L-Tyrosine (BioDeep_00000000157)
Secondary id: BioDeep_00000229645, BioDeep_00000398091
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C9H11NO3 (181.0739)
中文名称: L-酪氨酸, 酪氨酸
谱图信息:
最多检出来源 Homo sapiens(blood) 15.69%
Last reviewed on 2024-07-01.
Cite this Page
L-Tyrosine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/l-tyrosine (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000000157). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1=CC(=CC=C1CC(C(=O)O)N)O
InChI: InChI=1S/C9H11NO3/c10-8(9(12)13)5-6-1-3-7(11)4-2-6/h1-4,8,11H,5,10H2,(H,12,13)
描述信息
Tyrosine (Tyr) or L-tyrosine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-tyrosine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Tyrosine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aromatic amino acid. Tyrosine is a non-essential amino acid, meaning the body can synthesize it – usually from phenylalanine. The conversion of phenylalanine to tyrosine is catalyzed by the enzyme phenylalanine hydroxylase, a monooxygenase. This enzyme catalyzes the reaction causing the addition of a hydroxyl group to the end of the 6-carbon aromatic ring of phenylalanine, such that it becomes tyrosine. Tyrosine is found in many high-protein food products such as chicken, turkey, fish, milk, yogurt, cottage cheese, cheese, peanuts, almonds, pumpkin seeds, sesame seeds, soy products, lima beans, avocados and bananas. Tyrosine is one of the few amino acids that readily passes the blood-brain barrier. Once in the brain, it is a precursor for the neurotransmitters dopamine, norepinephrine and epinephrine, better known as adrenalin. These neurotransmitters are an important part of the bodys sympathetic nervous system, and their concentrations in the body and brain are directly dependent upon dietary tyrosine. Tyrosine is not found in large concentrations throughout the body, probably because it is rapidly metabolized. Folic acid, copper and vitamin C are cofactor nutrients of these reactions. Tyrosine is also the precursor for hormones, including thyroid hormones (diiodotyrosine), catecholestrogens and the major human pigment, melanin. Tyrosine is an important amino acid in many proteins, peptides and even enkephalins, the bodys natural pain reliever. Valine and other branched amino acids, and possibly tryptophan and phenylalanine may reduce tyrosine absorption. A number of genetic errors of tyrosine metabolism have been identified, such as hawkinsinuria and tyrosinemia I. The most common feature of these diseases is the increased amount of tyrosine in the blood, which is marked by decreased motor activity, lethargy and poor feeding. Infection and intellectual deficits may occur. Vitamin C supplements can help reverse these disease symptoms. Some adults also develop elevated tyrosine in their blood. This typically indicates a need for more vitamin C. More tyrosine is needed under stress, and tyrosine supplements prevent the stress-induced depletion of norepinephrine and can help aleviate biochemical depression. However, tyrosine may not be good for treating psychosis. Many antipsychotic medications apparently function by inhibiting tyrosine metabolism. L-Dopa, which is directly used in Parkinsons, is made from tyrosine. Tyrosine, the nutrient, can be used as an adjunct in the treatment of Parkinsons. Peripheral metabolism of tyrosine necessitates large doses of tyrosine, however, compared to L-Dopa (http://www.dcnutrition.com). In addition to its role as a precursor for neurotransmitters, tyrosine plays an important role for the function of many proteins. Within many proteins or enzymes, certain tyrosine residues can be tagged (at the hydroxyl group) with a phosphate group (phosphorylated) by specialized protein kinases. In its phosphorylated form, tyrosine is called phosphotyrosine. Tyrosine phosphorylation is considered to be one of the key steps in signal transduction and regulation of enzymatic activity. Tyrosine (or its precursor phenylalanine) is also needed to synthesize the benzoquinone structure which forms part of coenzyme Q10.
L-tyrosine is an optically active form of tyrosine having L-configuration. It has a role as an EC 1.3.1.43 (arogenate dehydrogenase) inhibitor, a nutraceutical, a micronutrient and a fundamental metabolite. It is an erythrose 4-phosphate/phosphoenolpyruvate family amino acid, a proteinogenic amino acid, a tyrosine and a L-alpha-amino acid. It is functionally related to a L-tyrosinal. It is a conjugate base of a L-tyrosinium. It is a conjugate acid of a L-tyrosinate(1-). It is an enantiomer of a D-tyrosine. It is a tautomer of a L-tyrosine zwitterion.
Tyrosine is a non-essential amino acid. In animals it is synthesized from [phenylalanine]. It is also the precursor of [epinephrine], thyroid hormones, and melanin.
L-Tyrosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
L-Tyrosine is the levorotatory isomer of the aromatic amino acid tyrosine. L-tyrosine is a naturally occurring tyrosine and is synthesized in vivo from L-phenylalanine. It is considered a non-essential amino acid; however, in patients with phenylketonuria who lack phenylalanine hydroxylase and cannot convert phenylalanine into tyrosine, it is considered an essential nutrient. In vivo, tyrosine plays a role in protein synthesis and serves as a precursor for the synthesis of catecholamines, thyroxine, and melanin.
Tyrosine is an essential amino acid that readily passes the blood-brain barrier. Once in the brain, it is a precursor for the neurotransmitters dopamine, norepinephrine and epinephrine, better known as adrenalin. These neurotransmitters are an important part of the bodys sympathetic nervous system, and their concentrations in the body and brain are directly dependent upon dietary tyrosine. Tyrosine is not found in large concentrations throughout the body, probably because it is rapidly metabolized. Folic acid, copper and vitamin C are cofactor nutrients of these reactions. Tyrosine is also the precursor for hormones, thyroid, catecholestrogens and the major human pigment, melanin. Tyrosine is an important amino acid in many proteins, peptides and even enkephalins, the bodys natural pain reliever. Valine and other branched amino acids, and possibly tryptophan and phenylalanine may reduce tyrosine absorption. A number of genetic errors of tyrosine metabolism occur. Most common is the increased amount of tyrosine in the blood of premature infants, which is marked by decreased motor activity, lethargy and poor feeding. Infection and intellectual deficits may occur. Vitamin C supplements reverse the disease. Some adults also develop elevated tyrosine in their blood. This indicates a need for more vitamin C. More tyrosine is needed under stress, and tyrosine supplements prevent the stress-induced depletion of norepinephrine and can cure biochemical depression. However, tyrosine may not be good for psychosis. Many antipsychotic medications apparently function by inhibiting tyrosine metabolism. L-dopa, which is directly used in Parkinsons, is made from tyrosine. Tyrosine, the nutrient, can be used as an adjunct in the treatment of Parkinsons. Peripheral metabolism of tyrosine necessitates large doses of tyrosine, however, compared to L-dopa.
A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin.
Dietary supplement, nutrient. Flavouring ingredient. L-Tyrosine is found in many foods, some of which are blue crab, sweet rowanberry, lemon sole, and alpine sweetvetch.
An optically active form of tyrosine having L-configuration.
L-Tyrosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=60-18-4 (retrieved 2024-07-01) (CAS RN: 60-18-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
L-Tyrosine is a non-essential amino acid which can inhibit citrate synthase activity in the posterior cortex.
L-Tyrosine is a non-essential amino acid which can inhibit citrate synthase activity in the posterior cortex.
同义名列表
132 个代谢物同义名
L-Tyrosine, from non-animal source, meets EP, USP testing specifications, suitable for cell culture, >=99.0\\%; Benzeneethanaminium,a-carboxy-4-hydroxy-N,N,N-trimethyl-,inner salt,(as)-; Melanin synthesized from Tyr substrate catalyzed by tyrosinase for 6 hrs; 2-amino-3-(4-hydroxyphen yl)-2-amino-3-(4-hydroxyphenyl)-Propanoic acid; 2-amino-3-(4-hydroxyphen yl)-2-amino-3-(4-hydroxyphenyl)-Propanoate; L-Tyrosine, United States Pharmacopeia (USP) Reference Standard; Tyrosine, European Pharmacopoeia (EP) Reference Standard; L-Tyrosine, certified reference material, TraceCERT(R); Benzenepropanoic acid, .alpha.-amino-4-hydroxy-, (S)-; .alpha.-Amino-.beta.-(4-hydroxyphenyl)propionic acid; Benzenepropanoic acid, alpha-amino-4-hydroxy-, (S)-; Propanoic acid, 2-amino-3-(4-hydroxyphenyl)-, (S)-; alpha-Amino-4-hydroxybenzenepropanoic acid, (S)-; (S)-.alpha.-Amino-4-hydroxybenzenepropanoic acid; alpha-Amino-beta-(4-hydroxyphenyl)propionic acid; Propanoic acid, 2-amino-3-(4-hydroxyphenyl)-(S)-; 2-Amino-3-(4-hydroxyphenyl)propanoic acid, (S)-; (S)-alpha-amino-4-hydroxy-Benzenepropanoic acid; 2-Amino-3-(4-hydroxyphenyl)propanoic acid-(S)-; (S)-alpha-Amino-4-hydroxybenzenepropanoic acid; (2S)-2-amino-3-(4-hydroxyphenyl)propanoic acid; (-)-.alpha.-Amino-p-hydroxyhydrocinnamic acid; L-Tyrosine, Cell Culture Reagent (H-L-Tyr-OH); LEVODOPA IMPURITY, L-TYROSINE- [USP IMPURITY]; (S)-2-Amino-3-(p-hydroxyphenyl)propionic acid; (S)-2-Amino-3-(4-hydroxyphenyl)propanoic acid; alpha-Amino-p-hydroxyhydrocinnamic acid, (-)-; (2S)-2-amino-3-(4-hydroxyphenyl)propanoicacid; (S)-2-Amino-3-(4-hydroxyphenyl)propionic acid; (S)-alpha-amino-4-hydroxy-Benzenepropanoate; (-)-alpha-Amino-p-hydroxyhydrocinnamic acid; (S)-a-amino-4-hydroxy-Benzenepropanoic acid; L-Tyrosine, Vetec(TM) reagent grade, >=98\\%; (S)-alpha-Amino-4-hydroxybenzenepropanoate; (S)-Α-amino-4-hydroxybenzenepropanoic acid; (S)-a-Amino-4-hydroxybenzenepropanoic acid; (2S)-2-Amino-3-(4-hydroxyphenyl)propanoate; L-2-Amino-3-p-hydroxyphenylpropanoic acid; (S)-2-Amino-3-(p-hydroxyphenyl)propionate; N-ACETYLTYROSINE IMPURITY A [EP IMPURITY]; L-Tyrosine, reagent grade, >=98\\% (HPLC); (-)-a-Amino-p-hydroxyhydrocinnamic acid; (S)-a-amino-4-hydroxy-Benzenepropanoate; (-)-Α-amino-p-hydroxyhydrocinnamic acid; L-Tyrosine, SAJ special grade, >=99.0\\%; (-)-alpha-Amino-p-hydroxyhydrocinnamate; (S)-a-Amino-4-hydroxybenzenepropanoate; (S)-Α-amino-4-hydroxybenzenepropanoate; L-Tyrosine, Free Base - CAS 60-18-4; (-)-Α-amino-p-hydroxyhydrocinnamate; (-)-a-Amino-p-hydroxyhydrocinnamate; L-Tyrosine, BioUltra, >=99.0\\% (NT); DIETHYL1,3,5-BENZENETRICARBOXYLATE; LEVODOPA IMPURITY B [EP IMPURITY]; (S)-3-(4-HYDROXYPHENYL)ALANINE; Levodopa impurity, l-tyrosine-; (S)-3-(p-Hydroxyphenyl)alanine; beta-(p-Hydroxyphenyl)alanine; L-Tyrosine, Vetec(TM), 98.5\\%; 3-(4-Hydroxyphenyl)-L-alanine; IS_4-HYDROXYPHENYL-D4-ALANINE; L-Tyrosine non-animal source; L-Phenylalanine, 4-hydroxy-; L-Phenylalanine-4-hydroxy-; 4-Hydroxy-L-phenylalanine; TYROSINE [USP MONOGRAPH]; TYROSINE [EP MONOGRAPH]; L-Tyrosine, >=97\\%, FG; TYROSINE [ORANGE BOOK]; Tyrosine (L-Tyrosine); Benzenepropanoic acid; L-Tyrosine, monomer; L-TYROSINE [USP-RS]; Tyrosine [USAN:INN]; Tirosina [Spanish]; Tyrosine (USP/INN); Tyrosine, L-isomer; Tyrosine, L- (8CI); Tyrosine, L isomer; Tyrosinum [Latin]; L-Tyrosine (JP17); TYROSINE [WHO-DD]; L-TYROSINE [FHFI]; Benzenepropanoate; TYROSINE [VANDF]; L-TYROSINE [FCC]; L-TYROSINE [JAN]; L-Tyrosine (9CI); (S)-(-)-Tyrosine; TYROSINE [MART.]; plovamer-acetate; TYROSINE [INCI]; UNII-42HK56048U; TYROSINE [HSDB]; TYROSINE [USAN]; Tox21_111594_1; L-(-)-Tyrosine; Tyrosine (VAN); L-Tyrosine,(S); TYROSINE [INN]; TYROSINE [II]; para-Tyrosine; TYROSINE [MI]; para Tyrosine; (-) tyrosine; L-p-Tyrosine; Tyrosine, L-; L-[U-14C]Tyr; (L)-Tyrosine; Tox21_111594; (S)-Tyrosine; CAS-60-18-4; L Tyrosine; 42HK56048U; L-Tyrosine; p-Tyrosine; Tyrosinum; AI3-09055; -tyrosine; L-Tyrosin; L-TYR-OH; Tyrosine; H-Tyr-OH; tirosina; L-Tyr; H-Tyr; 2csm; tyr; Y; Tyrosine; L-Tyrosine; Tyrosine
数据库引用编号
68 个数据库交叉引用编号
- ChEBI: CHEBI:17895
- KEGG: C00082
- KEGGdrug: D70837
- KEGGdrug: D00022
- PubChem: 6057
- PubChem: 1153
- HMDB: HMDB0000158
- Metlin: METLIN34
- DrugBank: DB00135
- ChEMBL: CHEMBL925
- Wikipedia: Tyrosine
- MeSH: Tyrosine
- ChemIDplus: 0000060184
- MetaCyc: TYR
- KNApSAcK: C00001397
- foodb: FDB000446
- chemspider: 5833
- CAS: 60-18-4
- MoNA: KNA00575
- MoNA: KO001863
- MoNA: KNA00661
- MoNA: PB000410
- MoNA: KNA00264
- MoNA: PS005605
- MoNA: PS005602
- MoNA: KNA00169
- MoNA: KNA00663
- MoNA: KO004068
- MoNA: KNA00574
- MoNA: PB000411
- MoNA: KNA00171
- MoNA: PR100035
- MoNA: KNA00662
- MoNA: KNA00573
- MoNA: KNA00267
- MoNA: PB000412
- MoNA: KO004070
- MoNA: KO001862
- MoNA: KO001865
- MoNA: PS005604
- MoNA: KNA00572
- MoNA: KNA00266
- MoNA: PS005601
- MoNA: KNA00170
- MoNA: PR100036
- MoNA: KNA00172
- MoNA: PS005603
- MoNA: PB000413
- MoNA: KNA00265
- MoNA: KO004067
- MoNA: KO001864
- MoNA: KO001866
- MoNA: KNA00660
- MoNA: PB000414
- MoNA: KO004069
- MoNA: PR100499
- MoNA: KO004071
- PMhub: MS000001681
- MetaboLights: MTBLC17895
- PDB-CCD: TYR
- 3DMET: B01154
- NIKKAJI: J9.173A
- medchemexpress: HY-N0473
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-676
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-74
- PubChem: 3382
- KNApSAcK: 17895
- LOTUS: LTS0029981
分类词条
相关代谢途径
Reactome(0)
PlantCyc(0)
代谢反应
75 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(5)
- phenylalanine degradation:
O2 + phe + tetrahydrobiopterin ⟶ 4α-hydroxy-tetrahydrobiopterin + tyr
- biopterin metabolism:
NADPH + biopterin ⟶ 7,8-dihydrobiopterin + NADP+
- tRNA charging pathway:
ATP + arg ⟶ AMP + diphosphate
- tyrosine degradation II:
4-hydroxyphenylpyruvate + H+ + O2 ⟶ 4-hydroxyphenylacetate + CO2 + H2O
- tyrosine degradation I:
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + glt
WikiPathways(9)
- Biogenic amine synthesis:
Norepinephrine ⟶ Epinephrine
- Biogenic amine synthesis:
Choline ⟶ Acetylcholine
- Farnesyl to CoQ10 metabolism:
4OH-Cinnamate ⟶ 4OH-benzoate
- Parkinson's disease:
L-Tyrosine ⟶ L-DOPA
- Dopamine metabolism:
Dopamine ⟶ 3-Methoxytyramine
- Parkinson's disease pathway:
L-Tyrosine ⟶ L-DOPA
- Dopamine metabolism:
Dopamine ⟶ 3-Methoxytyramine
- Glucosinolate biosynthesis (from aromatic amino acid):
L-Tyrosine ⟶ (E)-4-Hydroxyphenylacetaldehyde oxime
- 17p13.3 (YWHAE) copy number variation:
Dopamine ⟶ Noradrenaline
Plant Reactome(0)
INOH(2)
- Tyrosine metabolism ( Tyrosine metabolism ):
4-Hydroxy-phenyl-acetaldehyde + H2O + NAD+ ⟶ 4-Hydroxy-phenyl-acetic acid + NADH
- 2-Oxo-glutaric acid + L-Tyrosine = L-Glutamic acid + 4-Hydroxy-phenyl-pyruvic acid ( Tyrosine metabolism ):
2-Oxo-glutaric acid + L-Tyrosine ⟶ 4-Hydroxy-phenyl-pyruvic acid + L-Glutamic acid
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(59)
- Phenylketonuria:
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Phenylalanine and Tyrosine Metabolism:
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Phenylalanine and Tyrosine Metabolism:
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Tyrosinemia Type 3 (TYRO3):
Adenosine triphosphate + L-Tyrosine ⟶ Adenosine monophosphate + Pyrophosphate
- Tyrosinemia Type 2 (or Richner-Hanhart Syndrome):
Adenosine triphosphate + L-Tyrosine ⟶ Adenosine monophosphate + Pyrophosphate
- Phenylketonuria:
Adenosine triphosphate + L-Tyrosine ⟶ Adenosine monophosphate + Pyrophosphate
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Alkaptonuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Hawkinsinuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia Type I:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Disulfiram Action Pathway:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia, Transient, of the Newborn:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Dopamine beta-Hydroxylase Deficiency:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Monoamine Oxidase-A Deficiency (MAO-A):
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Plastoquinol-9 Biosynthesis:
L-Tyrosine + Oxoglutaric acid ⟶ 4-Hydroxyphenylpyruvic acid + L-Glutamic acid
- Isoquinoline Alkaloid Biosynthesis:
Dopamine + Oxygen + Water ⟶ 3,4-Dihydroxyphenylacetaldehyde + Ammonia + Hydrogen peroxide
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Alkaptonuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Hawkinsinuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia Type I:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia, Transient, of the Newborn:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Phenylketonuria:
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Monoamine Oxidase-A Deficiency (MAO-A):
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosine Biosynthesis:
4-Hydroxyphenylpyruvic acid + L-Glutamic acid ⟶ L-Tyrosine + Oxoglutaric acid
- Tyrosine Metabolism:
4-Hydroxyphenylpyruvic acid + L-Alanine ⟶ L-Tyrosine + Pyruvic acid
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosine Metabolism:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Alkaptonuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Hawkinsinuria:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia Type I:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosinemia, Transient, of the Newborn:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Dopamine beta-Hydroxylase Deficiency:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Monoamine Oxidase-A Deficiency (MAO-A):
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Tyrosine Metabolism:
4-Fumarylacetoacetic acid + Water ⟶ Acetoacetic acid + Fumaric acid + Hydrogen Ion
- Thiazole Biosynthesis I:
L-Tyrosine + NADPH + S-Adenosylmethionine ⟶ 4-Methylcatechol + 5'-Deoxyadenosine + Dehydroglycine + Hydrogen Ion + L-Methionine + NADP
- Phenylalanine and Tyrosine Metabolism:
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Tyrosinemia Type 2 (or Richner-Hanhart Syndrome):
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Tyrosinemia Type 3 (TYRO3):
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Phenylalanine Metabolism:
2-Oxo-3-phenylpropanoic acid (Mixture oxo and keto) + L-Tyrosine ⟶ 4-Hydroxyphenylpyruvic acid + L-Phenylalanine
- Phenylalanine and Tyrosine Metabolism:
Adenosine triphosphate + L-Tyrosine ⟶ Adenosine monophosphate + Pyrophosphate
- Catecholamine Biosynthesis:
Ascorbic acid + Dopamine + Oxygen ⟶ Dehydroascorbic acid + Norepinephrine + Water
- Aromatic L-Aminoacid Decarboxylase Deficiency:
Ascorbic acid + Dopamine + Oxygen ⟶ Dehydroascorbic acid + Norepinephrine + Water
- Tyrosine Hydroxylase Deficiency:
Ascorbic acid + Dopamine + Oxygen ⟶ Dehydroascorbic acid + Norepinephrine + Water
- tRNA Charging:
Adenosine triphosphate + Hydrogen Ion + L-Arginine ⟶ Adenosine monophosphate + Pyrophosphate
- tRNA Charging 2:
Adenosine triphosphate + Hydrogen Ion + L-Arginine ⟶ Adenosine monophosphate + Pyrophosphate
- Operon: Biosynthesis of Aromatic Amino Acids Inactivation:
L-Tyrosine + Transcriptional regulatory protein TyrR ⟶ Transcriptional regulatory protein TyrR
- Catecholamine Biosynthesis:
Ascorbic acid + Dopamine + Oxygen ⟶ Dehydroascorbic acid + Norepinephrine + Water
- Tyrosinemia Type 3 (TYRO3):
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Dopamine beta-Hydroxylase Deficiency:
Homovanillin + NADP + Water ⟶ NADPH + p-Hydroxyphenylacetic acid
- Protein Synthesis: Tyrosine:
Adenosine triphosphate + L-Tyrosine ⟶ Adenosine monophosphate + Pyrophosphate
- Protein Synthesis: Tyrosine:
Adenosine triphosphate + L-Tyrosine ⟶ Adenosine monophosphate + Pyrophosphate
- Protein Synthesis: Tyrosine:
Adenosine triphosphate + L-Tyrosine ⟶ Adenosine monophosphate + Pyrophosphate
- Aromatic L-Aminoacid Decarboxylase Deficiency:
Ascorbic acid + Dopamine + Oxygen ⟶ Dehydroascorbic acid + Norepinephrine + Water
- Tyrosine Hydroxylase Deficiency:
Ascorbic acid + Dopamine + Oxygen ⟶ Dehydroascorbic acid + Norepinephrine + Water
- tRNA Charging:
Adenosine triphosphate + Hydrogen Ion + L-Arginine ⟶ Adenosine monophosphate + Pyrophosphate
- tRNA Charging 2:
Adenosine triphosphate + Hydrogen Ion + L-Arginine ⟶ Adenosine monophosphate + Pyrophosphate
- Tyrosinemia Type 2 (or Richner-Hanhart Syndrome):
Adenosine triphosphate + L-Phenylalanine ⟶ Adenosine monophosphate + Pyrophosphate
- Protein Synthesis: Tyrosine:
Adenosine triphosphate + L-Tyrosine ⟶ Adenosine monophosphate + Pyrophosphate
PharmGKB(0)
488 个相关的物种来源信息
- 3319 - Abies: LTS0029981
- 90345 - Abies balsamea: 10.1016/S0021-9673(01)97854-9
- 90345 - Abies balsamea: LTS0029981
- 4185 - Acanthaceae: LTS0029981
- 186623 - Actinopteri: LTS0029981
- 7898 - Actinopterygii: LTS0029981
- 5339 - Agaricaceae: LTS0029981
- 155619 - Agaricomycetes: LTS0029981
- 5340 - Agaricus: LTS0029981
- 56157 - Agaricus campestris: 10.1021/JF60199A047
- 56157 - Agaricus campestris: LTS0029981
- 65355 - Albuginaceae: LTS0029981
- 65356 - Albugo: LTS0029981
- 65357 - Albugo candida: LTS0029981
- 4449 - Alismataceae: LTS0029981
- 4678 - Allium: LTS0029981
- 4682 - Allium sativum: 10.1016/0378-8741(96)01416-X
- 4682 - Allium sativum: LTS0029981
- 4683 - Allium tuberosum: 10.1007/BF02857761
- 4683 - Allium tuberosum: 10.1016/S0031-9422(01)00216-3
- 4683 - Allium tuberosum: LTS0029981
- 94326 - Alpinia: LTS0029981
- 94327 - Alpinia galanga: 10.1016/0305-1978(86)90092-X
- 94327 - Alpinia galanga: LTS0029981
- 230707 - Alpinia purpurata: 10.1016/0305-1978(86)90092-X
- 230707 - Alpinia purpurata: LTS0029981
- 3563 - Amaranthaceae: LTS0029981
- 4668 - Amaryllidaceae: LTS0029981
- 8292 - Amphibia: LTS0029981
- 4614 - Ananas: LTS0029981
- 4615 - Ananas comosus: 10.1016/0305-1978(86)90092-X
- 4615 - Ananas comosus: 10.1111/J.1365-2621.2002.TB11376.X
- 4615 - Ananas comosus: LTS0029981
- 4150 - Antirrhinum: LTS0029981
- 4151 - Antirrhinum majus: 10.1055/S-0028-1097736
- 4151 - Antirrhinum majus: LTS0029981
- 4037 - Apiaceae: LTS0029981
- 3701 - Arabidopsis: LTS0029981
- 3702 - Arabidopsis thaliana: 10.1104/PP.109.148031
- 3702 - Arabidopsis thaliana: 10.1104/PP.114.240986
- 3702 - Arabidopsis thaliana: LTS0029981
- 4454 - Araceae: LTS0029981
- 4050 - Araliaceae: LTS0029981
- 131254 - Archontophoenix: LTS0029981
- 180981 - Archontophoenix alexandrae: 10.1016/0305-1978(86)90092-X
- 180981 - Archontophoenix alexandrae: LTS0029981
- 115440 - Areca: LTS0029981
- 184783 - Areca catechu: 10.1016/0305-1978(86)90092-X
- 184783 - Areca catechu: LTS0029981
- 4710 - Arecaceae: LTS0029981
- 6660 - Artemia: LTS0029981
- 85549 - Artemia salina: 10.1021/JF60200A008
- 85549 - Artemia salina: LTS0029981
- 38009 - Artemiidae: LTS0029981
- 6656 - Arthropoda: LTS0029981
- 4890 - Ascomycota: LTS0029981
- 40552 - Asparagaceae: LTS0029981
- 4210 - Asteraceae: LTS0029981
- 33849 - Bacillariophyceae: LTS0029981
- 2836 - Bacillariophyta: LTS0029981
- 91061 - Bacilli: LTS0029981
- 2 - Bacteria: LTS0029981
- 5204 - Basidiomycota: LTS0029981
- 6544 - Bivalvia: LTS0029981
- 6974 - Blattidae: LTS0029981
- 6658 - Branchiopoda: LTS0029981
- 3705 - Brassica: LTS0029981
- 3708 - Brassica napus: 10.1021/JF00011A007
- 3708 - Brassica napus: LTS0029981
- 3700 - Brassicaceae: LTS0029981
- 4613 - Bromeliaceae: LTS0029981
- 37796 - Buccinidae: LTS0029981
- 3593 - Cactaceae: LTS0029981
- 41495 - Calendula: LTS0029981
- 41496 - Calendula officinalis: 10.29296/25877313-2018-06-01
- 41496 - Calendula officinalis: LTS0029981
- 505396 - Callistoctopus: LTS0029981
- 257541 - Callistoctopus macropus: 10.3109/13813452109144186
- 257541 - Callistoctopus macropus: LTS0029981
- 5475 - Candida: LTS0029981
- 5476 - Candida albicans: LTS0029981
- 3481 - Cannabaceae: LTS0029981
- 3482 - Cannabis: LTS0029981
- 3483 - Cannabis sativa: 10.1021/NP50008A001
- 3483 - Cannabis sativa: LTS0029981
- 3568 - Caryophyllaceae: LTS0029981
- 21019 - Castanea: LTS0029981
- 21020 - Castanea sativa: 10.1016/S0031-9422(00)83785-1
- 21020 - Castanea sativa: LTS0029981
- 123403 - Catha: LTS0029981
- 123405 - Catha edulis: 10.1002/ARDP.19602931105
- 123405 - Catha edulis: LTS0029981
- 4305 - Celastraceae: LTS0029981
- 8184 - Centropomidae: LTS0029981
- 6605 - Cephalopoda: LTS0029981
- 1804623 - Chenopodiaceae: LTS0029981
- 3051 - Chlamydomonadaceae: LTS0029981
- 3052 - Chlamydomonas: LTS0029981
- 3055 - Chlamydomonas reinhardtii: 10.1111/TPJ.12747
- 3055 - Chlamydomonas reinhardtii: LTS0029981
- 3166 - Chlorophyceae: LTS0029981
- 3041 - Chlorophyta: LTS0029981
- 7711 - Chordata: LTS0029981
- 1890464 - Chroococcaceae: LTS0029981
- 5110 - Claviceps: LTS0029981
- 40602 - Claviceps fusiformis: LTS0029981
- 5111 - Claviceps purpurea: 10.1055/S-0028-1100051
- 5111 - Claviceps purpurea: 10.1055/S-2007-969195
- 5111 - Claviceps purpurea: LTS0029981
- 34397 - Clavicipitaceae: LTS0029981
- 13893 - Cocos: LTS0029981
- 13894 - Cocos nucifera: 10.1016/0305-1978(86)90092-X
- 13894 - Cocos nucifera: LTS0029981
- 41218 - Colchicaceae: LTS0029981
- 13444 - Colchicum: LTS0029981
- 1094124 - Colchicum trigynum: 10.1055/S-0028-1097874
- 1094124 - Colchicum trigynum: LTS0029981
- 4743 - Commelina: LTS0029981
- 4740 - Commelinaceae: LTS0029981
- 3441 - Coptis: LTS0029981
- 3442 - Coptis japonica: 10.1016/S0031-9422(00)89789-7
- 3442 - Coptis japonica: LTS0029981
- 33836 - Coscinodiscophyceae: LTS0029981
- 3660 - Cucurbita: LTS0029981
- 184136 - Cucurbita foetidissima: 10.1021/JF60216A022
- 184136 - Cucurbita foetidissima: LTS0029981
- 3650 - Cucurbitaceae: LTS0029981
- 3367 - Cupressaceae: LTS0029981
- 3028117 - Cyanophyceae: LTS0029981
- 4609 - Cyperaceae: LTS0029981
- 4610 - Cyperus: LTS0029981
- 1234190 - Cyperus aromaticus: 10.1016/0305-1978(86)90092-X
- 1234190 - Cyperus aromaticus: LTS0029981
- 6668 - Daphnia: LTS0029981
- 6669 - Daphnia pulex: 10.1038/SREP25125
- 6669 - Daphnia pulex: LTS0029981
- 77658 - Daphniidae: LTS0029981
- 4038 - Daucus: LTS0029981
- 4039 - Daucus carota: 10.1016/0008-6215(84)85339-2
- 4039 - Daucus carota: 10.1079/9781780642635.0298
- 4039 - Daucus carota: LTS0029981
- 766764 - Debaryomycetaceae: LTS0029981
- 37818 - Dendrobium: LTS0029981
- 51096 - Dendrobium crumenatum: 10.1016/0305-1978(86)90092-X
- 51096 - Dendrobium crumenatum: LTS0029981
- 6970 - Dictyoptera: LTS0029981
- 42195 - Dieffenbachia: LTS0029981
- 4671 - Dioscoreaceae: LTS0029981
- 44615 - Discinaceae: LTS0029981
- 40129 - Donax: LTS0029981
- 96514 - Donax canniformis: 10.1016/0305-1978(86)90092-X
- 96514 - Donax canniformis: LTS0029981
- 210034 - Donax grandis: 10.1016/0305-1978(86)90092-X
- 210034 - Donax grandis: LTS0029981
- 147541 - Dothideomycetes: LTS0029981
- 543 - Enterobacteriaceae: LTS0029981
- 174214 - Epipremnum: LTS0029981
- 78380 - Epipremnum aureum: 10.1016/0305-1978(86)90092-X
- 78380 - Epipremnum aureum: LTS0029981
- 258264 - Epipremnum pinnatum: 10.1016/0305-1978(86)90092-X
- 258264 - Epipremnum pinnatum: LTS0029981
- 561 - Escherichia: LTS0029981
- 562 - Escherichia coli: LTS0029981
- 33682 - Euglenozoa: LTS0029981
- 2759 - Eukaryota: LTS0029981
- 3977 - Euphorbiaceae: LTS0029981
- 3803 - Fabaceae: LTS0029981
- 3503 - Fagaceae: LTS0029981
- 38944 - Flammulina: LTS0029981
- 38945 - Flammulina velutipes: 10.1111/J.1365-2621.1987.TB13989.X
- 38945 - Flammulina velutipes: LTS0029981
- 4751 - Fungi: LTS0029981
- 1236 - Gammaproteobacteria: LTS0029981
- 5314 - Ganoderma: LTS0029981
- 5315 - Ganoderma lucidum: LTS0029981
- 6448 - Gastropoda: LTS0029981
- 3310 - Ginkgo: LTS0029981
- 3311 - Ginkgo biloba: 10.1016/S0731-7085(98)00094-6
- 3311 - Ginkgo biloba: LTS0029981
- 3309 - Ginkgoaceae: LTS0029981
- 29811 - Ginkgoopsida: LTS0029981
- 41219 - Gloriosa: LTS0029981
- 41220 - Gloriosa superba: 10.1016/0305-1978(86)90092-X
- 41220 - Gloriosa superba: LTS0029981
- 3846 - Glycine: LTS0029981
- 3847 - Glycine max: 10.1007/BF00576124
- 3847 - Glycine max: LTS0029981
- 33160 - Gyromitra: LTS0029981
- 33161 - Gyromitra esculenta: 10.1021/JF60199A047
- 33161 - Gyromitra esculenta: LTS0029981
- 4051 - Hedera: LTS0029981
- 4052 - Hedera helix: 10.1016/S0731-7085(98)00094-6
- 4052 - Hedera helix: LTS0029981
- 85353 - Hedera hibernica: 10.1016/S0731-7085(98)00094-6
- 85353 - Hedera hibernica: LTS0029981
- 9604 - Hominidae: LTS0029981
- 9605 - Homo: LTS0029981
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1038/NBT.2488
- 9606 - Homo sapiens: LTS0029981
- 51023 - Hydrilla: LTS0029981
- 51024 - Hydrilla verticillata: 10.1016/0305-1978(86)90092-X
- 51024 - Hydrilla verticillata: LTS0029981
- 26319 - Hydrocharitaceae: LTS0029981
- 8418 - Hylidae: LTS0029981
- 20685 - Indigofera: LTS0029981
- 520844 - Indigofera hendecaphylla: 10.1021/JF60189A002
- 520844 - Indigofera hendecaphylla: LTS0029981
- 539088 - Indigofera hirsuta: 10.1021/JF60189A002
- 539088 - Indigofera hirsuta: LTS0029981
- 3089969 - Indigofera pilosa: LTS0029981
- 138272 - Indigofera schimperi: 10.1021/JF60189A002
- 138272 - Indigofera schimperi: LTS0029981
- 162809 - Inga: LTS0029981
- 487684 - Inga laurina: 10.1021/NP060491M
- 487684 - Inga laurina: LTS0029981
- 50557 - Insecta: LTS0029981
- 304104 - Iochroma: LTS0029981
- 304105 - Iochroma fuchsioides: 10.1021/NP50078A017
- 304105 - Iochroma fuchsioides: LTS0029981
- 14101 - Juncaceae: LTS0029981
- 13578 - Juncus: LTS0029981
- 879918 - Juncus roemerianus: 10.18785/GRR.0602.07
- 879918 - Juncus roemerianus: LTS0029981
- 13100 - Juniperus: LTS0029981
- 58039 - Juniperus communis: LTS0029981
- 244307 - Juniperus communis var. communis: 10.1016/S0021-9673(01)97854-9
- 244307 - Juniperus communis var. communis: LTS0029981
- 114265 - Juniperus occidentalis: 10.1016/S0021-9673(01)97854-9
- 114265 - Juniperus occidentalis: LTS0029981
- 5653 - Kinetoplastea: LTS0029981
- 4136 - Lamiaceae: LTS0029981
- 87005 - Lantana: LTS0029981
- 126435 - Lantana camara: 10.1079/9781780642635.0298
- 126435 - Lantana camara: LTS0029981
- 8186 - Lates: LTS0029981
- 8187 - Lates calcarifer: 10.3389/FPHYS.2020.00205
- 8187 - Lates calcarifer: LTS0029981
- 147548 - Leotiomycetes: LTS0029981
- 4447 - Liliopsida: LTS0029981
- 8370 - Litoria: LTS0029981
- 681275 - Litoria verreauxii: 10.1038/SDATA.2018.33
- 681275 - Litoria verreauxii: LTS0029981
- 3867 - Lotus: LTS0029981
- 47247 - Lotus corniculatus: LTS0029981
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-3040.2009.02047.X
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-313X.2007.03381.X
- 1211582 - Lotus corniculatus subsp. corniculatus: LTS0029981
- 1006597 - Loxocalyx: LTS0029981
- 1898870 - Loxocalyx urticifolius: 10.1002/CHIN.200610214
- 1898870 - Loxocalyx urticifolius: LTS0029981
- 3869 - Lupinus: LTS0029981
- 3870 - Lupinus albus: 10.1515/BCHM2.1906.48.5.387
- 3870 - Lupinus albus: LTS0029981
- 56856 - Macleaya: LTS0029981
- 56857 - Macleaya cordata: 10.1016/J.MOLP.2017.05.007
- 56857 - Macleaya cordata: LTS0029981
- 3398 - Magnoliopsida: LTS0029981
- 3629 - Malvaceae: LTS0029981
- 40674 - Mammalia: LTS0029981
- 3982 - Manihot: LTS0029981
- 3983 - Manihot esculenta: 10.1016/0021-9673(93)80301-N
- 3983 - Manihot esculenta: LTS0029981
- 4619 - Marantaceae: LTS0029981
- 589449 - Mediophyceae: LTS0029981
- 1890428 - Merismopediaceae: LTS0029981
- 33208 - Metazoa: LTS0029981
- 6447 - Mollusca: LTS0029981
- 3487 - Moraceae: LTS0029981
- 5193 - Morchella: LTS0029981
- 60347 - Morchella angusticeps: 10.1021/JF60199A047
- 60347 - Morchella angusticeps: LTS0029981
- 62754 - Morchella crassipes: 10.1021/JF60199A047
- 62754 - Morchella crassipes: LTS0029981
- 1579548 - Morchella deliciosa: 10.1021/JF60199A047
- 1579548 - Morchella deliciosa: LTS0029981
- 39407 - Morchella esculenta: 10.1021/JF60199A047
- 39407 - Morchella esculenta: LTS0029981
- 5192 - Morchellaceae: LTS0029981
- 168074 - Murdannia: LTS0029981
- 428249 - Murdannia nudiflora: 10.1016/0305-1978(86)90092-X
- 428249 - Murdannia nudiflora: LTS0029981
- 10066 - Muridae: LTS0029981
- 10088 - Mus: LTS0029981
- 10090 - Mus musculus: LTS0029981
- 10090 - Mus musculus: NA
- 4640 - Musa: LTS0029981
- 4641 - Musa acuminata: LTS0029981
- 258441 - Musa acuminata subsp. acuminata: 10.1021/JF9909860
- 258441 - Musa acuminata subsp. acuminata: LTS0029981
- 89151 - Musa × paradisiaca: 10.1016/0305-1978(86)90092-X
- 4637 - Musaceae: LTS0029981
- 37240 - Myxotrichaceae: LTS0029981
- 78133 - Myxotrichum: 10.1016/0305-1978(86)90092-X
- 78133 - Myxotrichum: LTS0029981
- 57632 - Neptunea: LTS0029981
- 167137 - Neptunea antiqua: 10.1016/0041-0101(89)90038-X
- 167137 - Neptunea antiqua: LTS0029981
- 4085 - Nicotiana: LTS0029981
- 4097 - Nicotiana tabacum: 10.1007/BF02660305
- 4097 - Nicotiana tabacum: LTS0029981
- 2696291 - Ochrophyta: LTS0029981
- 6647 - Octopodidae: LTS0029981
- 6643 - Octopus: LTS0029981
- 42451 - Onchidiidae: LTS0029981
- 69681 - Onchidium: 10.1016/0305-1978(86)90092-X
- 69681 - Onchidium: LTS0029981
- 45173 - Oncidium: 10.1016/0305-1978(86)90092-X
- 45173 - Oncidium: LTS0029981
- 4762 - Oomycota: LTS0029981
- 106975 - Opuntia: LTS0029981
- 371859 - Opuntia ficus-indica: 10.1055/S-1999-14037
- 371859 - Opuntia ficus-indica: LTS0029981
- 446152 - Opuntia humifusa: LTS0029981
- 4747 - Orchidaceae: LTS0029981
- 4527 - Oryza: LTS0029981
- 4053 - Panax: LTS0029981
- 4054 - Panax ginseng: 10.1021/JF00093A051
- 4054 - Panax ginseng: LTS0029981
- 4724 - Pandanaceae: LTS0029981
- 4725 - Pandanus: LTS0029981
- 1165086 - Pandanus odorifer: 10.1016/0305-1978(86)90092-X
- 1165086 - Pandanus odorifer: LTS0029981
- 3465 - Papaveraceae: LTS0029981
- 3684 - Passiflora: LTS0029981
- 159425 - Passiflora incarnata: 10.1007/BF00563657
- 159425 - Passiflora incarnata: LTS0029981
- 3683 - Passifloraceae: LTS0029981
- 59064 - Peliosanthes: LTS0029981
- 148715 - Pentaclethra: LTS0029981
- 148716 - Pentaclethra macrophylla: 10.1007/BF02666050
- 148716 - Pentaclethra macrophylla: LTS0029981
- 6977 - Periplaneta: LTS0029981
- 6978 - Periplaneta americana: 10.1016/S0021-9673(01)95373-7
- 6978 - Periplaneta americana: LTS0029981
- 147549 - Pezizomycetes: LTS0029981
- 15747 - Phyllostachys: LTS0029981
- 38705 - Phyllostachys edulis: 10.1111/J.1365-2621.1983.TB14934.X
- 38705 - Phyllostachys edulis: LTS0029981
- 862241 - Physalacriaceae: LTS0029981
- 3328 - Picea: LTS0029981
- 3330 - Picea glauca: 10.1016/S0021-9673(01)97854-9
- 3330 - Picea glauca: LTS0029981
- 3335 - Picea mariana: 10.1016/S0021-9673(01)97854-9
- 3335 - Picea mariana: LTS0029981
- 3331 - Picea pungens: 10.1016/S0021-9673(01)97854-9
- 3331 - Picea pungens: LTS0029981
- 3318 - Pinaceae: LTS0029981
- 102330 - Pinna: LTS0029981
- 111169 - Pinna nobilis: 10.1515/BCHM2.1908.55.3-4.236
- 111169 - Pinna nobilis: LTS0029981
- 44599 - Pinnidae: LTS0029981
- 58019 - Pinopsida: LTS0029981
- 3337 - Pinus: LTS0029981
- 3339 - Pinus contorta: 10.1016/S0021-9673(01)97854-9
- 3339 - Pinus contorta: LTS0029981
- 77912 - Pinus densiflora: 10.1248/YAKUSHI1947.107.4_279
- 77912 - Pinus densiflora: LTS0029981
- 55062 - Pinus ponderosa: 10.1016/S0021-9673(01)97854-9
- 55062 - Pinus ponderosa: 10.1034/J.1399-3054.1990.790104.X
- 55062 - Pinus ponderosa: LTS0029981
- 3887 - Pisum: LTS0029981
- 3888 - Pisum sativum: 10.1007/BF00574236
- 3888 - Pisum sativum: LTS0029981
- 208194 - Pisum sativum subsp. sativum: 10.1007/BF00574236
- 208194 - Pisum sativum subsp. sativum: LTS0029981
- 156152 - Plantaginaceae: LTS0029981
- 4479 - Poaceae: LTS0029981
- 5317 - Polyporaceae: LTS0029981
- 16367 - Pontederiaceae: LTS0029981
- 1214 - Prochloron: LTS0029981
- 3754 - Prunus: LTS0029981
- 3758 - Prunus domestica: 10.1021/JF00017A016
- 3758 - Prunus domestica: LTS0029981
- 135621 - Pseudomonadaceae: LTS0029981
- 286 - Pseudomonas: LTS0029981
- 287 - Pseudomonas aeruginosa: LTS0029981
- 3356 - Pseudotsuga: LTS0029981
- 3357 - Pseudotsuga menziesii: 10.1016/S0021-9673(01)97854-9
- 3357 - Pseudotsuga menziesii: LTS0029981
- 3889 - Psophocarpus: LTS0029981
- 3891 - Psophocarpus tetragonolobus: 10.1111/J.1365-2621.1985.TB10514.X
- 3891 - Psophocarpus tetragonolobus: LTS0029981
- 5296 - Puccinia: LTS0029981
- 5297 - Puccinia graminis: 10.1139/V60-033
- 5297 - Puccinia graminis: LTS0029981
- 5262 - Pucciniaceae: LTS0029981
- 162484 - Pucciniomycetes: LTS0029981
- 3440 - Ranunculaceae: LTS0029981
- 46332 - Rhynchospora: LTS0029981
- 906937 - Rhynchospora colorata: 10.1016/0305-1978(86)90092-X
- 906937 - Rhynchospora colorata: LTS0029981
- 2872799 - Ripariosida: LTS0029981
- 108447 - Ripariosida hermaphrodita: LTS0029981
- 3764 - Rosa: LTS0029981
- 3745 - Rosaceae: LTS0029981
- 24966 - Rubiaceae: LTS0029981
- 13659 - Ruellia: LTS0029981
- 441035 - Ruellia tuberosa: 10.1079/9781780642635.0298
- 441035 - Ruellia tuberosa: LTS0029981
- 4891 - Saccharomycetes: LTS0029981
- 4450 - Sagittaria: LTS0029981
- 4451 - Sagittaria sagittifolia: 10.1016/0305-1978(86)90092-X
- 4451 - Sagittaria sagittifolia: LTS0029981
- 590 - Salmonella: LTS0029981
- 28901 - Salmonella enterica: 10.1039/C3MB25598K
- 28901 - Salmonella enterica: LTS0029981
- 77655 - Sida: LTS0029981
- 108447 - Sida hermaphrodita: 10.1007/BF00607552
- 4070 - Solanaceae: LTS0029981
- 147550 - Sordariomycetes: LTS0029981
- 35916 - Spermacoce: LTS0029981
- 2491924 - Spermacoce pusilla: 10.4268/CJCMM20120313
- 2491924 - Spermacoce pusilla: LTS0029981
- 90964 - Staphylococcaceae: LTS0029981
- 1279 - Staphylococcus: LTS0029981
- 1280 - Staphylococcus aureus: LTS0029981
- 13273 - Stellaria: LTS0029981
- 13274 - Stellaria media: 10.1007/S10600-010-9710-6
- 13274 - Stellaria media: LTS0029981
- 1883 - Streptomyces: LTS0029981
- 67255 - Streptomyces achromogenes: 10.1021/BI00662A019
- 67255 - Streptomyces achromogenes: LTS0029981
- 1923 - Streptomyces phaeochromogenes: 10.1021/BI00662A019
- 1923 - Streptomyces phaeochromogenes: LTS0029981
- 223296 - Streptomyces refuineus: LTS0029981
- 223297 - Streptomyces refuineus subsp. thermotolerans: 10.1021/BI00662A019
- 223297 - Streptomyces refuineus subsp. thermotolerans: LTS0029981
- 2062 - Streptomycetaceae: LTS0029981
- 35493 - Streptophyta: LTS0029981
- 46108 - Suaeda: LTS0029981
- 224153 - Suaeda aegyptiaca: 10.4197/SCI.16-1.4
- 224153 - Suaeda aegyptiaca: LTS0029981
- 1142 - Synechocystis: 10.1104/PP.108.129403
- 1142 - Synechocystis: LTS0029981
- 44981 - Tacca: LTS0029981
- 2487666 - Tacca cristata: 10.1016/0305-1978(86)90092-X
- 2487666 - Tacca cristata: LTS0029981
- 167567 - Tacca integrifolia: 10.1016/0305-1978(86)90092-X
- 167567 - Tacca integrifolia: LTS0029981
- 1898022 - Taccaceae: LTS0029981
- 56538 - Telekia: LTS0029981
- 56539 - Telekia speciosa: 10.1007/BF00633415
- 56539 - Telekia speciosa: LTS0029981
- 32443 - Teleostei: LTS0029981
- 35127 - Thalassiosira: LTS0029981
- 35128 - Thalassiosira pseudonana: 10.1016/J.PROTIS.2019.05.004
- 35128 - Thalassiosira pseudonana: LTS0029981
- 29202 - Thalassiosiraceae: LTS0029981
- 49990 - Thymus: LTS0029981
- 2019959 - Thymus transcaucasicus: 10.1007/BF00575075
- 2019959 - Thymus transcaucasicus: LTS0029981
- 58023 - Tracheophyta: LTS0029981
- 4741 - Tradescantia: LTS0029981
- 428268 - Tradescantia spathacea: 10.1016/0305-1978(86)90092-X
- 428268 - Tradescantia spathacea: LTS0029981
- 709071 - Treculia: LTS0029981
- 709072 - Treculia africana: 10.1007/BF02666050
- 709072 - Treculia africana: LTS0029981
- 4564 - Triticum: LTS0029981
- 4565 - Triticum aestivum: 10.1016/S0021-9673(01)86974-0
- 4565 - Triticum aestivum: LTS0029981
- 5690 - Trypanosoma: LTS0029981
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 5691 - Trypanosoma brucei: LTS0029981
- 5654 - Trypanosomatidae: LTS0029981
- 3358 - Tsuga: LTS0029981
- 3359 - Tsuga heterophylla: 10.1016/S0021-9673(01)97854-9
- 3359 - Tsuga heterophylla: LTS0029981
- 3118 - Ulva: LTS0029981
- 63410 - Ulva lactuca: 10.1016/S0031-9422(98)00754-7
- 63410 - Ulva lactuca: LTS0029981
- 3114 - Ulvaceae: LTS0029981
- 33103 - Ulvophyceae: LTS0029981
- 21910 - Verbenaceae: LTS0029981
- 44607 - Verpa: LTS0029981
- 44609 - Verpa bohemica: 10.1021/JF60199A047
- 44609 - Verpa bohemica: LTS0029981
- 3913 - Vigna: LTS0029981
- 157791 - Vigna Radiata: -
- 157791 - Vigna radiata: 10.1104/PP.64.5.727
- 157791 - Vigna radiata: LTS0029981
- 3917 - Vigna unguiculata: LTS0029981
- 3920 - Vigna unguiculata subsp. unguiculata: LTS0029981
- 33090 - Viridiplantae: LTS0029981
- 4642 - Zingiberaceae: LTS0029981
- 33090 - 百脉根: -
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Kimberly N Karin, Mohammed A Mustafa, Justin L Poklis, Belle Buzzi, Joel E Schlosburg, Linda Parker, M Imad Damaj, Aron H Lichtman. N-oleoyl alanine attenuates nicotine reward and spontaneous nicotine withdrawal in mice.
Drug and alcohol dependence.
2024 Jun; 259(?):111276. doi:
10.1016/j.drugalcdep.2024.111276
. [PMID: 38676968] - Srihari Shankar, Ti Weng Chew, Vishnu Priyanka Reddy Chichili, Boon Chuan Low, J Sivaraman. Structural basis for the distinct roles of non-conserved Pro116 and conserved Tyr124 of BCH domain of yeast p50RhoGAP.
Cellular and molecular life sciences : CMLS.
2024 May; 81(1):216. doi:
10.1007/s00018-024-05238-8
. [PMID: 38740643] - Hao Huang, Ying Wei, Shaojun Huang, Shijian Lu, Huasheng Su, Liuhui Ma, Weiping Huang. Integrated metabolomic and transcriptomic analyses provide insights into regulation mechanisms during bulbous stem development in the Chinese medicinal herb plant, Stephania kwangsiensis.
BMC plant biology.
2024 Apr; 24(1):276. doi:
10.1186/s12870-024-04956-2
. [PMID: 38605285] - Álvaro Pérez-Valero, Juan Serna-Diestro, Albert Tafur Rangel, Simona Barbuto Ferraiuolo, Chiara Schiraldi, Eduard J Kerkhoven, Claudio J Villar, Felipe Lombó. Biosynthesis of Hesperetin, Homoeriodictyol, and Homohesperetin in a Transcriptomics-Driven Engineered Strain of Streptomyces albidoflavus.
International journal of molecular sciences.
2024 Apr; 25(7):. doi:
10.3390/ijms25074053
. [PMID: 38612864] - Mette G B Pedersen, Nikolaj Rittig, Maj Bangshaab, Kristoffer Berg-Hansen, Nigopan Gopalasingam, Lars C Gormsen, Esben Søndergaard, Niels Møller. Effects of exogenous lactate on lipid, protein, and glucose metabolism-a randomized crossover trial in healthy males.
American journal of physiology. Endocrinology and metabolism.
2024 Apr; 326(4):E443-E453. doi:
10.1152/ajpendo.00301.2023
. [PMID: 38324259] - Chun Chu, Shengquan Liu, Liangui Nie, Hongming Hu, Yi Liu, Jun Yang. The interactions and biological pathways among metabolomics products of patients with coronary heart disease.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2024 Apr; 173(?):116305. doi:
10.1016/j.biopha.2024.116305
. [PMID: 38422653] - Alex H Crum, Lisa Philander, Lucas Busta, Ya Yang. Traditional medicinal use is linked with apparency, not specialized metabolite profiles in the order Caryophyllales.
American journal of botany.
2024 Apr; 111(4):e16308. doi:
10.1002/ajb2.16308
. [PMID: 38581167] - I-Tsu Chyuan, Hsiu-Jung Liao, Tse-Hua Tan, Huai-Chia Chuang, Yu-Chuan Chu, Meng-Hsun Pan, Chien-Sheng Wu, Ching-Liang Chu, Bor-Ching Sheu, Ping-Ning Hsu. Association of TRAIL receptor with phosphatase SHP-1 enables repressing T cell receptor signaling and T cell activation through inactivating Lck.
Journal of biomedical science.
2024 Mar; 31(1):33. doi:
10.1186/s12929-024-01023-8
. [PMID: 38532423] - Tim Schäfer, Fabian Haun, Markus Gressler, Peter Spiteller, Dirk Hoffmeister. Parallel Evolution of Asco- and Basidiomycete O-Prenyltransferases.
Journal of natural products.
2024 Mar; 87(3):576-582. doi:
10.1021/acs.jnatprod.3c01120
. [PMID: 38231181] - Kateryna Kukil, Pia Lindberg. Metabolic engineering of Synechocystis sp. PCC 6803 for the improved production of phenylpropanoids.
Microbial cell factories.
2024 Feb; 23(1):57. doi:
10.1186/s12934-024-02330-3
. [PMID: 38369470] - Abhijith G Karkisaval, Rowan Hassan, Andrew Nguyen, Benjamin Balster, Faisal Abedin, Ratnesh Lal, Suren A Tatulian. The structure of tyrosine-10 favors ionic conductance of Alzheimer's disease-associated full-length amyloid-β channels.
Nature communications.
2024 Feb; 15(1):1296. doi:
10.1038/s41467-023-43821-y
. [PMID: 38351257] - Nishanthika Thenmozhi Kulasekaran, Mary Leema Thilakam, Dharani Gopal, Jung-Kul Lee, Jeya Marimuthu. Denovo production of resveratrol by engineered Saccharomyces cerevisiae W303-1a using pretreated Gracilaria corticata extracts.
Biotechnology letters.
2024 Feb; 46(1):19-28. doi:
10.1007/s10529-023-03441-4
. [PMID: 37987932] - Mohammed Bouhadi, Oussama Abchir, Imane Yamari, Amal El Hamsas El Youbi, Anas Azgaoui, Samir Chtita, Houda El Hajjouji, M'hammed El Kouali, Mohammed Talbi, Hassan Fougrach. Genotoxic effects and mitosis aberrations of chromium (VI) on root cells of Vicia faba and its molecular docking analysis.
Plant physiology and biochemistry : PPB.
2024 Feb; 207(?):108361. doi:
10.1016/j.plaphy.2024.108361
. [PMID: 38237423] - Jingjing Shi, Jiawei Zhang, Dan Sun, Leifei Zhao, Yao Chi, Caiqiu Gao, Yucheng Wang, Chao Wang. Protein profile analysis of tension wood development in response to artificial bending and gravitational stimuli in Betula platyphylla.
Plant science : an international journal of experimental plant biology.
2024 Feb; 339(?):111957. doi:
10.1016/j.plantsci.2023.111957
. [PMID: 38122834] - Xiaoxia Wang, Chenping Kang, Wanqian Guo, Lilan Yuan, Haoran Zhang, Qiong Zhang, Qianqian Xiao, Weidong Hao. Chlormequat chloride induced activation of calmodulin mediated PI3K/AKT signaling pathway led to impaired sperm quality in pubertal mice.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2024 Jan; 185(?):114475. doi:
10.1016/j.fct.2024.114475
. [PMID: 38286265] - Anna Szuba-Trznadel, Anna Jama-Rodzeńska, Bernard Gałka, Rafał Ramut, Zygmunt Król, Daniel Jarki, Dragana Latković. The impact of the distribution method for struvite (Crystal Green) on the chemical composition of soybean and their utility in animal nutrition.
Scientific reports.
2024 01; 14(1):1093. doi:
10.1038/s41598-024-51625-3
. [PMID: 38212440] - Shugao Fan, Xiao Xu, Jianmin Chen, Yanling Yin, Ying Zhao. Genome-wide identification, characterization, and expression analysis of m6A readers-YTH domain-containing genes in alfalfa.
BMC genomics.
2024 Jan; 25(1):18. doi:
10.1186/s12864-023-09926-w
. [PMID: 38166738] - Xiurong Yang, Shuangyong Yan, Guangsheng Li, Yuejiao Li, Junling Li, Zhongqiu Cui, Shuqin Sun, Jianfei Huo, Yue Sun. Rice-Magnaporthe oryzae interactions in resistant and susceptible rice cultivars under panicle blast infection based on defense-related enzyme activities and metabolomics.
PloS one.
2024; 19(3):e0299999. doi:
10.1371/journal.pone.0299999
. [PMID: 38451992] - Peter Lüth, Henry Sila Nzioki, Claire Sands Baker, David Chandler Sands. A microbial bioherbicide for Striga hermonthica control: production, development, and effectiveness of a seed coating agent.
Pest management science.
2024 Jan; 80(1):149-155. doi:
10.1002/ps.7522
. [PMID: 37139834] - Zeyu Wang, Yanchao Yang, Sirui Li, Weihua Ma, Kui Wang, Mario Soberón, Shuo Yan, Jie Shen, Frederic Francis, Alejandra Bravo, Jie Zhang. JAK/STAT signaling regulated intestinal regeneration defends insect pests against pore-forming toxins produced by Bacillus thuringiensis.
PLoS pathogens.
2024 Jan; 20(1):e1011823. doi:
10.1371/journal.ppat.1011823
. [PMID: 38236820] - Wen-Yu Peng, Bizunesh Abere, Haibin Shi, Sabrina Toland, Thomas E Smithgall, Patrick S Moore, Yuan Chang. Membrane-bound Merkel cell polyomavirus middle T protein constitutively activates PLCγ1 signaling through Src-family kinases.
Proceedings of the National Academy of Sciences of the United States of America.
2023 Dec; 120(51):e2316467120. doi:
10.1073/pnas.2316467120
. [PMID: 38079542] - Jinxia Wu, Zhenchang Li, Hongwei Zhu, Yajie Chang, Quanquan Li, Jing Chen, Guiping Shen, Jianghua Feng. Childhood overweight and obesity: age stratification contributes to the differences in metabolic characteristics.
Obesity (Silver Spring, Md.).
2023 Dec; ?(?):. doi:
10.1002/oby.23964
. [PMID: 38112246] - Martiniano Maria Ricardi, Niklas Wallmeroth, Cecilia Cermesoni, Dietmar Gerald Mehlhorn, Sandra Richter, Lei Zhang, Josephine Mittendorf, Ingeborg Godehardt, Kenneth Wayne Berendzen, Edda von Roepenack-Lahaye, York-Dieter Stierhof, Volker Lipka, Gerd Jürgens, Christopher Grefen. A tyrosine phospho-switch within the Longin domain of VAMP721 modulates SNARE functionality.
The Plant journal : for cell and molecular biology.
2023 Dec; 116(6):1633-1651. doi:
10.1111/tpj.16451
. [PMID: 37659090] - Jin Su, Youqing Dong, Xinran Yu, Limin Zhang, Wen Li. Exploring the mechanism of action of total glucosides of paeony against autoimmune thyroiditis based on network pharmacology and molecular docking.
Medicine.
2023 Dec; 102(48):e36290. doi:
10.1097/md.0000000000036290
. [PMID: 38050229] - Jorge El-Azaz, Bethany Moore, Yuri Takeda-Kimura, Ryo Yokoyama, Micha Wijesingha Ahchige, Xuan Chen, Matthew Schneider, Hiroshi A Maeda. Coordinated regulation of the entry and exit steps of aromatic amino acid biosynthesis supports the dual lignin pathway in grasses.
Nature communications.
2023 11; 14(1):7242. doi:
10.1038/s41467-023-42587-7
. [PMID: 37945591] - Huitong Zhou, Wenhao Li, Lingrong Bai, Jiqing Wang, Yuzhu Luo, Shaobin Li, Jonathan G H Hickford. Ovine KRTAP36-2: A New Keratin-Associated Protein Gene Related to Variation in Wool Yield.
Genes.
2023 Nov; 14(11):. doi:
10.3390/genes14112045
. [PMID: 38002988] - Ke Yi, Huimin Kong, Chunxiong Zheng, Chenya Zhuo, Yuanyuan Jin, Qingguo Zhong, Rachel L Mintz, Enguo Ju, Haixia Wang, Shixian Lv, Yeh-Hsing Lao, Yu Tao, Mingqiang Li. A LIGHTFUL nanomedicine overcomes EGFR-mediated drug resistance for enhanced tyrosine-kinase-inhibitor-based hepatocellular carcinoma therapy.
Biomaterials.
2023 11; 302(?):122349. doi:
10.1016/j.biomaterials.2023.122349
. [PMID: 37844429] - Shuai Dong, Long Wang, Huiting Qin, Hongbin Zhan, Donghao Wang, Xiaoyan Cao. Expression Patterns and Functional Analysis of Three SmTAT Genes Encoding Tyrosine Aminotransferases in Salvia miltiorrhiza.
International journal of molecular sciences.
2023 Oct; 24(21):. doi:
10.3390/ijms242115575
. [PMID: 37958559] - Mykhailo Girych, Waldemar Kulig, Giray Enkavi, Ilpo Vattulainen. How Neuromembrane Lipids Modulate Membrane Proteins: Insights from G-Protein-Coupled Receptors (GPCRs) and Receptor Tyrosine Kinases (RTKs).
Cold Spring Harbor perspectives in biology.
2023 10; 15(10):. doi:
10.1101/cshperspect.a041419
. [PMID: 37487628] - Sen Qiao, Tianwei Wang, Hongmei Wang. Dysregulated ceramides metabolism via PTPN11 exposes a metabolic vulnerability to breast cancer metastasis.
Medical oncology (Northwood, London, England).
2023 Sep; 40(11):310. doi:
10.1007/s12032-023-02187-3
. [PMID: 37773553] - Jacinta L Watkins, Qiushi Li, Sam Yeaman, Peter J Facchini. Elucidation of the mescaline biosynthetic pathway in peyote (Lophophora williamsii).
The Plant journal : for cell and molecular biology.
2023 Sep; ?(?):. doi:
10.1111/tpj.16447
. [PMID: 37675639] - Jiashen Cai, Crystal Chun Yuen Chong, Ching Yu Cheng, Cynthia Ciwei Lim, Charumathi Sabanayagam. Circulating metabolites and cardiovascular disease in Asians with chronic kidney disease.
Cardiorenal medicine.
2023 Sep; ?(?):. doi:
10.1159/000533741
. [PMID: 37669626] - Sophie Rizzo, Eden Sikorski, Soohyung Park, Wonpil Im, Victor Vasquez-Montes, Alexey S Ladokhin, Damien Thévenin. Promoting the activity of a receptor tyrosine phosphatase with a novel pH-responsive transmembrane agonist inhibits cancer-associated phenotypes.
Protein science : a publication of the Protein Society.
2023 09; 32(9):e4742. doi:
10.1002/pro.4742
. [PMID: 37515426] - Bo Wang, Ya-Hui Wang, Yuan-Jie Deng, Quan-Hong Yao, Ai-Sheng Xiong. Effect of betanin synthesis on photosynthesis and tyrosine metabolism in transgenic carrot.
BMC plant biology.
2023 Aug; 23(1):402. doi:
10.1186/s12870-023-04383-9
. [PMID: 37620775] - WesamEldin I A Saber, Abeer A Ghoniem, Fatimah O Al-Otibi, Mohammed S El-Hersh, Noha M Eldadamony, Farid Menaa, Khaled M Elattar. A comparative study using response surface methodology and artificial neural network towards optimized production of melanin by Aureobasidium pullulans AKW.
Scientific reports.
2023 08; 13(1):13545. doi:
10.1038/s41598-023-40549-z
. [PMID: 37598271] - Qianqian Chen, Jinhe Zhang, Mutu Huang, Peiqi Wang, Xiao Zhang, Mingjun Ma. Construction of 131I-RGDyC-PEG-PAMAM-DTX targeted drug delivery system and study of its physicochemical properties and biological activity.
Hellenic journal of nuclear medicine.
2023 Aug; ?(?):. doi:
10.1967/s002449912574
. [PMID: 37527047] - Cristini Milech, Priscila Ariane Auler, Marcelo Nogueira do Amaral, Simone Ribeiro Lucho, Jaqueline da Silva Dos Santos, Valcenir Júnior Mendes Furlan, Valmor João Bianchi, Eugenia Jacira Bolacel Braga. Biosynthesis of Betalains Elicited by Methyl Jasmonate in Two Species of Alternanthera Genus: Antagonistic Regulations Result in Increase of Pigments.
Applied biochemistry and biotechnology.
2023 Aug; 195(8):4965-4982. doi:
10.1007/s12010-023-04535-5
. [PMID: 37119502] - Zhimeng Yao, Hongmei Dong, Jianlin Zhu, Liang Du, Yichen Luo, Qing Liu, Shixin Liu, Yusheng Lin, Lu Wang, Shuhong Wang, Wei Wei, Keke Zhang, Qingjun Huang, Xiaojun Yu, Weijiang Zhao, Haiyun Xu, Xiaofu Qiu, Yunlong Pan, Xingxu Huang, Sai-Ching Jim Yeung, Dianzheng Zhang, Hao Zhang. Age-related decline in hippocampal tyrosine phosphatase PTPRO is a mechanistic factor in chemotherapy-related cognitive impairment.
JCI insight.
2023 07; 8(14):. doi:
10.1172/jci.insight.166306
. [PMID: 37485875] - Henok Zemene Yimer, Dee Dee Luu, Alison Coomer Blundell, Maria Florencia Ercoli, Paulo Vieira, Valerie M Williamson, Pamela C Ronald, Shahid Siddique. Root-knot nematodes produce functional mimics of tyrosine-sulfated plant peptides.
Proceedings of the National Academy of Sciences of the United States of America.
2023 07; 120(29):e2304612120. doi:
10.1073/pnas.2304612120
. [PMID: 37428936] - Laura E Clark, Amanda J G Dickinson, Santiago Lima. GBA Regulates EMT/MET and Chemoresistance in Squamous Cell Carcinoma Cells by Modulating the Cellular Glycosphingolipid Profile.
Cells.
2023 07; 12(14):. doi:
10.3390/cells12141886
. [PMID: 37508550] - Greg Malnassy, Claudia R Keating, Shaimaa Gad, Bryan Bridgeman, Aldeb Perera, Wei Hou, Scott J Cotler, Xianzhong Ding, Mashkoor Choudhry, Zhaoli Sun, Anthony J Koleske, Wei Qiu. Inhibition of Abelson Tyrosine-Protein Kinase 2 Suppresses the Development of Alcohol-Associated Liver Disease by Decreasing PPARgamma Expression.
Cellular and molecular gastroenterology and hepatology.
2023 Jul; ?(?):. doi:
10.1016/j.jcmgh.2023.07.006
. [PMID: 37460041] - Paulette Mukorako, David H St-Pierre, Nicolas Flamand, Laurent Biertho, Stéfane Lebel, Natacha Lemoine, Julie Plamondon, Marie-Claude Roy, André Tchernof, Thibault V Varin, André Marette, Cristoforo Silvestri, Vincenzo Di Marzo, Denis Richard. Hypoabsorptive surgeries cause limb-dependent changes in the gut endocannabinoidome and microbiome in association with beneficial metabolic effects.
International journal of obesity (2005).
2023 07; 47(7):630-641. doi:
10.1038/s41366-023-01307-3
. [PMID: 37142736] - Jasmer Dalal, Pradeep Kumar, R K Chandolia, Shikha Pawaria, Renu Bala, Dharmendra Kumar, P S Yadav. A new role of H89: Reduces capacitation-like changes through inhibition of cholesterol efflux, calcium influx, and proteins tyrosine phosphorylation during sperm cryopreservation in buffalo.
Theriogenology.
2023 Jul; 204(?):31-39. doi:
10.1016/j.theriogenology.2023.04.001
. [PMID: 37040685] - Zimin Wei, Yue Zhao, Li Zhao, Liqin Wang, Junqiu Wu. The contribution of microbial shikimic acid to humus formation during organic wastes composting: a review.
World journal of microbiology & biotechnology.
2023 Jul; 39(9):240. doi:
10.1007/s11274-023-03674-5
. [PMID: 37392253] - Yarong Liu, Shumei Li, Yang Feng, Yiyuan Zhang, Jielin Ouyang, Shutong Li, Jia Wang, Lihong Tan, Lianhong Zou. Serum metabolomic analyses reveal the potential metabolic biomarkers for prediction of amatoxin poisoning.
Toxicon : official journal of the International Society on Toxinology.
2023 Jul; 230(?):107153. doi:
10.1016/j.toxicon.2023.107153
. [PMID: 37178797] - Harpreet Singh, Satvir Kaur Grewal, Ravinder Singh, Rachana D Bhardwaj. Induced defense responses in cultivated and wild chickpea genotypes against Helicoverpa armigera infestation.
Biologia futura.
2023 Jun; 74(1-2):231-246. doi:
10.1007/s42977-022-00151-2
. [PMID: 36609909] - Yansi Xian, Yunyuan Nong, Yijie Gao, Yuangang Su, Zhiqiang Lei, Haoyu Lian, Jianwen Cheng, Jiamin Liang, Xiaoliang Feng, Zhijuan Liu, Jinmin Zhao, Tongling Zhao, Zhiheng Su, Qian Liu, Fangming Song. UPLC/Q-TOF-MS-based metabolomics evaluate the efficacy of oroxylin A against postmenopausal osteoporosis.
Biomedical chromatography : BMC.
2023 May; 37(5):e5609. doi:
10.1002/bmc.5609
. [PMID: 36811170] - Yong Zhuo, Xiangyang Zou, Ya Wang, Xuemei Jiang, Mengmeng Sun, Shengyu Xu, Yan Lin, Lun Hua, Jian Li, Bin Feng, Zhengfeng Fang, Lianqiang Che, De Wu. Standardized ileal digestibility of amino acids in cottonseed meal fed to pregnant and non-pregnant sows.
Journal of animal science.
2023 Apr; ?(?):. doi:
10.1093/jas/skad132
. [PMID: 37119089] - Xufan Guo, Xinxin Wu, He Ma, Huayi Liu, Yunzi Luo. Yeast: A platform for the production of L -tyrosine derivatives.
Yeast (Chichester, England).
2023 Apr; ?(?):. doi:
10.1002/yea.3850
. [PMID: 37078622] - Jie Dong, Wan Jiang, Peng Gao, Tao Yang, Wuhua Zhang, Minge Huangfu, Jinzhu Zhang, Daidi Che. Comparison of betalain compounds in two Beta vulgaris var. cicla and BvCYP76AD27 function identification in betalain biosynthesis.
Plant physiology and biochemistry : PPB.
2023 Apr; 199(?):107711. doi:
10.1016/j.plaphy.2023.107711
. [PMID: 37116227] - Pengfei Gong, Jiali Tang, Jiaying Wang, Chengtao Wang, Wei Chen. A Novel Microbial Consortia Catalysis Strategy for the Production of Hydroxytyrosol from Tyrosine.
International journal of molecular sciences.
2023 Apr; 24(8):. doi:
10.3390/ijms24086944
. [PMID: 37108108] - Pei-Shin Gu, Kuan-Wen Su, Kuo-Wei Yeh, Jing-Long Huang, Fu-Sung Lo, Chih-Yung Chiu. Metabolomics Analysis Reveals Molecular Signatures of Metabolic Complexity in Children with Hypercholesterolemia.
Nutrients.
2023 Mar; 15(7):. doi:
10.3390/nu15071726
. [PMID: 37049565] - Jasper W van de Sande, Bauke Albada. Chemical Synthesis of Glycopeptides containing l-Arabinosylated Hydroxyproline and Sulfated Tyrosine.
Organic letters.
2023 03; 25(11):1907-1911. doi:
10.1021/acs.orglett.3c00411
. [PMID: 36917069] - Narasimham L Parinandi, Alex Liaugminas, Patrick J Oliver, Saradhadevi Varadharaj, Anita Yenigalla, Austin C Elliott, Sukruthi Arutla, Steven J Campbell, Sainath R Kotha, Shariq I Sherwani, Vijay K Kutala, Jodi C McDaniel, Krishna Rao Maddipati, Periannan Kuppusamy, Thomas J Hund. Classic Phytochemical Antioxidant and Lipoxygenase Inhibitor, Nordihydroguaiaretic Acid, Activates Phospholipase D through Oxidant Signaling and Tyrosine Phosphorylation Leading to Cytotoxicity in Lung Vascular Endothelial Cells.
Cell biochemistry and biophysics.
2023 Feb; ?(?):. doi:
10.1007/s12013-023-01128-1
. [PMID: 36820994] - Jesse A Goodrich, Douglas I Walker, Jingxuan He, Xiangping Lin, Brittney O Baumert, Xin Hu, Tanya L Alderete, Zhanghua Chen, Damaskini Valvi, Zoe C Fuentes, Sarah Rock, Hongxu Wang, Kiros Berhane, Frank D Gilliland, Michael I Goran, Dean P Jones, David V Conti, Leda Chatzi. Metabolic Signatures of Youth Exposure to Mixtures of Per- and Polyfluoroalkyl Substances: A Multi-Cohort Study.
Environmental health perspectives.
2023 02; 131(2):27005. doi:
10.1289/ehp11372
. [PMID: 36821578] - Ting Ren, Furao Liu, Dongxue Wang, Bo Li, Peng Jiang, Junming Li, Hui Li, Changbao Chen, Wei Wu, Lili Jiao. Rhamnogalacturonan-I enriched pectin from steamed ginseng ameliorates lipid metabolism in type 2 diabetic rats via gut microbiota and AMPK pathway.
Journal of ethnopharmacology.
2023 Jan; 301(?):115862. doi:
10.1016/j.jep.2022.115862
. [PMID: 36283638] - Nanfen Li, Jun Yu, Jinpeng Yang, Sheliang Wang, Lianying Yu, Fangsen Xu, Chunlei Yang. Metabolomic analysis reveals key metabolites alleviating green spots under exogenous sucrose spraying in air-curing cigar tobacco leaves.
Scientific reports.
2023 01; 13(1):1311. doi:
10.1038/s41598-023-27968-8
. [PMID: 36693869] - Bryan J Leong, Andrew D Hanson. Continuous Directed Evolution of a Feedback-Resistant Arabidopsis Arogenate Dehydratase in Plantized Escherichia coli.
ACS synthetic biology.
2023 01; 12(1):43-50. doi:
10.1021/acssynbio.2c00511
. [PMID: 36534785] - Juan Gao, Jingyi Jian, Zhengjin Jiang, Ann Van Schepdael. Screening assays for tyrosine kinase inhibitors: A review.
Journal of pharmaceutical and biomedical analysis.
2023 Jan; 223(?):115166. doi:
10.1016/j.jpba.2022.115166
. [PMID: 36403346] - Caixia Yan, Wangyu Wang, Minghua Nie, Mingjun Ding, Peng Wang, Hua Zhang, Gaoxiang Huang. Characterization of copper binding to biochar-derived dissolved organic matter: Effects of pyrolysis temperature and natural wetland plants.
Journal of hazardous materials.
2023 01; 442(?):130076. doi:
10.1016/j.jhazmat.2022.130076
. [PMID: 36193612] - Sitanshu Kumar Sarangi, Kashmiri M Lande, Santosh Kumar. KIR signaling is regulated by electrostatic interaction of its cytosolic tail with the plasma membrane despite being neutral polyampholyte.
Proceedings of the National Academy of Sciences of the United States of America.
2023 01; 120(1):e2212987120. doi:
10.1073/pnas.2212987120
. [PMID: 36574700] - Jolanta Bugajska, Joanna Berska, Małgorzata Wójcik, Krystyna Sztefko. Amino acid profile in overweight and obese prepubertal children - can simple biochemical tests help in the early prevention of associated comorbidities?.
Frontiers in endocrinology.
2023; 14(?):1274011. doi:
10.3389/fendo.2023.1274011
. [PMID: 37964971] - Harrison Dulin, Nathan Hendricks, Duo Xu, Linfeng Gao, Keidy Wuang, Huiwang Ai, Rong Hai. Impact of Protein Nitration on Influenza Virus Infectivity and Immunogenicity.
Microbiology spectrum.
2022 12; 10(6):e0190222. doi:
10.1128/spectrum.01902-22
. [PMID: 36314966] - Yuan Gao, Michael L Skowyra, Peiqiang Feng, Tom A Rapoport. Protein import into peroxisomes occurs through a nuclear pore-like phase.
Science (New York, N.Y.).
2022 12; 378(6625):eadf3971. doi:
10.1126/science.adf3971
. [PMID: 36520918] - Tian-Ci Yan, Hong-Hua Zhang, Jun Cao, Li-Hong Ye. Analysis of iodinated amino acids by microemulsion electrokinetic chromatography using aliphatic amine as a cosurfactant.
Journal of chromatography. A.
2022 Dec; 1685(?):463644. doi:
10.1016/j.chroma.2022.463644
. [PMID: 36403518] - Ruixin Gu, Wei Zhang, Dandan Xu. Stachydrine is effective and selective against blast phase chronic myeloid leukaemia through inhibition of multiple receptor tyrosine kinases.
Pharmaceutical biology.
2022 Dec; 60(1):700-707. doi:
10.1080/13880209.2022.2044862
. [PMID: 35348419] - Hussain Ahmad, Xinrui Zhao, Nisar Ahmad, Abbas Khan, Yuexin Jin, Jie Du, Xuewei Zheng, Li Zeng, Yanan Ouyang, Pengfei Yang, Meng Chen, Xiaoxue Li, Zhe Yang, Zhongmin Tian. Benincasa hispida extracts positively regulated high salt-induced hypertension in Dahl salt-sensitive rats: Impact on biochemical profile and metabolic patterns.
Journal of food biochemistry.
2022 12; 46(12):e14497. doi:
10.1111/jfbc.14497
. [PMID: 36314446] - Tarinee Sawatpanich, Chadaporn Chaimontri, Alexander Tsang-Hsien Wu, Sitthichai Iamsaard, Supataechasit Yannasithinon. Dolichandrone serrulata flower improves seminal biochemical parameters and proteins in T2DM rats induced by a high-fat diet and streptozotocin.
Pharmaceutical biology.
2022 Dec; 60(1):1935-1943. doi:
10.1080/13880209.2022.2124279
. [PMID: 36205598] - Yesenia Pacheco-Hernández, Diego Hidalgo-Martínez, Gerardo Zepeda-Vallejo, Yair Cruz-Narváez, Rosa Lilia Escobar-García, Elvia Becerra-Martínez, Nemesio Villa-Ruano. Untargeted 1 H-NMR Metabolome of Celery During Fusarium Wilt: Implications for Vegetable Quality.
Chemistry & biodiversity.
2022 Dec; 19(12):e202200745. doi:
10.1002/cbdv.202200745
. [PMID: 36413469] - L A Kovalchuk, V A Mishchenko, L V Chernaya, V P Snit'ko, V N Bolshakov. Assessment of Seasonal Variability of the Spectrum of Free Amino Acids in the Blood Plasma of the Boreal Bat Species (Myotis dasycneme Boie, 1825) of the Ural Fauna.
Doklady. Biochemistry and biophysics.
2022 Dec; 507(1):268-272. doi:
10.1134/s1607672922060060
. [PMID: 36786984] - Magdalena Arasimowicz-Jelonek, Przemysław Jagodzik, Artur Płóciennik, Ewa Sobieszczuk-Nowicka, Autar Mattoo, Władysław Polcyn, Jolanta Floryszak-Wieczorek. Dynamics of nitration during dark-induced leaf senescence in Arabidopsis reveals proteins modified by tryptophan nitration.
Journal of experimental botany.
2022 11; 73(19):6853-6875. doi:
10.1093/jxb/erac341
. [PMID: 35981877] - Supatcharee Arun, Therachon Kamollerd, Nareelak Tangsrisakda, Sudtida Bunsueb, Arada Chaiyamoon, Alexander Tsang-Hsien Wu, Sitthichai Iamsaard. Momordica charantia fruit extract with antioxidant capacity improves the expression of tyrosine-phosphorylated proteins in epididymal fluid of chronic stress rats.
Journal of integrative medicine.
2022 11; 20(6):534-542. doi:
10.1016/j.joim.2022.09.002
. [PMID: 36167706] - Dhimiter Bello, Lucia Chanetsa, Costas A Christophi, Dilpreet Singh, Magdiel Inggrid Setyawati, David C Christiani, Sanjay H Chotirmall, Kee Woei Ng, Philip Demokritou. Biomarkers of oxidative stress in urine and plasma of operators at six Singapore printing centers and their association with several metrics of printer-emitted nanoparticle exposures.
Nanotoxicology.
2022 Nov; 16(9-10):913-934. doi:
10.1080/17435390.2023.2175735
. [PMID: 36774544] - Yijia Jia, Yishan Fu, Hui Man, Xinyue Yan, Yuyang Huang, Shiyan Sun, Baokun Qi, Yang Li. Comparative study of binding interactions between different dietary flavonoids and soybean β-conglycinin and glycinin: Impact on structure and function of the proteins.
Food research international (Ottawa, Ont.).
2022 11; 161(?):111784. doi:
10.1016/j.foodres.2022.111784
. [PMID: 36192935] - Lianyu Zhou, Lu Jiao, Jiasheng Ju, Xuelan Ma. Effect of Sodium Selenite on the Metabolite Profile of Epichloë sp. Mycelia from Festuca sinensis in Solid Culture.
Biological trace element research.
2022 Nov; 200(11):4865-4879. doi:
10.1007/s12011-021-03054-w
. [PMID: 34973128] - Xiaowei Sun, Priyankar Dey, Richard S Bruno, Jiangjiang Zhu. EGCG and catechin relative to green tea extract differentially modulate the gut microbial metabolome and liver metabolome to prevent obesity in mice fed a high-fat diet.
The Journal of nutritional biochemistry.
2022 11; 109(?):109094. doi:
10.1016/j.jnutbio.2022.109094
. [PMID: 35777589] - Can Si, Danqi Zeng, Zhenming Yu, Jaime A Teixeira da Silva, Jun Duan, Chunmei He, Jianxia Zhang. Transcriptomic and metabolomic analyses reveal the main metabolites in Dendrobium officinale leaves during the harvesting period.
Plant physiology and biochemistry : PPB.
2022 Nov; 190(?):24-34. doi:
10.1016/j.plaphy.2022.08.026
. [PMID: 36088784] - Beiyuan Hu, Tiantian Zou, Wei Qin, Xiaotian Shen, Yinghan Su, Jianhua Li, Yang Chen, Ze Zhang, Haoting Sun, Yan Zheng, Chao-Qun Wang, Zhengxin Wang, Tian-En Li, Shun Wang, Le Zhu, Xufeng Wang, Yan Fu, Xudong Ren, Qiongzhu Dong, Lun-Xiu Qin. Inhibition of EGFR Overcomes Acquired Lenvatinib Resistance Driven by STAT3-ABCB1 Signaling in Hepatocellular Carcinoma.
Cancer research.
2022 10; 82(20):3845-3857. doi:
10.1158/0008-5472.can-21-4140
. [PMID: 36066408] - Nayomi Camilus, Stephanie Gao, Musonda Mitti, Jun-Ray Macairan, Rafik Naccache, Sanela Martic. Selective detection of nitrotyrosine using dual-fluorescent carbon dots.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2022 Oct; 279(?):121444. doi:
10.1016/j.saa.2022.121444
. [PMID: 35660143] - Chong Xie, Pei Wang, Jianwei Chang, Qiaoe Wang, Yongbin Han, Runqiang Yang. Effect of Amino Acids on Folates Accumulation in Wheat Seedlings during Germination under Red Light Radiation.
Molecules (Basel, Switzerland).
2022 Oct; 27(20):. doi:
10.3390/molecules27206868
. [PMID: 36296459] - Sabrin R M Ibrahim, Abdelsattar M Omar, Yosra A Muhammad, Ali A Alqarni, Abdullah M Alshehri, Shaimaa G A Mohamed, Hossam M Abdallah, Mahmoud A Elfaky, Gamal A Mohamed, Jianbo Xiao. Advances in Fungal Phenaloenones-Natural Metabolites with Great Promise: Biosynthesis, Bioactivities, and an In Silico Evaluation of Their Potential as Human Glucose Transporter 1 Inhibitors.
Molecules (Basel, Switzerland).
2022 Oct; 27(20):. doi:
10.3390/molecules27206797
. [PMID: 36296388] - Lei Hou, Guanghui Li, Qingliang Chen, JinJin Zhao, Jiaowen Pan, Ruxia Lin, Xiujin Zhu, Pengfei Wang, Xingjun Wang. De novo full length transcriptome analysis and gene expression profiling to identify genes involved in phenylethanol glycosides biosynthesis in Cistanche tubulosa.
BMC genomics.
2022 Oct; 23(1):698. doi:
10.1186/s12864-022-08921-x
. [PMID: 36209069] - Nina Vujović, Matthew J Piron, Jingyi Qian, Sarah L Chellappa, Arlet Nedeltcheva, David Barr, Su Wei Heng, Kayla Kerlin, Suhina Srivastav, Wei Wang, Brent Shoji, Marta Garaulet, Matthew J Brady, Frank A J L Scheer. Late isocaloric eating increases hunger, decreases energy expenditure, and modifies metabolic pathways in adults with overweight and obesity.
Cell metabolism.
2022 10; 34(10):1486-1498.e7. doi:
10.1016/j.cmet.2022.09.007
. [PMID: 36198293] - Chang Liu, Wenhao Jiang, Fangwei Yang, Yuliang Cheng, Yahui Guo, Weirong Yao, Yong Zhao, He Qian. The combination of microbiome and metabolome to analyze the cross-cooperation mechanism of Echinacea purpurea polysaccharide with the gut microbiota in vitro and in vivo.
Food & function.
2022 Oct; 13(19):10069-10082. doi:
10.1039/d2fo02336a
. [PMID: 36093868] - Yaru Li, Xueqin Chen, Yulu Chen, Dongsheng Yu, Ran Jiang, Xinhui Kou, Liang Sheng, Yang Liu, Yu Song. Berberine Improves TNF-α-Induced Hepatic Insulin Resistance by Targeting MEKK1/MEK Pathway.
Inflammation.
2022 Oct; 45(5):2016-2026. doi:
10.1007/s10753-022-01671-8
. [PMID: 35460012] - Misato Kuroiwa, Syoya Handa, Yutaka Gyoutoku, Miho Moriyama, Yutaro Neriya, Hisashi Nishigawa, Tomohide Natsuaki. Characterization of a ToMV isolate overcoming Tm-22 resistance gene in tomato.
Virus genes.
2022 Oct; 58(5):478-482. doi:
10.1007/s11262-022-01921-9
. [PMID: 35727492] - Xia Zhou, Ya Yang, Renyue Ming, Hong Chen, Deyu Hu, Ping Lu. Insight into the differences in the toxicity mechanisms of dinotefuran enantiomers in zebrafish by UPLC-Q/TOF-MS.
Environmental science and pollution research international.
2022 Oct; 29(47):70833-70841. doi:
10.1007/s11356-022-20424-6
. [PMID: 35589890] - Archana Sarangi, Mayukh Ghosh, Suman Sangwan, Rajesh Kumar, Sunesh Balhara, S K Phulia, R K Sharma, Subhasish Sahu, Sandeep Kumar, A K Mohanty, A K Balhara. Exploration of urinary metabolite dynamicity for early detection of pregnancy in water buffaloes.
Scientific reports.
2022 09; 12(1):16295. doi:
10.1038/s41598-022-20298-1
. [PMID: 36175438] - Li Qi, Xiao Li, Shi-Min Liu, Dan-Li Jiao, Dan Hu, Xin-Yao Ju, Shu-Yu Zhao, Shu-Han Si, Li Hu, Guo-Na Li, Bing-Zhe Ma, Shuang Zhou, Chen Zhao. Identification of a hippocampal lncRNA-regulating network in a natural aging rat model.
BMC neuroscience.
2022 09; 23(1):56. doi:
10.1186/s12868-022-00743-7
. [PMID: 36171542] - Wenjuan Li, Jiaojiao Zhang, Xiaoyi Tian, Hui Liu, Khawar Ali, Qunwei Bai, Bowen Zheng, Guang Wu, Hongyan Ren. Two Conserved Amino Acids Characterized in the Island Domain Are Essential for the Biological Functions of Brassinolide Receptors.
International journal of molecular sciences.
2022 Sep; 23(19):. doi:
10.3390/ijms231911454
. [PMID: 36232750] - Peng He, Shannon Faris, Reddy Sudheer Sagabala, Payel Datta, Zihan Xu, Brian Callahan, Chunyu Wang, Benoit Boivin, Fuming Zhang, Robert J Linhardt. Cholesterol Chip for the Study of Cholesterol-Protein Interactions Using SPR.
Biosensors.
2022 Sep; 12(10):. doi:
10.3390/bios12100788
. [PMID: 36290926] - Ivonne González-Gamboa, Adam A Caparco, Justin M McCaskill, Nicole F Steinmetz. Bioconjugation Strategies for Tobacco Mild Green Mosaic Virus.
Chembiochem : a European journal of chemical biology.
2022 09; 23(18):e202200323. doi:
10.1002/cbic.202200323
. [PMID: 35835718] - Sen Zhang, Sijing Rao, Mei Wen Yang, Ya-Ting Huang, Fen-Fang Hong, Shu-Long Yang. Pharmacological effects of the Cassia Seed on atherosclerosis: A meta-analysis based on network pharmacology.
Medicine.
2022 Sep; 101(36):e30411. doi:
10.1097/md.0000000000030411
. [PMID: 36086754] - Siquan Ling, Hualong Qiu, Jinzhu Xu, Yanping Gu, Jinxin Yu, Wei Wang, Jiali Liu, Xinnian Zeng. Volatile Dimethyl Disulfide from Guava Plants Regulate Developmental Performance of Asian Citrus Psyllid through Activation of Defense Responses in Neighboring Orange Plants.
International journal of molecular sciences.
2022 Sep; 23(18):. doi:
10.3390/ijms231810271
. [PMID: 36142192] - Minhee Kim, Wonil Choi, Jihyeon Yoon, Byung-Kwan Jeong, Suvarna H Pagire, Haushabhau S Pagire, Jungsun Park, Jung Eun Nam, Chang Joo Oh, Jae-Han Jeon, Seong Soon Kim, Byung Hoi Lee, Jin Sook Song, Myung Ae Bae, In-Kyu Lee, Hail Kim, Jin Hee Ahn. Synthesis and biological evaluation of tyrosine derivatives as peripheral 5HT2A receptor antagonists for nonalcoholic fatty liver disease.
European journal of medicinal chemistry.
2022 Sep; 239(?):114517. doi:
10.1016/j.ejmech.2022.114517
. [PMID: 35732081] - Ling Gao, Qiang Gu, Hong Wang, Xingkong Ma, Feng Xue, Xing Zhang, Jiachun Ge, Tao Ding, Weijian Shen. [Determination of free amino acids in Eriocheir sinensis by ultra-high performance liquid chromatography-high resolution mass spectrometry].
Se pu = Chinese journal of chromatography.
2022 Sep; 40(9):825-832. doi:
10.3724/sp.j.1123.2022.03027
. [PMID: 36156629] - Yuan Lu, Yan-Li Wang, Zhong-Jun Song, Xiao-Qing Zhu, Chun-Hua Liu, Ji-Yu Chen, Yong-Jun Li, Yan He. [Cell metabolomics study of ginkgo flavone aglycone combined with doxorubicin against liver cancer in synergy].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2022 Sep; 47(18):5040-5051. doi:
10.19540/j.cnki.cjcmm.20220506.401
. [PMID: 36164914] - Pedro García-Caparrós, Lara Vogelsang, Marcus Persicke, Markus Wirtz, Vijay Kumar, Karl-Josef Dietz. Differential sensitivity of metabolic pathways in sugar beet roots to combined salt, heat, and light stress.
Physiologia plantarum.
2022 Sep; 174(5):e13786. doi:
10.1111/ppl.13786
. [PMID: 36169530] - Dona M Gunawardana, Karen C Heathcote, Emily Flashman. Emerging roles for thiol dioxygenases as oxygen sensors.
The FEBS journal.
2022 09; 289(18):5426-5439. doi:
10.1111/febs.16147
. [PMID: 34346181]