Jasmone (BioDeep_00000868567)

Main id: BioDeep_00000000989

 

PANOMIX_OTCML-2023 natural product


代谢物信息卡片


2-Cyclopenten-1-one, 3-methyl-2-(2-pentenyl)-, (Z)- (8CI)

化学式: C11H16O (164.1201)
中文名称: 茉莉酮, 顺-茉莉酮
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC/C=C/CC1=C(C)CCC1=O
InChI: InChI=1S/C11H16O/c1-3-4-5-6-10-9(2)7-8-11(10)12/h4-5H,3,6-8H2,1-2H3/b5-4-

描述信息

Cis-Jasmone is a plant-derived natural product. Cis-Jasmone is constitutively released by many flowers and sometimes by leaves as an attractant for pollinators or as a chemical cue for host location by insect flower herbivores. Cis-Jasmone treatment of crop plants not only induces direct defense against herbivores, but also induces indirect defense by releasing VOCs that attract natural enemies[1].
Cis-Jasmone is a plant-derived natural product. Cis-Jasmone is constitutively released by many flowers and sometimes by leaves as an attractant for pollinators or as a chemical cue for host location by insect flower herbivores. Cis-Jasmone treatment of crop plants not only induces direct defense against herbivores, but also induces indirect defense by releasing VOCs that attract natural enemies[1].

同义名列表

36 个代谢物同义名

2-Cyclopenten-1-one, 3-methyl-2-(2-pentenyl)-, (Z)- (8CI); 2-Cyclopenten-1-one, 3-methyl-2-(2Z)-2-pentenyl- (9CI); 2-Cyclopenten-1-one, 3-methyl-2-(2-pentenyl)-, (Z)-; 2-cyclopenten-1-one, 3-methyl-2-[(2Z)-2-pentenyl]-; 3-Methyl-2-(cis-2-penten-1-yl)-2-cyclopenten-1-one; 3-Methyl-2-(2-pentenyl)-2-cyclopenten-1-one, (Z)-; 3-methyl-2-[(Z)-pent-2-enyl]cyclopent-2-en-1-one; 2-Cyclopenten-1-one, 3-methyl-2-(2Z)-2-pentenyl-; 3-methyl-2-[(Z)-pent-2-enyl]-1-cyclopent-2-enone; 3-Methyl-2-(2-cis-pentenyl)-2-cyclopenten-1-one; cis-3-Methyl-2-(2-pentenyl)-2-cyclopenten-1-one; 3-Methyl-2-(cis-2-pentenyl)-2-cyclopenten-1-one; 4-07-00-00337 (Beilstein Handbook Reference); 3-Methyl-2-n-penten-2-ylcyclopenten-2-one; 3-Methyl-2-pent-2-enylcyclopent-2-enone; EINECS 207-668-4; W319600_ALDRICH; 277444_ALDRICH; FEMA No. 3196; Jasmone (6CI); LMFA02020009; ZINC04467398; (Z)-jasmone; 59975_FLUKA; cis-Jasmone; BRN 1907713; (e)-Jasmone; 4907-07-7; ST5407058; 488-10-8; CMC_7381; Jasmone; C08490; cis-?Jasmone; Jasmone; Jasmone



数据库引用编号

16 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

118 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 7 AIMP2, ANXA5, AXIN2, BIRC5, CASP3, MAPK3, MSMP
Peripheral membrane protein 2 ANXA5, CYP1B1
Endoplasmic reticulum membrane 4 CYP1B1, HSP90B1, PLN, POR
Mitochondrion membrane 1 PLN
Nucleus 8 AIMP2, AXIN2, BIRC5, CASP3, HSP90B1, MAPK3, MYCN, PCNA
cytosol 8 AIMP2, ANXA5, AXIN2, BIRC5, CASP3, HSP90B1, MAPK3, POR
mitochondrial membrane 1 PLN
nuclear body 1 PCNA
centrosome 2 AXIN2, PCNA
nucleoplasm 6 ATP2B1, BIRC5, CASP3, MAPK3, MYCN, PCNA
Cell membrane 4 ATP2B1, TNFRSF1A, TRPA1, TRPV1
Cytoplasmic side 1 POR
Multi-pass membrane protein 3 ATP2B1, TRPA1, TRPV1
Golgi apparatus membrane 1 TNFRSF1A
Synapse 1 ATP2B1
cell surface 1 TNFRSF1A
glutamatergic synapse 3 ATP2B1, CASP3, MAPK3
Golgi apparatus 2 ATRN, MAPK3
Golgi membrane 1 TNFRSF1A
neuronal cell body 2 CASP3, TRPV1
presynaptic membrane 1 ATP2B1
sarcolemma 1 ANXA5
smooth endoplasmic reticulum 1 HSP90B1
Cytoplasm, cytosol 1 AIMP2
plasma membrane 7 ATP2B1, ATRN, AXIN2, MAPK3, TNFRSF1A, TRPA1, TRPV1
synaptic vesicle membrane 1 ATP2B1
Membrane 11 AIMP2, ANXA5, ATP2B1, CYP1B1, HSP90B1, MYCN, PLN, POR, TNFRSF1A, TRPA1, TRPV1
basolateral plasma membrane 1 ATP2B1
caveola 1 MAPK3
extracellular exosome 5 ANXA5, ATP2B1, ATRN, HSP90B1, PCNA
endoplasmic reticulum 3 HSP90B1, PLN, POR
extracellular space 3 ATRN, MSMP, TNFRSF1A
perinuclear region of cytoplasm 2 HSP90B1, PLN
mitochondrion 3 CYP1B1, MAPK3, PLN
protein-containing complex 2 BIRC5, HSP90B1
intracellular membrane-bounded organelle 3 ATP2B1, CYP1B1, POR
Microsome membrane 1 CYP1B1
postsynaptic density 1 CASP3
Single-pass type I membrane protein 2 ATRN, TNFRSF1A
Secreted 2 MSMP, TNFRSF1A
extracellular region 3 ANXA5, HSP90B1, TNFRSF1A
Single-pass membrane protein 2 PLN, POR
[Isoform 2]: Secreted 1 ATRN
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
external side of plasma membrane 2 ANXA5, TRPV1
beta-catenin destruction complex 1 AXIN2
microtubule cytoskeleton 1 BIRC5
nucleolus 1 MYCN
midbody 2 BIRC5, HSP90B1
Early endosome 1 MAPK3
postsynaptic membrane 1 TRPV1
Membrane raft 1 TNFRSF1A
Cell junction, focal adhesion 1 MAPK3
Cytoplasm, cytoskeleton, spindle 1 BIRC5
focal adhesion 3 ANXA5, HSP90B1, MAPK3
microtubule 1 BIRC5
spindle 1 BIRC5
GABA-ergic synapse 1 TRPV1
sarcoplasmic reticulum 1 PLN
collagen-containing extracellular matrix 2 ANXA5, HSP90B1
lateral plasma membrane 1 ATP2B1
interphase microtubule organizing center 1 BIRC5
Postsynaptic cell membrane 1 TRPV1
Late endosome 1 MAPK3
receptor complex 1 TNFRSF1A
Cell projection, neuron projection 1 TRPV1
Zymogen granule membrane 1 ANXA5
chromatin 2 MYCN, PCNA
stereocilium bundle 1 TRPA1
cell projection 1 ATP2B1
Chromosome 1 BIRC5
cytoskeleton 1 MAPK3
centriole 1 BIRC5
nuclear replication fork 1 PCNA
chromosome, telomeric region 1 PCNA
nuclear chromosome 1 BIRC5
Basolateral cell membrane 1 ATP2B1
[Isoform 3]: Secreted 1 ATRN
nuclear envelope 1 MAPK3
Membrane, caveola 1 MAPK3
Chromosome, centromere 1 BIRC5
Chromosome, centromere, kinetochore 1 BIRC5
Melanosome 1 HSP90B1
Presynaptic cell membrane 1 ATP2B1
replication fork 1 PCNA
sperm plasma membrane 1 HSP90B1
pseudopodium 1 MAPK3
endoplasmic reticulum lumen 2 HSP90B1, MAPK3
male germ cell nucleus 1 PCNA
kinetochore 1 BIRC5
Sarcoplasmic reticulum membrane 1 PLN
immunological synapse 1 ATP2B1
chromosome, centromeric region 1 BIRC5
vesicle membrane 1 ANXA5
nuclear lamina 1 PCNA
Sarcoplasmic reticulum lumen 1 HSP90B1
chromosome passenger complex 1 BIRC5
cytoplasmic microtubule 1 BIRC5
spindle microtubule 1 BIRC5
survivin complex 1 BIRC5
death-inducing signaling complex 1 CASP3
[Isoform 1]: Cell membrane 1 ATRN
aminoacyl-tRNA synthetase multienzyme complex 1 AIMP2
Cell projection, dendritic spine membrane 1 TRPV1
dendritic spine membrane 1 TRPV1
cyclin-dependent protein kinase holoenzyme complex 1 PCNA
endocytic vesicle lumen 1 HSP90B1
endoplasmic reticulum chaperone complex 1 HSP90B1
endothelial microparticle 1 ANXA5
photoreceptor ribbon synapse 1 ATP2B1
PCNA complex 1 PCNA
PCNA-p21 complex 1 PCNA
replisome 1 PCNA
calcium ion-transporting ATPase complex 1 PLN
tumor necrosis factor receptor superfamily complex 1 TNFRSF1A


文献列表

  • Eva Cañizares, Juan Manuel Acién, Berivan Özlem Gumuş, Vicente Vives-Peris, Miguel González-Guzmán, Vicent Arbona. Interplay between secondary metabolites and plant hormones in silver nitrate-elicited Arabidopsis thaliana plants. Plant physiology and biochemistry : PPB. 2024 Mar; 208(?):108483. doi: 10.1016/j.plaphy.2024.108483. [PMID: 38457948]
  • Romina B Agostini, Federico Ariel, Sebastián P Rius, Walter A Vargas, Valeria A Campos-Bermudez. Trichoderma root colonization in maize triggers epigenetic changes in genes related to the jasmonic and salicylic acid pathways that prime defenses against Colletotrichum graminicola leaf infection. Journal of experimental botany. 2023 03; 74(6):2016-2028. doi: 10.1093/jxb/erac518. [PMID: 36575905]
  • Guadalupe L Fernández-Milmanda. Rise of signaling: jasmonic and salicylic acid oppositely control reactive oxygen species wave production. Plant physiology. 2023 02; 191(2):814-816. doi: 10.1093/plphys/kiac517. [PMID: 36423225]
  • Jetske G de Boer, Aron P S Kuiper, Joeri Groot, Joop J A van Loon. Avoidance of the Plant Hormone Cis-Jasmone by Aedes aegypti Depends On Mosquito Age in Both Plant and Human Odor Backgrounds. Journal of chemical ecology. 2021 Sep; 47(8-9):810-818. doi: 10.1007/s10886-021-01299-2. [PMID: 34463894]
  • Gareth Griffiths. Jasmonates: biosynthesis, perception and signal transduction. Essays in biochemistry. 2020 09; 64(3):501-512. doi: 10.1042/ebc20190085. [PMID: 32602544]
  • Ryo Matsui, Kisumi Takiguchi, Kazuhiko Matsuda, Kosaku Takahashi, Hideyuki Matsuura. Feeding experiment using uniformly 13C-labeled α-linolenic acid supports the involvement of the decarboxylation mechanism to produce cis-jasmone in Lasiodiplodia theobromae. Bioscience, biotechnology, and biochemistry. 2019 Dec; 83(12):2190-2193. doi: 10.1080/09168451.2019.1644150. [PMID: 31342844]
  • Wei Li, Daniel B Lybrand, Fei Zhou, Robert L Last, Eran Pichersky. Pyrethrin Biosynthesis: The Cytochrome P450 Oxidoreductase CYP82Q3 Converts Jasmolone To Pyrethrolone. Plant physiology. 2019 11; 181(3):934-944. doi: 10.1104/pp.19.00499. [PMID: 31451551]
  • Marlena Paprocka, Anna Gliszczyńska, Katarzyna Dancewicz, Beata Gabryś. Novel Hydroxy- and Epoxy-cis-Jasmone and Dihydrojasmone Derivatives Affect the Foraging Activity of the Peach Potato Aphid Myzus persicae (Sulzer) (Homoptera: Aphididae). Molecules (Basel, Switzerland). 2018 Sep; 23(9):. doi: 10.3390/molecules23092362. [PMID: 30223586]
  • Liang Shang, Chuanjun Liu, Bin Chen, Kenshi Hayashi. Plant Biomarker Recognition by Molecular Imprinting Based Localized Surface Plasmon Resonance Sensor Array: Performance Improvement by Enhanced Hotspot of Au Nanostructure. ACS sensors. 2018 08; 3(8):1531-1538. doi: 10.1021/acssensors.8b00329. [PMID: 30074768]
  • Wei Li, Fei Zhou, Eran Pichersky. Jasmone Hydroxylase, a Key Enzyme in the Synthesis of the Alcohol Moiety of Pyrethrin Insecticides. Plant physiology. 2018 08; 177(4):1498-1509. doi: 10.1104/pp.18.00748. [PMID: 29967096]
  • Islam S Sobhy, Christine M Woodcock, Stephen J Powers, John C Caulfield, John A Pickett, Michael A Birkett. cis-Jasmone Elicits Aphid-Induced Stress Signalling in Potatoes. Journal of chemical ecology. 2017 Jan; 43(1):39-52. doi: 10.1007/s10886-016-0805-9. [PMID: 28130741]
  • José P da Graça, Tatiana E Ueda, Tatiani Janegitz, Simone S Vieira, Mariana C Salvador, Maria C N de Oliveira, Sonia M Zingaretti, Stephen J Powers, John A Pickett, Michael A Birkett, Clara B Hoffmann-Campo. The natural plant stress elicitor cis-jasmone causes cultivar-dependent reduction in growth of the stink bug, Euschistus heros and associated changes in flavonoid concentrations in soybean, Glycine max. Phytochemistry. 2016 Nov; 131(?):84-91. doi: 10.1016/j.phytochem.2016.08.013. [PMID: 27659594]
  • Florian Etl, Andreas Berger, Anton Weber, Jürg Schönenberger, Stefan Dötterl. Nocturnal Plant Bugs Use cis-Jasmone to Locate Inflorescences of an Araceae as Feeding and Mating Site. Journal of chemical ecology. 2016 Apr; 42(4):300-4. doi: 10.1007/s10886-016-0688-9. [PMID: 27074793]
  • Julia Weiss, Raquel Alcantud-Rodriguez, Tugba Toksöz, Marcos Egea-Cortines. Meristem maintenance, auxin, jasmonic and abscisic acid pathways as a mechanism for phenotypic plasticity in Antirrhinum majus. Scientific reports. 2016 Jan; 6(?):19807. doi: 10.1038/srep19807. [PMID: 26804132]
  • Georgina Bingham, Selcan Alptekin, Giovanna Delogu, Oktay Gurkan, Graham Moores. Synergistic manipulations of plant and insect defences. Pest management science. 2014 Apr; 70(4):566-71. doi: 10.1002/ps.3575. [PMID: 23653417]
  • Kevin J Delaney, Maria Wawrzyniak, Grzegorz Lemańczyk, Danuta Wrzesińska, Dariusz Piesik. Synthetic cis-jasmone exposure induces wheat and barley volatiles that repel the pest cereal leaf beetle, Oulema melanopus L. Journal of chemical ecology. 2013 May; 39(5):620-9. doi: 10.1007/s10886-013-0281-4. [PMID: 23588742]
  • Sunday Oluwafemi, Sarah Y Dewhirst, Nathalie Veyrat, Stephen Powers, Toby J A Bruce, John C Caulfield, John A Pickett, Michael A Birkett. Priming of Production in Maize of Volatile Organic Defence Compounds by the Natural Plant Activator cis-Jasmone. PloS one. 2013; 8(6):e62299. doi: 10.1371/journal.pone.0062299. [PMID: 23840295]
  • Stefan Dötterl, Anja David, Wilhelm Boland, Ilse Silberbauer-Gottsberger, Gerhard Gottsberger. Evidence for behavioral attractiveness of methoxylated aromatics in a dynastid scarab beetle-pollinated araceae. Journal of chemical ecology. 2012 Dec; 38(12):1539-43. doi: 10.1007/s10886-012-0210-y. [PMID: 23143663]
  • Sarah Y Dewhirst, Michael A Birkett, Elisa Loza-Reyes, Janet L Martin, Barry J Pye, Lesley E Smart, Jim Hardie, John A Pickett. Activation of defence in sweet pepper, Capsicum annum, by cis-jasmone, and its impact on aphid and aphid parasitoid behaviour. Pest management science. 2012 Oct; 68(10):1419-29. doi: 10.1002/ps.3326. [PMID: 22696464]
  • Mahabaleshwar Hegde, Janser N Oliveira, Joao G da Costa, Elisa Loza-Reyes, Ervino Bleicher, Antonio E G Santana, John C Caulfield, Patrick Mayon, Sarah Y Dewhirst, Toby J A Bruce, John A Pickett, Michael A Birkett. Aphid antixenosis in cotton is activated by the natural plant defence elicitor cis-jasmone. Phytochemistry. 2012 Jun; 78(?):81-8. doi: 10.1016/j.phytochem.2012.03.004. [PMID: 22516741]
  • Michaela Matthes, Toby Bruce, Keith Chamberlain, John Pickett, Johnathan Napier. Emerging roles in plant defense for cis-jasmone-induced cytochrome P450 CYP81D11. Plant signaling & behavior. 2011 Apr; 6(4):563-5. doi: 10.4161/psb.6.4.14915. [PMID: 21422824]
  • Michaela C Matthes, Toby J A Bruce, Jurriaan Ton, Paul J Verrier, John A Pickett, Johnathan A Napier. The transcriptome of cis-jasmone-induced resistance in Arabidopsis thaliana and its role in indirect defence. Planta. 2010 Oct; 232(5):1163-80. doi: 10.1007/s00425-010-1244-4. [PMID: 20711606]
  • A M El-Sayed, V J Mitchell, G F McLaren, L M Manning, B Bunn, D M Suckling. Attraction of New Zealand flower thrips, Thrips obscuratus, to cis-jasmone, a volatile identified from Japanese honeysuckle flowers. Journal of chemical ecology. 2009 Jun; 35(6):656-63. doi: 10.1007/s10886-009-9619-3. [PMID: 19444522]
  • Walter P Suza, Paul E Staswick. The role of JAR1 in Jasmonoyl-L: -isoleucine production during Arabidopsis wound response. Planta. 2008 May; 227(6):1221-32. doi: 10.1007/s00425-008-0694-4. [PMID: 18247047]
  • Toby J A Bruce, Michaela C Matthes, Keith Chamberlain, Christine M Woodcock, Abdul Mohib, Ben Webster, Lesley E Smart, Michael A Birkett, John A Pickett, Johnathan A Napier. cis-Jasmone induces Arabidopsis genes that affect the chemical ecology of multitrophic interactions with aphids and their parasitoids. Proceedings of the National Academy of Sciences of the United States of America. 2008 Mar; 105(12):4553-8. doi: 10.1073/pnas.0710305105. [PMID: 18356298]
  • Maria C Blassioli Moraes, Michael A Birkett, Ruth Gordon-Weeks, Lesley E Smart, Janet L Martin, Barry J Pye, Richard Bromilow, John A Pickett. cis-Jasmone induces accumulation of defence compounds in wheat, Triticum aestivum. Phytochemistry. 2008 Jan; 69(1):9-17. doi: 10.1016/j.phytochem.2007.06.020. [PMID: 17681563]
  • Paulina Dabrowska, Wilhelm Boland. Iso-OPDA: an early precursor of cis-jasmone in plants?. Chembiochem : a European journal of chemical biology. 2007 Dec; 8(18):2281-5. doi: 10.1002/cbic.200700464. [PMID: 18033720]
  • John A Pickett, Michael A Birkett, Toby J A Bruce, Keith Chamberlain, Ruth Gordon-Weeks, Michaela C Matthes, Johnathan A Napier, Lesley E Smart, Christine M Woodcock. Developments in aspects of ecological phytochemistry: the role of cis-jasmone in inducible defence systems in plants. Phytochemistry. 2007 Nov; 68(22-24):2937-45. doi: 10.1016/j.phytochem.2007.09.025. [PMID: 18023830]
  • Shan-Chun Yan, Wei Xu, Hong-E Yuan, Qi Wang, Dan Lu. [Effects of different elicitors on olfactory response and oviposition selection of Dendrolimus superans (Butler)]. Ying yong sheng tai xue bao = The journal of applied ecology. 2007 Jul; 18(7):1583-8. doi: . [PMID: 17886655]
  • Eliezer Flescher. Jasmonates--a new family of anti-cancer agents. Anti-cancer drugs. 2005 Oct; 16(9):911-6. doi: 10.1097/01.cad.0000176501.63680.80. [PMID: 16162967]
  • Göde Schüler, Axel Mithöfer, Ian T Baldwin, Susanne Berger, Jürgen Ebel, Jonathan G Santos, Gabriele Herrmann, Dirk Hölscher, Robert Kramell, Toni M Kutchan, Helmut Maucher, Bernd Schneider, Irene Stenzel, Claus Wasternack, Wilhelm Boland. Coronalon: a powerful tool in plant stress physiology. FEBS letters. 2004 Apr; 563(1-3):17-22. doi: 10.1016/s0014-5793(04)00239-x. [PMID: 15063716]
  • Toby J A Bruce, Janet L Martin, John A Pickett, Barry J Pye, Lesley E Smart, Lester J Wadhams. cis-Jasmone treatment induces resistance in wheat plants against the grain aphid, Sitobion avenae (Fabricius) (Homoptera: Aphididae). Pest management science. 2003 Sep; 59(9):1031-6. doi: 10.1002/ps.730. [PMID: 12974355]
  • M A Birkett, C A Campbell, K Chamberlain, E Guerrieri, A J Hick, J L Martin, M Matthes, J A Napier, J Pettersson, J A Pickett, G M Poppy, E M Pow, B J Pye, L E Smart, G H Wadhams, L J Wadhams, C M Woodcock. New roles for cis-jasmone as an insect semiochemical and in plant defense. Proceedings of the National Academy of Sciences of the United States of America. 2000 Aug; 97(16):9329-34. doi: 10.1073/pnas.160241697. [PMID: 10900270]
  • A P Starling, J M East, A G Lee. Evidence that the effects of phospholipids on the activity of the Ca(2+)-ATPase do not involve aggregation. The Biochemical journal. 1995 May; 308 ( Pt 1)(?):343-6. doi: 10.1042/bj3080343. [PMID: 7755584]
  • A P Starling, G Hughes, J M East, A G Lee. Mechanism of stimulation of the calcium adenosinetriphosphatase by jasmone. Biochemistry. 1994 Mar; 33(10):3023-31. doi: 10.1021/bi00176a035. [PMID: 8130215]