NCBI Taxonomy: 224860
Iryanthera (ncbi_taxid: 224860)
found 500 associated metabolites at genus taxonomy rank level.
Ancestor: Myristicaceae
Child Taxonomies: Iryanthera ulei, Iryanthera sagotiana, Iryanthera hostmannii, Iryanthera lancifolia, unclassified Iryanthera
Quercitrin
Quercitrin, also known as quercimelin or quercitronic acid, belongs to the class of organic compounds known as flavonoid-3-o-glycosides. These are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. Quercitrin exists in all living organisms, ranging from bacteria to humans. Quercitrin is found, on average, in the highest concentration within a few different foods, such as lingonberries, american cranberries, and olives and in a lower concentration in common beans, tea, and welsh onions. Quercitrin has also been detected, but not quantified, in several different foods, such as guava, bilberries, common pea, apricots, and spearmints. Quercitrin is a quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It has a role as an antioxidant, an antileishmanial agent, an EC 1.1.1.184 [carbonyl reductase (NADPH)] inhibitor, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor and a plant metabolite. It is a monosaccharide derivative, a tetrahydroxyflavone, an alpha-L-rhamnoside and a quercetin O-glycoside. It is a conjugate acid of a quercitrin-7-olate. Quercitrin is a natural product found in Xylopia emarginata, Lotus ucrainicus, and other organisms with data available. Quercitrin is a glycoside formed from the flavonoid quercetin and the deoxy sugar rhamnose. It is a constituent of the dye quercitron. Quercitrin is found in many foods, some of which are garden tomato (variety), kiwi, italian sweet red pepper, and guava. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. [Raw Data] CBA03_Quercitrin_pos_10eV.txt [Raw Data] CBA03_Quercitrin_pos_20eV.txt [Raw Data] CBA03_Quercitrin_neg_50eV.txt [Raw Data] CBA03_Quercitrin_neg_30eV.txt [Raw Data] CBA03_Quercitrin_neg_10eV.txt [Raw Data] CBA03_Quercitrin_neg_40eV.txt [Raw Data] CBA03_Quercitrin_neg_20eV.txt [Raw Data] CBA03_Quercitrin_pos_50eV.txt [Raw Data] CBA03_Quercitrin_pos_30eV.txt [Raw Data] CBA03_Quercitrin_pos_40eV.txt Quercitrin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=522-12-3 (retrieved 2024-07-09) (CAS RN: 522-12-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].
Pinocembrin
Pinocembrin is a dihydroxyflavanone in which the two hydroxy groups are located at positions 5 and 7. A natural product found in Piper sarmentosum and Cryptocarya chartacea. It has a role as an antioxidant, an antineoplastic agent, a vasodilator agent, a neuroprotective agent and a metabolite. It is a dihydroxyflavanone and a (2S)-flavan-4-one. Pinocembrin is a natural product found in Prunus leveilleana, Alpinia rafflesiana, and other organisms with data available. Pinocembrin is found in mexican oregano and is isolated from many plants including food plants. Pinocembrin belongs to the family of flavanones. These are compounds containing a flavan-3-one moiety, which structure is characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. A dihydroxyflavanone in which the two hydroxy groups are located at positions 5 and 7. A natural product found in Piper sarmentosum and Cryptocarya chartacea. Isolated from many plants including food plants. (S)-Pinocembrin is found in mexican oregano and pine nut. (±)-Pinocembrin ((±)-5,7-Dihydroxyflavanone) is a GPR120 ligand able to promote wound healing in HaCaT cell line[1]. (±)-Pinocembrin ((±)-5,7-Dihydroxyflavanone) is a GPR120 ligand able to promote wound healing in HaCaT cell line[1]. Pinocembrin ((+)-Pinocoembrin) is a flavonoid found in propolis, acts as a competitive inhibitor of histidine decarboxylase, and is an effective anti-allergic agent, with antioxidant, antimicrobial and anti-inflammatory properties[1]. Pinocembrin ((+)-Pinocoembrin) is a flavonoid found in propolis, acts as a competitive inhibitor of histidine decarboxylase, and is an effective anti-allergic agent, with antioxidant, antimicrobial and anti-inflammatory properties[1].
Astilbin
C21H22O11 (450.11620619999997)
Astilbin is a flavanone glycoside that is (+)-taxifolin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It has a role as a radical scavenger, an anti-inflammatory agent and a plant metabolite. It is an alpha-L-rhamnoside, a member of 3-hydroxyflavanones, a tetrahydroxyflavanone, a flavanone glycoside, a monosaccharide derivative and a member of 4-hydroxyflavanones. It is functionally related to a (+)-taxifolin. It is an enantiomer of a neoastilbin. Astilbin is a natural product found in Smilax corbularia, Rhododendron simsii, and other organisms with data available. Astilbin is a metabolite found in or produced by Saccharomyces cerevisiae. Astilbin is found in alcoholic beverages. Astilbin is a constituent of Vitis vinifera (wine grape).Astilbin is a flavanonol, a type of flavonoid. It can be found in St Johns wort (Hypericum perforatum, Clusiaceae, subfamily Hypericoideae, formerly often considered a full family Hypericaceae), in Dimorphandra mollis (Fava danta, Fabaceae), in the the leaves of Harungana madagascariensis (Hypericaceae), in the rhizome of Astilbe thunbergii, in the root of Astilbe odontophylla(Saxifragaceae) and in the rhizone of Smilax glabra (Chinaroot, Smilacaceae). A flavanone glycoside that is (+)-taxifolin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. Constituent of Vitis vinifera (wine grape) Astilbin is a flavonoid compound and enhances NRF2 activation. Astilbin also suppresses TNF-α expression and NF-κB activation. Astilbin is a flavonoid compound and enhances NRF2 activation. Astilbin also suppresses TNF-α expression and NF-κB activation. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3].
beta-Sitosterol
beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].
Afzelin
Afzelin is a glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite, an antibacterial agent and an anti-inflammatory agent. It is a glycosyloxyflavone, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol. It is a conjugate acid of an afzelin(1-). Afzelin is a natural product found in Premna odorata, Vicia tenuifolia, and other organisms with data available. [Raw Data] CBA27_Afzelin_neg_30eV_1-1_01_1585.txt [Raw Data] CBA27_Afzelin_pos_20eV_1-1_01_1549.txt [Raw Data] CBA27_Afzelin_pos_10eV_1-1_01_1540.txt [Raw Data] CBA27_Afzelin_neg_10eV_1-1_01_1576.txt [Raw Data] CBA27_Afzelin_neg_20eV_1-1_01_1584.txt [Raw Data] CBA27_Afzelin_neg_40eV_1-1_01_1586.txt [Raw Data] CBA27_Afzelin_pos_30eV_1-1_01_1550.txt [Raw Data] CBA27_Afzelin_pos_50eV_1-1_01_1552.txt [Raw Data] CBA27_Afzelin_pos_40eV_1-1_01_1551.txt [Raw Data] CBA27_Afzelin_neg_50eV_1-1_01_1587.txt Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].
Astilbin
C21H22O11 (450.11620619999997)
Neoastilbin is a flavanone glycoside that is (-)-taxifolin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It is an alpha-L-rhamnoside, a member of 3-hydroxyflavanones, a tetrahydroxyflavanone, a monosaccharide derivative, a flavanone glycoside and a member of 4-hydroxyflavanones. It is functionally related to a (-)-taxifolin. It is an enantiomer of an astilbin. Neoastilbin is a natural product found in Neolitsea sericea, Dimorphandra mollis, and other organisms with data available. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1]. Neosmitilbin is?isolated from?Garcinia?mangostana. Neosmitilbin is?isolated from?Garcinia?mangostana.
Desaminotyrosine
Desaminotyrosine, also known as 4-hydroxyphenylpropionic acid, is a normal constituent of human urine. It is a product of tyrosine metabolism; its concentration in urine increases in patients with gastrointestinal diseases. Desaminotyrosine is a major phenolic acid breakdown product of proanthocyanidin metabolism (PMID:15315398). Urinary desaminotyrosine is produced by Clostridium sporogenes and C. botulinum (PMID:29168502). Desaminotyrosine is also found in Acinetobacter, Bacteroides, Bifidobacteria, Bifidobacterium, Clostridium, Enterococcus, Escherichia, Eubacterium, Klebsiella, Lactobacillus, Pseudomonas, and Staphylococcus (PMID:29168502, 28393285, 19961416). Desaminotyrosine is a phenolic acid metabolite formed by the gut microflora detected after the consumption of whole grain. A normal constituent of human urine. A product of tyrosine metabolism; concentration in urine increases in patients with gastrointestinal diseases. (Dictionary of Organic Compounds) May also result from phenolic acid metabolism by colonic bacteria. (PMID 15315398) [HMDB]. Phloretic acid is found in many foods, some of which are arrowroot, olive, avocado, and peanut. Desaminotyrosine is a microbially associated metabolite protecting from influenza through augmentation of type I interferon signaling. Desaminotyrosine is a microbially associated metabolite protecting from influenza through augmentation of type I interferon signaling.
Delta-Tocopherol
Tocopherol, or Vitamin E, is a fat-soluble vitamin in eight forms that is an important antioxidant. Vitamin E is often used in skin creams and lotions because it is believed to play a role in encouraging skin healing and reducing scarring after injuries such as burns. -- Wikipedia; Natural vitamin E exists in eight different forms or isomers, four tocopherols and four tocotrienols. All isomers have a chromanol ring, with a hydroxyl group which can donate a hydrogen atom to reduce free radicals and a hydrophobic side chain which allows for penetration into biological membranes. There is an alpha, beta, gamma and delta form of both the tocopherols and tocotrienols, determined by the number of methyl groups on the chromanol ring. Each form has its own biological activity, the measure of potency or functional use in the body. -- Wikipedia; Alpha-tocopherol is traditionally recognized as the most active form of vitamin E in humans, and is a powerful biological antioxidant. The measurement of "vitamin E" activity in international units (IU) was based on fertility enhancement by the prevention of spontaneous abortions in pregnant rats relative to alpha tocopherol. It increases naturally to about 150\\\\\% of normal in the maternal circulation during human pregnancies. 1 IU of vitamin E is defined as the biological equivalent of 0.667 milligrams of d-alpha-tocopherol, or of 1 milligram of dl-alpha-tocopherol acetate. The other isomers are slowly being recognized as research begins to elucidate their additional roles in the human body. Many naturopathic and orthomolecular medicine advocates suggest that vitamin E supplements contain at least 20\\\\\% by weight of the other natural vitamin E isomers. Commercially available blends of natural vitamin E include "mixed tocopherols" and "high gamma tocopherol" formulas. Also selenium, Coenzyme Q10, and ample vitamin C have been shown to be essential cofactors of natural tocopherols. -- Wikipedia; Synthetic vitamin E, usually marked as d,l-tocopherol or d,l tocopheryl acetate, with 50\\\\\% d-alpha tocopherol moiety and 50\\\\\% l-alpha-tocopherol moiety, as synthesized by an earlier process is now actually manufactured as all-racemic alpha tocopherol, with only about one alpha tocopherol molecule in 8 molecules as actual d-alpha tocpherol. The synthetic form is not as active as the natural alpha tocopherol form. The 1950s thalidomide disaster with numerous severe birth defects is a common example of d- vs l- epimer forms type problem with synthesized racemic mixtures. Information on any side effects of the synthetic vitamin E epimers is not readily available. Naturopathic and orthomolecular medicine advocates have long considered the synthetic vitamin E forms to be with little or no merit for cancer, circulatory and heart diseases. -- Wikipedia; Abetalipoproteinemia is a rare inherited disorder of fat metabolism that results in poor absorption of dietary fat and vitamin E. The vitamin E deficiency associated with this disease causes problems such as poor transmission of nerve impulses, muscle weakness, and degeneration of the retina that can cause blindness. Individuals with abetalipoproteinemia may be prescribed special vitamin E supplements by a physician to treat this disorder. -- Wikipedia; Recent studies also show that vitamin E acts as an effective free radical scavenger and can lower the incidence of lung cancer in smokers. The effects are opposite to that of the clinical trials based on administering carotenoid to male smokers, that resulted in increased risk of lung cancer. Hence vitamin E is an effective antagonist to the oxidative stress that is imposed by high carotenoids in certain patients. -- Wikipedia; A cataract is a condition of clouding of the tissue of the lens of the eye. They increase the risk of disability and blindness in aging adults. Antioxidants are being studied to determine whether they can help prevent or delay cataract growth. Observational studies have found that lens clarity, wh... Delta-Tocopherol is an isomer of Vitamin E. Delta-Tocopherol is an isomer of Vitamin E.
Hydroxyhydroquinone
1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1]. 1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1].
delta-Tocotrienol
delta-Tocotrienol, also known as 8-methyltocotrienol, belongs to the class of organic compounds known as tocotrienols. These are vitamin E derivatives containing an unsaturated trimethyltrideca-3,7,11-trien-1-yl chain attached to the carbon C6 atom of a benzopyran ring system. They differ from tocopherols that contain a saturated trimethyltridecyl chain. Thus, delta-tocotrienol is considered to be a quinone lipid molecule. delta-Tocotrienol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. delta-Tocotrienol is found in American cranberry and palm oil. It is a nutriceutical with anticancer properties and a positive influence on the blood lipid profile. Constituent of palm oil. Nutriceutical with anticancer props. and a positive influence on the blood lipid profile. d-Tocotrienol is found in many foods, some of which are fennel, caraway, coconut, and lichee. Acquisition and generation of the data is financially supported in part by CREST/JST.
7,4'-Dihydroxyflavone
7,4-dihydroxyflavone, also known as 7-hydroxy-2-(4-hydroxyphenyl)-4h-chromen-4-one, is a member of the class of compounds known as flavones. Flavones are flavonoids with a structure based on the backbone of 2-phenylchromen-4-one (2-phenyl-1-benzopyran-4-one). Thus, 7,4-dihydroxyflavone is considered to be a flavonoid lipid molecule. 7,4-dihydroxyflavone is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 7,4-dihydroxyflavone can be found in alfalfa, broad bean, and fenugreek, which makes 7,4-dihydroxyflavone a potential biomarker for the consumption of these food products. Like many other flavonoids, 4,7-dihydroxyflavone has been found to possess activity at the opioid receptors. Specifically, it acts as an antagonist of the μ-opioid receptor and, with lower affinity, of the κ- and δ-opioid receptors . 7,4'-Dihydroxyflavone (7,4'-DHF) is a flavonoid isolated from Glycyrrhiza uralensis, the eotaxin/CCL11 inhibitor, has the ability to consistently suppress eotaxin production and prevent dexamethasone (Dex)‐paradoxical adverse effects on eotaxin production[1]. 7,4'-Dihydroxyflavone (7,4'-DHF) inhibits MUC5AC gene expression, mucus production and secretion via regulation of NF-κB, STAT6 and HDAC2. 7,4'-Dihydroxyflavone (7,4'-DHF) decreases phorbol 12-myristate 13-acetate (PMA) stimulated NCI-H292 human airway epithelial cell MUC5AC gene expression and mucus production with IC50 value of 1.4 μM[1]. 7,4'-Dihydroxyflavone (7,4'-DHF) is a flavonoid isolated from Glycyrrhiza uralensis, the eotaxin/CCL11 inhibitor, has the ability to consistently suppress eotaxin production and prevent dexamethasone (Dex)‐paradoxical adverse effects on eotaxin production[1]. 7,4'-Dihydroxyflavone (7,4'-DHF) inhibits MUC5AC gene expression, mucus production and secretion via regulation of NF-κB, STAT6 and HDAC2. 7,4'-Dihydroxyflavone (7,4'-DHF) decreases phorbol 12-myristate 13-acetate (PMA) stimulated NCI-H292 human airway epithelial cell MUC5AC gene expression and mucus production with IC50 value of 1.4 μM[1].
LICARIN A
(-)-Licarin A is a natural product found in Magnolia dodecapetala, Magnolia kachirachirai, and other organisms with data available. Dehydrodiisoeugenol is a natural product found in Myristica fragrans with data available. Dehydrodiisoeugenol is isolated from Myristica fragrans Houtt, shows anti-inflammatory and anti-bacterial actions[1]. Dehydrodiisoeugenol inhibits LPS- stimulated NF-κB activation and cyclooxygenase (COX)-2 gene expression in murine macrophages[2]. Dehydrodiisoeugenol is isolated from Myristica fragrans Houtt, shows anti-inflammatory and anti-bacterial actions[1]. Dehydrodiisoeugenol inhibits LPS- stimulated NF-κB activation and cyclooxygenase (COX)-2 gene expression in murine macrophages[2]. Licarin A ((+)-Licarin A), a neolignan, significantly and dose-dependently reduces TNF-α production (IC50=12.6 μM) in dinitrophenyl-human serum albumin (DNP-HSA)-stimulated RBL-2H3 cells. Anti-allergic effects. Licarin A reduces TNF-α and PGD2 production, and COX-2 expression[1]. Licarin A ((+)-Licarin A), a neolignan, significantly and dose-dependently reduces TNF-α production (IC50=12.6 μM) in dinitrophenyl-human serum albumin (DNP-HSA)-stimulated RBL-2H3 cells. Anti-allergic effects. Licarin A reduces TNF-α and PGD2 production, and COX-2 expression[1].
Ethyl oleate
Ethyl oleate is found in sweet marjoram. Ethyl oleate is a flavouring ingredient.Ethyl oleate is the ester formed by the condensation of the fatty acid oleic acid and ethanol. It is a colorless to light yellow liquid. Ethyl oleate is produced by the body during ethanol intoxication Flavouring ingredient Ethyl Oleate is a fatty acid ester formed by the condensation of oleic acid and ethanol. Ethyl oleate is the liquid lipid component in nanostructured lipid carriers (NLCs). NLC is a promising vehicle for oral trans-Ferulic acid (TFA) administration[1]. Ethyl Oleate is a fatty acid ester formed by the condensation of oleic acid and ethanol. Ethyl oleate is the liquid lipid component in nanostructured lipid carriers (NLCs). NLC is a promising vehicle for oral trans-Ferulic acid (TFA) administration[1].
Macelignan
Macelignan is found in herbs and spices. Macelignan is a constituent of Myristica fragrans (nutmeg) Constituent of Myristica fragrans (nutmeg). Macelignan is found in herbs and spices. Macelignan ((+)-Anwulignan; Anwuligan)?is an orally active lignan isolated from Myristica fragrans. Macelignan possesses many pharmacological activities, including anti-inflammatory, anti-cancer, anti-diabetes, and neuroprotective activities[1][2][3]. Macelignan ((+)-Anwulignan; Anwuligan)?is an orally active lignan isolated from Myristica fragrans. Macelignan possesses many pharmacological activities, including anti-inflammatory, anti-cancer, anti-diabetes, and neuroprotective activities[1][2][3].
Malabaricano
Fragransin A2 is found in herbs and spices. Fragransin A2 is isolated from arils of Myristica fragrans (nutmeg). Isolated from Myristica fragrans. Malabaricano is found in herbs and spices.
7-Hydroxyaustrobailignan 5
Saururinol is found in herbs and spices. Saururinol is a constituent of Myristica fragrans (nutmeg).
4'-Hydroxy-5,7-dimethoxyflavan
4-Hydroxy-5,7-dimethoxyflavan is a constituent of the pith of sago palm
Farnisin
Farnisin is a constituent of the seeds of Acacia farnesiana (sweet acacia)
(R)-3,4-Dihydro-2-methyl-2-(4,8,12-trimethyl-3,7,11-tridecatrienyl)-2H-1-benzopyran-6-ol
(R)-3,4-Dihydro-2-methyl-2-(4,8,12-trimethyl-3,7,11-tridecatrienyl)-2H-1-benzopyran-6-ol is found in cereals and cereal products. (R)-3,4-Dihydro-2-methyl-2-(4,8,12-trimethyl-3,7,11-tridecatrienyl)-2H-1-benzopyran-6-ol is isolated from rice bra Isolated from rice bran. (R)-3,4-Dihydro-2-methyl-2-(4,8,12-trimethyl-3,7,11-tridecatrienyl)-2H-1-benzopyran-6-ol is found in cereals and cereal products. D020011 - Protective Agents > D000975 - Antioxidants > D024508 - Tocotrienols D018977 - Micronutrients > D014815 - Vitamins
(2R)-2,8-Dimethyl-2-(4,8,12-trimethyltrideca-3,7,11-trienyl)-3,4-dihydrochromen-6-ol
Neoisoastilbin
C21H22O11 (450.11620619999997)
Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1].
Afzelin
5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one can be found in a number of food items such as endive, linden, peach, and ginkgo nuts, which makes 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one a potential biomarker for the consumption of these food products. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].
Dehydrodiisoeugenol
Quercetin 3-O-rhamnoside
7,4'-Dimethoxyflavone
7,4-dimethoxyflavone is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. 7,4-dimethoxyflavone is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). 7,4-dimethoxyflavone can be found in fenugreek, which makes 7,4-dimethoxyflavone a potential biomarker for the consumption of this food product.
Aromadendrin 3-rhamnoside
Aromadendrin 3-rhamnoside is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Aromadendrin 3-rhamnoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Aromadendrin 3-rhamnoside can be found in common grape, which makes aromadendrin 3-rhamnoside a potential biomarker for the consumption of this food product. Engeletin is a flavanonol glycoside isolated from Smilax glabra Roxb. , inhibits NF-κB signaling-pathway activation, and possesses anti-inflammatory, analgesic, diuresis, detumescence, and antibiosis effects. Engeletin is a flavanonol glycoside isolated from Smilax glabra Roxb. , inhibits NF-κB signaling-pathway activation, and possesses anti-inflammatory, analgesic, diuresis, detumescence, and antibiosis effects.
Macelignan
4-[(2S,3R)-4-(1,3-benzodioxol-5-yl)-2,3-dimethylbutyl]-2-methoxyphenol is a lignan. Macelignan is an NSAID with antioxidant, free radical scavenging, and neuroprotective activities. Macelignan is a natural product found in Saururus cernuus, Schisandra sphenanthera, and other organisms with data available. Macelignan is a lignan isolated from nutmeg with antimicrobial and anticariogenic activity against Streptococcus mutans and other streptococcus species. C254 - Anti-Infective Agent > C52588 - Antibacterial Agent Macelignan ((+)-Anwulignan; Anwuligan)?is an orally active lignan isolated from Myristica fragrans. Macelignan possesses many pharmacological activities, including anti-inflammatory, anti-cancer, anti-diabetes, and neuroprotective activities[1][2][3]. Macelignan ((+)-Anwulignan; Anwuligan)?is an orally active lignan isolated from Myristica fragrans. Macelignan possesses many pharmacological activities, including anti-inflammatory, anti-cancer, anti-diabetes, and neuroprotective activities[1][2][3].
Engeletin
Engeletin is a natural product found in Smilax corbularia, Malpighia emarginata, and other organisms with data available. Engeletin is a metabolite found in or produced by Saccharomyces cerevisiae. Engeletin is a flavanonol glycoside isolated from Smilax glabra Roxb. , inhibits NF-κB signaling-pathway activation, and possesses anti-inflammatory, analgesic, diuresis, detumescence, and antibiosis effects. Engeletin is a flavanonol glycoside isolated from Smilax glabra Roxb. , inhibits NF-κB signaling-pathway activation, and possesses anti-inflammatory, analgesic, diuresis, detumescence, and antibiosis effects.
Burchellin
A neolignan with formula C20H20O5 that is isolated from Ocotea cymbarum and Piper wallichii. It is active against a variety of parasites including T. cruzi, the vector for Chagas disease.
Ethyl oleate
Ethyl Oleate is a fatty acid ester formed by the condensation of oleic acid and ethanol. Ethyl oleate is the liquid lipid component in nanostructured lipid carriers (NLCs). NLC is a promising vehicle for oral trans-Ferulic acid (TFA) administration[1]. Ethyl Oleate is a fatty acid ester formed by the condensation of oleic acid and ethanol. Ethyl oleate is the liquid lipid component in nanostructured lipid carriers (NLCs). NLC is a promising vehicle for oral trans-Ferulic acid (TFA) administration[1].
sitosterol
A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].
2,4-Dihydroxy-4,6-dimethoxydihydrochalcone
Isoengeletin
Isoengeletin is a natural product found in Smilax corbularia and Iryanthera sagotiana with data available.
Homobutein
Homobutein is a member of chalcones. Homobutein is a natural product found in Erythrina abyssinica and Amburana cearensis with data available.
Afzelin
Afzelin is a glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite, an antibacterial agent and an anti-inflammatory agent. It is a glycosyloxyflavone, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol. It is a conjugate acid of an afzelin(1-). Afzelin is a natural product found in Premna odorata, Vicia tenuifolia, and other organisms with data available. A glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. Acquisition and generation of the data is financially supported in part by CREST/JST. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].
Astilbin
C21H22O11 (450.11620619999997)
Neoisoastilbin is a natural product found in Smilax corbularia, Neolitsea sericea, and other organisms with data available. Astilbin is a flavonoid compound and enhances NRF2 activation. Astilbin also suppresses TNF-α expression and NF-κB activation. Astilbin is a flavonoid compound and enhances NRF2 activation. Astilbin also suppresses TNF-α expression and NF-κB activation. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1].
Quercitrin
Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].
1-(2,4-dihydroxyphenyl)-3-(3,4-dimethoxyphenyl)prop-2-en-1-one
3-(4-Methoxyphenyl)-1-(2,4,6-trihydroxyphenyl)propan-1-one
1,1-(2,2,4,4,6,6-Hexahydroxybiphenyl-3,3-diyl)bis[3-(4-methoxyphenyl)propan-1-one]
pinocembrine
4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-phenyl-, (2R)- is a natural product found in Alpinia nutans, Alpinia zerumbet, and Boesenbergia rotunda with data available.
Pinocembrin
(2s)-pinocembrin, also known as 5,7-dihydroxyflavanone or dihydrochrysin, is a member of the class of compounds known as flavanones. Flavanones are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. Thus, (2s)-pinocembrin is considered to be a flavonoid lipid molecule (2s)-pinocembrin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (2s)-pinocembrin can be found in a number of food items such as acorn, lentils, mulberry, and sorghum, which makes (2s)-pinocembrin a potential biomarker for the consumption of these food products. (s)-pinocembrin, also known as 5,7-dihydroxyflavanone or dihydrochrysin, is a member of the class of compounds known as flavanones. Flavanones are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3 (s)-pinocembrin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (s)-pinocembrin is a bitter tasting compound found in mexican oregano and tarragon, which makes (s)-pinocembrin a potential biomarker for the consumption of these food products. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.069 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.067 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.071 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.070 5,7-Dihydroxyflavanone is a natural product found in Pinus contorta var. latifolia, Piper nigrum, and other organisms with data available. (±)-Pinocembrin ((±)-5,7-Dihydroxyflavanone) is a GPR120 ligand able to promote wound healing in HaCaT cell line[1]. (±)-Pinocembrin ((±)-5,7-Dihydroxyflavanone) is a GPR120 ligand able to promote wound healing in HaCaT cell line[1]. Pinocembrin ((+)-Pinocoembrin) is a flavonoid found in propolis, acts as a competitive inhibitor of histidine decarboxylase, and is an effective anti-allergic agent, with antioxidant, antimicrobial and anti-inflammatory properties[1]. Pinocembrin ((+)-Pinocoembrin) is a flavonoid found in propolis, acts as a competitive inhibitor of histidine decarboxylase, and is an effective anti-allergic agent, with antioxidant, antimicrobial and anti-inflammatory properties[1].
4-[5-(4-hydroxy-3-methoxyphenyl)-3,4-dimethyloxolan-2-yl]-2-methoxyphenol
Desaminotyrosine
Desaminotyrosine is a microbially associated metabolite protecting from influenza through augmentation of type I interferon signaling. Desaminotyrosine is a microbially associated metabolite protecting from influenza through augmentation of type I interferon signaling.
Delta-Tocopherol
A tocopherol in which the chroman-6-ol core is substituted by a methyl group at position 8. It is found particularly in maize (corn) oil and soya bean (soybean) oils. D020011 - Protective Agents > D000975 - Antioxidants > D024505 - Tocopherols Delta-Tocopherol is an isomer of Vitamin E. Delta-Tocopherol is an isomer of Vitamin E.
4-[5-(4-hydroxy-3-methoxyphenyl)-3,4-dimethyloxolan-2-yl]-2-methoxyphenol
(R)-3,4-Dihydro-2-methyl-2-(4,8,12-trimethyl-3,7,11-tridecatrienyl)-2H-1-benzopyran-6-ol
Calophyn
Macelignan ((+)-Anwulignan; Anwuligan)?is an orally active lignan isolated from Myristica fragrans. Macelignan possesses many pharmacological activities, including anti-inflammatory, anti-cancer, anti-diabetes, and neuroprotective activities[1][2][3]. Macelignan ((+)-Anwulignan; Anwuligan)?is an orally active lignan isolated from Myristica fragrans. Macelignan possesses many pharmacological activities, including anti-inflammatory, anti-cancer, anti-diabetes, and neuroprotective activities[1][2][3].
Tropanserin
C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist Tropanserin is a serotoninergic active compound, as well as a 5HT3 receptor antagonist. Tropanserin modulates Cardio-respiratory reflex effects of an exogenous serotonin challenge[1].
Harzol
C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].
c0264
1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1]. 1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1].
2,8-dimethyl-2-[(3E,7E)-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]-3,4-dihydro-2H-1-benzopyran-6-ol
1,2,4-BENZENETRIOL
A benzenetriol carrying hydroxy groups at positions 1, 2 and 4. 1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1]. 1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1].
Tocotrienol
D020011 - Protective Agents > D000975 - Antioxidants > D024508 - Tocotrienols D018977 - Micronutrients > D014815 - Vitamins
4-[(2r,3r)-4-(2h-1,3-benzodioxol-5-yl)-2,3-dimethylbutyl]phenol
(1s,8r,9r)-1,9-bis(3,4-dihydroxyphenyl)-6,8-dihydroxy-1h,2h,7h,8h,9h,10h-naphtho[2,1-b]pyran-3-one
(4r,5r,6s,14r)-4,14-bis(3,4-dihydroxyphenyl)-6-[(2r,3r)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-5,8-dihydroxy-3,11-dioxatricyclo[8.4.0.0²,⁷]tetradeca-1(10),2(7),8-trien-12-one
1-[2-({2,6-dihydroxy-4-methoxy-3-[3-(4-methoxyphenyl)propanoyl]phenyl}(2,4,5-trihydroxyphenyl)methyl)-4-hydroxy-6-methoxy-2,3-dihydro-1-benzofuran-5-yl]-3-(4-methoxyphenyl)propan-1-one
8-[6-(acetyloxy)-2,8-dimethyl-3,4-dihydro-1-benzopyran-2-yl]-6-methyl-2-(4-methylpentyl)octanoic acid
1-{3-[1,4-bis(4-hydroxyphenyl)-2,3-dimethylbutyl]-2,4-dihydroxy-6-methoxyphenyl}-3-(4-methoxyphenyl)propan-1-one
4-[4-(4-hydroxyphenyl)-2,3-dimethylbut-1-en-1-yl]phenol
(2z,6e)-9-[6-(acetyloxy)-2,8-dimethyl-3,4-dihydro-1-benzopyran-2-yl]-6-methyl-2-(4-methylpent-3-en-1-yl)nona-2,6-dienoic acid
5-{6,7-dimethyl-2h,5h,6h,7h,8h-naphtho[2,3-d][1,3]dioxol-5-yl}-2h-1,3-benzodioxole
4-[(2s)-5,7-dimethoxy-3,4-dihydro-2h-1-benzopyran-2-yl]phenol
1-{3-[(1r,2r,3s)-1,4-bis(4-hydroxyphenyl)-2,3-dimethylbutyl]-2,4-dihydroxy-6-methoxyphenyl}-3-(4-methoxyphenyl)propan-1-one
4-[3-(6-hydroxy-2h-1,3-benzodioxol-5-yl)propyl]-2,6-dimethylbenzene-1,3-diol
(2r,3s)-5,7-dihydroxy-2-(4-hydroxyphenyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one
[3,4,5-tris(acetyloxy)-6-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}oxan-2-yl]methyl acetate
4-[(2s)-5,7-dimethoxy-3,4-dihydro-2h-1-benzopyran-2-yl]benzene-1,2-diol
(2r,3s)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one
C21H22O11 (450.11620619999997)
5-{7-methoxy-3-methyl-5-[(1e)-prop-1-en-1-yl]-1-benzofuran-2-yl}-2h-1,3-benzodioxole
1-(2,4-dihydroxy-6-methoxyphenyl)-3-(3,4-dimethoxyphenyl)propan-1-one
1-[(2s)-2-[(r)-{2,6-dihydroxy-4-methoxy-3-[3-(4-methoxyphenyl)propanoyl]phenyl}(2,4,5-trihydroxyphenyl)methyl]-4-hydroxy-6-methoxy-2,3-dihydro-1-benzofuran-5-yl]-3-(4-methoxyphenyl)propan-1-one
(3s,4s,5s)-4-hydroxy-5-methyl-3-(9-phenylnonyl)oxolan-2-one
4-[(2s,3s,4r,5s)-5-(4-hydroxy-3-methoxyphenyl)-3,4-dimethyloxolan-2-yl]-2-methoxyphenol
(3s,4r,5s)-3-[19-(2h-1,3-benzodioxol-5-yl)nonadecyl]-4-hydroxy-5-methyloxolan-2-one
1-{3-[(1r,2s,3r)-1,4-bis(4-hydroxyphenyl)-2,3-dimethylbutyl]-2,4,6-trihydroxyphenyl}-3-(4-methoxyphenyl)propan-1-one
(5s)-3-[(7z)-19-(2h-1,3-benzodioxol-5-yl)nonadec-7-en-1-yl]-5-methyl-5h-furan-2-one
4-[3-(6-methoxy-2h-1,3-benzodioxol-5-yl)propyl]-2-methylbenzene-1,3-diol
4-(2h-1,3-benzodioxol-5-yl)-1-(4-hydroxyphenyl)-2,3-dimethylbutan-1-one
4-[4-(2h-1,3-benzodioxol-5-yl)-2,3-dimethylbutyl]phenol
5-hydroxy-7-[(2e,6e,10e)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl]-3h-1-benzofuran-2-one
(3s,4s,5s)-4-hydroxy-5-methyl-3-(11-phenylundecyl)oxolan-2-one
(2e,6e,10e)-6,10-dimethyl-12-(5-methyl-3,6-dioxocyclohexa-1,4-dien-1-yl)-2-(4-methylpent-3-en-1-yl)dodeca-2,6,10-trienoic acid
9-[6-(acetyloxy)-2,8-dimethyl-3,4-dihydro-1-benzopyran-2-yl]-6-methyl-2-(4-methylpent-3-en-1-yl)nona-2,6-dienoic acid
(2z,6e,10e)-12-(4,5-dimethyl-3,6-dioxocyclohexa-1,4-dien-1-yl)-6,10-dimethyl-2-(4-methylpent-3-en-1-yl)dodeca-2,6,10-trienoic acid
(3s,4r,5s)-4-hydroxy-5-methyl-3-(9-phenylnonyl)oxolan-2-one
(3r,4r,5r)-4-hydroxy-5-methyl-3-(17-phenylheptadecyl)oxolan-2-one
(2z,6e)-6-methyl-2-(4-methylpent-3-en-1-yl)-10-oxoundeca-2,6-dienoic acid
(1r,8r,9r)-1,9-bis(3,4-dihydroxyphenyl)-6,8-dihydroxy-1h,2h,7h,8h,9h,10h-naphtho[2,1-b]pyran-3-one
4-hydroxy-5-methyl-3-(17-phenylheptadecyl)oxolan-2-one
4-[3-(6-methoxy-2h-1,3-benzodioxol-5-yl)propyl]benzene-1,3-diol
5-[16-(2h-1,3-benzodioxol-5-yl)hexadecyl]-3-hydroxyoxolan-2-one
2-[3-(2h-1,3-benzodioxol-5-yl)propyl]-3,5-dimethoxyphenol
5-{[2,8-dimethyl-2-(4,8,12-trimethyltridecyl)-3,4-dihydro-1-benzopyran-6-yl]oxy}-2,8-dimethyl-2-(4,8,12-trimethyltridecyl)-3,4-dihydro-1-benzopyran-6-ol
2-methoxy-4-[5-methoxy-3-methyl-7-(prop-1-en-1-yl)-2,3-dihydro-1,4-benzodioxin-2-yl]phenol
(2s)-2-(4-hydroxy-3-methoxyphenyl)-3,4-dihydro-2h-1-benzopyran-7-ol
4-(5,7-dimethoxy-3,4-dihydro-2h-1-benzopyran-2-yl)phenyl acetate
5-hydroxy-7-(3,7,11,15-tetramethylhexadecyl)-3h-1-benzofuran-2-one
2-oxo-7-(4,8,12,16-tetramethylheptadeca-3,7,11,15-tetraen-1-yl)-3h-1-benzofuran-5-yl acetate
(2r)-5-{[(2s)-2,8-dimethyl-2-[(3e,7e)-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]-3,4-dihydro-1-benzopyran-6-yl]oxy}-2,8-dimethyl-2-[(3e,7e)-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]-3,4-dihydro-1-benzopyran-6-ol
methyl 9-(6-hydroxy-2,8-dimethyl-3,4-dihydro-1-benzopyran-2-yl)-6-methyl-2-(4-methylpent-3-en-1-yl)nona-2,6-dienoate
5-[7-methoxy-3-methyl-5-(prop-1-en-1-yl)-1-benzofuran-2-yl]-2h-1,3-benzodioxole
(2z,6e)-9-[(2s)-6-hydroxy-2,8-dimethyl-3,4-dihydro-1-benzopyran-2-yl]-6-methyl-2-(4-methylpent-3-en-1-yl)nona-2,6-dienoic acid
4-[7-(acetyloxy)-2,3-dimethyl-1,2,3,4-tetrahydronaphthalen-1-yl]phenyl acetate
(2e)-1-(2,4-dihydroxyphenyl)-3-(3,4-dimethoxyphenyl)prop-2-en-1-one
4-[(3s,4r)-5-(4-hydroxy-3-methoxyphenyl)-3,4-dimethyloxolan-2-yl]-2-methoxyphenol
4-hydroxy-5-methyl-3-(11-phenylundecyl)oxolan-2-one
5-[4-(2h-1,3-benzodioxol-5-yl)-2,3-dimethylbutyl]-2h-1,3-benzodioxole
6-methyl-2-(4-methylpent-3-en-1-yl)-10-oxoundeca-2,6-dienoic acid
(2s)-2-(6-hydroxy-2h-1,3-benzodioxol-5-yl)-6,8-dimethyl-3,4-dihydro-2h-1-benzopyran-7-ol
1-[5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[3-(4-hydroxyphenyl)prop-2-en-1-yl]-3,4-dihydro-2h-1-benzopyran-8-yl]-3-(4-methoxyphenyl)propan-1-one
2-methoxy-4-[(2s,3r)-5-methoxy-3-methyl-7-[(1e)-prop-1-en-1-yl]-2,3-dihydro-1,4-benzodioxin-2-yl]phenol
(2z,6e)-9-(6-hydroxy-2,8-dimethylchromen-2-yl)-6-methyl-2-(4-methylpent-3-en-1-yl)nona-2,6-dienoic acid
1-{3-[1,4-bis(4-hydroxyphenyl)-2,3-dimethylbutyl]-2,4,6-trihydroxyphenyl}-3-(4-methoxyphenyl)propan-1-one
3-(2h-1,3-benzodioxol-5-yl)-1-{3-[(1s,2r,3s)-1,4-bis(4-hydroxyphenyl)-2,3-dimethylbutyl]-2,4,6-trihydroxyphenyl}propan-1-one
1-{3-[(1r,2s,3r)-1,4-bis(4-hydroxyphenyl)-2,3-dimethylbutyl]-2,4-dihydroxy-6-methoxyphenyl}-3-(4-methoxyphenyl)propan-1-one
3-[19-(2h-1,3-benzodioxol-5-yl)nonadecyl]-4-hydroxy-5-methyloxolan-2-one
3-(4-methoxyphenyl)-1-[(9s)-1,6,7-trihydroxy-9-[(2s,3r)-4-(4-hydroxyphenyl)-3-methylbutan-2-yl]-3-methoxy-9h-xanthen-2-yl]propan-1-one
(2s,3r)-4-(2h-1,3-benzodioxol-5-yl)-1-(4-hydroxy-3-methoxyphenyl)-2,3-dimethylbutan-1-one
4-(2h-1,3-benzodioxol-5-yl)-1-(4-hydroxy-3-methoxyphenyl)-2,3-dimethylbutan-1-one
1-(2,4-dihydroxyphenyl)-3-(4-hydroxy-3-methoxyphenyl)propan-1-one
1-{3-[(1r,2r,3r)-1,4-bis(4-hydroxyphenyl)-2,3-dimethylbutyl]-2,4-dihydroxy-6-methoxyphenyl}-3-(4-methoxyphenyl)propan-1-one
5-[4-(2h-1,3-benzodioxol-5-yl)-1-ethoxy-2,3-dimethylbutyl]-2h-1,3-benzodioxole
1-[(2r,3r)-7-hydroxy-2-(4-hydroxyphenyl)-3-[(2e)-3-(4-hydroxyphenyl)prop-2-en-1-yl]-5-methoxy-3,4-dihydro-2h-1-benzopyran-8-yl]-3-(4-methoxyphenyl)propan-1-one
2,8-dimethyl-2-[(3e,7e)-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]-3,4-dihydro-1-benzopyran-6-yl acetate
(3s,4r,5s)-4-hydroxy-5-methyl-3-(11-phenylundecyl)oxolan-2-one
(2s,3r)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one
C21H22O11 (450.11620619999997)
1-{3-[(1s,2s,3s)-1,4-bis(4-hydroxyphenyl)-2,3-dimethylbutyl]-2,4-dihydroxy-6-methoxyphenyl}-3-(4-methoxyphenyl)propan-1-one
2-(6-hydroxy-2h-1,3-benzodioxol-5-yl)-5,8-dimethyl-3,4-dihydro-2h-1-benzopyran-7-ol
5-[(2r,3r)-7-methoxy-3-methyl-5-[(1e)-prop-1-en-1-yl]-2,3-dihydro-1-benzofuran-2-yl]-2h-1,3-benzodioxole
2-[3-(4-hydroxy-3-methoxyphenyl)propyl]-3,5-dimethoxyphenol
(1r,2s,3r)-1,4-bis(2h-1,3-benzodioxol-5-yl)-2,3-dimethylbutan-1-ol
(2s,3r)-4-(2h-1,3-benzodioxol-5-yl)-1-(4-hydroxyphenyl)-2,3-dimethylbutan-1-one
9-(6-hydroxy-2,7,8-trimethylchromen-2-yl)-6-methyl-2-(4-methylpent-3-en-1-yl)nona-2,6-dienoic acid
2-(6-hydroxy-2h-1,3-benzodioxol-5-yl)-6,8-dimethyl-3,4-dihydro-2h-1-benzopyran-7-ol
4-[(2s)-5,7-dimethoxy-3,4-dihydro-2h-1-benzopyran-2-yl]phenyl acetate
6-[3-(2-hydroxy-4-methoxy-5-methylphenyl)propyl]-2h-1,3-benzodioxol-5-ol
1-{3-[(1s,2r,3s)-1,4-bis(4-hydroxyphenyl)-2,3-dimethylbutyl]-2,4,6-trihydroxyphenyl}-3-(4-methoxyphenyl)propan-1-one
6-[3-(4-hydroxy-2-methoxy-5-methylphenyl)propyl]-2h-1,3-benzodioxol-5-ol
(3r)-5,7-dihydroxy-2-(4-hydroxyphenyl)-3-{[(2s,3r,4r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one
4-[(2s,3s,4s,5r)-5-(4-hydroxy-3-methoxyphenyl)-3,4-dimethyloxolan-2-yl]-2-methoxyphenol
8-(4-hydroxyphenyl)-6,7-dimethyl-5,6,7,8-tetrahydronaphthalen-2-ol
(2z,6e)-9-[(2s)-6-hydroxy-2,7,8-trimethylchromen-2-yl]-6-methyl-2-(4-methylpent-3-en-1-yl)nona-2,6-dienoic acid
(2s)-2-(2h-1,3-benzodioxol-5-yl)-3,4-dihydro-2h-1-benzopyran-7-ol
[(2r,3r,4s,5r,6r)-6-{[(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-3,4,5-tris(acetyloxy)oxan-2-yl]methyl acetate
5-methoxy-2-[3-(6-methoxy-2h-1,3-benzodioxol-5-yl)propyl]phenol
4-[(1s,2s,3r)-7-(acetyloxy)-2,3-dimethyl-1,2,3,4-tetrahydronaphthalen-1-yl]phenyl acetate
4-[3-(6-hydroxy-2h-1,3-benzodioxol-5-yl)propyl]-5-methoxy-2,6-dimethylbenzene-1,3-diol
3-(acetyloxy)-5-methoxy-4-[3-(4-methoxyphenyl)propanoyl]phenyl acetate
1-[7-hydroxy-2-(4-hydroxyphenyl)-3-[(2e)-3-(4-hydroxyphenyl)prop-2-en-1-yl]-5-methoxy-3,4-dihydro-2h-1-benzopyran-8-yl]-3-(4-methoxyphenyl)propan-1-one
4-[(2s,3s,4r,5r)-5-(4-hydroxy-3-methoxyphenyl)-3,4-dimethyloxolan-2-yl]-2-methoxyphenol
1-(2,4-dihydroxyphenyl)-3-(4-hydroxy-3-methoxyphenyl)prop-2-en-1-one
(2s)-2,8-dimethyl-2-[(3e,7e)-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]-3,4-dihydro-1-benzopyran-6-ol
5-hydroxy-7-(3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl)-3h-1-benzofuran-2-one
4-(5,7-dimethoxy-3,4-dihydro-2h-1-benzopyran-2-yl)benzene-1,2-diol
3-(2h-1,3-benzodioxol-5-yl)-1-(2,4-dihydroxy-6-methoxyphenyl)propan-1-one
3-(2h-1,3-benzodioxol-5-yl)-1-{3-[(1r,2s,3r)-1,4-bis(4-hydroxyphenyl)-2,3-dimethylbutyl]-2,4,6-trihydroxyphenyl}propan-1-one
4-[3-(2h-1,3-benzodioxol-5-yl)propyl]benzene-1,3-diol
5-[7-methoxy-3-methyl-5-(prop-1-en-1-yl)-2,3-dihydro-1-benzofuran-2-yl]-2h-1,3-benzodioxole
6,10-dimethyl-12-(5-methyl-3,6-dioxocyclohexa-1,4-dien-1-yl)-2-(4-methylpent-3-en-1-yl)dodeca-2,6,10-trienoic acid
3,5-dimethoxy-2-[3-(4-methoxyphenyl)propanoyl]phenyl acetate
1-{2,4-dihydroxy-3-[(1r)-1-(4-hydroxyphenyl)prop-2-en-1-yl]-6-methoxyphenyl}-3-(4-methoxyphenyl)propan-1-one
3-(cyclohexa-2,4-dien-1-yl)-1-phenylprop-2-en-1-one
1-{2,4-dihydroxy-3-[1-(4-hydroxyphenyl)prop-2-en-1-yl]-6-methoxyphenyl}-3-(4-methoxyphenyl)propan-1-one
12-(4,5-dimethyl-3,6-dioxocyclohexa-1,4-dien-1-yl)-6,10-dimethyl-2-(4-methylpent-3-en-1-yl)dodeca-2,6,10-trienoic acid
(2r,3r,4r)-2-(3,4-dihydroxyphenyl)-4-[(2r,3r)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-3,4-dihydro-2h-1-benzopyran-3,5,7-triol
(6r,7s,8s)-8-(4-hydroxyphenyl)-6,7-dimethyl-5,6,7,8-tetrahydronaphthalen-2-ol
(3r,5r)-5-[16-(2h-1,3-benzodioxol-5-yl)hexadecyl]-3-hydroxyoxolan-2-one
1-{3-[(1s,2s,3r)-1,4-bis(4-hydroxyphenyl)-2,3-dimethylbutyl]-2,4-dihydroxy-6-methoxyphenyl}-3-(4-methoxyphenyl)propan-1-one
1-(2,4-dihydroxy-6-methoxyphenyl)-3-(4-hydroxyphenyl)propan-1-one
3-(4-methoxyphenyl)-1-{1,6,7-trihydroxy-9-[4-(4-hydroxyphenyl)-3-methylbutan-2-yl]-3-methoxy-9h-xanthen-2-yl}propan-1-one
1-(2,4-dihydroxy-6-methoxyphenyl)-3-(4-methoxyphenyl)propan-1-one
(1s)-6',7'-dihydroxy-3,5'-dimethoxy-3',4'-dihydro-2'h-spiro[cyclohexane-1,1'-naphthalene]-2,5-dien-4-one
5-[(2s,3r)-4-(2h-1,3-benzodioxol-5-yl)-2,3-dimethylbutyl]-2h-1,3-benzodioxole
(2z,6e)-9-(6-hydroxy-2,8-dimethyl-3,4-dihydro-1-benzopyran-2-yl)-6-methyl-2-(4-methylpent-3-en-1-yl)nona-2,6-dienoic acid
(3s,4s,5s)-4-hydroxy-5-methyl-3-(17-phenylheptadecyl)oxolan-2-one
(2r)-2-(6-hydroxy-2h-1,3-benzodioxol-5-yl)-7-methoxy-6,8-dimethyl-3,4-dihydro-2h-1-benzopyran-5-ol
3-[19-(2h-1,3-benzodioxol-5-yl)nonadec-7-en-1-yl]-5-methyl-5h-furan-2-one
(2s,3s,3ar)-2-(2h-1,3-benzodioxol-5-yl)-5-methoxy-3-methyl-3a-(prop-2-en-1-yl)-2,3-dihydro-1-benzofuran-6-one
1-(2,4-dihydroxy-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-3-(4-methoxyphenyl)propan-1-one
C22H26O10 (450.15258960000006)