NCBI Taxonomy: 94007

Cnidium monnieri (ncbi_taxid: 94007)

found 127 associated metabolites at species taxonomy rank level.

Ancestor: Cnidium

Child Taxonomies: none taxonomy data.

Isoimperatorin

7,4-[(3-methyl-2-butenyl)oxy]-7H-furo[3,2-g]-1-benzopyran-7-one

C16H14O4 (270.0892044)


Isoimperatorin is a member of the class of compounds known as psoralens. Psoralens are organic compounds containing a psoralen moiety, which consists of a furan fused to a chromenone to for 7H-furo[3,2-g]chromen-7-one. Isoimperatorin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Isoimperatorin can be found in a number of food items such as parsley, lime, wild celery, and parsnip, which makes isoimperatorin a potential biomarker for the consumption of these food products. Isoimperatorin is a non-carcinogenic (not listed by IARC) potentially toxic compound. If the compound has been ingested, rapid gastric lavage should be performed using 5\\\\% sodium bicarbonate. For skin contact, the skin should be washed with soap and water. If the compound has entered the eyes, they should be washed with large quantities of isotonic saline or water. In serious cases, atropine and/or pralidoxime should be administered. Anti-cholinergic drugs work to counteract the effects of excess acetylcholine and reactivate AChE. Atropine can be used as an antidote in conjunction with pralidoxime or other pyridinium oximes (such as trimedoxime or obidoxime), though the use of -oximes has been found to be of no benefit, or possibly harmful, in at least two meta-analyses. Atropine is a muscarinic antagonist, and thus blocks the action of acetylcholine peripherally (T3DB). D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM. Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM.

   

Coumarin

2h-1-benzopyran-2-one;coumarin;2h-chromen-2-one;coumarin ;coumarin (2h-1-benzopyran-2-one) (chromen-2-one);2h-1-benzopyran-2-one coumarin 2h-chromen-2-one coumarin coumarin (2h-1-benzopyran-2-one) (chromen-2-one)

C9H6O2 (146.0367776)


Coumarin appears as colorless crystals, flakes or colorless to white powder with a pleasant fragrant vanilla odor and a bitter aromatic burning taste. (NTP, 1992) Coumarin is a chromenone having the keto group located at the 2-position. It has a role as a fluorescent dye, a plant metabolite and a human metabolite. Coumarin is a natural product found in Eupatorium cannabinum, Eupatorium japonicum, and other organisms with data available. Coumarin is o hydroxycinnamic acid. Pleasant smelling compound found in many plants and released on wilting. Has anticoagulant activity by competing with Vitamin K. Coumarin is a chemical compound/poison found in many plants, notably in high concentration in the tonka bean, woodruff, and bison grass. It has a sweet scent, readily recognised as the scent of newly-mown hay. It has clinical value as the precursor for several anticoagulants, notably warfarin. --Wikipedia. Coumarins, as a class, are comprised of numerous naturally occurring benzo-alpha-pyrone compounds with important and diverse physiological activities. The parent compound, coumarin, occurs naturally in many plants, natural spices, and foods such as tonka bean, cassia (bastard cinnamon or Chinese cinnamon), cinnamon, melilot (sweet clover), green tea, peppermint, celery, bilberry, lavender, honey (derived both from sweet clover and lavender), and carrots, as well as in beer, tobacco, wine, and other foodstuffs. Coumarin concentrations in these plants, spices, and foods range from <1 mg/kg in celery, 7000 mg/kg in cinnamon, and up to 87,000 mg/kg in cassia. An estimate of human exposure to coumarin from the diet has been calculated to be 0.02 mg/kg/day. Coumarin is used as an additive in perfumes and fragranced consumer products at concentrations ranging from <0.5\\\\% to 6.4\\\\% in fine fragrances to <0.01\\\\% in detergents. An estimate for systemic exposure of humans from the use of fragranced cosmetic products is 0.04 mg/kg BW/day, assuming complete dermal penetration. The use of coumarin as a food additive was banned by the FDA in 1954 based on reports of hepatotoxicity in rats. Due to its potential hepatotoxic effects in humans, the European Commission restricted coumarin from naturals as a direct food additive to 2 mg/kg food/day, with exceptions granting higher levels for alcoholic beverages, caramel, chewing gum, and certain traditional foods. In addition to human exposure to coumarin from dietary sources and consumer products, coumarin is also used clinically as an antineoplastic and for the treatment of lymphedema and venous insufficiency. Exposure ranges from 11 mg/day for consumption of natural food ingredients to 7 g/day following clinical administration. Although adverse effects in humans following coumarin exposure are rare, and only associated with clinical doses, recent evidence indicates coumarin causes liver tumors in rats and mice and Clara cell toxicity and lung tumors in mice. The multiple effects as well as the ongoing human exposure to coumarin have resulted in a significant research effort focused on understanding the mechanism of coumarin induced toxicity/carcinogenicity and its human relevance. These investigations have revealed significant species differences in coumarin metabolism and toxicity such that the mechanism of coumarin induced effects in rodents, and the relevance of these findings for the safety assessment of coumarin exposure in humans are now better understood. In October 2004, the European Food Safety Authority (EFSA, 2004) reviewed coumarin to establish a tolerable daily intake (TDI) in foods. EFSA issued an opinion indicating that coumarin is not genotoxic, and that a threshold approach to safety assessment was most appropriate. EFSA recommended a TDI of 0 to 0.1 mg/kg BW/day. Including dietary contributions, the total human exposure is estimated to be 0.06 mg/kg/day. As a pharmaceutical, coumarin has been used in diverse applications with a wide variety of dosing regimens. Unlike coumadin and ... Coumarin belongs to the class of chemicals known as chromenones. Specifically it is a chromenone having the keto group located at the 2-position. A chromenone is a benzene molecule with two adjacent hydrogen atoms replaced by a lactone-like chain forming a second six-membered heterocycle that shares two carbons with the benzene ring. Coumarin is also described as a benzopyrone and is considered as a lactone. Coumarin is a colorless crystalline solid with a bitter taste and sweet odor resembling the scent of vanilla or the scent of newly-mowed or recently cut hay. It is a chemical poison found in many plants where it may serve as a chemical defense against predators. Coumarin occurs naturally in many plants and foods such as the tonka bean, woodruff, bison grass, cassia (bastard cinnamon or Chinese cinnamon), cinnamon, melilot (sweet clover), green tea, peppermint, celery, bilberry, lavender, honey (derived both from sweet clover and lavender), and carrots, as well as in beer, tobacco, wine, and other foodstuffs. Coumarin concentrations in these plants, spices, and foods range from <1 mg/kg in celery, to 7000 mg/kg in cinnamon, and up to 87,000 mg/kg in cassia. An estimate of human exposure to coumarin from the diet has been calculated to be 0.02 mg/kg/day. Coumarin is used as an additive in perfumes and fragranced consumer products at concentrations ranging from <0.5\\\\% To 6.4\\\\% In fine fragrances to <0.01\\\\% In detergents. An estimate for systemic exposure of humans from the use of fragranced cosmetic products is 0.04 mg/kg BW/day, assuming complete dermal penetration. The use of coumarin as a food additive was banned by the FDA in 1954 based on reports of hepatotoxicity in rats. It has clinical value as the precursor for several anticoagulants, notably warfarin. Coumarins, as a class, are comprised of numerous naturally occurring benzo-alpha-pyrone compounds with important and diverse physiological activities. Due to its potential hepatotoxic effects in humans, the European Commission restricted coumarin from naturals as a direct food additive to 2 mg/kg food/day, with exceptions granting higher levels for alcoholic beverages, caramel, chewing gum, and certain traditional foods. In addition to human exposure to coumarin from dietary sources and consumer products, coumarin is also used clinically as an antineoplastic and for the treatment of lymphedema and venous insufficiency. Exposure ranges from 11 mg/day for consumption of natural food ingredients to 7 g/day following clinical administration. Although adverse effects in humans following coumarin exposure are rare, and only associated with clinical doses, recent evidence indicates coumarin causes liver tumors in rats and mice and Clara cell toxicity and lung tumors in mice. The multiple effects as well as the ongoing human exposure to coumarin have resulted in a significant research effort focused on understanding the mechanism of coumarin induced toxicity/carcinogenicity and its human relevance. These investigations have revealed significant species differences in coumarin metabolism and toxicity such that the mechanism of coumarin induced effects in rodents, and the relevance of these findings for the safety assessment of coumarin exposure in humans are now better understood. In October 2004, the European Food Safety Authority (EFSA, 2004) reviewed coumarin to establish a tolerable daily intake (TDI) in foods. EFSA issued an opinion indicating that coumarin is not genotoxic, and that a threshold approach to safety assessment was most appropriate. EFSA recommended a TDI of 0 to 0.1 Mg/kg BW/day. Including dietary contributions, the total human exposure is estimated to be 0.06 Mg/kg/day. As a pharmaceutical, coumarin has been used in diverse applications with a wide variety of dosing regimens. Unlike coumadin and other coumarin derivatives, coumarin has no anti-coagulant activity. However, at low doses (typically 7 to 10 mg/day), coumarin has been used as a venotonic to promote... C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent A chromenone having the keto group located at the 2-position. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Raw Data] CB013_Coumarin_pos_20eV_CB000008.txt [Raw Data] CB013_Coumarin_pos_30eV_CB000008.txt [Raw Data] CB013_Coumarin_pos_10eV_CB000008.txt [Raw Data] CB013_Coumarin_pos_50eV_CB000008.txt [Raw Data] CB013_Coumarin_pos_40eV_CB000008.txt Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities. Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities.

   

Diosmetin

5,7-Dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-4H-1-benzopyran-4-one (Diosmetin)

C16H12O6 (300.06338519999997)


Diosmetin is a monomethoxyflavone that is the 4-methyl ether derivative of luteolin. It is a natural product isolated from citrus fruits which exhibits a range of pharmacological activities. It has a role as an antioxidant, an antineoplastic agent, a plant metabolite, a tropomyosin-related kinase B receptor agonist, an apoptosis inducer, an angiogenesis inhibitor, a cardioprotective agent, a bone density conservation agent, an anti-inflammatory agent and a vasodilator agent. It is a monomethoxyflavone, a trihydroxyflavone and a 3-hydroxyflavonoid. It is functionally related to a luteolin. It is a conjugate acid of a diosmetin-7-olate. Diosmetin is an O-methylated flavone and the aglycone part of the flavonoid glycosides diosmin that occurs naturally in citrus fruits. Pharmacologically, diosmetin is reported to exhibit anticancer, antimicrobial, antioxidant, oestrogenic and anti-inflamatory activities. It also acts as a weak TrkB receptor agonist. Diosmetin is a natural product found in Vicia tenuifolia, Salvia tomentosa, and other organisms with data available. See also: Agathosma betulina leaf (part of). A monomethoxyflavone that is the 4-methyl ether derivative of luteolin. It is a natural product isolated from citrus fruits which exhibits a range of pharmacological activities. Isolated from peel of lemon (Citrus limon) and others. Diosmetin is found in many foods, some of which are spearmint, citrus, rosemary, and common thyme. Diosmetin is found in citrus. Diosmetin is isolated from peel of lemon (Citrus limon) and other Diosmetin is a natural flavonoid which inhibits human CYP1A enzyme activity with an IC50 of 40 μM in HepG2 cell. Diosmetin is a natural flavonoid which inhibits human CYP1A enzyme activity with an IC50 of 40 μM in HepG2 cell.

   

Imperatorin

InChI=1/C16H14O4/c1-10(2)5-7-19-16-14-12(6-8-18-14)9-11-3-4-13(17)20-15(11)16/h3-6,8-9H,7H2,1-2H

C16H14O4 (270.0892044)


Imperatorin is a member of the class of psoralens that is psoralen substituted by a prenyloxy group at position 8. Isolated from Angelica dahurica and Angelica koreana, it acts as a acetylcholinesterase inhibitor. It has a role as an EC 3.1.1.7 (acetylcholinesterase) inhibitor and a metabolite. Imperatorin is a natural product found in Allium wallichii, Ammi visnaga, and other organisms with data available. Imperatorin is found in anise. Imperatorin is present in Aegle marmelos (bael fruit) and seeds of Pastinaca sativa (parsnip).Imperatorin is a furocoumarin and a phytochemical that has been isolated from Urena lobata L. (Malvaceae). It is biosynthesized from umbelliferone, a coumarin derivative.Imperatorin has been shown to exhibit anti-hypertrophic and anti-convulsant functions (A7784, A7785).Imperatorin belongs to the family of Furanocoumarins. These are polycyclic aromatic compounds containing a furan ring fused to a coumarin moeity. See also: Angelica Dahurica Root (part of); Aegle marmelos fruit (part of); Ammi majus seed (part of) ... View More ... Imperatorin is found in anise. Imperatorin is present in Aegle marmelos (bael fruit) and seeds of Pastinaca sativa (parsnip).Imperatorin is a furocoumarin and a phytochemical that has been isolated from Urena lobata L. (Malvaceae). It is biosynthesized from umbelliferone, a coumarin derivative A member of the class of psoralens that is psoralen substituted by a prenyloxy group at position 8. Isolated from Angelica dahurica and Angelica koreana, it acts as a acetylcholinesterase inhibitor. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Present in Aegle marmelos (bael fruit) and seeds of Pastinaca sativa (parsnip) INTERNAL_ID 2244; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2244 Imperatorin is an effective of NO synthesis inhibitor (IC50=9.2 μmol), which also is a BChE inhibitor (IC50=31.4 μmol). Imperatorin is a weak agonist of TRPV1 with EC50 of 12.6±3.2 μM. Imperatorin is an effective of NO synthesis inhibitor (IC50=9.2 μmol), which also is a BChE inhibitor (IC50=31.4 μmol). Imperatorin is a weak agonist of TRPV1 with EC50 of 12.6±3.2 μM.

   

Osthol

InChI=1/C15H16O3/c1-10(2)4-7-12-13(17-3)8-5-11-6-9-14(16)18-15(11)12/h4-6,8-9H,7H2,1-3H

C15H16O3 (244.1099386)


Osthol, also known as 7-methoxy-8-(3-methylpent-2-enyl)coumarin, belongs to coumarins and derivatives class of compounds. Those are polycyclic aromatic compounds containing a 1-benzopyran moiety with a ketone group at the C2 carbon atom (1-benzopyran-2-one). Osthol is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Osthol can be found in a number of food items such as wild celery, lemon, parsley, and wild carrot, which makes osthol a potential biomarker for the consumption of these food products. Osthol is an O-methylated coumarin. It is a calcium channel blocker, found in plants such as Cnidium monnieri, Angelica archangelica and Angelica pubescens . Osthole is a member of coumarins and a botanical anti-fungal agent. It has a role as a metabolite. Osthole is a natural product found in Murraya alata, Pentaceras australe, and other organisms with data available. See also: Angelica pubescens root (part of). D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D007155 - Immunologic Factors Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells.

   

Isopimpinellin

InChI=1/C13H10O5/c1-15-10-7-3-4-9(14)18-12(7)13(16-2)11-8(10)5-6-17-11/h3-6H,1-2H3

C13H10O5 (246.052821)


Isopimpinellin is a member of psoralens. Isopimpinellin is a natural product found in Zanthoxylum mayu, Zanthoxylum ovalifolium, and other organisms with data available. Isopimpinellin is found in angelica. Isopimpinellin is present in the seeds of Pastinaca sativa (parsnip) Isopimpinellin belongs to the family of Furanocoumarins. These are polycyclic aromatic compounds containing a furan ring fused to a coumarin moeity. See also: Angelica keiskei top (part of). Present in the seeds of Pastinaca sativa (parsnip). Isopimpinellin is found in many foods, some of which are carrot, anise, celery stalks, and fennel. Isopimpinellin is found in angelica. Isopimpinellin is present in the seeds of Pastinaca sativa (parsnip D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Isopimpinellin, an orally active compound isolated from Glomerella cingulata. Isopimpinellin blocks DNA adduct formation and skin tumor initiation by 7,12-dimethylbenz[a]anthracene. Isopimpinellin possesses anti-leishmania effect[1]. Isopimpinellin, an orally active compound isolated from Glomerella cingulata. Isopimpinellin blocks DNA adduct formation and skin tumor initiation by 7,12-dimethylbenz[a]anthracene. Isopimpinellin possesses anti-leishmania effect[1].

   

Ferulic acid

(E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid

C10H10O4 (194.057906)


trans-Ferulic acid is a highly abundant phenolic phytochemical which is present in plant cell walls. Ferulic acid is a phenolic acid that can be absorbed by the small intestine and excreted through the urine. It is one of the most abundant phenolic acids in plants, varying from 5 g/kg in wheat bran to 9 g/kg in sugar-beet pulp and 50 g/kg in corn kernel. It occurs primarily in seeds and leaves both in its free form (albeit rarely) and covalently linked to lignin and other biopolymers. It is usually found as ester cross-links with polysaccharides in the cell wall, such as arabinoxylans in grasses, pectin in spinach and sugar beet, and xyloglucans in bamboo. It also can cross-link with proteins. Due to its phenolic nucleus and an extended side chain conjugation (carbohydrates and proteins), it readily forms a resonance-stabilized phenoxy radical which accounts for its potent antioxidant potential. Food supplementation with curcumin and ferulic acid is considered a nutritional approach to reducing oxidative damage and amyloid pathology in Alzheimer disease (PMID:17127365, 1398220, 15453708, 9878519). Ferulic acid can be found in Pseudomonas and Saccharomyces (PMID:8395165). Ferulic acid is a ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 3 and 4 respectively on the phenyl ring. It has a role as an antioxidant, a MALDI matrix material, a plant metabolite, an anti-inflammatory agent, an apoptosis inhibitor and a cardioprotective agent. It is a conjugate acid of a ferulate. Ferulic acid is a natural product found in Haplophyllum griffithianum, Visnea mocanera, and other organisms with data available. Ferulic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Angelica sinensis root (part of). Widely distributed in plants, first isolated from Ferula foetida (asafoetida). Antioxidant used to inhibit oxidn. of fats, pastry products, etc. Antifungal agent used to prevent fruit spoilage. trans-Ferulic acid is found in many foods, some of which are deerberry, peach, shea tree, and common bean. A ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 3 and 4 respectively on the phenyl ring. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D002491 - Central Nervous System Agents > D000700 - Analgesics D000975 - Antioxidants > D016166 - Free Radical Scavengers D006401 - Hematologic Agents > D000925 - Anticoagulants D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H074 (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively.

   

Bergapten

4-methoxyfuro[3,2-g]chromen-7-one

C12H8O4 (216.0422568)


Bergapten, also known as O-methylbergaptol or heraclin, belongs to the class of organic compounds known as 5-methoxypsoralens. These are psoralens containing a methoxy group attached at the C5 position of the psoralen group. Bergapten is found, on average, in the highest concentration within a few different foods, such as anises, figs, and parsnips and in a lower concentration in carrots, fennels, and celery stalks. Bergapten has also been detected, but not quantified, in several different foods, such as coconuts, pepper (c. frutescens), corianders, sesbania flowers, and cardamoms. This could make bergapten a potential biomarker for the consumption of these foods. It is also found in rose hip, sweet marjoram, greenthread tea, and tartary buckwheat. Bergapten is a potentially toxic compound. Bergapten is a major constituent of bergamot oil (Citrus bergamia). Present in celery, especially the outer leaves, and other common grocery vegetables. Implicated in photodermatitis among grocery workers. Bergapten was under investigation in clinical trial NCT00533195 "Comparison of UVA1 Phototherapy Versus Photochemotherapy for Patients With Severe Generalized Atopic Dermatitis". Grayish-white microcrystalline powder or yellow fluffy solid. (NTP, 1992) 5-methoxypsoralen is a 5-methoxyfurocoumarin that is psoralen substituted by a methoxy group at position 5. It has a role as a hepatoprotective agent and a plant metabolite. It is a member of psoralens, a 5-methoxyfurocoumarin and an organic heterotricyclic compound. It is functionally related to a psoralen. Bergapten is under investigation in clinical trial NCT00533195 (Comparison of UVA1 Phototherapy Versus Photochemotherapy for Patients With Severe Generalized Atopic Dermatitis). Bergapten is a natural product found in Ficus auriculata, Ficus virens, and other organisms with data available. A linear furanocoumarin that has phototoxic and anti-inflammatory properties, with effects similar to METHOXSALEN. It is used in PUVA THERAPY for the treatment of PSORIASIS. See also: Parsley (part of); Anise (part of); Angelica archangelica root (part of) ... View More ... Bergapten is a major constituent of bergamot oil (Citrus bergamia). Present in celery, esp. the outer leaves, and other common grocery vegetables. Implicated in photodermatitis among grocery workers. It is also found in rose hip, sweet marjoram, greenthread tea, and tartary buckwheat. D - Dermatologicals > D05 - Antipsoriatics > D05B - Antipsoriatics for systemic use > D05BA - Psoralens for systemic use D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D000893 - Anti-Inflammatory Agents D003879 - Dermatologic Agents CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8020; ORIGINAL_PRECURSOR_SCAN_NO 8017 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8002; ORIGINAL_PRECURSOR_SCAN_NO 8000 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7952; ORIGINAL_PRECURSOR_SCAN_NO 7950 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7968; ORIGINAL_PRECURSOR_SCAN_NO 7967 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8005; ORIGINAL_PRECURSOR_SCAN_NO 8002 CONFIDENCE standard compound; INTERNAL_ID 1068; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8376; ORIGINAL_PRECURSOR_SCAN_NO 8372 [Raw Data] CBA84_Bergapten_pos_20eV.txt [Raw Data] CBA84_Bergapten_pos_10eV.txt [Raw Data] CBA84_Bergapten_pos_30eV.txt [Raw Data] CBA84_Bergapten_pos_40eV.txt [Raw Data] CBA84_Bergapten_pos_50eV.txt Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms. Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms.

   

DL-Mannitol

(2R,3R,4R,5R)-hexane-1,2,3,4,5,6-hexol

C6H14O6 (182.0790344)


D-mannitol appears as odorless white crystalline powder or free-flowing granules. Sweet taste. (NTP, 1992) D-mannitol is the D-enantiomer of mannitol. It has a role as an osmotic diuretic, a sweetening agent, an antiglaucoma drug, a metabolite, an allergen, a hapten, a food bulking agent, a food anticaking agent, a food humectant, a food stabiliser, a food thickening agent, an Escherichia coli metabolite and a member of compatible osmolytes. Mannitol is an osmotic diuretic that is metabolically inert in humans and occurs naturally, as a sugar or sugar alcohol, in fruits and vegetables. Mannitol elevates blood plasma osmolality, resulting in enhanced flow of water from tissues, including the brain and cerebrospinal fluid, into interstitial fluid and plasma. As a result, cerebral edema, elevated intracranial pressure, and cerebrospinal fluid volume and pressure may be reduced. Mannitol may also be used for the promotion of diuresis before irreversible renal failure becomes established; the promotion of urinary excretion of toxic substances; as an Antiglaucoma agent; and as a renal function diagnostic aid. On October 30, 2020, mannitol was approved by the FDA as add-on maintenance therapy for the control of pulmonary symptoms associated with cystic fibrosis in adult patients and is currently marketed for this indication under the name BRONCHITOL® by Chiesi USA Inc. Mannitol is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Mannitol is an Osmotic Diuretic. The mechanism of action of mannitol is as an Osmotic Activity. The physiologic effect of mannitol is by means of Increased Diuresis. Mannitol is a natural product found in Pavetta indica, Scoparia dulcis, and other organisms with data available. Mannitol is a naturally occurring alcohol found in fruits and vegetables and used as an osmotic diuretic. Mannitol is freely filtered by the glomerulus and poorly reabsorbed from the renal tubule, thereby causing an increase in osmolarity of the glomerular filtrate. An increase in osmolarity limits tubular reabsorption of water and inhibits the renal tubular reabsorption of sodium, chloride, and other solutes, thereby promoting diuresis. In addition, mannitol elevates blood plasma osmolarity, resulting in enhanced flow of water from tissues into interstitial fluid and plasma. D-mannitol is a metabolite found in or produced by Saccharomyces cerevisiae. A diuretic and renal diagnostic aid related to sorbitol. It has little significant energy value as it is largely eliminated from the body before any metabolism can take place. It can be used to treat oliguria associated with kidney failure or other manifestations of inadequate renal function and has been used for determination of glomerular filtration rate. Mannitol is also commonly used as a research tool in cell biological studies, usually to control osmolarity. See also: Mannitol; sorbitol (component of); Mannitol; menthol (component of). Mannitol, or hexan-1,2,3,4,5,6-hexol (C6H8(OH)6), is an alcohol and a sugar (sugar alcohol), or a polyol, it is a stereoisomer of sorbitol and is similar to the C5 xylitol. The structure of mannitol is made of a straight chain of six carbon atoms, each of which is substituted with a hydroxyl group. Mannitol is one of the most abundant energy and carbon storage molecules in nature, it is produced by a wide range of organisms such as bacteria, fungi and plants (PMID: 19578847). In medicine, mannitol is used as a diuretic and renal diagnostic aid. Mannitol has little significant energy value as it is largely eliminated from the body before any metabolism can take place. It can be used to treat oliguria associated with kidney failure or other manifestations of inadequate renal function and has been used for determination of glomerular filtration rate. Mannitol is also commonly used as a research tool in cell biological studies, usually to control osmolarity. Mannitol has a tendency to lose a hydrogen ion in aqueous solutions, which causes the solution to become acidic. For this, it is not uncommon to add a weak base, such as sodium bicarbonate, to the solution to adjust its pH. Mannitol is a non-permeating molecule i.e., it cannot cross biological membranes. Mannitol is an osmotic diuretic agent and a weak renal vasodilator. Mannitol is found to be associated with cytochrome c oxidase deficiency and ribose-5-phosphate isomerase deficiency, which are inborn errors of metabolism. Mannitol is also a microbial metabolite found in Aspergillus, Candida, Clostridium, Gluconobacter, Lactobacillus, Lactococcus, Leuconostoc, Pseudomonas, Rhodobacteraceae, Saccharomyces, Streptococcus, Torulaspora and Zymomonas (PMID: 15240312; PMID: 29480337). Mannitol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=85085-15-0 (retrieved 2024-07-01) (CAS RN: 69-65-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1]. DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1]. D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7]. D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity. D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7]. D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity.

   

Xanthotoxol

9-hydroxy-7H-furo[3,2-g]chromen-7-one

C11H6O4 (202.0266076)


Isolated from Aegle marmelos (bael fruit), Angelica archangelica (angelica) and the seeds of Pastinaca sativa (parsnip). Xanthotoxol is found in many foods, some of which are fats and oils, green vegetables, herbs and spices, and fig. Xanthotoxol is found in fats and oils. Xanthotoxol is isolated from Aegle marmelos (bael fruit), Angelica archangelica (angelica) and the seeds of Pastinaca sativa (parsnip Xanthotoxol is an 8-hydroxyfurocoumarin. Xanthotoxol is a natural product found in Citrus canaliculata, Prangos tschimganica, and other organisms with data available. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Xanthotoxol (8-Hydroxypsoralen) is a biologically active linear furocoumarin, shows strong pharmacological activities as anti-inflammatory, antioxidant, 5-HT antagonistic, and neuroprotective effects. Xanthotoxol (8-Hydroxypsoralen) It is a kind of fragrant bean substance, and it is a CYP450 inhibitor. Xanthotoxol has anti-inflammatory, anti-inflammatory, and 5-HT antagonistic and protective effects. Xanthotoxol inhibited CYP3A4 sum CYP1A2 IC50s separation 7.43 μM sum 27.82 μM. Xanthotoxol can pass through MAPK and NF-κB, inhibiting inflammation[1][2][3][4]. Xanthotoxol (8-Hydroxypsoralen) is a biologically active linear furocoumarin, shows strong pharmacological activities as anti-inflammatory, antioxidant, 5-HT antagonistic, and neuroprotective effects.

   

Methoxsalen

Methoxsalen, United States Pharmacopeia (USP) Reference Standard

C12H8O4 (216.0422568)


8-methoxypsoralen is an odorless white to cream-colored crystalline solid. Bitter taste followed by tingling sensation. (NTP, 1992) Methoxsalen is a member of the class of psoralens that is 7H-furo[3,2-g]chromen-7-one in which the 9 position is substituted by a methoxy group. It is a constituent of the fruits of Ammi majus. Like other psoralens, trioxsalen causes photosensitization of the skin. It is administered topically or orally in conjunction with UV-A for phototherapy treatment of vitiligo and severe psoriasis. It has a role as a dermatologic drug, an antineoplastic agent, a photosensitizing agent, a cross-linking reagent and a plant metabolite. It is a member of psoralens and an aromatic ether. It is functionally related to a psoralen. A naturally occurring furocoumarin compound found in several species of plants, including Psoralea corylifolia. It is a photoactive substance that forms DNA adducts in the presence of ultraviolet A irradiation. Methoxsalen is a Photoactivated Radical Generator and Psoralen. The mechanism of action of methoxsalen is as a Photoabsorption. The physiologic effect of methoxsalen is by means of Photosensitizing Activity. Methoxsalen is a natural product found in Ammi visnaga, Zanthoxylum mayu, and other organisms with data available. Methoxsalen is a naturally occurring substance isolated from the seeds of the plant Ammi majus with photoactivating properties. As a member of the family of compounds known as psoralens or furocoumarins, methoxsalens exact mechanism of action is unknown; upon photoactivation, methoxsalen has been observed to bind covalently to and crosslink DNA. (NCI04) Methoxsalen is only found in individuals that have used or taken this drug. It is a naturally occurring furocoumarin compound found in several species of plants, including Psoralea corylifolia. It is a photoactive substance that forms DNA adducts in the presence of ultraviolet A irradiation. After activation Methoxsalen binds preferentially to the guanine and cytosine moieties of DNA, leading to cross-linking of DNA, thus inhibiting DNA synthesis and function. A naturally occurring furocoumarin compound found in several species of plants, including Psoralea corylifolia. It is a photoactive substance that forms DNA ADDUCTS in the presence of ultraviolet A irradiation. See also: Angelica archangelica root (part of); Ammi majus seed (part of); Angelica keiskei top (part of) ... View More ... Methoxsalen, also known as oxsoralen or 8-methoxypsoralen, belongs to the class of organic compounds known as 8-methoxypsoralens. These are psoralens containing a methoxy group attached at the C8 position of the psoralen group. Methoxsalen is a drug which is used for the treatment of psoriasis and vitiligo. Methoxsalen is a bitter tasting compound. Methoxsalen is found, on average, in the highest concentration within a few different foods, such as parsnips, parsley, and celery stalks and in a lower concentration in wild carrots, carrots, and fennels. Methoxsalen has also been detected, but not quantified, in several different foods, such as figs, green vegetables, corianders, dills, and fruits. Methoxsalen is a potentially toxic compound. A member of the class of psoralens that is 7H-furo[3,2-g]chromen-7-one in which the 9 position is substituted by a methoxy group. It is a constituent of the fruits of Ammi majus. Like other psoralens, trioxsalen causes photosensitization of the skin. It is administered topically or orally in conjunction with UV-A for phototherapy treatment of vitiligo and severe psoriasis. Present in celery, especies the outer leaves, and other common grocery vegetables. Implicated in photodermatitis among grocery workers. Isolated from Aegle marmelos (bael) D - Dermatologicals > D05 - Antipsoriatics > D05B - Antipsoriatics for systemic use > D05BA - Psoralens for systemic use D - Dermatologicals > D05 - Antipsoriatics > D05A - Antipsoriatics for topical use > D05AD - Psoralens for topical use D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent C1420 - Photosensitizing Agent D003879 - Dermatologic Agents [Raw Data] CBA87_Xanthotoxin_pos_20eV.txt [Raw Data] CBA87_Xanthotoxin_pos_30eV.txt [Raw Data] CBA87_Xanthotoxin_pos_40eV.txt [Raw Data] CBA87_Xanthotoxin_pos_10eV.txt [Raw Data] CBA87_Xanthotoxin_pos_50eV.txt Methoxsalen (8-Methoxypsoralen) is a furanocoumarin compound used in psoralen, used in studies of psoriasis, eczema, vitiligo and some sun-exposed cutaneous lymphomas, and is a P450 inhibitor. Methoxsalen (8-Methoxypsoralen) is a furanocoumarin compound used in psoralen, used in studies of psoriasis, eczema, vitiligo and some sun-exposed cutaneous lymphomas, and is a P450 inhibitor.

   

Columbianetin

2H-Furo[2,3-h]-1-benzopyran-2-one, 8,9-dihydro-8-(1-hydroxy-1-methylethyl)-, (S)-(+)-

C14H14O4 (246.0892044)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins (S)-columbianetin is the (S)-(+)-enantiomer of columbianetin. It is an enantiomer of a (R)-columbianetin. Columbianetin is a natural product found in Campylotropis hirtella, Prangos tschimganica, and other organisms with data available. (+)-Columbianetin is an isomer of Columbianetin. Columbianetin is a phytoalexin associated with celery (Apium graveolens) resistance to pathogens during storage. Columbianetin exhibits excellent anti-fungal and anti-inflammatory activity[1][2]. (+)-Columbianetin is an isomer of Columbianetin. Columbianetin is a phytoalexin associated with celery (Apium graveolens) resistance to pathogens during storage. Columbianetin exhibits excellent anti-fungal and anti-inflammatory activity[1][2]. (+)-Columbianetin is an isomer of Columbianetin. Columbianetin is a phytoalexin associated with celery (Apium graveolens) resistance to pathogens during storage. Columbianetin exhibits excellent anti-fungal and anti-inflammatory activity[1][2]. (+)-Columbianetin is an isomer of Columbianetin. Columbianetin is a phytoalexin associated with celery (Apium graveolens) resistance to pathogens during storage. Columbianetin exhibits excellent anti-fungal and anti-inflammatory activity[1][2].

   

Alloimperatorin

5-Benzofuranacrylic acid, 6,7-dihydroxy-4-(3-methyl-2-butenyl)-, .delta.-lactone

C16H14O4 (270.0892044)


Alloimperatorin is a member of the class of compounds known as 8-hydroxypsoralens. 8-hydroxypsoralens are psoralens containing a hydroxyl group attached at the C8 position of the psoralen group. Alloimperatorin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Alloimperatorin can be found in corn, which makes alloimperatorin a potential biomarker for the consumption of this food product. Alloimperatorin is a member of psoralens. Alloimperatorin is a natural product found in Campylotropis hirtella, Saposhnikovia divaricata, and other organisms with data available. Alloimperatorin (Prangenidin), a coumarin compound, is extracted from Angelica dahurica. Alloimperatorin (Prangenidin) has antitumor activity[1][2]. Alloimperatorin (Prangenidin), a coumarin compound, is extracted from Angelica dahurica. Alloimperatorin (Prangenidin) has antitumor activity[1][2].

   

Erythritol

1,2,3,4-Butanetetrol,(2R,3R)-rel-

C4H10O4 (122.057906)


Erythritol is a sugar alcohol (or polyol), used as a food additive and sugar substitute. It is naturally occurring and is made from corn using enzymes and fermentation. Its formula is C4H10O4, or HO(CH2)(CHOH)2(CH2)OH; specifically, one particular stereoisomer with that formula. Erythritol is 60–70\\\\\% as sweet as sucrose (table sugar), yet it is almost noncaloric and does not affect blood sugar or cause tooth decay. Erythritol occurs widely in nature and has been found to occur naturally in several foods including wine, sake, beer, watermelon, pear, grape, and soy sauce. Evidence indicates that erythritol also exists endogenously in the tissues and body fluids of humans and animals. Erythritol is absorbed from the proximal intestine by passive diffusion in a manner similar to that of many low molecular weight organic molecules which do not have associated active transport systems. The rate of absorption is related to their molecular size. It passes through the intestinal membranes at a faster rate than larger molecules such as mannitol or glucose. In diabetics, erythritol has also been shown to be rapidly absorbed and excreted unchanged in the urine. Following absorption, ingested erythritol is rapidly distributed throughout the body and has been reported to occur in hepatocytes, pancreatic cells, and vascular smooth muscle cells. Erythritol also has been reported to cross the human placenta and to pass slowly from the plasma into the brain and cerebrospinal fluid (PMID:9862657). Erythritol is found to be associated with ribose-5-phosphate isomerase deficiency, which is an inborn error of metabolism. Bulk sweetener with good taste props. Not metabolised, excreted unchanged in urine. Less sweet than sucrose. Use not yet permitted in most countries (1997). GRAS status for use as a sweetener, thickener, stabiliser, humectant, etc. in food meso-Erythritol is a sugar alcohol that occurs naturally in a variety of foods (e.g., pear, watermelon), is 60-80\\% as sweet as sucrose, and is an approved low-calorie sweetener food additive[1]. meso-Erythritol is a sugar alcohol that occurs naturally in a variety of foods (e.g., pear, watermelon), is 60-80\% as sweet as sucrose, and is an approved low-calorie sweetener food additive[1].

   

Glycerol

propane-1,2,3-triol

C3H8O3 (92.0473418)


Glycerol or glycerin is a colourless, odourless, viscous liquid that is sweet-tasting and mostly non-toxic. It is widely used in the food industry as a sweetener and humectant and in pharmaceutical formulations. Glycerol is an important component of triglycerides (i.e. fats and oils) and of phospholipids. Glycerol is a three-carbon substance that forms the backbone of fatty acids in fats. When the body uses stored fat as a source of energy, glycerol and fatty acids are released into the bloodstream. The glycerol component can be converted into glucose by the liver and provides energy for cellular metabolism. Normally, glycerol shows very little acute toxicity and very high oral doses or acute exposures can be tolerated. On the other hand, chronically high levels of glycerol in the blood are associated with glycerol kinase deficiency (GKD). GKD causes the condition known as hyperglycerolemia, an accumulation of glycerol in the blood and urine. There are three clinically distinct forms of GKD: infantile, juvenile, and adult. The infantile form is the most severe and is associated with vomiting, lethargy, severe developmental delay, and adrenal insufficiency. The mechanisms of glycerol toxicity in infants are not known, but it appears to shift metabolism towards chronic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart, liver, and kidney abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of untreated GKD. Many affected children with organic acidemias experience intellectual disability or delayed development. Patients with the adult form of GKD generally have no symptoms and are often detected fortuitously. Glycerol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=56-81-5 (retrieved 2024-07-01) (CAS RN: 56-81-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Deoxyribonolactone

(4S,5R)-4-hydroxy-5-(hydroxymethyl)dihydrofuran-2(3H)-one

C5H8O4 (132.0422568)


   

D-Threitol

Threitol, ((r*,r*)-(+-))-isomer

C4H10O4 (122.057906)


D-Threitol can be regarded as the main end product of D-xylose metabolism in hummans. Threitol is a C4-polyol (tetritol); the total C4-polyol concentration of threitol decreases with age. Several inborn errors of metabolism with abnormal polyol concentrations in body fluids are known to date (such as pentosuria and galactosemia). Most of these defects can be diagnosed by the assessment of urinary concentrations of polyols. Several studies have revealed that urinary levels of some polyols may vary in diseases associated with carbohydrate metabolism derangements such as diabetes mellitus and uremia. The abnormal occurrence of various polyols in diseases with a specific enzyme deficiency such as pentosuria and galactosemia has also been reported (PMID:908147, 16435188, 14988808). Moreover, D-Threitol is found to be associated with ribose-5-phosphate isomerase deficiency, which is also an inborn error of metabolism. Threitol in the urine is a biomarker for the consumption of apples and other fruits. Found in the edible fungus Armillaria mellea. Constituent of jute (Corchorus capsularis and Corchorus olitorius (Jews mallow)), and the pigeon pea plant (Cajanus cajan). Threitol in the urine is a biomarker for the consumption of apples and other fruits. D-threitol serves as a antifreeze agent in the Alaskan beetle Upis ceramboides. D-threitol serves as a antifreeze agent in the Alaskan beetle Upis ceramboides.

   

Cnidin

4-[(3-Methyl-2-buten-1-yl)oxy]-7H-Furo[3,2-g][1]benzopyran-7-one; 7H-Furo[3,2-g][1]benzopyran-7-one, 4-[(3-methyl-2-butenyl)oxy]- (8CI,9CI); Isoimperatorin (6CI); 4-[(3-Methyl-2-buten-1-yl)oxy]-7H-furo[3,2-g][1]benzopyran-7-one

C16H14O4 (270.0892044)


Isoimperatorin is a member of the class of psoralens that is psoralen substituted by a prenyloxy group at position 5. Isolated from Angelica dahurica and Angelica koreana, it acts as a acetylcholinesterase inhibitor. It has a role as a metabolite and an EC 3.1.1.7 (acetylcholinesterase) inhibitor. Isoimperatorin is a natural product found in Ferulago sylvatica, Prangos trifida, and other organisms with data available. Isoimperatorin is a tumor necrosis factor antagonist isolated from Glehniae root or from Poncirus trifoliate Raf (L579). Furocoumarins, are phototoxic and photocarcinogenic. They intercalate DNA and photochemically induce mutations. Furocoumarins are botanical phytoalexins found to varying extents in a variety of vegetables and fruits, notably citrus fruits. The levels of furocoumarins present in our diets, while normally well below that causing evident acute phototoxicity, do cause pharmacologically relevant drug interactions. Some are particularly active against cytochrome P450s. For example, in humans, bergamottin and dihydroxybergamottin are responsible for the grapefruit juice effect, in which these furanocoumarins affect the metabolism of certain drugs. See also: Angelica archangelica root (part of). A member of the class of psoralens that is psoralen substituted by a prenyloxy group at position 5. Isolated from Angelica dahurica and Angelica koreana, it acts as a acetylcholinesterase inhibitor. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM. Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM.

   

2-Deoxy-L-ribono-1,4-lactone

(4S,5R)-4-hydroxy-5-(hydroxymethyl)dihydrofuran-2(3H)-one

C5H8O4 (132.0422568)


2-Deoxy-L-ribono-1,4-lactone is found in herbs and spices. 2-Deoxy-L-ribono-1,4-lactone is a constituent of the fruit of Foeniculum vulgare (fennel). Constituent of the fruit of Foeniculum vulgare (fennel). 2-Deoxy-L-ribono-1,4-lactone is found in herbs and spices.

   

Oroselone

8-(1-Methylethenyl)-2H-furo[2,3-H]-1-benzopyran-2-one, 9ci

C14H10O3 (226.062991)


Constituent of Angelica archangelica (angelica). Oroselone is found in fats and oils, herbs and spices, and green vegetables. Oroselone is found in fats and oils. Oroselone is a constituent of Angelica archangelica (angelica).

   

Edulitine

4,8-dimethoxy-1,2-dihydroquinolin-2-one

C11H11NO3 (205.0738896)


Edulitine is found in pomes. Edulitine is an alkaloid from bark of Casimiroa edulis (Mexican apple

   

Meranzin hydrate

8-(2,3-dihydroxy-3-methylbutyl)-7-methoxy-2H-chromen-2-one

C15H18O5 (278.1154178)


   

D-Mannitol

D-glycero-Hexitol

C6H14O6 (182.0790344)


Mannitol is an osmotic diuretic that is metabolically inert in humans and occurs naturally, as a sugar or sugar alcohol, in fruits and vegetables. Mannitol elevates blood plasma osmolality, resulting in enhanced flow of water from tissues, including the brain and cerebrospinal fluid, into interstitial fluid and plasma. As a result, cerebral edema, elevated intracranial pressure, and cerebrospinal fluid volume and pressure may be reduced. Mannitol may also be used for the promotion of diuresis before irreversible renal failure becomes established; the promotion of urinary excretion of toxic substances; as an Antiglaucoma agent; and as a renal function diagnostic aid. On October 30, 2020, mannitol was approved by the FDA as add-on maintenance therapy for the control of pulmonary symptoms associated with cystic fibrosis in adult patients and is currently marketed for this indication under the name BRONCHITOL® by Chiesi USA Inc. Mannitol, a type of sugar alcohol, serves several important biological functions: Osmotic Diuretic: Mannitol is used medically as an osmotic diuretic to reduce intracranial and intraocular pressure. By increasing urine production, it helps to draw excess fluid from the brain and eyes, which is beneficial in conditions like cerebral edema and glaucoma. Sweetener and Sugar Substitute: In the food industry, mannitol is used as a sweetener and sugar substitute. It provides sweetness without contributing to tooth decay and is often used in products for diabetics because it has a minimal impact on blood sugar levels. Preservative: Mannitol’s hygroscopic properties make it useful as a preservative in various products, including pharmaceuticals and foods, to prevent moisture absorption and maintain product stability. Laxative: In high concentrations, mannitol can act as a laxative due to its osmotic effect in the intestine, drawing water into the bowel and stimulating bowel movements. Tissue Protectant: In cryopreservation, mannitol is used to protect tissues from damage caused by freezing and thawing processes. Cell Culture Medium Component: Mannitol is often included in cell culture media to maintain osmotic balance and provide a stable environment for cell growth. Pharmaceutical Excipient: It is used as an excipient in the pharmaceutical industry, helping to enhance the stability and bioavailability of drugs. Mannitol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=69-65-8 (retrieved 2024-07-01) (CAS RN: 69-65-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1]. DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1]. D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7]. D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity. D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7]. D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity.

   
   
   

Murrayacarpin A

Murrayacarpin A

C11H10O4 (206.057906)


   
   

7-methoxy-2-oxo-2H-chromene-8-carbaldehyde

7-methoxy-2-oxo-2H-chromene-8-carbaldehyde

C11H8O4 (204.0422568)


   

2-Deoxy-D-ribono-1,4-lactone

(4S,5R)-4-hydroxy-5-(hydroxymethyl)dihydrofuran-2(3H)-one

C5H8O4 (132.0422568)


   

Diosmetin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-

C16H12O6 (300.06338519999997)


Diosmetin is a natural flavonoid which inhibits human CYP1A enzyme activity with an IC50 of 40 μM in HepG2 cell. Diosmetin is a natural flavonoid which inhibits human CYP1A enzyme activity with an IC50 of 40 μM in HepG2 cell.

   
   
   
   

Osthol

InChI=1/C15H16O3/c1-10(2)4-7-12-13(17-3)8-5-11-6-9-14(16)18-15(11)12/h4-6,8-9H,7H2,1-3H

C15H16O3 (244.1099386)


Osthole is a member of coumarins and a botanical anti-fungal agent. It has a role as a metabolite. Osthole is a natural product found in Murraya alata, Pentaceras australe, and other organisms with data available. See also: Angelica pubescens root (part of). A natural product found in Peucedanum ostruthium and Angelica pubescens. D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D007155 - Immunologic Factors Origin: Plant, Coumarins Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells.

   

Coumarin

2H-1-Benzopyran-2-one

C9H6O2 (146.0367776)


Coumarin, also known as 1,2-benzopyrone or benzo-alpha-pyrone, belongs to coumarins and derivatives class of compounds. Those are polycyclic aromatic compounds containing a 1-benzopyran moiety with a ketone group at the C2 carbon atom (1-benzopyran-2-one). Coumarin is slightly soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Coumarin is a sweet, green, and new mown hay tasting compound and can be found in a number of food items such as malus (crab apple), sunburst squash (pattypan squash), european cranberry, and star anise, which makes coumarin a potential biomarker for the consumption of these food products. Coumarin can be found primarily in saliva. Coumarin is formally rated as an unfounded non-carcinogenic (IARC 3) potentially toxic compound. Coumarin was first synthesized in 1868. It is used in the pharmaceutical industry as a precursor reagent in the synthesis of a number of synthetic anticoagulant pharmaceuticals similar to dicoumarol, the notable ones being warfarin (brand name Coumadin) and some even more potent rodenticides that work by the same anticoagulant mechanism. 4-hydroxycoumarins are a type of vitamin K antagonist. Pharmaceutical (modified) coumarins were all developed from the study of sweet clover disease; see warfarin for this history. However, unmodified coumarin itself, as it occurs in plants, has no effect on the vitamin K coagulation system, or on the action of warfarin-type drugs . C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2337 COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.657 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.654 IPB_RECORD: 3881; CONFIDENCE confident structure Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities. Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities.

   

Bergapten

Bergapten

C12H8O4 (216.0422568)


D - Dermatologicals > D05 - Antipsoriatics > D05B - Antipsoriatics for systemic use > D05BA - Psoralens for systemic use D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins relative retention time with respect to 9-anthracene Carboxylic Acid is 0.998 D000893 - Anti-Inflammatory Agents D003879 - Dermatologic Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.995 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2841; CONFIDENCE confident structure Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms. Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms.

   

Methoxsalen

8-Methoxypsoralen

C12H8O4 (216.0422568)


D - Dermatologicals > D05 - Antipsoriatics > D05B - Antipsoriatics for systemic use > D05BA - Psoralens for systemic use D - Dermatologicals > D05 - Antipsoriatics > D05A - Antipsoriatics for topical use > D05AD - Psoralens for topical use D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent relative retention time with respect to 9-anthracene Carboxylic Acid is 0.910 C1420 - Photosensitizing Agent D003879 - Dermatologic Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.909 Methoxsalen (8-Methoxypsoralen) is a furanocoumarin compound used in psoralen, used in studies of psoriasis, eczema, vitiligo and some sun-exposed cutaneous lymphomas, and is a P450 inhibitor. Methoxsalen (8-Methoxypsoralen) is a furanocoumarin compound used in psoralen, used in studies of psoriasis, eczema, vitiligo and some sun-exposed cutaneous lymphomas, and is a P450 inhibitor.

   

ferulate

InChI=1\C10H10O4\c1-14-9-6-7(2-4-8(9)11)3-5-10(12)13\h2-6,11H,1H3,(H,12,13

C10H10O4 (194.057906)


Ferulic acid, also known as 4-hydroxy-3-methoxycinnamic acid or 3-methoxy-4-hydroxy-trans-cinnamic acid, is a member of the class of compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. Ferulic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Ferulic acid can be found in a number of food items such as flaxseed, pepper (c. chinense), chinese cinnamon, and wakame, which makes ferulic acid a potential biomarker for the consumption of these food products. Ferulic acid can be found primarily in blood, feces, and urine, as well as in human fibroblasts and stratum corneum tissues. Ferulic acid exists in all eukaryotes, ranging from yeast to humans. Ferulic acid is a hydroxycinnamic acid, a type of organic compound. It is an abundant phenolic phytochemical found in plant cell walls, covalently bonded as side chains to molecules such as arabinoxylans. As a component of lignin, ferulic acid is a precursor in the manufacture of other aromatic compounds. The name is derived from the genus Ferula, referring to the giant fennel (Ferula communis) . D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D002491 - Central Nervous System Agents > D000700 - Analgesics D000975 - Antioxidants > D016166 - Free Radical Scavengers D006401 - Hematologic Agents > D000925 - Anticoagulants D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively.

   

8-(2,3-dihydroxy-3-methylbutyl)-7-methoxychromen-2-one

NCGC00169439-02!8-(2,3-dihydroxy-3-methylbutyl)-7-methoxychromen-2-one

C15H18O5 (278.1154178)


   

Coumarin

2H-1-Benzopyran-2-one

C9H6O2 (146.0367776)


Coumarin (/ˈkuːmərɪn/) or 2H-chromen-2-one is an aromatic organic chemical compound with formula C9H6O2. Its molecule can be described as a benzene molecule with two adjacent hydrogen atoms replaced by an unsaturated lactone ring −(CH)=(CH)−(C=O)−O−, forming a second six-membered heterocycle that shares two carbons with the benzene ring. It belongs to the benzopyrone chemical class and considered as a lactone.[1] Coumarin is a colorless crystalline solid with a sweet odor resembling the scent of vanilla and a bitter taste.[1] It is found in many plants, where it may serve as a chemical defense against predators. Coumarin inhibits synthesis of vitamin K, a key component in blood clotting. A related compound, the prescription drug anticoagulant warfarin, is used to inhibit formation of blood clots, deep vein thrombosis, and pulmonary embolism.[1][2] Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities. Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities.

   

Threitol

1,2,3,4-Butanetetrol, (R*,R*)-

C4H10O4 (122.057906)


D-threitol serves as a antifreeze agent in the Alaskan beetle Upis ceramboides. D-threitol serves as a antifreeze agent in the Alaskan beetle Upis ceramboides.

   

Isoimperatorin

Isoimperatorin

C16H14O4 (270.0892044)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Origin: Plant, Coumarins Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM. Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM.

   

8-(2,3-dihydroxy-3-methylbutyl)-7-methoxychromen-2-one

8-(2,3-dihydroxy-3-methylbutyl)-7-methoxychromen-2-one

C15H18O5 (278.1154178)


   

Erythrit

rel-(2R,3S)-1,2,3,4-Butanetetrol

C4H10O4 (122.057906)


D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents The meso-diastereomer of butane-1,2,3,4-tetrol. meso-Erythritol is a sugar alcohol that occurs naturally in a variety of foods (e.g., pear, watermelon), is 60-80\\% as sweet as sucrose, and is an approved low-calorie sweetener food additive[1]. meso-Erythritol is a sugar alcohol that occurs naturally in a variety of foods (e.g., pear, watermelon), is 60-80\% as sweet as sucrose, and is an approved low-calorie sweetener food additive[1].

   

D-Threitol

D-Threitol

C4H10O4 (122.057906)


The D-enantiomer of threitol. D-threitol serves as a antifreeze agent in the Alaskan beetle Upis ceramboides. D-threitol serves as a antifreeze agent in the Alaskan beetle Upis ceramboides.

   

Kvannin

8-(1-Methylethenyl)-2H-furo[2,3-H]-1-benzopyran-2-one, 9ci

C14H10O3 (226.062991)


   

Rattex

2-Propenoic acid, 3-(2-hydroxyphenyl)-, .delta.-lactone

C9H6O2 (146.0367776)


C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities. Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities.

   

Ostol

InChI=1\C15H16O3\c1-10(2)4-7-12-13(17-3)8-5-11-6-9-14(16)18-15(11)12\h4-6,8-9H,7H2,1-3H

C15H16O3 (244.1099386)


D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D007155 - Immunologic Factors Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells.

   

Optim

4-01-00-02751 (Beilstein Handbook Reference)

C3H8O3 (92.0473418)


A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AG - Enemas C78276 - Agent Affecting Digestive System or Metabolism > C29697 - Laxative D020011 - Protective Agents > D003451 - Cryoprotective Agents D012997 - Solvents

   

Ammidin

InChI=1\C16H14O4\c1-10(2)5-7-19-16-14-12(6-8-18-14)9-11-3-4-13(17)20-15(11)16\h3-6,8-9H,7H2,1-2H

C16H14O4 (270.0892044)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Imperatorin is an effective of NO synthesis inhibitor (IC50=9.2 μmol), which also is a BChE inhibitor (IC50=31.4 μmol). Imperatorin is a weak agonist of TRPV1 with EC50 of 12.6±3.2 μM. Imperatorin is an effective of NO synthesis inhibitor (IC50=9.2 μmol), which also is a BChE inhibitor (IC50=31.4 μmol). Imperatorin is a weak agonist of TRPV1 with EC50 of 12.6±3.2 μM.

   

482-45-1

7H-Furo(3,2-g)(1)benzopyran-7-one, 4-((3-methyl-2-butenyl)oxy)-

C16H14O4 (270.0892044)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM. Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM.

   

5-Mop

InChI=1\C12H8O4\c1-14-12-7-2-3-11(13)16-10(7)6-9-8(12)4-5-15-9\h2-6H,1H

C12H8O4 (216.0422568)


D - Dermatologicals > D05 - Antipsoriatics > D05B - Antipsoriatics for systemic use > D05BA - Psoralens for systemic use D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D000893 - Anti-Inflammatory Agents D003879 - Dermatologic Agents Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms. Bergapten is a natural anti-inflammatory and anti-tumor agent. Bergapten is inhibitory towards mouse and human CYP isoforms.

   

Uvadex

5-Benzofuranacrylic acid, 6-hydroxy-7-methoxy-, .delta.-lactone

C12H8O4 (216.0422568)


D - Dermatologicals > D05 - Antipsoriatics > D05B - Antipsoriatics for systemic use > D05BA - Psoralens for systemic use D - Dermatologicals > D05 - Antipsoriatics > D05A - Antipsoriatics for topical use > D05AD - Psoralens for topical use D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent C1420 - Photosensitizing Agent D003879 - Dermatologic Agents Methoxsalen (8-Methoxypsoralen) is a furanocoumarin compound used in psoralen, used in studies of psoriasis, eczema, vitiligo and some sun-exposed cutaneous lymphomas, and is a P450 inhibitor. Methoxsalen (8-Methoxypsoralen) is a furanocoumarin compound used in psoralen, used in studies of psoriasis, eczema, vitiligo and some sun-exposed cutaneous lymphomas, and is a P450 inhibitor.

   

Xanthotoxol

2-Propenoic acid, 3-(6,7-dihydroxy-5-benzofuranyl)-, .delta.-lactone

C11H6O4 (202.0266076)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Xanthotoxol (8-Hydroxypsoralen) is a biologically active linear furocoumarin, shows strong pharmacological activities as anti-inflammatory, antioxidant, 5-HT antagonistic, and neuroprotective effects. Xanthotoxol (8-Hydroxypsoralen) It is a kind of fragrant bean substance, and it is a CYP450 inhibitor. Xanthotoxol has anti-inflammatory, anti-inflammatory, and 5-HT antagonistic and protective effects. Xanthotoxol inhibited CYP3A4 sum CYP1A2 IC50s separation 7.43 μM sum 27.82 μM. Xanthotoxol can pass through MAPK and NF-κB, inhibiting inflammation[1][2][3][4]. Xanthotoxol (8-Hydroxypsoralen) is a biologically active linear furocoumarin, shows strong pharmacological activities as anti-inflammatory, antioxidant, 5-HT antagonistic, and neuroprotective effects.

   

Isopimpinellin

7H-Furo(3,2-g)(1)benzopyran-7-one, 4,9-dimethoxy- (8CI)(9CI)

C13H10O5 (246.052821)


Isopimpinellin is found in angelica. Isopimpinellin is present in the seeds of Pastinaca sativa (parsnip) Isopimpinellin belongs to the family of Furanocoumarins. These are polycyclic aromatic compounds containing a furan ring fused to a coumarin moeity. Isopimpinellin, an orally active compound isolated from Glomerella cingulata. Isopimpinellin blocks DNA adduct formation and skin tumor initiation by 7,12-dimethylbenz[a]anthracene. Isopimpinellin possesses anti-leishmania effect[1]. Isopimpinellin, an orally active compound isolated from Glomerella cingulata. Isopimpinellin blocks DNA adduct formation and skin tumor initiation by 7,12-dimethylbenz[a]anthracene. Isopimpinellin possesses anti-leishmania effect[1].

   

Prangenidin

5-Benzofuranacrylic acid, 6,7-dihydroxy-4-(3-methyl-2-butenyl)-, .delta.-lactone

C16H14O4 (270.0892044)


Alloimperatorin is a member of psoralens. Alloimperatorin is a natural product found in Campylotropis hirtella, Saposhnikovia divaricata, and other organisms with data available. Alloimperatorin (Prangenidin), a coumarin compound, is extracted from Angelica dahurica. Alloimperatorin (Prangenidin) has antitumor activity[1][2]. Alloimperatorin (Prangenidin), a coumarin compound, is extracted from Angelica dahurica. Alloimperatorin (Prangenidin) has antitumor activity[1][2].

   

Glycerin

Glycerin

C3H8O3 (92.0473418)


A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AG - Enemas C78276 - Agent Affecting Digestive System or Metabolism > C29697 - Laxative D020011 - Protective Agents > D003451 - Cryoprotective Agents D012997 - Solvents

   

(-)-Columbianetin

(-)-Columbianetin

C14H14O4 (246.0892044)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins

   
   
   

2,3,4,5-tetramethylhexane-1,2,3,4,5-pentol

2,3,4,5-tetramethylhexane-1,2,3,4,5-pentol

C10H22O5 (222.14671620000001)


   

6-hydroxy-7-(2-hydroxypropan-2-yl)-1,4-dimethyl-3a,4,5,6,7,8-hexahydro-3h-azulen-2-one

6-hydroxy-7-(2-hydroxypropan-2-yl)-1,4-dimethyl-3a,4,5,6,7,8-hexahydro-3h-azulen-2-one

C15H24O3 (252.1725354)


   

2,3,4,5-tetrahydroxy-2-(hydroxymethyl)pentanal

2,3,4,5-tetrahydroxy-2-(hydroxymethyl)pentanal

C6H12O6 (180.0633852)


   

5,7-dihydroxy-6-(2-hydroxy-3-methylbut-3-en-1-yl)-2-(hydroxymethyl)chromen-4-one

5,7-dihydroxy-6-(2-hydroxy-3-methylbut-3-en-1-yl)-2-(hydroxymethyl)chromen-4-one

C15H16O6 (292.0946836)


   

(3ar,4s,6r,7s)-7-[2-(acetyloxy)propan-2-yl]-3a-hydroxy-1,4-dimethyl-2-oxo-3,4,5,6,7,8-hexahydroazulen-6-yl (2z)-2-methylbut-2-enoate

(3ar,4s,6r,7s)-7-[2-(acetyloxy)propan-2-yl]-3a-hydroxy-1,4-dimethyl-2-oxo-3,4,5,6,7,8-hexahydroazulen-6-yl (2z)-2-methylbut-2-enoate

C22H32O6 (392.2198772)