and repeated-dose 28 days toxicity in rats.
Regulatory toxicology and pharmacology : RTP.
2021 Aug; 124(?):104974. doi:
10.1016/j.yrtph.2021.104974
. [PMID: 34139276] - Liqiang Zhao, Shengxiang Zhang, Chunmiao Shan, Yuanyuan Shi, Huan Wu, Jiawen Wu, Daiyin Peng. De novo transcriptome assembly of Angelica dahurica and characterization of coumarin biosynthesis pathway genes.
Gene.
2021 Jul; 791(?):145713. doi:
10.1016/j.gene.2021.145713
. [PMID: 33979682] - Hans Wilhelm Rauwald, Ralf Maucher, Gerd Dannhardt, Kenny Kuchta. Dihydroisocoumarins, Naphthalenes, and Further Polyketides from Aloe vera and A. plicatilis: Isolation, Identification and Their 5-LOX/COX-1 Inhibiting Potency.
Molecules (Basel, Switzerland).
2021 Jul; 26(14):. doi:
10.3390/molecules26144223
. [PMID: 34299499] - Leonardo Bruno, Emanuela Talarico, Luz Cabeiras-Freijanes, Maria Letizia Madeo, Antonella Muto, Marco Minervino, Luigi Lucini, Begoña Miras-Moreno, Adriano Sofo, Fabrizio Araniti. Coumarin Interferes with Polar Auxin Transport Altering Microtubule Cortical Array Organization in Arabidopsis thaliana (L.) Heynh. Root Apical Meristem.
International journal of molecular sciences.
2021 Jul; 22(14):. doi:
10.3390/ijms22147305
. [PMID: 34298924] - Fumika Shii, Dingze Mang, Mayu Kasubuchi, Kana Tsuneto, Tomoko Toyama, Haruka Endo, Ken Sasaki, Ryoichi Sato. Ultrasensitive detection by maxillary palp neurons allows non-host recognition without consumption of harmful allelochemicals.
Journal of insect physiology.
2021 07; 132(?):104263. doi:
10.1016/j.jinsphys.2021.104263
. [PMID: 34052304] - Izabela Perkowska, Marta Potrykus, Joanna Siwinska, Dominika Siudem, Ewa Lojkowska, Anna Ihnatowicz. Interplay between Coumarin Accumulation, Iron Deficiency and Plant Resistance to Dickeya spp.
International journal of molecular sciences.
2021 Jun; 22(12):. doi:
10.3390/ijms22126449
. [PMID: 34208600] - Roman Pavela, Filippo Maggi, Giovanni Benelli. Coumarin (2H-1-benzopyran-2-one): a novel and eco-friendly aphicide.
Natural product research.
2021 May; 35(9):1566-1571. doi:
10.1080/14786419.2019.1660334
. [PMID: 31507220] - Hui Jiang, Jian Liu, Yanling Wang, Leijing Chen, Hui Liu, Zhen Wang, Bin Wang. Screening the Q-markers of TCMs from RA rat plasma using UHPLC-QTOF/MS technique for the comprehensive evaluation of Wu-Wei-Wen-Tong Capsule.
Journal of mass spectrometry : JMS.
2021 May; 56(5):e4711. doi:
10.1002/jms.4711
. [PMID: 33764633] - Tariq Javed, Sarwat Ali Raja, Kashif Ur Rehman, Samrah Khalid, Namrah Khalid, Sana Riaz. In silico bimolecular characterization of anticancer phytochemicals from Fagonia indica.
Pakistan journal of pharmaceutical sciences.
2021 May; 34(3):883-889. doi:
"
. [PMID: 34602410] - Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
Cell reports.
2021 04; 35(4):109040. doi:
10.1016/j.celrep.2021.109040
. [PMID: 33910017] - Wei Ma, Bing Xu, Ru Sun, Yu-Jie Xu, Jian-Feng Ge. The application of amide units in the construction of neutral functional dyes for mitochondrial staining.
Journal of materials chemistry. B.
2021 03; 9(10):2524-2531. doi:
10.1039/d0tb02885a
. [PMID: 33659976] - Wan Mohd Nuzul Hakimi Wan Salleh, Salam Ahmed Abed, Muhammad Taher, Hakimi Kassim, Alene Tawang. The phytochemistry and biological diversity of Ferulago genus (Apiaceae): a systematic review.
The Journal of pharmacy and pharmacology.
2021 Mar; 73(1):1-21. doi:
10.1093/jpp/rgaa034
. [PMID: 33791809] - Max J J Stassen, Shu-Hua Hsu, Corné M J Pieterse, Ioannis A Stringlis. Coumarin Communication Along the Microbiome-Root-Shoot Axis.
Trends in plant science.
2021 02; 26(2):169-183. doi:
10.1016/j.tplants.2020.09.008
. [PMID: 33023832] - Guo-Yong Huang, Hui Cui, Xin-Yi Lu, Lu-Di Zhang, Xiao-Ying Ding, Jin-Jun Wu, Li-Xin Duan, Shi-Jie Zhang, Zhongqiu Liu, Rong-Rong Zhang. (+/-)-Dievodialetins A-G: Seven pairs of enantiomeric coumarin dimers with anti-acetylcholinesterase activity from the roots of Evodia lepta Merr.
Phytochemistry.
2021 Feb; 182(?):112597. doi:
10.1016/j.phytochem.2020.112597
. [PMID: 33341030] - Kevin Robe, Geneviève Conejero, Fei Gao, Linnka Lefebvre-Legendre, Elodie Sylvestre-Gonon, Valérie Rofidal, Sonia Hem, Nicolas Rouhier, Marie Barberon, Arnaud Hecker, Frédéric Gaymard, Esther Izquierdo, Christian Dubos. Coumarin accumulation and trafficking in Arabidopsis thaliana: a complex and dynamic process.
The New phytologist.
2021 02; 229(4):2062-2079. doi:
10.1111/nph.17090
. [PMID: 33205512] - Tin Myo Thant, Nanik Siti Aminah, Alfinda Novi Kristanti, Rico Ramadhan, Preecha Phuwapraisirisan, Yoshiaki Takaya. A new pyrano coumarin from Clausena excavata roots displaying dual inhibition against α-glucosidase and free radical.
Natural product research.
2021 Feb; 35(4):556-561. doi:
10.1080/14786419.2019.1586696
. [PMID: 30908081] - Claire Teevan-Hanman, Paul O'Shea. Candida albicans exhibit two classes of cell surface binding sites for serum albumin defined by their affinity, abundance and prospective role in interkingdom signalling.
PloS one.
2021; 16(7):e0254593. doi:
10.1371/journal.pone.0254593
. [PMID: 34280221] - Marija R Mandić, Mariana M Oalđe, Tanja M Lunić, Aneta D Sabovljević, Marko S Sabovljević, Uroš M Gašić, Sonja N Duletić-Laušević, Bojan Dj Božić, Biljana Dj Božić Nedeljković. Chemical characterization and in vitro immunomodulatory effects of different extracts of moss Hedwigia ciliata (Hedw.) P. Beauv. from the Vršačke Planine Mts., Serbia.
PloS one.
2021; 16(2):e0246810. doi:
10.1371/journal.pone.0246810
. [PMID: 33571277] - Cu Ean Ong, Rafidah Ahmad, You Keng Goh, Kamalrul Azlan Azizan, Syarul Nataqain Baharum, Kah Joo Goh. Growth modulation and metabolic responses of Ganoderma boninense to salicylic acid stress.
PloS one.
2021; 16(12):e0262029. doi:
10.1371/journal.pone.0262029
. [PMID: 34972183] - Yang-Liu Xia, Jing-Jing Wang, Shi-Yang Li, Yong Liu, Frank J Gonzalez, Ping Wang, Guang-Bo Ge. Synthesis and structure-activity relationship of coumarins as potent Mcl-1 inhibitors for cancer treatment.
Bioorganic & medicinal chemistry.
2021 01; 29(?):115851. doi:
10.1016/j.bmc.2020.115851
. [PMID: 33218896] - Harish C Upadhyay. Coumarin-1,2,3-triazole Hybrid Molecules: An Emerging Scaffold for Combating Drug Resistance.
Current topics in medicinal chemistry.
2021; 21(8):737-752. doi:
10.2174/1568026621666210303145759
. [PMID: 33655863] - Nan Wang, Kang-Kang Yu, Kun Li, Meng-Jie Li, Xi Wei, Xiao-Qi Yu. Plant-Inspired Multifunctional Fluorescent Hydrogel: A Highly Stretchable and Recoverable Self-Healing Platform with Water-Controlled Adhesiveness for Highly Effective Antibacterial Application and Data Encryption-Decryption.
ACS applied materials & interfaces.
2020 Dec; 12(52):57686-57694. doi:
10.1021/acsami.0c15364
. [PMID: 33331759] - Hiroyuki Watanabe, Shiori Sakai, Shimpei Iikuni, Yoichi Shimizu, Hisashi Shirakawa, Shuji Kaneko, Masahiro Ono. Synthesis and biological evaluation of radioiodinated 3-phenylcoumarin derivatives targeting myelin in multiple sclerosis.
Bioorganic & medicinal chemistry letters.
2020 12; 30(24):127562. doi:
10.1016/j.bmcl.2020.127562
. [PMID: 32971260] - Mélanie Blanc, Bettie Cormier, Tuulia Hyötyläinen, Martin Krauss, Nikolai Scherbak, Xavier Cousin, Steffen H Keiter. Multi- and transgenerational effects following early-life exposure of zebrafish to permethrin and coumarin 47: Impact on growth, fertility, behavior and lipid metabolism.
Ecotoxicology and environmental safety.
2020 Dec; 205(?):111348. doi:
10.1016/j.ecoenv.2020.111348
. [PMID: 32979803] - Joanna Sumorek-Wiadro, Adrian Zając, Ewa Langner, Krystyna Skalicka-Woźniak, Aleksandra Maciejczyk, Wojciech Rzeski, Joanna Jakubowicz-Gil. Antiglioma Potential of Coumarins Combined with Sorafenib.
Molecules (Basel, Switzerland).
2020 Nov; 25(21):. doi:
10.3390/molecules25215192
. [PMID: 33171577] - Sathish Kumar Chidambaram, Daoud Ali, Saud Alarifi, Surendrakumar Radhakrishnan, Idhayadhulla Akbar. In silico molecular docking: Evaluation of coumarin based derivatives against SARS-CoV-2.
Journal of infection and public health.
2020 Nov; 13(11):1671-1677. doi:
10.1016/j.jiph.2020.09.002
. [PMID: 33008777] - Sathish Kumar Konidala, Vijay Kotra, Ravi Chandra Sekhara Reddy Danduga, Phani Kumar Kola. Coumarin-chalcone hybrids targeting insulin receptor: Design, synthesis, anti-diabetic activity, and molecular docking.
Bioorganic chemistry.
2020 11; 104(?):104207. doi:
10.1016/j.bioorg.2020.104207
. [PMID: 32947135] - Patrick Nelson, Perculiar Adimabua, Ankai Wang, Shengli Zou, Nilam C Shah. Surface-Enhanced Raman Spectroscopy for Rapid Screening of Cinnamon Essential Oils.
Applied spectroscopy.
2020 Nov; 74(11):1341-1349. doi:
10.1177/0003702820931154
. [PMID: 32406267] - Jae-Sung Park, Beomkoo Chung, Won-Hee Lee, Jayho Lee, Youngbae Suh, Dong-Chan Oh, Ki-Bong Oh, Jongheon Shin. Sortase A-Inhibitory Coumarins from the Folk Medicinal Plant Poncirus trifoliata.
Journal of natural products.
2020 10; 83(10):3004-3011. doi:
10.1021/acs.jnatprod.0c00551
. [PMID: 32996318] - Xiangyun Jian, Yucheng Zhao, Ziwen Wang, Shan Li, Li Li, Jun Luo, Lingyi Kong. Two CYP71AJ enzymes function as psoralen synthase and angelicin synthase in the biosynthesis of furanocoumarins in Peucedanum praeruptorum Dunn.
Plant molecular biology.
2020 Oct; 104(3):327-337. doi:
10.1007/s11103-020-01045-4
. [PMID: 32761540] - Santhosh S Kumar, Kirti Hira, Sajeli Begum Ahil, Onkar P Kulkarni, Hiroshi Araya, Yoshinori Fujimoto. New synthetic coumarinolignans as attenuators of pro-inflammatory cytokines in LPS-induced sepsis and carrageenan-induced paw oedema models.
Inflammopharmacology.
2020 Oct; 28(5):1365-1373. doi:
10.1007/s10787-020-00710-w
. [PMID: 32356087] - Jianchun Li, Lu Wang, Ruizhi Tan, Sha Zhao, Xia Zhong, Li Wang. Nodakenin alleviated obstructive nephropathy through blunting Snail1 induced fibrosis.
Journal of cellular and molecular medicine.
2020 09; 24(17):9752-9763. doi:
10.1111/jcmm.15539
. [PMID: 32696548] - Hong Xu Li, Myungsook Heo, Younghoon Go, Young Soo Kim, Young Ho Kim, Seo Young Yang, Wei Li. Coumarin and Moracin Derivatives from Mulberry Leaves (Morus alba L.) with Soluble Epoxide Hydrolase Inhibitory Activity.
Molecules (Basel, Switzerland).
2020 Aug; 25(17):. doi:
10.3390/molecules25173967
. [PMID: 32878149] - Beom Zoo Lee, Ik Soo Lee, Chau Ha Pham, Soon-Kyu Jeong, Sulhae Lee, KwangWon Hong, Hee Min Yoo. Apoptosis in Leukemic Cells Induced by Anti-proliferative Coumarin Isolated from the Stem Bark of Fraxinus rhynchophylla.
Journal of microbiology and biotechnology.
2020 Aug; 30(8):1214-1221. doi:
10.4014/jmb.2006.06022
. [PMID: 32699201] - Chao Wu, Hanze Liu, Xiaojuan Rong, Jiahao Liu, Wenzheng Ding, Xuemei Cheng, Jianguo Xing, Changhong Wang. Phytochemical composition profile and space-time accumulation of secondary metabolites for Dracocephalum moldavica Linn. via UPLC-Q/TOF-MS and HPLC-DAD method.
Biomedical chromatography : BMC.
2020 Aug; 34(8):e4865. doi:
10.1002/bmc.4865
. [PMID: 32330321] - Poornima Kalyanram, Huilin Ma, Shena Marshall, Christina Goudreau, Ana Cartaya, Tyler Zimmermann, Istvan Stadler, Shikha Nangia, Anju Gupta. Interaction of amphiphilic coumarin with DPPC/DPPS lipid bilayer: effects of concentration and alkyl tail length.
Physical chemistry chemical physics : PCCP.
2020 Jul; 22(27):15197-15207. doi:
10.1039/d0cp00696c
. [PMID: 32420558] - Miriam Rossi, Sandjida Aktar, Marissa Davis, Emily Hefter Feuss, Samara Roman-Holba, Kelly Wen, Christopher Gahn, Francesco Caruso. The Grapefruit Effect: Interaction between Cytochrome P450 and Coumarin Food Components, Bergamottin, Fraxidin and Osthole. X-ray Crystal Structure and DFT Studies.
Molecules (Basel, Switzerland).
2020 Jul; 25(14):. doi:
10.3390/molecules25143158
. [PMID: 32664320] - Maria T Baltazar, Sophie Cable, Paul L Carmichael, Richard Cubberley, Tom Cull, Mona Delagrange, Matthew P Dent, Sarah Hatherell, Jade Houghton, Predrag Kukic, Hequn Li, Mi-Young Lee, Sophie Malcomber, Alistair M Middleton, Thomas E Moxon, Alexis V Nathanail, Beate Nicol, Ruth Pendlington, Georgia Reynolds, Joe Reynolds, Andrew White, Carl Westmoreland. A Next-Generation Risk Assessment Case Study for Coumarin in Cosmetic Products.
Toxicological sciences : an official journal of the Society of Toxicology.
2020 07; 176(1):236-252. doi:
10.1093/toxsci/kfaa048
. [PMID: 32275751] - Narongpol Kaewchangwat, Eknarin Thanayupong, Suwatchai Jarussophon, Nakorn Niamnont, Teerapong Yata, Sagaw Prateepchinda, Onuma Unger, Bao-Hang Han, Khomson Suttisintong. Coumarin-Caged Compounds of 1-Naphthaleneacetic Acid as Light-Responsive Controlled-Release Plant Root Stimulators.
Journal of agricultural and food chemistry.
2020 Jun; 68(23):6268-6279. doi:
10.1021/acs.jafc.0c00138
. [PMID: 32396350] - Kumkum Sharma, Priyanka Yadav, Bhawana Sharma, Meenakshi Pandey, Satish K Awasthi. Interaction of coumarin triazole analogs to serum albumins: Spectroscopic analysis and molecular docking studies.
Journal of molecular recognition : JMR.
2020 06; 33(6):e2834. doi:
10.1002/jmr.2834
. [PMID: 32017307] - Serena Fiorito, Salvatore Genovese, Lucia Palumbo, Luca Scotti, Michele Ciulla, Pietro di Profio, Francesco Epifano. Umbelliprenin as a novel component of the phytochemical pool from Artemisia spp.
Journal of pharmaceutical and biomedical analysis.
2020 May; 184(?):113205. doi:
10.1016/j.jpba.2020.113205
. [PMID: 32113116] - Dawid Maduzia, Piotr Ceranowicz, Jakub Cieszkowski, Krystyna Gałązka, Beata Kuśnierz-Cabala, Zygmunt Warzecha. Pretreatment with Warfarin Attenuates the Development of Ischemia/Reperfusion-Induced Acute Pancreatitis in Rats.
Molecules (Basel, Switzerland).
2020 May; 25(11):. doi:
10.3390/molecules25112493
. [PMID: 32471279] - Izabela Szymborska-Sandhu, Jarosław L Przybył, Olga Kosakowska, Katarzyna Bączek, Zenon Węglarz. Chemical Diversity of Bastard Balm (Melittis melisophyllum L.) as Affected by Plant Development.
Molecules (Basel, Switzerland).
2020 May; 25(10):. doi:
10.3390/molecules25102421
. [PMID: 32455929] - Maël Gainche, Isabelle Ripoche, François Senejoux, Juliette Cholet, Clémence Ogeron, Caroline Decombat, Ombeline Danton, Laetitia Delort, Marjolaine Vareille-Delarbre, Alexandre Berry, Marion Vermerie, Didier Fraisse, Catherine Felgines, Edwige Ranouille, Jean-Yves Berthon, Julien Priam, Etienne Saunier, Albert Tourette, Yves Troin, Florence Caldefie-Chezet, Pierre Chalard. Anti-Inflammatory and Cytotoxic Potential of New Phenanthrenoids from Luzula Sylvatica.
Molecules (Basel, Switzerland).
2020 May; 25(10):. doi:
10.3390/molecules25102372
. [PMID: 32443866] - Jade Serrano-Román, Pilar Nicasio-Torres, Elizabeth Hernández-Pérez, Enrique Jiménez-Ferrer. Elimination pharmacokinetics of sphaeralcic acid, tomentin and scopoletin mixture from a standardized fraction of Sphaeralcea angustifolia (Cav.) G. Don orally administered.
Journal of pharmaceutical and biomedical analysis.
2020 May; 183(?):113143. doi:
10.1016/j.jpba.2020.113143
. [PMID: 32045824] - Tingting Liu, Liping Wang, Lan Zhang, Hongyun Jiang, Yanning Zhang, Liangang Mao. Insecticidal, cytotoxic and anti-phytopathogenic fungal activities of chemical constituents from the aerial parts of Ferula sinkiangensis.
Natural product research.
2020 May; 34(10):1430-1436. doi:
10.1080/14786419.2018.1509328
. [PMID: 30417676] - Yao Fu, Xiaoxiao Tian, Lingling Han, Yilin Li, Ying Peng, Jiang Zheng. Mechanism-based inactivation of cytochrome P450 2D6 by Notopterol.
Chemico-biological interactions.
2020 May; 322(?):109053. doi:
10.1016/j.cbi.2020.109053
. [PMID: 32198085] - Mohammad Bagher Majnooni, Sajad Fakhri, Yalda Shokoohinia, Mahdi Mojarrab, Sara Kazemi-Afrakoti, Mohammad Hosein Farzaei. Isofraxidin: Synthesis, Biosynthesis, Isolation, Pharmacokinetic and Pharmacological Properties.
Molecules (Basel, Switzerland).
2020 Apr; 25(9):. doi:
10.3390/molecules25092040
. [PMID: 32349420] - Toshitada Yoshihara, Ryo Maruyama, Shuichi Shiozaki, Koji Yamamoto, Shin-Ichiro Kato, Yosuke Nakamura, Seiji Tobita. Visualization of Lipid Droplets in Living Cells and Fatty Livers of Mice Based on the Fluorescence of π-Extended Coumarin Using Fluorescence Lifetime Imaging Microscopy.
Analytical chemistry.
2020 04; 92(7):4996-5003. doi:
10.1021/acs.analchem.9b05184
. [PMID: 32126762] - Hai-Ning Lyu, Ning-Ning Wei, Peng-Fei Tu, KeWei Wang, Yong Jiang. A new coumarin from Murraya alata activates TRPV1 channel.
Natural product research.
2020 Apr; 34(8):1068-1073. doi:
10.1080/14786419.2018.1548455
. [PMID: 30663366] - Rohan V Pai, Pradeep R Vavia. Chitosan oligosaccharide enhances binding of nanostructured lipid carriers to ocular mucins: Effect on ocular disposition.
International journal of pharmaceutics.
2020 Mar; 577(?):119095. doi:
10.1016/j.ijpharm.2020.119095
. [PMID: 32004680] - Penghua Shu, Junping Li, Yingying Fei, Huiqing Zhu, Mengzhu Yu, Anqi Liu, Haoying Niu, Simin Zou, Xialan Wei, Zhiyu Ju, Zhihong Xu. Isolation, structure elucidation, tyrosinase inhibitory, and antioxidant evaluation of the constituents from Angelica dahurica roots.
Journal of natural medicines.
2020 Mar; 74(2):456-462. doi:
10.1007/s11418-019-01375-8
. [PMID: 31773388] - Ninad Doctor, Grayson Parker, Katie Vang, Melanie Smith, Berkant Kayan, Yu Yang. Stability and Extraction of Vanillin and Coumarin under Subcritical Water Conditions.
Molecules (Basel, Switzerland).
2020 Feb; 25(5):. doi:
10.3390/molecules25051061
. [PMID: 32120972] - Shengyi Zhai, Xiaoxiao Deng, Chen Zhang, Yu Zhou, Huanzhang Xie, Zhou Jiang, Lee Jia. A novel UPLC/MS/MS method for rapid determination of murrayone in rat plasma and its pharmacokinetics.
Journal of pharmaceutical and biomedical analysis.
2020 Feb; 180(?):113046. doi:
10.1016/j.jpba.2019.113046
. [PMID: 31874311] - Xue-Quan Wang, Xue-Bing Chen, Ping-Ting Ye, Zhi-Xin Yang, Meng-Jiao Bai, Su-Yue Duan, Yan Li, Xiao-Dong Yang. Synthesis and biological evaluation of novel 3-benzylcoumarin-imidazolium salts.
Bioorganic & medicinal chemistry letters.
2020 02; 30(4):126896. doi:
10.1016/j.bmcl.2019.126896
. [PMID: 31882296] - Anand-Krishna Singh, Pankaj Kumar Patel, Komal Choudhary, Jaya Joshi, Dhananjay Yadav, Jun-O Jin. Quercetin and Coumarin Inhibit Dipeptidyl Peptidase-IV and Exhibits Antioxidant Properties: In Silico, In Vitro, Ex Vivo.
Biomolecules.
2020 01; 10(2):. doi:
10.3390/biom10020207
. [PMID: 32023875] - Na Zhao, Yue Li, Wei Yin, Jiabao Zhuang, Qian Jia, Zhongliang Wang, Nan Li. Controllable Coumarin-Based NIR Fluorophores: Selective Subcellular Imaging, Cell Membrane Potential Indication, and Enhanced Photodynamic Therapy.
ACS applied materials & interfaces.
2020 Jan; 12(2):2076-2086. doi:
10.1021/acsami.9b18666
. [PMID: 31847517] - Tomonori Miura, Yusuke Kamiya, Shiori Hina, Yui Kobayashi, Norie Murayama, Makiko Shimizu, Hiroshi Yamazaki. Metabolic profiles of coumarin in human plasma extrapolated from a rat data set with a simplified physiologically based pharmacokinetic model.
The Journal of toxicological sciences.
2020; 45(11):695-700. doi:
10.2131/jts.45.695
. [PMID: 33132243] - Chunxiang Li, Yueyuan Cai, Mengmeng Pang, Xiaoming Zhou, Xiliang Luo, Zhenyu Xiao. A coumarin-appended cyclometalated iridium(III) complex for visible light driven photoelectrochemical bioanalysis.
Biosensors & bioelectronics.
2020 Jan; 147(?):111779. doi:
10.1016/j.bios.2019.111779
. [PMID: 31630031] - Minghui Zhou, Boli Li, Xinhui Zhang, Shaolong He, Yanni Ma, Wenping Wang. Synthesis and evaluation of hydrophobically modified fenugreek gum for potential hepatic drug delivery.
Artificial cells, nanomedicine, and biotechnology.
2019 Dec; 47(1):1702-1709. doi:
10.1080/21691401.2019.1606009
. [PMID: 31062603] - Mengjing Zhao, Huan Zhao, Jiangming Deng, Lianxia Guo, Baojian Wu. Role of the CLOCK protein in liver detoxification.
British journal of pharmacology.
2019 12; 176(24):4639-4652. doi:
10.1111/bph.14828
. [PMID: 31404943] - João Paulo Bizarro Lopes, Luana Silva, Marco Antonio Ceschi, Diogo Seibert Lüdtke, Aline Rigon Zimmer, Thais Carine Ruaro, Rafael Ferreira Dantas, Cristiane Martins Cardoso de Salles, Floriano Paes Silva-Jr, Mario Roberto Senger, Gisele Barbosa, Lídia Moreira Lima, Isabella Alvim Guedes, Laurent Emmanuel Dardenne. Synthesis of new lophine-carbohydrate hybrids as cholinesterase inhibitors: cytotoxicity evaluation and molecular modeling.
MedChemComm.
2019 Dec; 10(12):2089-2101. doi:
10.1039/c9md00358d
. [PMID: 32904099] - Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Molecular pharmacology.
2019 11; 96(5):629-640. doi:
10.1124/mol.119.115964
. [PMID: 31515284] - Dinesh S Reddy, Manasa Kongot, Vishal Singh, Neha Maurya, Rajan Patel, Nitin Kumar Singhal, Fernando Avecilla, Amit Kumar. Coumarin tethered cyclic imides as efficacious glucose uptake agents and investigation of hit candidate to probe its binding mechanism with human serum albumin.
Bioorganic chemistry.
2019 11; 92(?):103212. doi:
10.1016/j.bioorg.2019.103212
. [PMID: 31465968] - Longfei Zhang, Zhi Xu. Coumarin-containing hybrids and their anticancer activities.
European journal of medicinal chemistry.
2019 Nov; 181(?):111587. doi:
10.1016/j.ejmech.2019.111587
. [PMID: 31404864] - Geng Zhang, Yi Xu, Hui-Fang Zhou. Esculetin Inhibits Proliferation, Invasion, and Migration of Laryngeal Cancer In Vitro and In Vivo by Inhibiting Janus Kinas (JAK)-Signal Transducer and Activator of Transcription-3 (STAT3) Activation.
Medical science monitor : international medical journal of experimental and clinical research.
2019 Oct; 25(?):7853-7863. doi:
10.12659/msm.916246
. [PMID: 31630150] - Kavya Venkateswaran, Anju Shrivastava, Paban K Agrawala, Ashok K Prasad, Sagolsem Chandrika Devi, Kailash Manda, Virinder S Parmar, Bilikere S Dwarakanath. Mitigation of radiation-induced gastro-intestinal injury by the polyphenolic acetate 7, 8-diacetoxy-4-methylthiocoumarin in mice.
Scientific reports.
2019 10; 9(1):14134. doi:
10.1038/s41598-019-50785-x
. [PMID: 31575959] - Xueni Niu, Rulan Qin, Yudan Zhao, Ling Han, Jincai Lu, Chongning Lv. Simultaneous determination of 19 constituents in Cimicifugae Rhizoma by HPLC-DAD and screening for antioxidants through DPPH free radical scavenging assay.
Biomedical chromatography : BMC.
2019 Oct; 33(10):e4624. doi:
10.1002/bmc.4624
. [PMID: 31215046] - Ratish R Nair, M Raju, Surjit Bhai, Ishan H Raval, Soumya Haldar, Bishwajit Ganguly, Pabitra B Chatterjee. Estimation of bisulfate in edible plant foods, dog urine, and drugs: picomolar level detection and bio-imaging in living organisms.
The Analyst.
2019 Sep; 144(19):5724-5737. doi:
10.1039/c9an01078e
. [PMID: 31486453] - Ghislain Wabo Fotso, Linda Mogue Kamdem, Mthandazo Dube, Serge Alain Fobofou, Albert Ndjie Ebene, Norbert Arnold, Bonaventure Tchaleu Ngadjui. Antimicrobial secondary metabolites from the stem barks and leaves of Monotes kerstingii Gilg (Dipterocarpaceae).
Fitoterapia.
2019 Sep; 137(?):104239. doi:
10.1016/j.fitote.2019.104239
. [PMID: 31201886] - Dong Wang, Xiaojun Hou, Xuecheng Zhang, Yurong Zhao, Yawei Sun, Jiqian Wang. One- and two-photon responsive injectable nano-bundle biomaterials from co-assembled lipopeptides for controlling molecular diffusion.
Soft matter.
2019 Aug; 15(32):6476-6484. doi:
10.1039/c9sm01184f
. [PMID: 31365016] - Joana Terés, Silvia Busoms, Laura Perez Martín, Adrián Luís-Villarroya, Paulina Flis, Ana Álvarez-Fernández, Roser Tolrà, David E Salt, Charlotte Poschenrieder. Soil carbonate drives local adaptation in Arabidopsis thaliana.
Plant, cell & environment.
2019 08; 42(8):2384-2398. doi:
10.1111/pce.13567
. [PMID: 31018012] - Sebastian F Beyer, Alexander Beesley, Philipp F W Rohmann, Holger Schultheiss, Uwe Conrath, Caspar J G Langenbach. The Arabidopsis non-host defence-associated coumarin scopoletin protects soybean from Asian soybean rust.
The Plant journal : for cell and molecular biology.
2019 08; 99(3):397-413. doi:
10.1111/tpj.14426
. [PMID: 31148306] - Xiaoyi Qi, Tongyi Dou, Zhongqiong Wang, Jianming Wu, Ling Yang, Su Zeng, Mingming Deng, Muhan Lü, Sicheng Liang. Inhibition of human cytochrome P450 2A6 by 7-hydroxycoumarin analogues: Analysis of the structure-activity relationship and isoform selectivity.
European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.
2019 Aug; 136(?):104944. doi:
10.1016/j.ejps.2019.05.022
. [PMID: 31163215] - Chunli Duan, Tingting Mao, Shenqing Sun, Xianjun Guo, Laixian Guo, Lilong Huang, Zixuan Wang, Yan Zhang, Miao Li, Yuting Sheng, Yanjun Yi, Jiayao Liu, Hongxia Zhang, Juan Zhang. Constitutive expression of GmF6'H1 from soybean improves salt tolerance in transgenic Arabidopsis.
Plant physiology and biochemistry : PPB.
2019 Aug; 141(?):446-455. doi:
10.1016/j.plaphy.2019.06.027
. [PMID: 31247427] - Mert Ilhan, Zulfiqar Ali, Ikhlas A Khan, Esra Küpeli Akkol. A new isoflavane-4-ol derivative from Melilotus officinalis (L.) Pall.
Natural product research.
2019 Jul; 33(13):1856-1861. doi:
10.1080/14786419.2018.1477152
. [PMID: 29772948] - Stane Pajk, Hana Majaron, Matej Novak, Boštjan Kokot, Janez Štrancar. New coumarin- and phenoxazine-based fluorescent probes for live-cell STED nanoscopy.
European biophysics journal : EBJ.
2019 Jul; 48(5):485-490. doi:
10.1007/s00249-019-01354-7
. [PMID: 30879103]