Prephenate (BioDeep_00000004403)

 

Secondary id: BioDeep_00001868730

human metabolite PANOMIX_OTCML-2023 Endogenous natural product


代谢物信息卡片


(1s,4s)-1-(2-carboxy-2-oxoethyl)-4-hydroxycyclohexa-2,5-diene-1-carboxylic acid

化学式: C10H10O6 (226.0477)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(feces) 7.18%

分子结构信息

SMILES: C1=CC(C=CC1O)(CC(=O)C(=O)O)C(=O)O
InChI: InChI=1S/C10H10O6/c11-6-1-3-10(4-2-6,9(15)16)5-7(12)8(13)14/h1-4,6,11H,5H2,(H,13,14)(H,15,16)

描述信息

Prephenate (CAS: 126-49-8), also known as prephenic acid, belongs to the class of organic compounds known as gamma-keto acids and derivatives. These are organic compounds containing an aldehyde substituted with a keto group on the C4 carbon atom. Prephenic acid is an example of an achiral (optically inactive) molecule which has two pseudoasymmetric atoms (i.e. stereogenic but not chirotopic centers): the C1 and the C4 cyclohexadiene ring atoms. Prephenate exists in all living species, ranging from bacteria to humans. Prephenate has been detected, but not quantified, in several different foods, such as American pokeweeds, breadnut tree seeds, common wheats, swiss chards, and breadfruits. The other stereoisomer, i.e. trans or, better, (1r, 4r), is called epiprephenic acid. It has been shown that of the two possible diastereoisomers, the natural prephenic acid is one that has both substituents at higher priority (according to CIP rules) on the two pseudoasymmetric carbons, i.e. the carboxyl and the hydroxyl groups, in the cis configuration, or (1s, 4s) according to the new IUPAC stereochemistry rules (2013). It is biosynthesized by a [3,3]-sigmatropic Claisen rearrangement of chorismate. Prephenic acid, commonly also known by its anionic form prephenate, is an intermediate in the biosynthesis of the aromatic amino acids phenylalanine and tyrosine, as well as of a large number of secondary metabolites of the shikimate pathway.
Prephenic acid, more commonly known by its anionic form prephenate, is an intermediate in the biosynthesis of the aromatic amino acids phenylalanine and tyrosine. [HMDB]. Prephenate is found in many foods, some of which are alaska wild rhubarb, chinese chestnut, kai-lan, and globe artichoke.

同义名列表

23 个代谢物同义名

(1s,4s)-1-(2-carboxy-2-oxoethyl)-4-hydroxycyclohexa-2,5-diene-1-carboxylic acid; cis-1-Carboxy-4-hydroxy-alpha-oxo-2,5-cyclohexadiene-1-propanoic acid; cis-1-Carboxy-4-hydroxy-alpha-oxo-2,5-cyclohexadiene-1-propionic acid; cis-1-Carboxy-4-hydroxy-α-oxo-2,5-cyclohexadiene-1-propionic acid; cis-1-Carboxy-4-hydroxy-alpha-oxo-2,5-cyclohexadiene-1-propanoate; 1-Carboxy-4-hydroxy-alpha-oxo-2,5-cyclohexadiene-1-propanoic acid; cis-1-Carboxy-4-hydroxy-α-oxo-2,5-cyclohexadiene-1-propanoic acid; 1-Carboxy-4-hydroxy-alpha-oxo-2,5-cyclohexadiene-1-propionic acid; cis-1-Carboxy-4-hydroxy-a-oxo-2,5-cyclohexadiene-1-propanoic acid; cis-1-Carboxy-4-hydroxy-α-oxo-2,5-cyclohexadiene-1-propanoate; cis-1-Carboxy-4-hydroxy-a-oxo-2,5-cyclohexadiene-1-propanoate; 1-Carboxy-4-hydroxy-α-oxo-2,5-cyclohexadiene-1-propanoic acid; 1-Carboxy-4-hydroxy-α-oxo-2,5-cyclohexadiene-1-propionic acid; 1-Carboxy-4-hydroxy-2,5-cyclohexadiene-1-pyruvic acid; Prephenic acid, cis; (1S,4S)-Prephenate; cis-Prephenic acid; Prephenate, cis; Prephenic acid; cis-Prephenate; Prephenate; PPA; Prephenate



数据库引用编号

23 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(0)

代谢反应

339 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(3)

WikiPathways(0)

Plant Reactome(328)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(8)

PharmGKB(0)

13 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 7 ALB, GTPBP4, HPD, PC, PMP2, SKIC3, TYR
Peripheral membrane protein 2 HPD, HSD17B6
Endosome membrane 1 OCA2
Endoplasmic reticulum membrane 3 HPD, OCA2, SLC33A1
Nucleus 5 ALB, CS, GTPBP4, PMP2, SKIC3
cytosol 8 ALB, COMT, GTPBP4, HPD, PAH, PC, PMP2, SKIC3
dendrite 1 COMT
centrosome 1 ALB
nucleoplasm 3 CMKLR2, GTPBP4, SKIC3
Cell membrane 3 CMKLR2, COMT, GPRC5A
Early endosome membrane 1 HSD17B6
Multi-pass membrane protein 4 CMKLR2, GPRC5A, OCA2, SLC33A1
Golgi apparatus membrane 1 HPD
Synapse 1 COMT
Golgi apparatus 1 ALB
Golgi membrane 2 HPD, SLC33A1
lysosomal membrane 1 OCA2
Lysosome 1 TYR
plasma membrane 5 CMKLR2, COMT, GPRC5A, SERPINC1, SLC33A1
Membrane 6 COMT, CS, GTPBP4, OCA2, SLC33A1, TMPRSS15
axon 1 COMT
brush border 1 TMPRSS15
extracellular exosome 7 ALB, COMT, CS, GPRC5A, HPD, PMP2, SERPINC1
Lumenal side 1 HSD17B6
endoplasmic reticulum 2 ALB, HSD17B6
extracellular space 2 ALB, SERPINC1
perinuclear region of cytoplasm 2 GTPBP4, TYR
mitochondrion 3 CS, OPA3, PC
protein-containing complex 1 ALB
intracellular membrane-bounded organelle 5 CMKLR2, COMT, GPRC5A, HSD17B6, TYR
Microsome membrane 1 HSD17B6
Single-pass type I membrane protein 1 TYR
Secreted 1 ALB
extracellular region 2 ALB, SERPINC1
Mitochondrion matrix 2 CS, PC
mitochondrial matrix 2 CS, PC
Extracellular side 1 COMT
anchoring junction 1 ALB
nuclear membrane 1 GTPBP4
nucleolus 2 GPRC5A, GTPBP4
Melanosome membrane 2 OCA2, TYR
Golgi-associated vesicle 1 TYR
Single-pass type II membrane protein 2 COMT, TMPRSS15
vesicle 1 GPRC5A
collagen-containing extracellular matrix 1 SERPINC1
receptor complex 1 GPRC5A
neuron projection 1 CMKLR2
ciliary basal body 1 ALB
centriole 1 ALB
Secreted, extracellular space 1 SERPINC1
Nucleus, nucleolus 1 GTPBP4
spindle pole 1 ALB
blood microparticle 2 ALB, SERPINC1
Cytoplasmic vesicle membrane 1 GPRC5A
Melanosome 1 TYR
euchromatin 1 SKIC3
myelin sheath 1 PMP2
endoplasmic reticulum lumen 2 ALB, SERPINC1
platelet alpha granule lumen 1 ALB
[Isoform Soluble]: Cytoplasm 1 COMT
[Isoform Membrane-bound]: Cell membrane 1 COMT
ciliary transition fiber 1 ALB
Ski complex 1 SKIC3


文献列表

  • Katayoun Kazemzadeh Ferizhendi, Philippe Simon, Ludovic Pelosi, Emmanuel Séchet, Roache Arulanandam, Mahmoud Hajj Chehade, Martial Rey, Deniz Onal, Laura Flandrin, Rouba Chreim, Bruno Faivre, Samuel Chau-Duy-Tam Vo, Rodrigo Arias-Cartin, Frédéric Barras, Marc Fontecave, Emmanuelle Bouveret, Murielle Lombard, Fabien Pierrel. An organic O donor for biological hydroxylation reactions. Proceedings of the National Academy of Sciences of the United States of America. 2024 Mar; 121(13):e2321242121. doi: 10.1073/pnas.2321242121. [PMID: 38507448]
  • Yichun Qian, Joseph H Lynch, Longyun Guo, David Rhodes, John A Morgan, Natalia Dudareva. Completion of the cytosolic post-chorismate phenylalanine biosynthetic pathway in plants. Nature communications. 2019 01; 10(1):15. doi: 10.1038/s41467-018-07969-2. [PMID: 30604768]
  • Jorge El-Azaz, Francisco M Cánovas, Concepción Ávila, Fernando de la Torre. The Arogenate Dehydratase ADT2 is Essential for Seed Development in Arabidopsis. Plant & cell physiology. 2018 Dec; 59(12):2409-2420. doi: 10.1093/pcp/pcy200. [PMID: 30289532]
  • Ziyin Yang, Eiji Kobayashi, Tsuyoshi Katsuno, Toshimichi Asanuma, Tamaki Fujimori, Takamasa Ishikawa, Miho Tomomura, Kazuo Mochizuki, Takaya Watase, Yoriyuki Nakamura, Naoharu Watanabe. Characterisation of volatile and non-volatile metabolites in etiolated leaves of tea (Camellia sinensis) plants in the dark. Food chemistry. 2012 Dec; 135(4):2268-76. doi: 10.1016/j.foodchem.2012.07.066. [PMID: 22980801]
  • Crystal D Bross, Oliver R A Corea, Angelo Kaldis, Rima Menassa, Mark A Bernards, Susanne E Kohalmi. Complementation of the pha2 yeast mutant suggests functional differences for arogenate dehydratases from Arabidopsis thaliana. Plant physiology and biochemistry : PPB. 2011 Aug; 49(8):882-90. doi: 10.1016/j.plaphy.2011.02.010. [PMID: 21388819]
  • Valeriano Dal Cin, Denise M Tieman, Takayuki Tohge, Ryan McQuinn, Ric C H de Vos, Sonia Osorio, Eric A Schmelz, Mark G Taylor, Miriam T Smits-Kroon, Robert C Schuurink, Michel A Haring, James Giovannoni, Alisdair R Fernie, Harry J Klee. Identification of genes in the phenylalanine metabolic pathway by ectopic expression of a MYB transcription factor in tomato fruit. The Plant cell. 2011 Jul; 23(7):2738-53. doi: 10.1105/tpc.111.086975. [PMID: 21750236]
  • Marianne C Verberne, Kamonchanok Sansuk, John F Bol, Huub J M Linthorst, Robert Verpoorte. Vitamin K1 accumulation in tobacco plants overexpressing bacterial genes involved in the biosynthesis of salicylic acid. Journal of biotechnology. 2007 Jan; 128(1):72-9. doi: 10.1016/j.jbiotec.2006.09.005. [PMID: 17084477]
  • Jeffrey S Amthor. Efficiency of lignin biosynthesis: a quantitative analysis. Annals of botany. 2003 May; 91(6):673-95. doi: 10.1093/aob/mcg073. [PMID: 12714366]
  • P Sampathkumar, J F Morrison. Chorismate mutase-prephenate dehydrogenase from Escherichia coli. Kinetic mechanism of the prephenate dehydrogenase reaction. Biochimica et biophysica acta. 1982 Apr; 702(2):212-9. doi: 10.1016/0167-4838(82)90505-2. [PMID: 7044425]
  • O L GAMBORG, F J SIMPSON. PREPARATION OF PREPHENIC ACID AND ITS CONVERSION TO PHENYLALANINE AND TYROSINE BY PLANT ENZYMES. Canadian journal of biochemistry. 1964 May; 42(?):583-91. doi: 10.1139/o64-071. [PMID: 14185725]