NCBI Taxonomy: 86015
Mycale (ncbi_taxid: 86015)
found 48 associated metabolites at genus taxonomy rank level.
Ancestor: Mycalidae
Child Taxonomies: Mycale syrinx, Mycale antiae, Mycale setosa, Mycale laevis, Mycale lingua, Mycale loveni, Mycale minima, Mycale tridens, Mycale acerata, Mycale cecilia, Mycale citrina, Mycale thielei, Mycale rotalis, Mycale grandis, Mycale alagoana, Mycale arcuiris, Mycale arenaria, Mycale titubans, Mycale parishii, Mycale angulosa, Mycale laxissima, Mycale sanguinea, Mycale mirabilis, Mycale adhaerens, Mycale macilenta, Mycale fibrexilis, Mycale contarenii, Mycale escarlatei, Mycale hentscheli, Mycale sulevoidea, Mycale subclavata, Mycale phyllophila, Mycale fistulifera, Mycale denticulata, Mycale flagellifera, unclassified Mycale, Mycale carmigropila, Mycale philippensis, Mycale marshallhalli, Mycale microsigmatosa, Mycale magnirhaphidifera, Mycale cf. alagoana GLH-2013, Mycale aff. americana GLH-2013, Mycale aff. cecilia red-morphotype
Stearic acid
Stearic acid, also known as stearate or N-octadecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, stearic acid is considered to be a fatty acid lipid molecule. Stearic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Stearic acid can be synthesized from octadecane. Stearic acid is also a parent compound for other transformation products, including but not limited to, 3-oxooctadecanoic acid, (9S,10S)-10-hydroxy-9-(phosphonooxy)octadecanoic acid, and 16-methyloctadecanoic acid. Stearic acid can be found in a number of food items such as green bell pepper, common oregano, ucuhuba, and babassu palm, which makes stearic acid a potential biomarker for the consumption of these food products. Stearic acid can be found primarily in most biofluids, including urine, feces, cerebrospinal fluid (CSF), and sweat, as well as throughout most human tissues. Stearic acid exists in all living species, ranging from bacteria to humans. In humans, stearic acid is involved in the plasmalogen synthesis. Stearic acid is also involved in mitochondrial beta-oxidation of long chain saturated fatty acids, which is a metabolic disorder. Moreover, stearic acid is found to be associated with schizophrenia. Stearic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Stearic acid ( STEER-ik, stee-ARR-ik) is a saturated fatty acid with an 18-carbon chain and has the IUPAC name octadecanoic acid. It is a waxy solid and its chemical formula is C17H35CO2H. Its name comes from the Greek word στέαρ "stéar", which means tallow. The salts and esters of stearic acid are called stearates. As its ester, stearic acid is one of the most common saturated fatty acids found in nature following palmitic acid. The triglyceride derived from three molecules of stearic acid is called stearin . Stearic acid, also known as octadecanoic acid or C18:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Stearic acid (its ester is called stearate) is a saturated fatty acid that has 18 carbons and is therefore a very hydrophobic molecule that is practically insoluble in water. It exists as a waxy solid. In terms of its biosynthesis, stearic acid is produced from carbohydrates via the fatty acid synthesis machinery wherein acetyl-CoA contributes two-carbon building blocks, up to the 16-carbon palmitate, via the enzyme complex fatty acid synthase (FA synthase), at which point a fatty acid elongase is needed to further lengthen it. After synthesis, there are a variety of reactions it may undergo, including desaturation to oleate via stearoyl-CoA desaturase (PMID: 16477801). Stearic acid is found in all living organisms ranging from bacteria to plants to animals. It is one of the useful types of saturated fatty acids that comes from many animal and vegetable fats and oils. For example, it is a component of cocoa butter and shea butter. It is used as a food additive, in cleaning and personal care products, and in lubricants. Its name comes from the Greek word stear, which means ‚Äòtallow‚Äô or ‚Äòhard fat‚Äô. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils.
Batyl alcohol
C26170 - Protective Agent > C797 - Radioprotective Agent 3-(Octadecyloxy)propane-1,2-diol is an endogenous metabolite.
24-Methylenecholesterol
24-Methylenecholesterol, also known as chalinasterol or ostreasterol, belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, 24-methylenecholesterol is considered to be a sterol lipid molecule. 24-Methylenecholesterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. 24-Methylenecholesterol is involved in the biosynthesis of steroids. 24-Methylenecholesterol is converted from 5-dehydroepisterol by 7-dehydrocholesterol reductase (EC 1.3.1.21). 24-Methylenecholesterol is converted into campesterol by delta24-sterol reductase (EC 1.3.1.72). 24-methylenecholesterol is a 3beta-sterol having the structure of cholesterol with a methylene group at C-24. It has a role as a mouse metabolite. It is a 3beta-sterol and a 3beta-hydroxy-Delta(5)-steroid. It is functionally related to a cholesterol. 24-Methylenecholesterol is a natural product found in Echinometra lucunter, Ulva fasciata, and other organisms with data available. A 3beta-sterol having the structure of cholesterol with a methylene group at C-24. Constituent of clams and oysters 24-Methylenecholesterol (Ostreasterol), a natural marine sterol, stimulates cholesterol acyltransferase in human macrophages. 24-Methylenecholesterol possess anti-aging effects in yeast. 24-methylenecholesterol enhances honey bee longevity and improves nurse bee physiology[1][2][3].
Pateamine
C31H45N3O4S (555.3130610000001)
A marine macrodiolide that is isolated from the sponge Mycale hentscheli and exhibits anticancer and antiviral properties
Heneicosanoic acid
Henicosanoic acid, also known as N-heneicosanoate or 21:0,is a long-chain fatty acid that is henicosane in which one of the methyl groups has been oxidised to give the corresponding carboxylic acid. It is a straight-chain saturated fatty acid and a long-chain fatty acid. It is a conjugate acid of a henicosanoate. Heneicosanoic acid belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Heneicosanoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Heneicosanoic acid is a potentially toxic compound. Isolated from olive oil (Olea europaea) Heneicosanoic acid is a long-chain saturated fatty acid which is found in plants and animals[1][2][3]. Heneicosanoic acid is a long-chain saturated fatty acid which is found in plants and animals[1][2][3].
stearic acid
Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils.
trans-Vaccenic acid
The trans- isomer of vaccenic acid. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level.
Octadecanoic acid
A C18 straight-chain saturated fatty acid component of many animal and vegetable lipids. As well as in the diet, it is used in hardening soaps, softening plastics and in making cosmetics, candles and plastics.
143-25-9
trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level.
Henicosanoic acid
A long-chain fatty acid that is henicosane in which one of the methyl groups has been oxidised to give the corresponding carboxylic acid.
n-[(1e,3r,4r,5r,9s,10s)-4-hydroxy-11-[(10s,11r,13e,16s,20s,21r,22s,24e)-16-hydroxy-10,22-dimethoxy-11,21-dimethyl-12,18-dioxo-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.1²,⁵.1⁶,⁹]hentriaconta-1(28),2(31),4,6(30),8,13,24,26(29)-octaen-20-yl]-10-methoxy-3,5,9-trimethyl-6-oxoundec-1-en-1-yl]-n-methylformamide
(1e,3r,4r,5s,6r,9s,10s)-4-(acetyloxy)-11-[(10s,11r,13e,16s,20s,21r,22s,24e)-16-hydroxy-10,22-dimethoxy-11,21-dimethyl-12,18-dioxo-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.1²,⁵.1⁶,⁹]hentriaconta-1(28),2(31),4,6(30),8,13,24,26(29)-octaen-20-yl]-10-methoxy-3,5,9-trimethyl-1-(n-methylformamido)undec-1-en-6-yl (2r)-3-hydroxy-2-methoxypropanoate
C51H72N4O17 (1012.4892222000001)
(2s,3r,4s,5r,6r)-2-{[(2r,3r,4r,5r,6r)-6-{[(1r,3r,3ar,5as,7s,9as,9br,11ar)-3-hydroxy-1-[(2r,5e)-7-hydroxy-5-isopropylhept-5-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4-{[(2s,3s,4r,5r)-4,5-dihydroxy-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(6z,9z)-20-(5-formyl-1h-pyrrol-2-yl)icosa-6,9-dienenitrile
methyl (2s)-2-[(3s,6s)-6-{2-[(1s,2r,4ar,8ar)-2-hydroxy-2,5,5,8a-tetramethyl-hexahydro-1h-naphthalen-1-yl]ethyl}-6-methyl-1,2-dioxan-3-yl]propanoate
(1e,3r,4r,5r,9s,10s)-11-[(10s,11r,13e,16s,20s,21r,22s,24z)-16-hydroxy-10,22-dimethoxy-11,21-dimethyl-12,18-dioxo-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.1²,⁵.1⁶,⁹]hentriaconta-1(28),2(31),4,6(30),8,13,24,26(29)-octaen-20-yl]-10-methoxy-3,5,9-trimethyl-1-(n-methylformamido)-6-oxoundec-1-en-4-yl acetate
n-[(2s,4r,6r,8r,10r,12r,14r,16r,18s,26r,28z)-30-[(2s)-2-benzyl-3-methoxy-5-oxo-2h-pyrrol-1-yl]-2,4,6,8,10,12,14,16,18-nonahydroxy-26,28-dimethyl-30-oxotriacont-28-en-1-yl]carboximidic acid
(3r)-7-bromo-6,8-dihydroxy-3-propyl-3,4-dihydro-2-benzopyran-1-one
C12H13BrO4 (299.99971580000005)
(1e,3r,4r,5s,6r,9s,10r)-4-(acetyloxy)-11-[(10s,11r,13e,16s,20s,21r,22s,24e)-16-hydroxy-10,22-dimethoxy-11,21-dimethyl-12,18-dioxo-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.1²,⁵.1⁶,⁹]hentriaconta-1(28),2(31),4,6(30),8,13,24,26(29)-octaen-20-yl]-10-methoxy-3,5,9-trimethyl-1-(n-methylformamido)undec-1-en-6-yl (2r)-2,3-dimethoxypropanoate
n-[40-(2-benzyl-3-methoxy-5-oxo-2h-pyrrol-1-yl)-2,4,6,8,10,12,14,16,18,20,22,24,26,28-tetradecahydroxy-36,38-dimethyl-40-oxotetracont-38-en-1-yl]carboximidic acid
2-({4-[(4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-5-hydroxy-6-{[3-hydroxy-1-(1-hydroxy-6-methylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-2-(hydroxymethyl)oxan-3-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol
(1s,4s,10s,12r)-9-[(1e)-but-1-en-1-yl]-10-methyl-5,7-diazatricyclo[6.3.1.0⁴,¹²]dodec-8-en-6-imine
5-(tricosa-14,17,20-trien-1-yl)-1h-pyrrole-2-carbaldehyde
(2s,3r,4s,5r,6r)-2-{[(2r,3r,4r,5r,6r)-6-{[(1r,3s,3as,3br,7s,9ar,9bs,11ar)-3-hydroxy-1-[(2s,3e)-1-hydroxy-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4-{[(2s,3s,4r,5r)-3,5-dihydroxy-4-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
7-bromo-6,8-dihydroxy-3-propyl-3,4-dihydro-2-benzopyran-1-one
C12H13BrO4 (299.99971580000005)
14-bromo-9-ethenyl-4,9,11,15,15-pentamethyl-5,10-dioxatricyclo[9.4.0.0⁴,⁶]pentadecane
4-(acetyloxy)-11-{16-hydroxy-10,22-dimethoxy-11,21-dimethyl-12,18-dioxo-3,7,19,27-tetraoxa-29,30,31-triazatetracyclo[24.2.1.1²,⁵.1⁶,⁹]hentriaconta-1(28),2(31),4,6(30),8,13,24,26(29)-octaen-20-yl}-10-methoxy-3,5,9-trimethyl-1-(n-methylformamido)undec-1-en-6-yl 2,3-dimethoxypropanoate
[(2r,3r,4r,5r,6r)-6-{[(1r,3as,3br,6r,7s,9ar,9bs,11ar)-6-hydroxy-1-[(2r)-1-hydroxy-6-methylheptan-2-yl]-9a,11a-dimethyl-3-oxo-1h,2h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4-{[(2s,3s,4r,5r)-3,5-dihydroxy-4-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]methyl acetate
n-[6-(2,3-dihydroxypropyl)-8-methoxy-7,7-dimethyl-hexahydropyrano[3,2-d][1,3]dioxin-4-yl]-2-hydroxy-2-(2-methoxy-5,6-dimethyl-4-methylideneoxan-2-yl)ethanimidic acid
C24H41NO10 (503.2730326000001)
1-[(1s,4s,10s,12r)-9-[(1e)-but-1-en-1-yl]-6-imino-10-methyl-5,7-diazatricyclo[6.3.1.0⁴,¹²]dodec-8-en-5-yl]ethanone
(18z)-24-(5-formyl-1h-pyrrol-2-yl)tetracos-18-enenitrile
C29H48N2O (440.37664379999995)