Subcellular Location: Kv4.2-KChIP2 channel complex

Found 42 associated metabolites.

2 associated genes. KCND2, KCNIP2

Pinocembrin

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-phenyl-, (S)-(-)-

C15H12O4 (256.0736)


Pinocembrin is a dihydroxyflavanone in which the two hydroxy groups are located at positions 5 and 7. A natural product found in Piper sarmentosum and Cryptocarya chartacea. It has a role as an antioxidant, an antineoplastic agent, a vasodilator agent, a neuroprotective agent and a metabolite. It is a dihydroxyflavanone and a (2S)-flavan-4-one. Pinocembrin is a natural product found in Prunus leveilleana, Alpinia rafflesiana, and other organisms with data available. Pinocembrin is found in mexican oregano and is isolated from many plants including food plants. Pinocembrin belongs to the family of flavanones. These are compounds containing a flavan-3-one moiety, which structure is characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. A dihydroxyflavanone in which the two hydroxy groups are located at positions 5 and 7. A natural product found in Piper sarmentosum and Cryptocarya chartacea. Isolated from many plants including food plants. (S)-Pinocembrin is found in mexican oregano and pine nut. (±)-Pinocembrin ((±)-5,7-Dihydroxyflavanone) is a GPR120 ligand able to promote wound healing in HaCaT cell line[1]. (±)-Pinocembrin ((±)-5,7-Dihydroxyflavanone) is a GPR120 ligand able to promote wound healing in HaCaT cell line[1]. Pinocembrin ((+)-Pinocoembrin) is a flavonoid found in propolis, acts as a competitive inhibitor of histidine decarboxylase, and is an effective anti-allergic agent, with antioxidant, antimicrobial and anti-inflammatory properties[1]. Pinocembrin ((+)-Pinocoembrin) is a flavonoid found in propolis, acts as a competitive inhibitor of histidine decarboxylase, and is an effective anti-allergic agent, with antioxidant, antimicrobial and anti-inflammatory properties[1].

   

Saikosaponin A

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-3,5-dihydroxy-2-[[(1S,2S,4S,5R,8R,9R,10S,13S,14R,17S,18R)-2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.01,18.04,17.05,14.08,13]tetracos-15-en-10-yl]oxy]-6-methyloxan-4-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C42H68O13 (780.466)


Saikosaponin A is a saikosaponin. Saikosaponin A is a natural product found in Bupleurum kunmingense, Clinopodium gracile, and other organisms with data available. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000893 - Anti-Inflammatory Agents D000970 - Antineoplastic Agents D018501 - Antirheumatic Agents Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1]. Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1]. Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1]. Saikosaponin D is a triterpene saponin isolated from Bupleurum, with anti-inflammatory, anti-bacterial, anti-tumor, and anti-allergic activities; Saikosaponin D inhibits selectin, STAT3 and NF-kB and activates estrogen receptor-β. Saikosaponin D is a triterpene saponin isolated from Bupleurum, with anti-inflammatory, anti-bacterial, anti-tumor, and anti-allergic activities; Saikosaponin D inhibits selectin, STAT3 and NF-kB and activates estrogen receptor-β.

   

Butyl 4-aminobenzoate

p-Aminobenzoic acid butyl ester

C11H15NO2 (193.1103)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

Disopyramide

alpha-(2-(Diisopropylamino)ethyl)-alpha-phenyl-2-pyridineacetamide

C21H29N3O (339.2311)


A class I anti-arrhythmic agent (one that interferes directly with the depolarization of the cardiac membrane and thus serves as a membrane-stabilizing agent) with a depressant action on the heart similar to that of guanidine. It also possesses some anticholinergic and local anesthetic properties. [PubChem] C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BA - Antiarrhythmics, class ia D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Flecainide

N-(piperidin-2-ylmethyl)-2,5-bis(2,2,2-trifluoroethoxy)benzamide

C17H20F6N2O3 (414.1378)


A potent anti-arrhythmia agent, effective in a wide range of ventricular and atrial arrhythmias and tachycardias. Paradoxically, however, in myocardial infarct patients with either symptomatic or asymptomatic arrhythmia, flecainide exacerbates the arrhythmia and is not recommended for use in these patients. [PubChem] C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BC - Antiarrhythmics, class ic D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3020 CONFIDENCE standard compound; INTERNAL_ID 2276 D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Nandrolone decanoate

(1S,2R,10R,11S,14S,15S)-15-methyl-5-oxotetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-en-14-yl decanoate

C28H44O3 (428.329)


Nandrolone decanoate is only found in individuals that have used or taken this drug. It is a C18 steroid with androgenic and anabolic properties. It is generally prepared from alkyl ethers of estradiol to resemble testosterone but less one carbon at the 19 position. It is a schedule III drug in the U.S. Nandrolone is an androgen receptor agonist. The drug bound to the receptor complexes which allows it to enter the nucleus and bind directly to specific nucleotide sequences of the chromosomal DNA. The areas of binding are called hormone response elements (HREs), and influence transcriptional activity of certain genes, producing the androgen effects. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D050071 - Bone Density Conservation Agents

   

Enoxacin

1-ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydro-1,8-naphthyridine-3-carboxylic acid

C15H17FN4O3 (320.1285)


Enoxacin is only found in individuals that have used or taken this drug. It is a broad-spectrum 6-fluoronaphthyridinone antibacterial agent (fluoroquinolones) structurally related to nalidixic acid. [PubChem]Enoxacin exerts its bactericidal action via the inhibition of the essential bacterial enzyme DNA gyrase (DNA Topoisomerase II). J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065609 - Cytochrome P-450 CYP1A2 Inhibitors D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic CONFIDENCE standard compound; EAWAG_UCHEM_ID 3078

   

4-Methylcatechol

1,2-Dihydroxy-4-methylbenzene

C7H8O2 (124.0524)


A methylcatechol having a single methyl substituent at the 4-position. It has been isolated from Picea abies. D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D002273 - Carcinogens 4-Methylcatechol, a metabolite of p-toluate, is a substrate as well as a suicide inhibitor of Catechol 2,3-Dioxygenase. 4-Methylcatechol, a metabolite of p-toluate, is a substrate as well as a suicide inhibitor of Catechol 2,3-Dioxygenase.

   

Clofilium

Clofilium

C21H37ClN+ (338.2614)


C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators

   

Dofetilide

N-[4-(2-{[2-(4-methanesulfonamidophenyl)ethyl](methyl)amino}ethoxy)phenyl]methanesulfonamide

C19H27N3O5S2 (441.1392)


Dofetilide is a class III antiarrhythmic agent that is approved by the Food and Drug Administration (FDA) for the maintenance of sinus rhythm in individuals prone to the formation of atrial fibrillation and flutter, and for the chemical cardioversion to sinus rhythm from atrial fibrillation and flutter. [Wikipedia] C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BD - Antiarrhythmics, class iii C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Linopirdine

1-phenyl-3,3-bis[(pyridin-4-yl)methyl]-2,3-dihydro-1H-indol-2-one

C26H21N3O (391.1685)


N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker D020011 - Protective Agents Same as: D04741

   

Tocainide

AstraZeneca brand OF tocainide hydrochloride

C11H16N2O (192.1263)


Tocainide is only found in individuals that have used or taken this drug. It is an antiarrhythmic agent which exerts a potential- and frequency-dependent block of sodium channels. [PubChem]Tocainide acts on sodium channels on the neuronal cell membrane, limiting the spread of seizure activity and reducing seizure propagation. Tocainide binds preferentially to the inactive state of the sodium channels.The antiarrhythmic actions are mediated through effects on sodium channels in Purkinje fibers. C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BB - Antiarrhythmics, class ib D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Serine O-sulfate

L-Serine O-sulfate

C3H7NO6S (184.9994)


KEIO_ID H096

   

TR 1 toxin

verruculogen

C27H33N3O7 (511.2318)


   

Potassium

Liver regeneration factor 1

K+ (38.9637)


Potassium is an essential electrolyte. Potassium balance is crucial for regulating the excitability of nerves and muscles and so critical for regulating contractility of cardiac muscle. Although the most important changes seen in the presence of deranged potassium are cardiac, smooth muscle is also affected with increasing muscle weakness, a feature of both hyperkalaemia and hypokalaemia. Physiologically, it exists as an ion in the body. Potassium (K+) is a positively charged electrolyte, cation, which is present throughout the body in both intracellular and extracellular fluids. The majority of body potassium, >90\\%, are intracellular. It moves freely from intracellular fluid (ICF) to extracellular fluid (ECF) and vice versa when adenosine triphosphate increases the permeability of the cell membrane. It is mainly replaced inside or outside the cells by another cation, sodium (Na+). The movement of potassium into or out of the cells is linked to certain body hormones and also to certain physiological states. Standard laboratory tests measure ECF potassium. Potassium enters the body rapidly during food ingestion. Insulin is produced when a meal is eaten; this causes the temporary movement of potassium from ECF to ICF. Over the ensuing hours, the kidneys excrete the ingested potassium and homeostasis is returned. In the critically ill patient, suffering from hyperkalaemia, this mechanism can be manipulated beneficially by administering high concentration (50\\%) intravenous glucose. Insulin can be added to the glucose, but glucose alone will stimulate insulin production and cause movement of potassium from ECF to ICF. The stimulation of alpha receptors causes increased movement of potassium from ICF to ECF. A noradrenaline infusion can elevate serum potassium levels. An adrenaline infusion, or elevated adrenaline levels, can lower serum potassium levels. Metabolic acidosis causes a rise in extracellular potassium levels. In this situation, excess of hydrogen ions (H+) are exchanged for intracellular potassium ions, probably as a result of the cellular response to a falling blood pH. Metabolic alkalosis causes the opposite effect, with potassium moving into the cells. (PMID: 17883675) [HMDB]. Potassium is found in many foods, some of which are half-highbush blueberry, liquor, grouper, and squashberry. Potassium is an essential electrolyte. Potassium balance is crucial for regulating the excitability of nerves and muscles and so critical for regulating contractility of cardiac muscle. Although the most important changes seen in the presence of deranged potassium are cardiac, smooth muscle is also affected with increasing muscle weakness, a feature of both hyperkalaemia and hypokalaemia. Physiologically, it exists as an ion in the body. Potassium (K+) is a positively charged electrolyte, cation, which is present throughout the body in both intracellular and extracellular fluids. The majority of body potassium, >90\\%, are intracellular. It moves freely from intracellular fluid (ICF) to extracellular fluid (ECF) and vice versa when adenosine triphosphate increases the permeability of the cell membrane. It is mainly replaced inside or outside the cells by another cation, sodium (Na+). The movement of potassium into or out of the cells is linked to certain body hormones and also to certain physiological states. Standard laboratory tests measure ECF potassium. Potassium enters the body rapidly during food ingestion. Insulin is produced when a meal is eaten; this causes the temporary movement of potassium from ECF to ICF. Over the ensuing hours, the kidneys excrete the ingested potassium and homeostasis is returned. In the critically ill patient, suffering from hyperkalaemia, this mechanism can be manipulated beneficially by administering high concentration (50\\%) intravenous glucose. Insulin can be added to the glucose, but glucose alone will stimulate insulin production and cause movement of potassium from ECF to ICF. The stimulation of alpha receptors causes increased movement of potassium from ICF to ECF. A noradrenaline infusion can elevate serum potassium levels. An adrenaline infusion, or elevated adrenaline levels, can lower serum potassium levels. Metabolic acidosis causes a rise in extracellular potassium levels. In this situation, excess of hydrogen ions (H+) are exchanged for intracellular potassium ions, probably as a result of the cellular response to a falling blood pH. Metabolic alkalosis causes the opposite effect, with potassium moving into the cells. (PMID: 17883675).

   

METHYLAZOXYMETHANOL

METHYLAZOXYMETHANOL

C2H6N2O2 (90.0429)


D009676 - Noxae > D000477 - Alkylating Agents D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D013723 - Teratogens

   

Bretylium

2-Bromo-N-ethyl-N,N-dimethylbenzenemethanaminium

C11H17BrN+ (242.0544)


Bretylium blocks the release of noradrenaline from the peripheral sympathetic nervous system, and is used in emergency medicine, cardiology, and other specialties for the acute management of ventricular tachycardia and ventricular fibrillation. The primary mode of action for bretylium is thought to be inhibition of voltage-gated K(+) channels. Recent evidence has shown that bretylium may also inhibit the Na,K-ATPase by binding to the extracellular K-site. C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents

   

Cyclopentolate

2-Phenyl-2-(1-hydroxycyclopentyl)ethanoic acid beta-(dimethylamino)ethyl ester

C17H25NO3 (291.1834)


Cyclopentolate is only found in individuals that have used or taken this drug. It is a parasympatholytic anticholinergic used solely to obtain mydriasis or cycloplegia. [PubChem]By blocking muscarinic receptors, cyclopentolate produces dilatation of the pupil (mydriasis) and prevents the eye from accommodating for near vision (cycloplegia). S - Sensory organs > S01 - Ophthalmologicals > S01F - Mydriatics and cycloplegics > S01FA - Anticholinergics C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics C78283 - Agent Affecting Organs of Special Senses > C29706 - Mydriatic Agent

   

Tetraethylammonium

Tetraethylammonium

C8H20N+ (130.1596)


D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D049990 - Membrane Transport Modulators

   

Fampridine

4-aminopyridine

C5H6N2 (94.0531)


D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker N - Nervous system Same as: D04127

   
   

Correolide

Correolide

C40H52O16 (788.3255)


D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D049990 - Membrane Transport Modulators

   

Sho-saiko-to

2-[3,5-Dihydroxy-2-[[2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.01,18.04,17.05,14.08,13]tetracos-15-en-10-yl]oxy]-6-methyloxan-4-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C42H68O13 (780.466)


2-[3,5-Dihydroxy-2-[[2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.01,18.04,17.05,14.08,13]tetracos-15-en-10-yl]oxy]-6-methyloxan-4-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol is a natural product found in Clinopodium vulgare, Bupleurum angustissimum, and other organisms with data available. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000893 - Anti-Inflammatory Agents D000970 - Antineoplastic Agents D018501 - Antirheumatic Agents Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1]. Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1]. Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1]. Saikosaponin D is a triterpene saponin isolated from Bupleurum, with anti-inflammatory, anti-bacterial, anti-tumor, and anti-allergic activities; Saikosaponin D inhibits selectin, STAT3 and NF-kB and activates estrogen receptor-β. Saikosaponin D is a triterpene saponin isolated from Bupleurum, with anti-inflammatory, anti-bacterial, anti-tumor, and anti-allergic activities; Saikosaponin D inhibits selectin, STAT3 and NF-kB and activates estrogen receptor-β.

   

Pinocembrin

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-phenyl-, (S)-(-)-

C15H12O4 (256.0736)


(2s)-pinocembrin, also known as 5,7-dihydroxyflavanone or dihydrochrysin, is a member of the class of compounds known as flavanones. Flavanones are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. Thus, (2s)-pinocembrin is considered to be a flavonoid lipid molecule (2s)-pinocembrin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (2s)-pinocembrin can be found in a number of food items such as acorn, lentils, mulberry, and sorghum, which makes (2s)-pinocembrin a potential biomarker for the consumption of these food products. (s)-pinocembrin, also known as 5,7-dihydroxyflavanone or dihydrochrysin, is a member of the class of compounds known as flavanones. Flavanones are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3 (s)-pinocembrin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (s)-pinocembrin is a bitter tasting compound found in mexican oregano and tarragon, which makes (s)-pinocembrin a potential biomarker for the consumption of these food products. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.069 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.067 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.071 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.070 5,7-Dihydroxyflavanone is a natural product found in Pinus contorta var. latifolia, Piper nigrum, and other organisms with data available. (±)-Pinocembrin ((±)-5,7-Dihydroxyflavanone) is a GPR120 ligand able to promote wound healing in HaCaT cell line[1]. (±)-Pinocembrin ((±)-5,7-Dihydroxyflavanone) is a GPR120 ligand able to promote wound healing in HaCaT cell line[1]. Pinocembrin ((+)-Pinocoembrin) is a flavonoid found in propolis, acts as a competitive inhibitor of histidine decarboxylase, and is an effective anti-allergic agent, with antioxidant, antimicrobial and anti-inflammatory properties[1]. Pinocembrin ((+)-Pinocoembrin) is a flavonoid found in propolis, acts as a competitive inhibitor of histidine decarboxylase, and is an effective anti-allergic agent, with antioxidant, antimicrobial and anti-inflammatory properties[1].

   

Saikosaponin A

Saikosaponin A

C42H68O13 (780.466)


Annotation level-1 D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000893 - Anti-Inflammatory Agents D000970 - Antineoplastic Agents D018501 - Antirheumatic Agents Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1]. Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1]. Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1].

   

Dofetilide

Dofetilide (Tikosyn)

C19H27N3O5S2 (441.1392)


C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BD - Antiarrhythmics, class iii C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Linopirdine

Linopirdine(DuP-996)

C26H21N3O (391.1685)


N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker D020011 - Protective Agents Same as: D04741

   

tocainide

tocainide

C11H16N2O (192.1263)


C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BB - Antiarrhythmics, class ib D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

verruculogen

verruculogen

C27H33N3O7 (511.2318)


An organic heterohexacyclic compound that is a mycotoxic indole alkaloid isolated from Penicillium and Aspergillus species. CONFIDENCE Penicillium amphipolaria

   

flecainide

flecainide

C17H20F6N2O3 (414.1378)


C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BC - Antiarrhythmics, class ic D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

disopyramide

disopyramide

C21H29N3O (339.2311)


C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BA - Antiarrhythmics, class ia D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

butamben

Butyl 4-aminobenzoate

C11H15NO2 (193.1103)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

Bretylium

Bretylium

[C11H17BrN]+ (242.0544)


C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents

   

Dalfampridine

4-aminopyridine

C5H6N2 (94.0531)


D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker N - Nervous system Same as: D04127

   

c0126

InChI=1\C7H8O2\c1-5-2-3-6(8)7(9)4-5\h2-4,8-9H,1H

C7H8O2 (124.0524)


D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D002273 - Carcinogens 4-Methylcatechol, a metabolite of p-toluate, is a substrate as well as a suicide inhibitor of Catechol 2,3-Dioxygenase. 4-Methylcatechol, a metabolite of p-toluate, is a substrate as well as a suicide inhibitor of Catechol 2,3-Dioxygenase.

   

Nandrolone decanoate

Nandrolone decanoate

C28H44O3 (428.329)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D050071 - Bone Density Conservation Agents

   

cyclopentolate

cyclopentolate

C17H25NO3 (291.1834)


S - Sensory organs > S01 - Ophthalmologicals > S01F - Mydriatics and cycloplegics > S01FA - Anticholinergics C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics C78283 - Agent Affecting Organs of Special Senses > C29706 - Mydriatic Agent

   

enoxacin

enoxacin

C15H17FN4O3 (320.1285)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065609 - Cytochrome P-450 CYP1A2 Inhibitors D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic

   

Bretylium

Bretylium

C11H17BrN+ (242.0544)


C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents

   

Potassium cation

Potassium cation

K+ (38.9637)


   

L-Serine O-sulfate

L-Serine O-sulfate

C3H7NO6S (184.9994)


A non-proteinogenic L-alpha-amino acid that is the O-sulfo derivative of L-serine.

   

(1-Benzyl-1H-quinolin-4-ylidene)-pentyl-amine

(1-Benzyl-1H-quinolin-4-ylidene)-pentyl-amine

C21H24N2 (304.1939)