phytofluene (BioDeep_00000364621)
Main id: BioDeep_00000027847
PANOMIX_OTCML-2023 natural product
代谢物信息卡片
化学式: C40H62 (542.4851)
中文名称: 15-顺式-八氢番茄红素
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: C(/C)(=C/C=C/C(/C)=C/C=C/C=C(\C)/CC/C=C(\C)/CC/C=C(\C)/CC/C=C(\C)/C)\CC/C=C(\C)/CC/C=C(\C)/C
InChI: InChI=1S/C40H62/c1-33(2)19-13-23-37(7)27-17-31-39(9)29-15-25-35(5)21-11-12-22-36(6)26-16-30-40(10)32-18-28-38(8)24-14-20-34(3)4/h11-12,15,19-22,25,27-30H,13-14,16-18,23-24,26,31-32H2,1-10H3/b12-11+,25-15+,35-21+,36-22+,37-27+,38-28+,39-29+,40-30+
描述信息
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
Phytofluene is a carotenoid pigment with an orange color found naturally in tomatoes and other vegetables. It is the second product of carotenoid biosynthesis. It is formed from phytoene in a desaturation reaction leading to the formation of five conjugated double bonds. In the following step, addition of carbon-carbon conjugated double bonds leads to the formation of z-carotene and appearance of visible color.; Phytofluene is a carotenoid pigment with an orange color found naturally in tomatoes and other vegetables. It is the second product of carotenoid biosynthesis. Phytofluene is found in many foods, some of which are bitter gourd, yellow bell pepper, caraway, and pepper (c. annuum).
同义名列表
11 个代谢物同义名
phytofluene; 9-cis-phytofluene; (15Z)-7,8,11,12,7,8-Hexahydro-psi,psi-carotene; 15-cis-Phytofluene; (15Z)-Phytofluene; Hexahydrolycopene; (12E,16E,18E,22E,26E)-2,6,10,14,19,23,27,31-octamethyldotriaconta-2,6,10,12,14,16,18,22,26,30-decaene; 7,8,11,12,7,8-hexahydro-psi,psi-carotene; 7,7,8,8,11,12-hexahydro-psi,psi-carotene; all-trans-phytofluene; all-trans-Phytofluene
数据库引用编号
17 个数据库交叉引用编号
- ChEBI: CHEBI:28129
- KEGG: C05414
- PubChem: 6436722
- LipidMAPS: LMPR01070410
- LipidMAPS: LMPR01070299
- foodb: FDB013304
- CAS: 540-05-6
- CAS: 27664-65-9
- PMhub: MS000185315
- PubChem: 7780
- LipidMAPS: LMPR01070084
- KNApSAcK: C00000913
- 3DMET: B00774
- NIKKAJI: J6.385A
- LOTUS: LTS0267709
- KNApSAcK: 28129
- LOTUS: LTS0181914
分类词条
相关代谢途径
Reactome(0)
BioCyc(3)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
165 个相关的物种来源信息
- 3808 - Acacia: LTS0181914
- 178749 - Acacia acuminata: 10.1071/CH9490132
- 178749 - Acacia acuminata: LTS0181914
- 506 - Alcaligenaceae: LTS0267709
- 507 - Alcaligenes: LTS0267709
- 28211 - Alphaproteobacteria: LTS0181914
- 28211 - Alphaproteobacteria: LTS0267709
- 4890 - Ascomycota: LTS0267709
- 4210 - Asteraceae: LTS0181914
- 28974 - Averrhoa carambola: 10.1016/S0031-9422(00)84040-6
- 2 - Bacteria: LTS0181914
- 2 - Bacteria: LTS0267709
- 5204 - Basidiomycota: LTS0267709
- 28216 - Betaproteobacteria: LTS0267709
- 3705 - Brassica: LTS0181914
- 3708 - Brassica napus: 10.1002/JSFA.2740100607
- 3708 - Brassica napus: LTS0181914
- 3700 - Brassicaceae: LTS0181914
- 41495 - Calendula: LTS0181914
- 41496 - Calendula officinalis: 10.1042/BJ0580090
- 41496 - Calendula officinalis: LTS0181914
- 4200 - Caprifoliaceae: LTS0181914
- 4072 - Capsicum annuum: 10.1021/JF00024A012
- 4305 - Celastraceae: LTS0181914
- 85180 - Celastrus: LTS0181914
- 85181 - Celastrus orbiculatus: 10.1016/J.PHYTOCHEM.2009.04.018
- 85181 - Celastrus orbiculatus: LTS0181914
- 3071 - Chlorella: LTS0267709
- 3077 - Chlorella vulgaris: 10.1515/ZNB-1954-0705
- 3077 - Chlorella vulgaris: LTS0267709
- 35461 - Chlorellaceae: LTS0267709
- 3041 - Chlorophyta: LTS0267709
- 3654 - Citrullus lanatus: 10.4236/AS.2013.47A003
- 2706 - Citrus: LTS0181914
- 2706 - Citrus: LTS0267709
- 43166 - Citrus aurantium: 10.1021/JF00090A003
- 2709 - Citrus cavaleriei: 10.1007/BF00579990
- 558547 - Citrus deliciosa: 10.1016/0031-9422(83)83012-X
- 37334 - Citrus maxima: 10.1104/PP.28.3.550
- 37334 - Citrus maxima: LTS0181914
- 85571 - Citrus reticulata: 10.1016/0031-9422(83)83012-X
- 85571 - Citrus reticulata: LTS0267709
- 37656 - Citrus × paradisi: 10.1021/JF00090A003
- 58949 - Crocus: LTS0267709
- 82528 - Crocus sativus: 10.1016/S0031-9422(00)82412-7
- 82528 - Crocus sativus: LTS0267709
- 3655 - Cucumis: LTS0181914
- 3656 - Cucumis melo: 10.1021/JF00090A003
- 3656 - Cucumis melo: LTS0181914
- 3650 - Cucurbitaceae: LTS0181914
- 13492 - Diospyros: LTS0181914
- 35925 - Diospyros kaki: 10.1007/BF00597795
- 35925 - Diospyros kaki: 10.1016/S0031-9422(00)80801-8
- 35925 - Diospyros kaki: LTS0181914
- 19955 - Ebenaceae: LTS0181914
- 543 - Enterobacteriaceae: LTS0181914
- 1903409 - Erwiniaceae: LTS0181914
- 2759 - Eukaryota: LTS0181914
- 2759 - Eukaryota: LTS0267709
- 3803 - Fabaceae: LTS0181914
- 49546 - Flavobacteriaceae: LTS0181914
- 117743 - Flavobacteriia: LTS0181914
- 237 - Flavobacterium: 10.1016/S0378-1119(96)00624-5
- 237 - Flavobacterium: LTS0181914
- 4751 - Fungi: LTS0267709
- 5127 - Fusarium fujikuroi: 10.1016/0304-4165(88)90119-5
- 1236 - Gammaproteobacteria: LTS0181914
- 106335 - Hibiscus syriacus: 10.1021/JF60182A030
- 9606 - Homo sapiens: 10.3945/AJCN.112.034819
- 45401 - Hyphomicrobiaceae: LTS0267709
- 26339 - Iridaceae: LTS0267709
- 4447 - Liliopsida: LTS0267709
- 49606 - Lonicera: LTS0181914
- 105884 - Lonicera japonica: 10.1042/BJ0510458
- 105884 - Lonicera japonica: LTS0181914
- 3398 - Magnoliopsida: LTS0181914
- 3398 - Magnoliopsida: LTS0267709
- 3877 - Medicago: LTS0181914
- 70939 - Medicago brachycarpa: 10.1016/0305-1978(75)90058-7
- 66810 - Medicago carstiensis: 10.1016/0305-1978(75)90058-7
- 66810 - Medicago carstiensis: LTS0181914
- 70942 - Medicago daghestanica: 10.1016/0305-1978(75)90058-7
- 70942 - Medicago daghestanica: LTS0181914
- 66816 - Medicago pironae: 10.1016/0305-1978(75)90058-7
- 66816 - Medicago pironae: LTS0181914
- 70967 - Medicago prostrata: 10.1016/0305-1978(75)90058-7
- 70967 - Medicago prostrata: LTS0181914
- 3879 - Medicago sativa: 10.1016/0305-1978(75)90058-7
- 3879 - Medicago sativa: LTS0181914
- 70933 - Medicago sativa subsp. glomerata: 10.1016/0305-1978(75)90058-7
- 70933 - Medicago sativa subsp. glomerata: LTS0181914
- 119392 - Medicago saxatilis: 10.1016/0305-1978(75)90058-7
- 119392 - Medicago saxatilis: LTS0181914
- 162481 - Microbotryomycetes: LTS0267709
- 2212703 - Mucoromycetes: LTS0267709
- 1913637 - Mucoromycota: LTS0267709
- 3931 - Myrtaceae: LTS0181914
- 3931 - Myrtaceae: LTS0267709
- 5140 - Neurospora: LTS0267709
- 5141 - Neurospora crassa: 10.1016/0003-9861(57)90143-1
- 5141 - Neurospora crassa: LTS0267709
- 4146 - Olea europaea: 10.1002/0471684228.EGP08791
- 3070 - Oocystaceae: LTS0267709
- 53335 - Pantoea: LTS0181914
- 553 - Pantoea ananatis: 10.1128/JB.172.12.6704-6712.1990
- 553 - Pantoea ananatis: LTS0181914
- 3684 - Passiflora: LTS0181914
- 78168 - Passiflora edulis: 10.1021/JF9801724
- 78168 - Passiflora edulis: LTS0181914
- 3683 - Passifloraceae: LTS0181914
- 4836 - Phycomyces: LTS0267709
- 4837 - Phycomyces blakesleeanus: 10.1016/0031-9422(90)85164-B
- 4837 - Phycomyces blakesleeanus: LTS0267709
- 1344966 - Phycomycetaceae: LTS0267709
- 3754 - Prunus: LTS0181914
- 36596 - Prunus armeniaca: 10.1021/JF00090A003
- 36596 - Prunus armeniaca: LTS0181914
- 3760 - Prunus persica: 10.1021/JF00090A003
- 3760 - Prunus persica: LTS0181914
- 120289 - Psidium: LTS0181914
- 120289 - Psidium: LTS0267709
- 120290 - Psidium guajava: 10.1021/JF980405R
- 120290 - Psidium guajava: LTS0181914
- 120290 - Psidium guajava: LTS0267709
- 1060 - Rhodobacter: LTS0181914
- 1068 - Rhodomicrobium: LTS0267709
- 1069 - Rhodomicrobium vannielii: 10.1016/0031-9422(75)80358-X
- 1069 - Rhodomicrobium vannielii: LTS0267709
- 41295 - Rhodospirillaceae: LTS0267709
- 1081 - Rhodospirillum: LTS0267709
- 1085 - Rhodospirillum rubrum:
- 1085 - Rhodospirillum rubrum: 10.1042/BJ0560222
- 1085 - Rhodospirillum rubrum: 10.1042/BJ1160101
- 1085 - Rhodospirillum rubrum: LTS0267709
- 5533 - Rhodotorula: LTS0267709
- 5535 - Rhodotorula glutinis: 10.1135/CCCC19581987
- 5535 - Rhodotorula glutinis: LTS0267709
- 5286 - Rhodotorula toruloides: 10.1135/CCCC19581987
- 5286 - Rhodotorula toruloides: LTS0267709
- 3764 - Rosa: LTS0181914
- 3764 - Rosa: LTS0267709
- 267261 - Rosa villosa: 10.1002/HLCA.19830660211
- 267261 - Rosa villosa: LTS0181914
- 267261 - Rosa villosa: LTS0267709
- 3745 - Rosaceae: LTS0181914
- 3745 - Rosaceae: LTS0267709
- 23513 - Rutaceae: LTS0181914
- 23513 - Rutaceae: LTS0267709
- 36599 - Sorbus aucuparia: 10.1093/OXFORDJOURNALS.AOB.A084605
- 5148 - Sordariaceae: LTS0267709
- 147550 - Sordariomycetes: LTS0267709
- 1799696 - Sporidiobolaceae: LTS0267709
- 1883 - Streptomyces: LTS0181914
- 1911 - Streptomyces griseus: 10.1007/BF02173971
- 1911 - Streptomyces griseus: LTS0181914
- 2062 - Streptomycetaceae: LTS0181914
- 35493 - Streptophyta: LTS0181914
- 35493 - Streptophyta: LTS0267709
- 58023 - Tracheophyta: LTS0181914
- 58023 - Tracheophyta: LTS0267709
- 75966 - Trebouxiophyceae: LTS0267709
- 33090 - Viridiplantae: LTS0181914
- 33090 - Viridiplantae: LTS0267709
- 29760 - Vitis vinifera: 10.1007/BF00574814
- 4577 - Zea mays: 10.1016/S0031-9422(00)83636-5
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Pedro Brivaldo Viana da Silva, Lívia Beatriz Brenelli, Lilian Regina Barros Mariutti. Waste and by-products as sources of lycopene, phytoene, and phytofluene - Integrative review with bibliometric analysis.
Food research international (Ottawa, Ont.).
2023 07; 169(?):112838. doi:
10.1016/j.foodres.2023.112838
. [PMID: 37254412] - Aleksandr A Ashikhmin, Anton S Benditkis, Andrey A Moskalenko, Alexander A Krasnovsky. ζ-Carotene: Generation and Quenching of Singlet Oxygen, Comparison with Phytofluene.
Biochemistry. Biokhimiia.
2022 Oct; 87(10):1169-1178. doi:
10.1134/s0006297922100108
. [PMID: 36273885] - Karolina Tkacz, Ángel Gil-Izquierdo, Sonia Medina, Igor Piotr Turkiewicz, Raúl Domínguez-Perles, Paulina Nowicka, Aneta Wojdyło. Phytoprostanes, phytofurans, tocopherols, tocotrienols, carotenoids and free amino acids and biological potential of sea buckthorn juices.
Journal of the science of food and agriculture.
2022 Jan; 102(1):185-197. doi:
10.1002/jsfa.11345
. [PMID: 34061348] - Nancy E Moran, Jennifer M Thomas-Ahner, Jessica L Fleming, Joseph P McElroy, Rebecca Mehl, Elizabeth M Grainger, Ken M Riedl, Amanda E Toland, Steven J Schwartz, Steven K Clinton. Single Nucleotide Polymorphisms in β-Carotene Oxygenase 1 are Associated with Plasma Lycopene Responses to a Tomato-Soy Juice Intervention in Men with Prostate Cancer.
The Journal of nutrition.
2019 03; 149(3):381-397. doi:
10.1093/jn/nxy304
. [PMID: 30801647] - Paula Mapelli-Brahm, Charles Desmarchelier, Marielle Margier, Emmanuelle Reboul, Antonio J Meléndez Martínez, Patrick Borel. Phytoene and Phytofluene Isolated from a Tomato Extract are Readily Incorporated in Mixed Micelles and Absorbed by Caco-2 Cells, as Compared to Lycopene, and SR-BI is Involved in their Cellular Uptake.
Molecular nutrition & food research.
2018 11; 62(22):e1800703. doi:
10.1002/mnfr.201800703
. [PMID: 30192047] - David C Nieman, Courtney L Capps, Christopher R Capps, Zack L Shue, Jennifer E McBride. Effect of 4-Week Ingestion of Tomato-Based Carotenoids on Exercise-Induced Inflammation, Muscle Damage, and Oxidative Stress in Endurance Runners.
International journal of sport nutrition and exercise metabolism.
2018 May; 28(3):266-273. doi:
10.1123/ijsnem.2017-0272
. [PMID: 29091464] - Paula Mapelli-Brahm, Joana Corte-Real, Antonio J Meléndez-Martínez, Torsten Bohn. Bioaccessibility of phytoene and phytofluene is superior to other carotenoids from selected fruit and vegetable juices.
Food chemistry.
2017 Aug; 229(?):304-311. doi:
10.1016/j.foodchem.2017.02.074
. [PMID: 28372178] - Francesca Bot, Monica Anese, M Adília Lemos, Graham Hungerford. Use of time-resolved spectroscopy as a method to monitor carotenoids present in tomato extract obtained using ultrasound treatment.
Phytochemical analysis : PCA.
2016 Jan; 27(1):32-40. doi:
10.1002/pca.2584
. [PMID: 26289117] - Jessica L Cooperstone, Robin A Ralston, Ken M Riedl, Thomas C Haufe, Ralf M Schweiggert, Samantha A King, Cynthia D Timmers, David M Francis, Gregory B Lesinski, Steven K Clinton, Steven J Schwartz. Enhanced bioavailability of lycopene when consumed as cis-isomers from tangerine compared to red tomato juice, a randomized, cross-over clinical trial.
Molecular nutrition & food research.
2015 Apr; 59(4):658-69. doi:
10.1002/mnfr.201400658
. [PMID: 25620547] - Antonio J Meléndez-Martínez, Margot Paulino, Carla M Stinco, Paula Mapelli-Brahm, Xiang-Dong Wang. Study of the time-course of cis/trans (Z/E) isomerization of lycopene, phytoene, and phytofluene from tomato.
Journal of agricultural and food chemistry.
2014 Dec; 62(51):12399-406. doi:
10.1021/jf5041965
. [PMID: 25426993] - Elio Fantini, Giulia Falcone, Sarah Frusciante, Leonardo Giliberto, Giovanni Giuliano. Dissection of tomato lycopene biosynthesis through virus-induced gene silencing.
Plant physiology.
2013 Oct; 163(2):986-98. doi:
10.1104/pp.113.224733
. [PMID: 24014574] - Nikki A Ford, Amy C Elsen, John W Erdman. Genetic ablation of carotene oxygenases and consumption of lycopene or tomato powder diets modulate carotenoid and lipid metabolism in mice.
Nutrition research (New York, N.Y.).
2013 Sep; 33(9):733-42. doi:
10.1016/j.nutres.2013.07.007
. [PMID: 24034573] - Thomas T Y Wang, Alison J Edwards, Beverly A Clevidence. Strong and weak plasma response to dietary carotenoids identified by cluster analysis and linked to beta-carotene 15,15'-monooxygenase 1 single nucleotide polymorphisms.
The Journal of nutritional biochemistry.
2013 Aug; 24(8):1538-46. doi:
10.1016/j.jnutbio.2013.01.001
. [PMID: 23517913] - Lauren E Conlon, Ryan D King, Nancy E Moran, John W Erdman. Coconut oil enhances tomato carotenoid tissue accumulation compared to safflower oil in the Mongolian gerbil ( Meriones unguiculatus ).
Journal of agricultural and food chemistry.
2012 Aug; 60(34):8386-94. doi:
10.1021/jf301902k
. [PMID: 22866697] - B Y Hsu, Y S Pu, B Stephen Inbaraj, B H Chen. An improved high performance liquid chromatography-diode array detection-mass spectrometry method for determination of carotenoids and their precursors phytoene and phytofluene in human serum.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2012 Jun; 899(?):36-45. doi:
10.1016/j.jchromb.2012.04.034
. [PMID: 22622065] - Nancy J Engelmann, Steven K Clinton, John W Erdman. Nutritional aspects of phytoene and phytofluene, carotenoid precursors to lycopene.
Advances in nutrition (Bethesda, Md.).
2011 Jan; 2(1):51-61. doi:
10.3945/an.110.000075
. [PMID: 22211189] - Ayhan Dogukan, Mehmet Tuzcu, Can Ali Agca, Hasan Gencoglu, Nurhan Sahin, Muhittin Onderci, Ibrahim Hanifi Ozercan, Necip Ilhan, Omer Kucuk, Kazim Sahin. A tomato lycopene complex protects the kidney from cisplatin-induced injury via affecting oxidative stress as well as Bax, Bcl-2, and HSPs expression.
Nutrition and cancer.
2011; 63(3):427-34. doi:
10.1080/01635581.2011.535958
. [PMID: 21391123] - Aviv Shaish, Ayelet Harari, Yehuda Kamari, Etienne Soudant, Dror Harats, Ami Ben-Amotz. A carotenoid algal preparation containing phytoene and phytofluene inhibited LDL oxidation in vitro.
Plant foods for human nutrition (Dordrecht, Netherlands).
2008 Jun; 63(2):83-6. doi:
10.1007/s11130-008-0075-y
. [PMID: 18443908] - Peter Lorenz, Melanie Berger, Julia Bertrams, Kristian Wende, Kristin Wenzel, Ulrike Lindequist, Ulrich Meyer, Florian C Stintzing. Natural wax constituents of a supercritical fluid CO(2) extract from quince (Cydonia oblonga Mill.) pomace.
Analytical and bioanalytical chemistry.
2008 May; 391(2):633-46. doi:
10.1007/s00216-008-2000-5
. [PMID: 18418588] - Jessica K Campbell, Chad K Stroud, Manabu T Nakamura, Mary Ann Lila, John W Erdman. Serum testosterone is reduced following short-term phytofluene, lycopene, or tomato powder consumption in F344 rats.
The Journal of nutrition.
2006 Nov; 136(11):2813-9. doi:
10.1093/jn/136.11.2813
. [PMID: 17056806] - Jessica K Campbell, Randy B Rogers, Mary Ann Lila, John W Erdman. Biosynthesis of 14C-phytoene from tomato cell suspension cultures (Lycopersicon esculentum) for utilization in prostate cancer cell culture studies.
Journal of agricultural and food chemistry.
2006 Feb; 54(3):747-55. doi:
10.1021/jf0581269
. [PMID: 16448178] - Patrizia Riso, Antonella Brusamolino, Antonia Martinetti, Marisa Porrini. Effect of a tomato drink intervention on insulin-like growth factor (IGF)-1 serum levels in healthy subjects.
Nutrition and cancer.
2006; 55(2):157-62. doi:
10.1207/s15327914nc5502_6
. [PMID: 17044770] - Olivier Aust, Wilhelm Stahl, Helmut Sies, Hagen Tronnier, Ulrike Heinrich. Supplementation with tomato-based products increases lycopene, phytofluene, and phytoene levels in human serum and protects against UV-light-induced erythema.
International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition.
2005 Jan; 75(1):54-60. doi:
10.1024/0300-9831.75.1.54
. [PMID: 15830922] - Myriam Richelle, Karlheinz Bortlik, Stéphanie Liardet, Corinne Hager, Pierre Lambelet, Markus Baur, Lee A Applegate, Elizabeth A Offord. A food-based formulation provides lycopene with the same bioavailability to humans as that from tomato paste.
The Journal of nutrition.
2002 Mar; 132(3):404-8. doi:
10.1093/jn/132.3.404
. [PMID: 11880563] - I Neuman, H Nahum, A Ben-Amotz. Reduction of exercise-induced asthma oxidative stress by lycopene, a natural antioxidant.
Allergy.
2000 Dec; 55(12):1184-9. doi:
10.1034/j.1398-9995.2000.00748.x
. [PMID: 11117277] - I Paetau, D Rao, E R Wiley, E D Brown, B A Clevidence. Carotenoids in human buccal mucosa cells after 4 wk of supplementation with tomato juice or lycopene supplements.
The American journal of clinical nutrition.
1999 Oct; 70(4):490-4. doi:
10.1093/ajcn/70.4.490
. [PMID: 10500017] - G Sandmann, C Schneider, P Böger. A new non-radioactive assay of phytoene desaturase to evaluate bleaching herbicides.
Zeitschrift fur Naturforschung. C, Journal of biosciences.
1996 Jul; 51(7-8):534-8. doi:
. [PMID: 8810094]
- M A Ross, L K Crosley, K M Brown, S J Duthie, A C Collins, J R Arthur, G G Duthie. Plasma concentrations of carotenoids and antioxidant vitamins in Scottish males: influences of smoking.
European journal of clinical nutrition.
1995 Nov; 49(11):861-5. doi:
NULL
. [PMID: 8557024] - N M Merkle, H Wiedeck, C Herfarth, A Grünert. [Immediate postoperative enteral tube feeding following resection of the large intestine. Experiences with a controlled clinical study].
Der Chirurg; Zeitschrift fur alle Gebiete der operativen Medizen.
1984 Apr; 55(4):267-74. doi:
NULL
. [PMID: 6426893] - J N Thompson. Interference from carotenoids in the fluorometric analysis of serum vitamin A in cancer studies.
European journal of cancer & clinical oncology.
1983 Nov; 19(11):1645-6. doi:
10.1016/0277-5379(83)90098-6
. [PMID: 6685646] - D A BEELER, J W PORTER. The enzymatic conversion of phytoene to phytofluene.
Biochemical and biophysical research communications.
1962 Aug; 8(?):367-71. doi:
10.1016/0006-291x(62)90009-8
. [PMID: 13866515] - L ZECHMEISTER, G KARMAKAR. The occurrence of phytofluene in green plant organs.
Archives of biochemistry and biophysics.
1953 Nov; 47(1):160-4. doi:
10.1016/0003-9861(53)90445-7
. [PMID: 13114883] - . .
.
. doi:
. [PMID: 15503129]