Atrazine (BioDeep_00000017744)

 

Secondary id: BioDeep_00000001139

human metabolite


代谢物信息卡片


6-Chloro-N-ethyl-n-(1-methylethyl)-1,3,5-triazine-2,4-diamine

化学式: C8H14ClN5 (215.0937674)
中文名称: 阿特拉津标准溶液, 莠去津
谱图信息: 最多检出来源 Homo sapiens(blood) 0.44%

分子结构信息

SMILES: CCN=c1nc(Cl)[nH]c(=NC(C)C)[nH]1
InChI: InChI=1S/C8H14ClN5/c1-4-10-7-12-6(9)13-8(14-7)11-5(2)3/h5H,4H2,1-3H3,(H2,10,11,12,13,14)

描述信息

Atrazine is an organic compound consisting of an s-triazine-ring is a widely used herbicide. Its use is controversial due to widespread contamination in drinking water and its associations with birth defects and menstrual problems when consumed by humans at concentrations below government standards. Although it has been banned in the European Union,[2] it is still one of the most widely used herbicides in the world (Wikipedia). Atrazine is a suspected teratogen, causing demasculinization in male northern leopard frog even at low concentrations, and an estrogen disruptor. A 2010 study found that atrazine rendered 75 percent of male frogs sterile and turned one in 10 into females. A 2002 study found that exposure to atrazine caused male tadpoles to turn into hermaphrodites - frogs with both male and female sexual characteristics. But another study, requested by EPA and funded by Syngenta, was unable to reproduce these results. Atrazine was banned in the European Union (EU) in 2004 because of its persistent groundwater contamination. In the United States, however, atrazine is one of the most widely used herbicides, with 76 million pounds of it applied each year, in spite of the restriction that used to be imposed. Its endocrine disruptor effects, possible carcinogenic effect, and epidemiological connection to low sperm levels in men has led several researchers to call for banning it in the US.Rates of biodegradation are affected by atrazines low solubility, thus surfactants may increase the degradation rate. Though the two alkyl moieties readily support growth of certain microorganisms, the atrazine ring is a poor energy source due to the oxidized state of ring carbon. In fact, the most common pathway for atrazine degradation involves the intermediate, cyanuric acid, in which carbon is fully oxidized, thus the ring is primarily a nitrogen source for aerobic microorganisms. Atrazine may be catabolized as a carbon and nitrogen source in reducing environments, and some aerobic atrazine degraders have been shown to use the compound for growth under anoxia in the presence of nitrate as an electron acceptor, a process referred to as a denitrification. When atrazine is used as a nitrogen source for bacterial growth, degradation may be regulated by the presence of alternative sources of nitrogen. In pure cultures of atrazine-degrading bacteria, as well as active soil communitites, atrazine ring nitrogen, but not carbon are assimilated into microbial biomass. Low concentrations of glucose can decrease the bioavailability, whereas higher concentrations promote the catabolism of atrazine. Tyrone Hayes, Department of Integrative Biology, University of California, notes that all of the studies that failed to conclude that atrazine caused hermaphroditism were plagued by poor experimental controls and were funded by Syngenta, one of the companies that produce the chemical. The U.S. Environmental Protection Agency (EPA) and its independent Scientific Advisory Panel (SAP) examined all available studies on this topic including Hayes work and concluded that there are currently insufficient data to determine if atrazine affects amphibian development. Hayes, formerly part of the SAP panel, resigned in 2000 to continue studies independently. The EPA and its SAP made recommendations concerning proper study design needed for further investigation into this issue. As required by the EPA, Syngenta conducted two experiments under Good Laboratory Practices (GLP) and inspection by the EPA and German regulatory authorities. The paper concluded These studies demonstrate that long-term exposure of larval X. laevis to atrazine at concentrations ranging from 0.01 to 100 microg/l does not affect growth, larval development, or sexual differentiation. Another independent study in 2008 determined that the failure of recent studies to find that atrazine feminizes X. laevis calls into question the herbicides role in that decline. A report written in Environmental Scien...
D010575 - Pesticides > D006540 - Herbicides
D016573 - Agrochemicals

同义名列表

94 个代谢物同义名

6-Chloro-N-ethyl-n-(1-methylethyl)-1,3,5-triazine-2,4-diamine; 6-chloro-N2-ethyl-N4-(propan-2-yl)-1,3,5-triazine-2,4-diamine; 6-Chloro-N-ethyl-n-(propan-2-yl)-1,3,5-triazine-2,4-diamine; 2-Chloro-4-(ethylamino)-6-(isopropylamino)-1,3,5-triazine; 1-Chloro-3-(ethylamino)-5-(isopropylamino)-2,4,6-triazine; 6-Chloro-N-ethyl-n-isopropyl-1,3,5-triazine-2,4-diamine; 2-Chloro-4-isopropylamino-6-ethylamino -1,3,5-triazine; 2-Chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine; 2-Chloro-4-(ethylamino)-6-(isopropylamino)-S-triazine; 6-Chloro-4-(ethylamino)-2-(isopropylamino)-S-triazine; 2-CHLORO-4-isopropylamino-6-ethylamino-1,3,5-triazine; 1-Chloro-3-(ethylamino)-5-(isopropylamino)-S-triazine; 2-Chloro-4-(2-propylamino)-6-(ethylamino)-S-triazine; 2-Aethylamino-4-chlor-6-isopropylamino-1,3,5-triazin; 2-Ethylamino-4-isopropylamino-6-chloro-S-triazine; 2-Chloro-4-ethylamino-6-isopropylamino-S-triazine; 2-Chloro-4-ethylamineisopropylamine-S-triazine; Triazine a 1294; Farmco atrazine; Aatrex nine-O; Atraflow plus; Azinotox 500; Oleogesaprim; Atrazine 80W; Actinite PK; Hungazin PK; Atrazine 4l; Gesaprim 50; Cekuzina-T; Aktinit PK; Aktikon PK; Aatrex 80W; Aatrex 4LC; Herbatoxol; Primatol a; Crisatrina; Griffex 4l; Atratol a; Chromozin; Crisazine; Aktinit a; Crisamina; Radazin T; Gesamprim; Vectal SC; Aatrex 4l; Farmozine; Gesoprim; Primatol; Atazinax; atrazine; Atrasine; Strazine; Hungazin; Fenatrol; Primoleo; Atraflow; Weedex a; Gesaprim; Fenamine; Mebazine; Radizine; Atranex; Argezin; Radizin; Atrazin; Akticon; Atratol; Radazin; Pitezin; Fenamin; Griffex; Atrataf; Zeazine; Primaze; Aktikon; Laddock; Maizina; Zeaphos; Zeopos; Fogard; Vectal; Aatram; Zeapos; Attrex; Candex; Inakor; Cyazin; Aatrex; Zeazin; Atred; Atrex; Wonuk; ATZ



数据库引用编号

16 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Jéssyca Ferreira de Medeiros, Cassiana Carolina Montagner. Multiple barriers as an efficient treatment for removing pesticides aiming direct potable reuse: A pilot scale study. Environmental pollution (Barking, Essex : 1987). 2024 Jun; 350(?):124009. doi: 10.1016/j.envpol.2024.124009. [PMID: 38670423]
  • P Chris Wilson, Francisca O Hinz, Ilana Farrell. Impacts of Fulvic Acid on the Toxicity of the Herbicide Atrazine to Lemna minor. Bulletin of environmental contamination and toxicology. 2024 May; 112(6):77. doi: 10.1007/s00128-024-03902-0. [PMID: 38758236]
  • Jinmiao Wang, Yanwen Liu, Cheng Yu, Xinmeng Wang, Juan Wang. Swellable microneedle-coupled light-addressable photoelectrochemical sensor for in-situ tracking of multiple pesticides pollution in vivo. Journal of hazardous materials. 2024 May; 470(?):134216. doi: 10.1016/j.jhazmat.2024.134216. [PMID: 38581877]
  • Yuying Wang, Yue Wang, Yang Xue, Xiao Li, Yue Geng, Jiahui Zhao, Lei Ge, Huimin He, Feng Li, Xiaojuan Liu. Portable and Flexible Hydrogel Sensor for On-Site Atrazine Assay on Agricultural Products. Analytical chemistry. 2024 May; 96(19):7772-7779. doi: 10.1021/acs.analchem.4c01579. [PMID: 38698542]
  • Yixuan Bao, Shiyu Zhao, Ningning Wu, Ye Yuan, Luyao Ruan, Jian He. Degradation of Atrazine by an Anaerobic Microbial Consortium Enriched from Soil of an Herbicide-Manufacturing Plant. Current microbiology. 2024 Mar; 81(5):117. doi: 10.1007/s00284-024-03624-w. [PMID: 38492090]
  • Xuyan Zhao, Huan Luo, Sai Yao, Ti Yang, Fangda Fu, Ming Yue, Hongfeng Ruan. Atrazine exposure promotes cardiomyocyte pyroptosis to exacerbate cardiotoxicity by activating NF-κB pathway. The Science of the total environment. 2024 Mar; 915(?):170028. doi: 10.1016/j.scitotenv.2024.170028. [PMID: 38224882]
  • Jiatai Guo, Yuhang Du, Liying Yang, Yili Luo, Guohua Zhong, Hai-Ming Zhao, Jie Liu. Effects of microplastics on the environmental behaviors of the herbicide atrazine in soil: Dissipation, adsorption, and bioconcentration. Journal of hazardous materials. 2024 03; 465(?):133085. doi: 10.1016/j.jhazmat.2023.133085. [PMID: 38070269]
  • Timo Weintraut, Sven Heiles, Dennis Gerbig, Anja Henss, Johannes Junck, Rolf-Alexander Düring, Marcus Rohnke. Lipid-related ion suppression on the herbicide atrazine in earthworm samples in ToF-SIMS and matrix-assisted laser desorption ionization mass spectrometry imaging and the role of gas-phase basicity. Biointerphases. 2024 Mar; 19(2):. doi: 10.1116/6.0003437. [PMID: 38602440]
  • Kai An, Xiaoxiao Feng, Jiaxing Ji, Xinyue Wang, Minhao Pang, Tiantian Liu, Sijia Wang, Huiru Shi, Jingao Dong, Yingchao Liu. Synergistic mechanism and environmental behavior of tank-mix adjuvants to topramezone and atrazine. Environmental science and pollution research international. 2024 Mar; 31(13):20246-20257. doi: 10.1007/s11356-024-32389-9. [PMID: 38372921]
  • Tiancong Gao, Haixia Tian, Leilei Xiang, Ziqi Wang, Yuhao Fu, Jing Shi, Xin Wen, Xin Jiang, Wenxiang He, Syed A Hashsham, Fang Wang. Characteristics of bacterial community and extracellular enzymes in response to atrazine application in black soil. Environmental pollution (Barking, Essex : 1987). 2024 Feb; 343(?):123286. doi: 10.1016/j.envpol.2023.123286. [PMID: 38171425]
  • Jill A Jenkins, Rassa O Draugelis-Dale, Nina M Hoffpauir, Brooke A Baudoin, Caroline Matkin, Lucas Driver, Shawn Hodges, Bonnie L Brown. Flow cytometric assessments of metabolic activity in bacterial assemblages provide insight into ecosystem condition along the Buffalo National River, Arkansas. The Science of the total environment. 2024 Feb; ?(?):170462. doi: 10.1016/j.scitotenv.2024.170462. [PMID: 38311076]
  • Hebatallah Husseini Atteia. A combination of silymarin and garlic extract enhances thyroid hormone activation and body metabolism in orally intoxicated male rats with atrazine: Impact on hepatic iodothyronine deiodinase type 1. Pesticide biochemistry and physiology. 2024 Feb; 199(?):105801. doi: 10.1016/j.pestbp.2024.105801. [PMID: 38458692]
  • Ignaz J Buerge, Roy Kasteel, Thomas Poiger. Leaching of herbicides and their metabolites in lysimeters filled with soils from railway tracks. The Science of the total environment. 2024 Jan; 909(?):168396. doi: 10.1016/j.scitotenv.2023.168396. [PMID: 37963522]
  • Congwei Luo, Ruidi Xu, Daoji Wu, Xinyu Zhang, Xiaoxiang Cheng, Hongxiang Wang, Xinkun Yin, Jingtao Xu, Qiao Ma, Feiyong Chen. Sulfate radical-based advanced oxidation process effects on tire wear particles aging and ecotoxicity. The Science of the total environment. 2024 Jan; 906(?):167497. doi: 10.1016/j.scitotenv.2023.167497. [PMID: 37778564]
  • Honghao Qian, Yaming Zhao, Yiming Wang, Haotang Zhao, Jianwei Cui, Ziyu Wang, Hui Ye, Xiaoqi Fang, Zhili Ge, Yuezhu Zhang, Lin Ye. ATR induces hepatic lipid metabolism disorder in rats by activating IRE1α/XBP1 signaling pathway. Toxicology. 2024 01; 501(?):153696. doi: 10.1016/j.tox.2023.153696. [PMID: 38056589]
  • Zachary Ngow, Trevor K James, Ben Harvey, Christopher E Buddenhagen. A first survey for herbicide resistant weeds across major maize growing areas in the North Island of New Zealand. PloS one. 2024; 19(3):e0299539. doi: 10.1371/journal.pone.0299539. [PMID: 38451981]
  • Xin Wang, Li Wang, Yongqiang You, Dongguang Yang, Yuqing Cao, Yujiao Wang, Fang Ma. Differential interference of copper with endophytic bacterial inoculation: Atrazine decontamination in Acorus tatarinowii and culture solution. Environmental pollution (Barking, Essex : 1987). 2023 Nov; 337(?):122523. doi: 10.1016/j.envpol.2023.122523. [PMID: 37683758]
  • Junli Cao, Tao Pei, Yonghui Wang, Shu Qin, Yanli Qi, Pengcheng Ren, Jindong Li. Terminal Residue and Dietary Risk Assessment of Atrazine and Isoxaflutole in Corn Using High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Molecules (Basel, Switzerland). 2023 Oct; 28(20):. doi: 10.3390/molecules28207225. [PMID: 37894703]
  • Saurabh Shukla, Reena C Jhamtani, Rakhi Agarwal. Biochemical and gene expression alterations due to individual exposure of atrazine, dichlorvos, and imidacloprid and their combination in zebrafish. Environmental science and pollution research international. 2023 Oct; ?(?):. doi: 10.1007/s11356-023-30160-0. [PMID: 37821735]
  • Maia R Lescano, Joana Macagno, Claudio L A Berli. Model-Based Analysis of Lactuca sativa Root Growth under the Action of Herbicides in Milli-Channel Arrays with In Situ Imaging. Journal of agricultural and food chemistry. 2023 Sep; 71(36):13255-13262. doi: 10.1021/acs.jafc.3c04105. [PMID: 37651710]
  • Amina Benghaffour, Abdelkrim Azzouz, David Dewez. Ecotoxicity of Diazinon and Atrazine Mixtures after Ozonation Catalyzed by Na+ and Fe2+ Exchanged Montmorillonites on Lemna minor. Molecules (Basel, Switzerland). 2023 Aug; 28(16):. doi: 10.3390/molecules28166108. [PMID: 37630359]
  • Li Ya Ma, Yingfei Lu, Jinjin Cheng, Qun Wan, Jing Ge, Ya Wang, Yong Li, Fayun Feng, Mei Li, Xiangyang Yu. Functional characterization of rice (Oryza sativa) thioredoxins for detoxification and degradation of atrazine. Gene. 2023 Aug; 877(?):147540. doi: 10.1016/j.gene.2023.147540. [PMID: 37279861]
  • Huihui Cao, Shi Yao, Li Xu, Yongrong Bian, Xin Jiang, Irmina Ćwieląg-Piasecka, Yang Song. Aging of biodegradable-mulch-derived microplastics reduces their sorption capacity of atrazine. Environmental pollution (Barking, Essex : 1987). 2023 Aug; 331(Pt 2):121877. doi: 10.1016/j.envpol.2023.121877. [PMID: 37230173]
  • Wenrui Jia, Huazhe Wang, Qinglian Wu, Lushi Sun, Qishi Si, Qi Zhao, Yaohua Wu, Nanqi Ren, Wanqian Guo. Insight into Chinese medicine residue biochar combined with ultrasound for persulfate activation in atrazine degradation: Acanthopanax senticosus precursors, synergistic effects and toxicity assessment. The Science of the total environment. 2023 Jul; 880(?):163054. doi: 10.1016/j.scitotenv.2023.163054. [PMID: 36963691]
  • Yilin Li, Ruiyao Guo, Xiaoge Liang, Bo Yao, Shuwen Yan, Yanan Guo, Yonghui Han, Jiansheng Cui. Pollution characteristics, ecological and health risks of herbicides in a drinking water source and its inflowing rivers in North China. Environmental pollution (Barking, Essex : 1987). 2023 Jun; 334(?):122130. doi: 10.1016/j.envpol.2023.122130. [PMID: 37394054]
  • Amina Antonacci, Valeria Frisulli, Lucas Bragança Carvalho, Leonardo Fernandes Fraceto, Bruno Miranda, Luca De Stefano, Udo Johanningmeier, Maria Teresa Giardi, Viviana Scognamiglio. An All-Green Photo-Electrochemical Biosensor Using Microalgae Immobilized on Eco-Designed Lignin-Based Screen-Printed Electrodes to Detect Sustainable Nanoherbicides. International journal of molecular sciences. 2023 Jun; 24(12):. doi: 10.3390/ijms241210088. [PMID: 37373233]
  • Behnam Ghorbani Nejad, Nader Rahimi Kakavandi, Soheila Mirzaei, Nima Rastegar Pouyani, Ahmad Habibian Sezavar. Exposure to atrazine by drinking water and the increased risk of neonatal complications in consequence: a meta-analysis. International journal of environmental health research. 2023 Jun; ?(?):1-10. doi: 10.1080/09603123.2023.2219980. [PMID: 37266965]
  • Tiancong Gao, Haixia Tian, Ziqi Wang, Jing Shi, Rui Yang, Fang Wang, Leilei Xiang, Yunchao Dai, Mallavarapu Megharaj, Wenxiang He. Effects of atrazine on microbial metabolic limitations in black soils: Evidence from enzyme stoichiometry. Chemosphere. 2023 May; ?(?):139045. doi: 10.1016/j.chemosphere.2023.139045. [PMID: 37244552]
  • Yanmei Liu, Menghao Li, Jingjing Wu, Wei Liu, Yuanfu Li, Feng Zhao, Huihua Tan. Characterization and novel pathway of atrazine catabolism by Agrobacterium rhizogenes AT13 and its potential for environmental bioremediation. Chemosphere. 2023 Apr; 319(?):137980. doi: 10.1016/j.chemosphere.2023.137980. [PMID: 36716941]
  • Kang Wang, Minqi Cai, Jie Sun, Heng Chen, Zheguang Lin, Zhi Wang, Qingsheng Niu, Ting Ji. Atrazine exposure can dysregulate the immune system and increase the susceptibility against pathogens in honeybees in a dose-dependent manner. Journal of hazardous materials. 2023 Mar; 452(?):131179. doi: 10.1016/j.jhazmat.2023.131179. [PMID: 36948121]
  • Zhao Jiang, Qi Shao, Yuxin Chu, Ning An, Bo Cao, Zheyi Ren, Jin Li, Jianhua Qu, Maofeng Dong, Ying Zhang. Mitigation of atrazine-induced oxidative stress on soybean seedlings after co-inoculation with atrazine-degrading bacterium Arthrobacter sp. DNS10 and inorganic phosphorus-solubilizing bacterium Enterobacter sp. P1. Environmental science and pollution research international. 2023 Mar; 30(11):30048-30061. doi: 10.1007/s11356-022-24070-w. [PMID: 36418831]
  • Duo Jiang, Yu Li, Jianmin Wang, Xinyu Lv, Zhao Jiang, Bo Cao, Jianhua Qu, Shouyi Ma, Ying Zhang. Exogenous application of Bradyrhizobium japonicum AC20 enhances soybean tolerance to atrazine via regulating rhizosphere soil microbial community and amino acid, carbohydrate metabolism related genes expression. Plant physiology and biochemistry : PPB. 2023 Mar; 196(?):472-483. doi: 10.1016/j.plaphy.2023.02.007. [PMID: 36764263]
  • Folarin Owagboriaye, Oladunni Adekunle, Rasheed Oladunjoye, Mistura Adeleke, Sulaimon Aina, Adedamola Adenekan, Pamilerin Bakare, Oyebamiji Fafioye, Gabriel Dedeke, Olusegun Lawal. Implications of atrazine concentrations in drinking water from Ijebu-North, Southwest Nigeria on the hypothalamic-pituitary-adrenal axis. Drug and chemical toxicology. 2023 Feb; ?(?):1-9. doi: 10.1080/01480545.2023.2180025. [PMID: 36847489]
  • Mohammad Arar, Rani Bakkour, Martin Elsner, Anat Bernstein. Microbial hydrolysis of atrazine in contaminated groundwater. Chemosphere. 2023 Feb; ?(?):138226. doi: 10.1016/j.chemosphere.2023.138226. [PMID: 36828114]
  • Shi-Yong Zhu, Jun-Ze Jiang, Jia Lin, Lin Liu, Jian-Ying Guo, Jin-Long Li. Lycopene ameliorates atrazine-induced spatial learning and memory impairments by inhibiting ferroptosis in the hippocampus of mice. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2023 Feb; 174(?):113655. doi: 10.1016/j.fct.2023.113655. [PMID: 36791905]
  • Zhao Jiang, Qi Shao, Yu Li, Bo Cao, Jin Li, Zheyi Ren, Jianhua Qu, Ying Zhang. Noval bio-organic fertilizer containing Arthrobacter sp. DNS10 alleviates atrazine-induced growth inhibition on soybean by improving atrazine removal and nitrogen accumulation. Chemosphere. 2023 Feb; 313(?):137575. doi: 10.1016/j.chemosphere.2022.137575. [PMID: 36563729]
  • Mònica Escolà Casas, Miriam Guivernau, Marc Viñas, Belén Fernández, Rafaela Cáceres, Carme Biel, Víctor Matamoros. Use of wood and cork in biofilters for the simultaneous removal of nitrates and pesticides from groundwater. Chemosphere. 2023 Feb; 313(?):137502. doi: 10.1016/j.chemosphere.2022.137502. [PMID: 36495981]
  • Dana B Loureiro, Luciana D Lario, María S Herrero, Lucas M Salvatierra, Luís A B Novo, Leonardo M Pérez. Potential of Salvinia biloba Raddi for removing atrazine and carbendazim from aquatic environments. Environmental science and pollution research international. 2023 Feb; 30(8):22089-22099. doi: 10.1007/s11356-022-23725-y. [PMID: 36282385]
  • Jeong-In Hwang, P Chris Wilson. Absorption, translocation, and metabolism of atrazine, carbamazepine, and sulfamethoxazole by the macrophyte Orange King Humbert canna lily (Canna × generalis L.H. Bailey (pro sp.) [glauca × indica]). Environmental science and pollution research international. 2023 Jan; ?(?):. doi: 10.1007/s11356-023-25400-2. [PMID: 36719575]
  • Faming Zhang, Shixian Sun, Yuhong Rong, Lili Mao, Shuchun Yang, Ling Qian, Rongbiao Li, Yi Zheng. Enhanced phytoremediation of atrazine-contaminated soil by vetiver (Chrysopogon zizanioides L.) and associated bacteria. Environmental science and pollution research international. 2023 Jan; ?(?):. doi: 10.1007/s11356-023-25395-w. [PMID: 36690855]
  • Xin Wang, Weiming Wang, Li Wang, Gen Wang, Yongqiang You, Fang Ma. Process analysis of asymmetric interaction between copper and atrazine in a system of macrophytes. The Science of the total environment. 2023 Jan; 857(Pt 3):159652. doi: 10.1016/j.scitotenv.2022.159652. [PMID: 36280074]
  • Kalyan Vaid, Jasmeen Dhiman, Suresh Kumar, Vanish Kumar. Citrate and glutathione capped gold nanoparticles for electrochemical immunosensing of atrazine: Effect of conjugation chemistry. Environmental research. 2023 01; 217(?):114855. doi: 10.1016/j.envres.2022.114855. [PMID: 36427637]
  • Aleksandra Ukalska-Jaruga, Romualda Bejger, Bożena Smreczak, Marek Podlasiński. Sorption of Organic Contaminants by Stable Organic Matter Fraction in Soil. Molecules (Basel, Switzerland). 2023 Jan; 28(1):. doi: 10.3390/molecules28010429. [PMID: 36615617]
  • Xiaoying Li, Yue Yang, Ruolin Wu, Kaixuan Hou, Samuel C Allen, Lusheng Zhu, Zhongkun Du, Bing Li, Jinhua Wang, Jun Wang. Toxicity comparison of atrazine on Eisenia fetida in artificial soil and three natural soils. Comparative biochemistry and physiology. Toxicology & pharmacology : CBP. 2023 Jan; 263(?):109485. doi: 10.1016/j.cbpc.2022.109485. [PMID: 36220545]
  • Matthew A Pronschinske, Steven R Corsi, Celeste Hockings. Evaluating pharmaceuticals and other organic contaminants in the Lac du Flambeau Chain of Lakes using risk-based screening techniques. PloS one. 2023; 18(6):e0286571. doi: 10.1371/journal.pone.0286571. [PMID: 37267346]
  • P V Silva, B F Schedenffeldt, E S Medeiros, D Z Molina, M K Pagliarini, P A V Salmazo, M Mauad, P A Monquero, F C Munaro, L Y Shirota, G P Silva, M S Monteiro, R D C Dias, R P N Borges. Selectivity of herbicides used in corn on Crotalaria ochroleuca G. Don. Brazilian journal of biology = Revista brasleira de biologia. 2023; 83(?):e277798. doi: 10.1590/1519-6984.277798. [PMID: 38126645]
  • Faming Zhang, Jiansong Peng, Yuhong Rong, Shixian Sun, Yi Zheng. Removal of atrazine from submerged soil using vetiver grass (Chrysopogon zizanioides L.). International journal of phytoremediation. 2023; 25(5):670-678. doi: 10.1080/15226514.2022.2103091. [PMID: 35900126]
  • Jingbo Liu, Guangcheng Yang, Yanxia Gao, Xinran Li, Yuting Long, Shuling Wei, Yuxin Zhao, Shanshan Sun, Shujuan Gao. Transcriptome analysis reveals the mechanisms of hepatic injury caused by long-term environmental exposure to atrazine in juvenile common carp (Cyprinus carpio L.). Environmental science and pollution research international. 2022 Dec; ?(?):. doi: 10.1007/s11356-022-24933-2. [PMID: 36564684]
  • Tianhao Jia, Chunmei Pu, Tianyi Qin, Bin Liu, Guangkai Yao, Zhiqing Xun, Bingfeng Wang, Yongqing Tian, Zhixiang Zhang, Hanhong Xu, Chen Zhao. Azocalixarene-Based Supramolecular System for the Detection of Paraquat via an Improved Indicator Displacement Assay. Journal of agricultural and food chemistry. 2022 Dec; 70(50):15981-15989. doi: 10.1021/acs.jafc.2c06051. [PMID: 36510782]
  • Pingping Wang, Junli Cao, Liangang Mao, Lizhen Zhu, Yanning Zhang, Lan Zhang, Hongyun Jiang, Yongquan Zheng, Xingang Liu. Effect of H3PO4-modified biochar on the fate of atrazine and remediation of bacterial community in atrazine-contaminated soil. The Science of the total environment. 2022 Dec; 851(Pt 2):158278. doi: 10.1016/j.scitotenv.2022.158278. [PMID: 36029817]
  • Meichen Gao, Naixi Yang, Yutian Lei, Wenyue Zhang, Huanyi Liu, Hongjin Lin. Tannic acid antagonizes atrazine exposure-induced autophagy and DNA damage crosstalk in grass carp hepatocytes via NO/iNOS/NF-κB signaling pathway to maintain stable immune function. Fish & shellfish immunology. 2022 Dec; 131(?):1075-1084. doi: 10.1016/j.fsi.2022.11.024. [PMID: 36396070]
  • K M Hatch, R N Lerch, R J Kremer, C D Willett, C A Roberts, K W Goyne. Evaluating phytochemical and microbial contributions to atrazine degradation. Journal of environmental management. 2022 Nov; 321(?):115840. doi: 10.1016/j.jenvman.2022.115840. [PMID: 35994960]
  • Juan Yang, Haiyan Yu, Hailan Cui, Jingchao Chen, Xiangju Li. PsbA gene over-expression and enhanced metabolism conferring resistance to atrazine in Commelina communis. Pesticide biochemistry and physiology. 2022 Nov; 188(?):105260. doi: 10.1016/j.pestbp.2022.105260. [PMID: 36464365]
  • Yuxin Qiao, Li Ya Ma, Zhao Jie Chen, Yujue Wang, Yucheng Gu, Hong Yang. OsBR6ox, a member in the brassinosteroid synthetic pathway facilitates degradation of pesticides in rice through a specific DNA demethylation mechanism. The Science of the total environment. 2022 Sep; 838(Pt 4):156503. doi: 10.1016/j.scitotenv.2022.156503. [PMID: 35688248]
  • Tianyao Shen, Xiaojing Wang, Peng Xu, Chunyan Yang, Jiaqin Li, Peng Wang, Guangshan Zhang. Effect of dielectric barrier discharge plasma on persulfate activation for rapid degradation of atrazine: Optimization, mechanism and energy consumption. Environmental research. 2022 Sep; 212(Pt B):113287. doi: 10.1016/j.envres.2022.113287. [PMID: 35483407]
  • Xiaowei Huang, Xueling Yang, Jiahui Lin, Ashely E Franks, Jie Cheng, Yanjie Zhu, Jiachun Shi, Jianming Xu, Ming Yuan, Xujun Fu, Yan He. Biochar alleviated the toxicity of atrazine to soybeans, as revealed by soil microbial community and the assembly process. The Science of the total environment. 2022 Aug; 834(?):155261. doi: 10.1016/j.scitotenv.2022.155261. [PMID: 35447188]
  • Adam C Taylor, Graham A Mills, Anthony Gravell, Mark Kerwick, Gary R Fones. Pesticide fate during drinking water treatment determined through passive sampling combined with suspect screening and multivariate statistical analysis. Water research. 2022 Aug; 222(?):118865. doi: 10.1016/j.watres.2022.118865. [PMID: 35868101]
  • Jun Luo, Xiaofang Ruan, Wuying Chen, Sha Chen, Zhexu Ding, Ang Chen, Ding Li. Abiotic transformation of atrazine in aqueous phase by biogenic bixbyite-type Mn2O3 produced by a soil-derived Mn(II)-oxidizing bacterium of Providencia sp. Journal of hazardous materials. 2022 08; 436(?):129243. doi: 10.1016/j.jhazmat.2022.129243. [PMID: 35739762]
  • Xin Wang, Li Wang, Jiazhi Fan, Fang Ma. Asymmetric interaction and concurrent remediation of copper and atrazine by Acorus tatarinowii in an aquatic system. Journal of hazardous materials. 2022 08; 435(?):128888. doi: 10.1016/j.jhazmat.2022.128888. [PMID: 35483262]
  • Hongkun Tai, Feng Zhang, Chun Xiao, Rui Tang, Zhi Liu, Shuxiong Bai, Zhenying Wang. Toxicity of chemical pesticides commonly used in maize to Trichogramma ostriniae (Hymenoptera: Trichogrammatidae), an egg parasitoid of Asian corn borer. Ecotoxicology and environmental safety. 2022 Aug; 241(?):113802. doi: 10.1016/j.ecoenv.2022.113802. [PMID: 35772363]
  • Xifa Yang, Yuhao He, Bin Liu, Hui Guo, Lu Xue, Yiwen Duan, Hao Hu, Fei Gao, Lin Zhou, Jing Jing Zhang. Alfalfa's response to atrazine stress and its secreted atrazine metabolites. Ecotoxicology and environmental safety. 2022 Aug; 241(?):113780. doi: 10.1016/j.ecoenv.2022.113780. [PMID: 35738100]
  • Farhana Rashid, Davinder Singh, Shivani Attri, Prabhjot Kaur, Harneetpal Kaur, Pallvi Mohana, Jahangeer Quadar, Adarsh Pal Vig, Astha Bhatia, Balbir Singh, Harpreet Walia, Saroj Arora. Modulation of atrazine-induced chromosomal aberrations and cyclin-dependent kinases by aqueous extract of Roylea cinerea (D.Don) Baillon leaves in Allium cepa. Scientific reports. 2022 07; 12(1):12570. doi: 10.1038/s41598-022-16813-z. [PMID: 35869268]
  • Ana Cristina Preisler, Lucas Bragança Carvalho, Telma Saraiva-Santos, Waldiceu Aparecido Verri, Juliana Lischka Sampaio Mayer, Leonardo Fernandes Fraceto, Giliardi Dalazen, Halley Caixeta Oliveira. Interaction of Nanoatrazine and Target Organism: Evaluation of Fate and Photosystem II Inhibition in Hydroponically Grown Mustard (Brassica juncea) Plants. Journal of agricultural and food chemistry. 2022 Jun; 70(25):7644-7652. doi: 10.1021/acs.jafc.2c01601. [PMID: 35675570]
  • Charbel Hanna, Monique Boily, Catherine Jumarie. Pesticides Inhibit Retinoic Acid Catabolism in PLHC-1 and ZFL Fish Hepatic Cell Lines. Chemical research in toxicology. 2022 06; 35(6):1045-1058. doi: 10.1021/acs.chemrestox.2c00050. [PMID: 35608517]
  • Lei Peng, Dongyu Xie, Cui Li, Qiang Guo, Chuansheng Chen, Qinghai Wang. Effects of Graphene Oxide on Atrazine Phytotoxicity Effects of Graphene Oxide on Photosynthetic Response of Iris Pseudacorus to Atrazine Stress and Accumulation of Atrazine in the Plant. Bulletin of environmental contamination and toxicology. 2022 Jun; 108(6):1033-1038. doi: 10.1007/s00128-022-03500-y. [PMID: 35426516]
  • Zhifei Zhang, Qian Fu, Changyixin Xiao, Mingyue Ding, Dong Liang, Haitao Li, Rongmei Liu. Impact of Paenarthrobacter ureafaciens ZF1 on the soil enzyme activity and microbial community during the bioremediation of atrazine-contaminated soils. BMC microbiology. 2022 05; 22(1):146. doi: 10.1186/s12866-022-02556-4. [PMID: 35610563]
  • Qinghai Wang, Dongyu Xie, Lei Peng, Chuansheng Chen, Cui Li, Xiaoe Que. Phytotoxicity of atrazine combined with cadmium on photosynthetic apparatus of the emergent plant species Iris pseudacorus. Environmental science and pollution research international. 2022 May; 29(23):34798-34812. doi: 10.1007/s11356-021-18107-9. [PMID: 35040052]
  • Bochao Li, Daniel D Stuart, Peter V Shanta, Caleb D Pike, Quan Cheng. Probing Herbicide Toxicity to Algae (Selenastrum capricornutum) by Lipid Profiling with Machine Learning and Microchip/MALDI-TOF Mass Spectrometry. Chemical research in toxicology. 2022 04; 35(4):606-615. doi: 10.1021/acs.chemrestox.1c00397. [PMID: 35289601]
  • Yu-Shun Lu, Shang-Lin Yang, Chun-Lin Gou, Xin-Lu Wang, Xing Wen, Xiao-Rong He, Xiao-Xuan Guo, Yan-Yang Xu, Jiang Yu, Jing Qiu, Yong-Zhong Qian. Integrated metabolomics and transcriptomics analysis reveals new biomarkers and mechanistic insights on atrazine exposures in MCF‑7 cells. Ecotoxicology and environmental safety. 2022 Mar; 232(?):113244. doi: 10.1016/j.ecoenv.2022.113244. [PMID: 35093817]
  • Paola T Hernandes, Dison S P Franco, Jordana Georgin, Nina P G Salau, Guilherme L Dotto. Adsorption of atrazine and 2,4-D pesticides on alternative biochars from cedar bark sawdust (Cedrella fissilis). Environmental science and pollution research international. 2022 Mar; 29(15):22566-22575. doi: 10.1007/s11356-021-17590-4. [PMID: 34796439]
  • Débora Jesabel Pérez, William Joseph Doucette, Matthew Truman Moore. Contaminants of emerging concern (CECs) in Zea mays: Uptake, translocation and distribution tissue patterns over the time and its relation with physicochemical properties and plant transpiration rate. Chemosphere. 2022 Feb; 288(Pt 1):132480. doi: 10.1016/j.chemosphere.2021.132480. [PMID: 34626663]
  • Raghavendra Pratap Singh, Mohd Ahsan, Disha Mishra, Versha Pandey, Anupama, Anisha Yadav, Puja Khare. Ameliorative effects of biochar on persistency, dissipation, and toxicity of atrazine in three contrasting soils. Journal of environmental management. 2022 Feb; 303(?):114146. doi: 10.1016/j.jenvman.2021.114146. [PMID: 34838378]
  • Alayne M McKnight, Travis W Gannon, Fred Yelverton. Phytoremediation potential of three terrestrial plant species for removal of atrazine, azoxystrobin, and imidacloprid. International journal of phytoremediation. 2022; 24(2):187-195. doi: 10.1080/15226514.2021.1932724. [PMID: 34098815]
  • Aderlan Ademir Bottcher, Alfredo Junior P Albrecht, Leandro P Albrecht, André Felipe M Silva, José de Freitas, Thiago Souza. Terbuthylazine herbicide: an alternative to atrazine for weed control in glyphosate-tolerant maize. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes. 2022; 57(8):609-616. doi: 10.1080/03601234.2022.2088015. [PMID: 35758289]
  • Matias S Netto, Jordana Georgin, Dison S P Franco, Evandro S Mallmann, Edson Luiz Foletto, Marcelo Godinho, Diana Pinto, Guilherme L Dotto. Effective adsorptive removal of atrazine herbicide in river waters by a novel hydrochar derived from Prunus serrulata bark. Environmental science and pollution research international. 2022 Jan; 29(3):3672-3685. doi: 10.1007/s11356-021-15366-4. [PMID: 34389956]
  • Ying Zhang, Chao Yang, Zhi Zheng, Bo Cao, Fengyuan You, Yingying Liu, Zhao Jiang. Mechanism for various phytotoxicity of atrazine in soils to soybean: Insights from soil sorption abilities and dissolved organic matter properties. Journal of environmental management. 2021 Nov; 297(?):113220. doi: 10.1016/j.jenvman.2021.113220. [PMID: 34274768]
  • Juan Wu, Yujia Zhai, Fazel Abdolahpur Monikh, Daniel Arenas-Lago, Renato Grillo, Martina G Vijver, Willie J G M Peijnenburg. The Differences between the Effects of a Nanoformulation and a Conventional Form of Atrazine to Lettuce: Physiological Responses, Defense Mechanisms, and Nutrient Displacement. Journal of agricultural and food chemistry. 2021 Oct; 69(42):12527-12540. doi: 10.1021/acs.jafc.1c01382. [PMID: 34657419]
  • Pratibha Tripathi, Ranu Yadav, Paurabi Das, Asha Singh, Raghavendra Pratap Singh, Premalatha Kandasamy, Alok Kalra, Puja Khare. Endophytic bacterium CIMAP-A7 mediated amelioration of atrazine induced phyto-toxicity in Andrographis paniculata. Environmental pollution (Barking, Essex : 1987). 2021 Oct; 287(?):117635. doi: 10.1016/j.envpol.2021.117635. [PMID: 34182386]
  • Abhishek Mandal, Anup Kumar, Neera Singh. Sorption mechanisms of pesticides removal from effluent matrix using biochar: Conclusions from molecular modelling studies validated by single-, binary and ternary solute experiments. Journal of environmental management. 2021 Oct; 295(?):113104. doi: 10.1016/j.jenvman.2021.113104. [PMID: 34174681]
  • Vanessa Takeshita, Bruno Teixeira de Sousa, Ana Cristina Preisler, Lucas Bragança Carvalho, Anderson do Espirito Santo Pereira, Valdemar Luiz Tornisielo, Giliardi Dalazen, Halley Caixeta Oliveira, Leonardo Fernandes Fraceto. Foliar absorption and field herbicidal studies of atrazine-loaded polymeric nanoparticles. Journal of hazardous materials. 2021 09; 418(?):126350. doi: 10.1016/j.jhazmat.2021.126350. [PMID: 34130159]
  • Jingyan Ge, Jian Liu, Taiwei Wang, Di Huang, Junwei Li, Shuang Zhang, Mengqi Wang, Wei Liu, Lijing Zhao. Prolonged exposure to the herbicide atrazine suppresses immune cell functions by inducing spleen cell apoptosis in rats. Ecotoxicology and environmental safety. 2021 Sep; 220(?):112386. doi: 10.1016/j.ecoenv.2021.112386. [PMID: 34090108]
  • Peter V Shanta, Bochao Li, Daniel D Stuart, Quan Cheng. Lipidomic Profiling of Algae with Microarray MALDI-MS toward Ecotoxicological Monitoring of Herbicide Exposure. Environmental science & technology. 2021 08; 55(15):10558-10568. doi: 10.1021/acs.est.1c01138. [PMID: 34286960]
  • Fang Wang, Jing Gao, Wangjing Zhai, Jingna Cui, Yifan Hua, Zhiqiang Zhou, Donghui Liu, Peng Wang, Hongjun Zhang. Accumulation, distribution and removal of triazine pesticides by Eichhornia crassipes in water-sediment microcosm. Ecotoxicology and environmental safety. 2021 Aug; 219(?):112236. doi: 10.1016/j.ecoenv.2021.112236. [PMID: 33989919]
  • Tiziana Genovese, Rosalba Siracusa, Roberta Fusco, Ramona D'Amico, Daniela Impellizzeri, Alessio Filippo Peritore, Rosalia Crupi, Enrico Gugliandolo, Rossana Morabito, Salvatore Cuzzocrea, Angela Trovato Salinaro, Marika Cordaro, Rosanna Di Paola. Atrazine Inhalation Causes Neuroinflammation, Apoptosis and Accelerating Brain Aging. International journal of molecular sciences. 2021 Jul; 22(15):. doi: 10.3390/ijms22157938. [PMID: 34360708]
  • Ramona D'Amico, Francesco Monaco, Roberta Fusco, Alessio Filippo Peritore, Tiziana Genovese, Daniela Impellizzeri, Rosalia Crupi, Livia Interdonato, Andrea Maria Sforza, Enrico Gugliandolo, Rosalba Siracusa, Salvatore Cuzzocrea, Marika Cordaro, Rosanna Di Paola. Exposure to Atrazine Induces Lung Inflammation through Nrf2-HO1 and Beclin 1/LC3 Pathways. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2021 Jul; 55(4):413-427. doi: 10.33594/000000393. [PMID: 35481779]
  • Jiongjiong Chang, Chunlai Liang, Wei Wang, Ling Yong, Weifeng Mao, Hui Yang, Xudong Jia, Zhaoping Liu, Yan Song. Toxic effects of atrazine on immune function in BALB/c mice. Environmental science and pollution research international. 2021 Jul; 28(28):37978-37994. doi: 10.1007/s11356-021-13360-4. [PMID: 33728608]
  • Longfei Yuan, Yida Chai, Congdi Li, Rong Liu, Zenglong Chen, Li Li, Wei Li, Yujian He. Dissipation, residue, dietary, and ecological risk assessment of atrazine in apples, grapes, tea, and their soil. Environmental science and pollution research international. 2021 Jul; 28(26):35064-35072. doi: 10.1007/s11356-021-13133-z. [PMID: 33661496]
  • Jian-Ying Guo, Jia Lin, Yue-Qiang Huang, Milton Talukder, Lei Yu, Jin-Long Li. AQP2 as a target of lycopene protects against atrazine-induced renal ionic homeostasis disturbance. Food & function. 2021 Jun; 12(11):4855-4863. doi: 10.1039/d0fo03214j. [PMID: 33960999]
  • Jinpeng Zhang, Xian Wu, Xianghui Zhang, Hongyu Pan, Julia E S Shearer, Hao Zhang, Fengjie Sun. Zn2+-dependent enhancement of Atrazine biodegradation by Klebsiella variicola FH-1. Journal of hazardous materials. 2021 06; 411(?):125112. doi: 10.1016/j.jhazmat.2021.125112. [PMID: 33858092]
  • Christopher A Landau, Aaron G Hager, Patrick J Tranel, Adam S Davis, Nicolas F Martin, Martin M Williams. Future efficacy of pre-emergence herbicides in corn (Zea mays) is threatened by more variable weather. Pest management science. 2021 Jun; 77(6):2683-2689. doi: 10.1002/ps.6309. [PMID: 33512060]
  • Sunny O Abarikwu, Guilherme M J Costa, Nathalia de Lima E Martins Lara, Samyra M S N Lacerda, Luiz R de França. Atrazine impairs testicular function in BalB/c mice by affecting Leydig cells. Toxicology. 2021 05; 455(?):152761. doi: 10.1016/j.tox.2021.152761. [PMID: 33766575]
  • Isaac A Adedara, Umin-Awaji S Godswill, Miriam A Mike, Blessing A Afolabi, Chizoba C Amorha, Joseph Sule, Joao B T Rocha, Ebenezer O Farombi. Chronic ciprofloxacin and atrazine co-exposure aggravates locomotor and exploratory deficits in non-target detritivore speckled cockroach (Nauphoeta cinerea). Environmental science and pollution research international. 2021 May; 28(20):25680-25691. doi: 10.1007/s11356-021-12460-5. [PMID: 33469791]
  • Felícia Pereira de Albuquerque, Jhones Luiz de Oliveira, Leila Dos Santos Machado, Vinicius Sobrinho Richardi, Mario Antônio Navarro da Silva, Marcelo Luiz Martins Pompêo, Leonardo Fernandes Fraceto, Viviane Moschini Carlos. Use of nontarget organism Chironomus sancticaroli to study the toxic effects of nanoatrazine. Ecotoxicology (London, England). 2021 May; 30(4):733-750. doi: 10.1007/s10646-021-02400-x. [PMID: 33821358]
  • Wenqi Jiang, Wangjing Zhai, Donghui Liu, Peng Wang. Coexisting antibiotic changes the persistence and metabolic profile of atrazine in the environment. Chemosphere. 2021 Apr; 269(?):129333. doi: 10.1016/j.chemosphere.2020.129333. [PMID: 33385668]
  • Ying Zhang, Duo Jiang, Chao Yang, Shijie Deng, Xinyu Lv, Ruifeng Chen, Zhao Jiang. The oxidative stress caused by atrazine in root exudation of Pennisetum americanum (L.) K. Schum. Ecotoxicology and environmental safety. 2021 Mar; 211(?):111943. doi: 10.1016/j.ecoenv.2021.111943. [PMID: 33493720]
  • Zhao Jie Chen, Yun Lv, Xiao Yan Zhai, Hong Yang. Comprehensive analyses of degradative enzymes associated with mesotrione-degraded process in rice for declining environmental risks. The Science of the total environment. 2021 Mar; 758(?):143618. doi: 10.1016/j.scitotenv.2020.143618. [PMID: 33248774]
  • Lorena A J Vieira, Rauander D F B Alves, Paulo E Menezes-Silva, Maria A C Mendonça, Maria L F Silva, Maria C A P Silva, Leticia F Sousa, Lucas Loram-Lourenço, Adinan Alves da Silva, Alan Carlos Costa, Fabiano G Silva, Fernanda S Farnese. Water contamination with atrazine: is nitric oxide able to improve Pistia stratiotes phytoremediation capacity?. Environmental pollution (Barking, Essex : 1987). 2021 Mar; 272(?):115971. doi: 10.1016/j.envpol.2020.115971. [PMID: 33218778]
  • Zhigao Zhao, Xiaowen Dou, Jiaoyang Luo, Meiqi Jin, Jiaan Qin, Changjian Wang, Shihai Yang, Meihua Yang. Magnetic particles encoding a suspension probe for ultra-sensitive and quantitative determination of atrazine. Journal of pharmaceutical and biomedical analysis. 2021 Feb; 195(?):113868. doi: 10.1016/j.jpba.2020.113868. [PMID: 33406474]
  • P A Opute, I P Oboh. Hepatotoxic Effects of Atrazine on Clarias gariepinus (Burchell, 1822): Biochemical and Histopathological Studies. Archives of environmental contamination and toxicology. 2021 Feb; 80(2):414-425. doi: 10.1007/s00244-020-00792-1. [PMID: 33386433]