NCBI Taxonomy: 2732720

Acourtia cordata (ncbi_taxid: 2732720)

found 4 associated metabolites at species taxonomy rank level.

Ancestor: Acourtia

Child Taxonomies: none taxonomy data.

Coumarin

2h-1-benzopyran-2-one;coumarin;2h-chromen-2-one;coumarin ;coumarin (2h-1-benzopyran-2-one) (chromen-2-one);2h-1-benzopyran-2-one coumarin 2h-chromen-2-one coumarin coumarin (2h-1-benzopyran-2-one) (chromen-2-one)

C9H6O2 (146.0368)


Coumarin appears as colorless crystals, flakes or colorless to white powder with a pleasant fragrant vanilla odor and a bitter aromatic burning taste. (NTP, 1992) Coumarin is a chromenone having the keto group located at the 2-position. It has a role as a fluorescent dye, a plant metabolite and a human metabolite. Coumarin is a natural product found in Eupatorium cannabinum, Eupatorium japonicum, and other organisms with data available. Coumarin is o hydroxycinnamic acid. Pleasant smelling compound found in many plants and released on wilting. Has anticoagulant activity by competing with Vitamin K. Coumarin is a chemical compound/poison found in many plants, notably in high concentration in the tonka bean, woodruff, and bison grass. It has a sweet scent, readily recognised as the scent of newly-mown hay. It has clinical value as the precursor for several anticoagulants, notably warfarin. --Wikipedia. Coumarins, as a class, are comprised of numerous naturally occurring benzo-alpha-pyrone compounds with important and diverse physiological activities. The parent compound, coumarin, occurs naturally in many plants, natural spices, and foods such as tonka bean, cassia (bastard cinnamon or Chinese cinnamon), cinnamon, melilot (sweet clover), green tea, peppermint, celery, bilberry, lavender, honey (derived both from sweet clover and lavender), and carrots, as well as in beer, tobacco, wine, and other foodstuffs. Coumarin concentrations in these plants, spices, and foods range from <1 mg/kg in celery, 7000 mg/kg in cinnamon, and up to 87,000 mg/kg in cassia. An estimate of human exposure to coumarin from the diet has been calculated to be 0.02 mg/kg/day. Coumarin is used as an additive in perfumes and fragranced consumer products at concentrations ranging from <0.5\\\\% to 6.4\\\\% in fine fragrances to <0.01\\\\% in detergents. An estimate for systemic exposure of humans from the use of fragranced cosmetic products is 0.04 mg/kg BW/day, assuming complete dermal penetration. The use of coumarin as a food additive was banned by the FDA in 1954 based on reports of hepatotoxicity in rats. Due to its potential hepatotoxic effects in humans, the European Commission restricted coumarin from naturals as a direct food additive to 2 mg/kg food/day, with exceptions granting higher levels for alcoholic beverages, caramel, chewing gum, and certain traditional foods. In addition to human exposure to coumarin from dietary sources and consumer products, coumarin is also used clinically as an antineoplastic and for the treatment of lymphedema and venous insufficiency. Exposure ranges from 11 mg/day for consumption of natural food ingredients to 7 g/day following clinical administration. Although adverse effects in humans following coumarin exposure are rare, and only associated with clinical doses, recent evidence indicates coumarin causes liver tumors in rats and mice and Clara cell toxicity and lung tumors in mice. The multiple effects as well as the ongoing human exposure to coumarin have resulted in a significant research effort focused on understanding the mechanism of coumarin induced toxicity/carcinogenicity and its human relevance. These investigations have revealed significant species differences in coumarin metabolism and toxicity such that the mechanism of coumarin induced effects in rodents, and the relevance of these findings for the safety assessment of coumarin exposure in humans are now better understood. In October 2004, the European Food Safety Authority (EFSA, 2004) reviewed coumarin to establish a tolerable daily intake (TDI) in foods. EFSA issued an opinion indicating that coumarin is not genotoxic, and that a threshold approach to safety assessment was most appropriate. EFSA recommended a TDI of 0 to 0.1 mg/kg BW/day. Including dietary contributions, the total human exposure is estimated to be 0.06 mg/kg/day. As a pharmaceutical, coumarin has been used in diverse applications with a wide variety of dosing regimens. Unlike coumadin and ... Coumarin belongs to the class of chemicals known as chromenones. Specifically it is a chromenone having the keto group located at the 2-position. A chromenone is a benzene molecule with two adjacent hydrogen atoms replaced by a lactone-like chain forming a second six-membered heterocycle that shares two carbons with the benzene ring. Coumarin is also described as a benzopyrone and is considered as a lactone. Coumarin is a colorless crystalline solid with a bitter taste and sweet odor resembling the scent of vanilla or the scent of newly-mowed or recently cut hay. It is a chemical poison found in many plants where it may serve as a chemical defense against predators. Coumarin occurs naturally in many plants and foods such as the tonka bean, woodruff, bison grass, cassia (bastard cinnamon or Chinese cinnamon), cinnamon, melilot (sweet clover), green tea, peppermint, celery, bilberry, lavender, honey (derived both from sweet clover and lavender), and carrots, as well as in beer, tobacco, wine, and other foodstuffs. Coumarin concentrations in these plants, spices, and foods range from <1 mg/kg in celery, to 7000 mg/kg in cinnamon, and up to 87,000 mg/kg in cassia. An estimate of human exposure to coumarin from the diet has been calculated to be 0.02 mg/kg/day. Coumarin is used as an additive in perfumes and fragranced consumer products at concentrations ranging from <0.5\\\\% To 6.4\\\\% In fine fragrances to <0.01\\\\% In detergents. An estimate for systemic exposure of humans from the use of fragranced cosmetic products is 0.04 mg/kg BW/day, assuming complete dermal penetration. The use of coumarin as a food additive was banned by the FDA in 1954 based on reports of hepatotoxicity in rats. It has clinical value as the precursor for several anticoagulants, notably warfarin. Coumarins, as a class, are comprised of numerous naturally occurring benzo-alpha-pyrone compounds with important and diverse physiological activities. Due to its potential hepatotoxic effects in humans, the European Commission restricted coumarin from naturals as a direct food additive to 2 mg/kg food/day, with exceptions granting higher levels for alcoholic beverages, caramel, chewing gum, and certain traditional foods. In addition to human exposure to coumarin from dietary sources and consumer products, coumarin is also used clinically as an antineoplastic and for the treatment of lymphedema and venous insufficiency. Exposure ranges from 11 mg/day for consumption of natural food ingredients to 7 g/day following clinical administration. Although adverse effects in humans following coumarin exposure are rare, and only associated with clinical doses, recent evidence indicates coumarin causes liver tumors in rats and mice and Clara cell toxicity and lung tumors in mice. The multiple effects as well as the ongoing human exposure to coumarin have resulted in a significant research effort focused on understanding the mechanism of coumarin induced toxicity/carcinogenicity and its human relevance. These investigations have revealed significant species differences in coumarin metabolism and toxicity such that the mechanism of coumarin induced effects in rodents, and the relevance of these findings for the safety assessment of coumarin exposure in humans are now better understood. In October 2004, the European Food Safety Authority (EFSA, 2004) reviewed coumarin to establish a tolerable daily intake (TDI) in foods. EFSA issued an opinion indicating that coumarin is not genotoxic, and that a threshold approach to safety assessment was most appropriate. EFSA recommended a TDI of 0 to 0.1 Mg/kg BW/day. Including dietary contributions, the total human exposure is estimated to be 0.06 Mg/kg/day. As a pharmaceutical, coumarin has been used in diverse applications with a wide variety of dosing regimens. Unlike coumadin and other coumarin derivatives, coumarin has no anti-coagulant activity. However, at low doses (typically 7 to 10 mg/day), coumarin has been used as a venotonic to promote... C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent A chromenone having the keto group located at the 2-position. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Raw Data] CB013_Coumarin_pos_20eV_CB000008.txt [Raw Data] CB013_Coumarin_pos_30eV_CB000008.txt [Raw Data] CB013_Coumarin_pos_10eV_CB000008.txt [Raw Data] CB013_Coumarin_pos_50eV_CB000008.txt [Raw Data] CB013_Coumarin_pos_40eV_CB000008.txt Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities. Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities.

   

Coumarin

2H-1-Benzopyran-2-one

C9H6O2 (146.0368)


Coumarin, also known as 1,2-benzopyrone or benzo-alpha-pyrone, belongs to coumarins and derivatives class of compounds. Those are polycyclic aromatic compounds containing a 1-benzopyran moiety with a ketone group at the C2 carbon atom (1-benzopyran-2-one). Coumarin is slightly soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Coumarin is a sweet, green, and new mown hay tasting compound and can be found in a number of food items such as malus (crab apple), sunburst squash (pattypan squash), european cranberry, and star anise, which makes coumarin a potential biomarker for the consumption of these food products. Coumarin can be found primarily in saliva. Coumarin is formally rated as an unfounded non-carcinogenic (IARC 3) potentially toxic compound. Coumarin was first synthesized in 1868. It is used in the pharmaceutical industry as a precursor reagent in the synthesis of a number of synthetic anticoagulant pharmaceuticals similar to dicoumarol, the notable ones being warfarin (brand name Coumadin) and some even more potent rodenticides that work by the same anticoagulant mechanism. 4-hydroxycoumarins are a type of vitamin K antagonist. Pharmaceutical (modified) coumarins were all developed from the study of sweet clover disease; see warfarin for this history. However, unmodified coumarin itself, as it occurs in plants, has no effect on the vitamin K coagulation system, or on the action of warfarin-type drugs . C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2337 COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.657 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.654 IPB_RECORD: 3881; CONFIDENCE confident structure Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities. Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities.

   

Coumarin

2H-1-Benzopyran-2-one

C9H6O2 (146.0368)


Coumarin (/ˈkuːmərɪn/) or 2H-chromen-2-one is an aromatic organic chemical compound with formula C9H6O2. Its molecule can be described as a benzene molecule with two adjacent hydrogen atoms replaced by an unsaturated lactone ring −(CH)=(CH)−(C=O)−O−, forming a second six-membered heterocycle that shares two carbons with the benzene ring. It belongs to the benzopyrone chemical class and considered as a lactone.[1] Coumarin is a colorless crystalline solid with a sweet odor resembling the scent of vanilla and a bitter taste.[1] It is found in many plants, where it may serve as a chemical defense against predators. Coumarin inhibits synthesis of vitamin K, a key component in blood clotting. A related compound, the prescription drug anticoagulant warfarin, is used to inhibit formation of blood clots, deep vein thrombosis, and pulmonary embolism.[1][2] Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities. Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities.

   

Rattex

2-Propenoic acid, 3-(2-hydroxyphenyl)-, .delta.-lactone

C9H6O2 (146.0368)


C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities. Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities.