Marmesin (BioDeep_00000861000)

PANOMIX_OTCML-2023 natural product


代谢物信息卡片


7H-Furo[3,2g][1]-benzopyran-7-one, (-2,3-dihydro-2-(1-hydroxy-1-hydroxymethylethyl)-, (R)

化学式: C14H14O4 (246.0892)
中文名称: S-(+)-印度枸橘素, S-(+)-印枳树皮素, S-(+)-印度榀椁素, 异紫花前胡内酯, 紫花前胡苷元, S-(+)-异紫花前胡内酯
谱图信息: 最多检出来源 Viridiplantae(otcml) 20.68%

分子结构信息

SMILES: CC(C)(C1CC2=C(O1)C=C3C(=C2)C=CC(=O)O3)O
InChI: InChI=1S/C14H14O4/c1-14(2,16)12-6-9-5-8-3-4-13(15)18-10(8)7-11(9)17-12/h3-5,7,12,16H,6H2,1-2H3/t12-/m0/s1

描述信息

Nodakenetin is a marmesin with R-configuration. It has a role as a plant metabolite, a rat metabolite and a xenobiotic metabolite. It is an enantiomer of a (+)-marmesin.
Nodakenetin is a natural product found in Zanthoxylum beecheyanum, Melicope barbigera, and other organisms with data available.
A marmesin with R-configuration.
(+)-marmesin is a marmesin. It is an enantiomer of a nodakenetin.
Marmesin is a natural product found in Coronilla scorpioides, Clausena dunniana, and other organisms with data available.
Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2].
Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2].
S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity.
S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity.
S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity.

同义名列表

82 个代谢物同义名

7H-Furo[3,2g][1]-benzopyran-7-one, (-2,3-dihydro-2-(1-hydroxy-1-hydroxymethylethyl)-, (R); 7H-FURO(3,2-G)(1)BENZOPYRAN-7-ONE, 2,3-DIHYDRO-2-(1-HYDROXY-1-METHYLETHYL)-, (2R)-; 7H-Furo(3,2-g)(1)benzopyran-7-one, 2,3-dihydro-2-(1-hydroxy-1-methylethyl)-, (R)-; 7H-FURO(3,2-G)(1)BENZOPYRAN-7-ONE, 2,3-DIHYDRO-2-(1-HYDROXY-1-METHYLETHYL)-, (-)-; (R)-2-(1-Hydroxy-1-methylethyl)-2,3-dihydro-7H-furo(3,2-g)(1)benzopyran-7-one; (2R)-2-(1-hydroxy-1-methylethyl)-2,3-dihydro-7H-furo[3,2-g]chromen-7-one; (R,S)-2-(1-Hydroxy-1-methyl-ethyl)-2,3-dihydro-furo[3,2-g]chromen-7-one; 2-(2-Hydroxypropan-2-yl)-2,3-dihydro-7H-furo[3,2-g][1]benzopyran-7-one; (2R)-2-(1-hydroxy-1-methyl-ethyl)-2,3-dihydrofuro[3,2-g]chromen-7-one; (R)-2-(2-Hydroxypropan-2-yl)-2,3-dihydro-7H-furo[3,2-g]chromen-7-one; (2R)-2-(2-hydroxypropan-2-yl)-2,3-dihydrofuro[3,2-g]chromen-7-one; 2-(2-Hydroxy-2-propanyl)-2,3-dihydro-7H-furo(3,2-g)chromen-7-one; marmesin, (R)-isomer; (R)-(-)-NODAKENETIN; (-)-Prangeferol; UNII-PKL4EW8LPQ; (-)-Marmesin; Prangeferol; Nodakenetic; Nodakenitin; nodakenetin; PKL4EW8LPQ; NODAKATIN; Marmesin; NANI; 7H-Furo[3,2-g][1]benzopyran-7-one, 2,3-dihydro-2-(1-hydroxy-1-methylethyl)-, (S)-(+)-; 7H-Furo(3,2-g)(1)benzopyran-7-one, 2,3-dihydro-2-(1-hydroxy-1-methylethyl)-, (S)-(+)-; 7H-FURO(3,2-G)(1)BENZOPYRAN-7-ONE, 2,3-DIHYDRO-2-(1-HYDROXY-1-METHYLETHYL)-, (2S)-; 7H-Furo[3,2-g][1]benzopyran-7-one, 2,3-dihydro-2-(1-hydroxy-1-methylethyl)-, (2S)-; 7H-Furo[3,2-g][1]benzopyran-7-one, 2,3-dihydro-2-(1-hydroxy-1-methylethyl)-, (+)-; (S)-(+)-2,3-dihydro-2-(1-hydroxy-1-methylethyl)-7H-furo[3,2-g][1]benzopyran-7-one; 7H-Furo[3,2-g][1]benzopyran-7-one, 2,3-dihydro-2-(1-hydroxy-1-methylethyl)-, (S)-; (2S)-2,3-dihydro-2-(1-hydroxy-1-methylethyl)-7H-furo[3,2-g][1]benzopyran-7-one; (S)-2,3-dihydro-2-(1-hydroxy-1-methylethyl)-7H-furo[3,2-g][1]benzopyran-7-one; (+)-2,3-dihydro-2-(1-hydroxy-1-methylethyl)-7H-furo[3,2-g][1]benzopyran-7-one; (2S)-2-(1-hydroxy-1-methylethyl)-2,3-dihydro-7H-furo[3,2-g]chromen-7-one; 2-(1-Hydroxy-1-methylethyl)-2,3-dihydro-7H-furo[3,2-g]chromen-7-one #; (S)-2-(2-hydroxypropan-2-yl)-2,3-dihydro-7H-furo[3,2-g]chromen-7-one; (2S)-2-(2-hydroxypropan-2-yl)-2,3-dihydrofuro[3,2-g]chromen-7-one; (2S)-2-(2-HYDROXYPROPAN-2-YL)-2H,3H,7H-FURO[3,2-G]CHROMEN-7-ONE; 7H-Furo[3, 2,3-dihydro-2-(1-hydroxy-1-methylethyl)-, (S)-(+)-; (S)-2-(2-Hydroxypropan-2-yl)-2H-furo[3,2-g]chromen-7(3H)-one; 2-(2-HYDROXYPROPAN-2-YL)-2H,3H,7H-FURO[3,2-G]CHROMEN-7-ONE; 7H-Furo[3, 2,3-dihydro-2-(1-hydroxy-1-methylethyl)-, (+)-; 7H-Furo[3, 2,3-dihydro-2-(1-hydroxy-1-methylethyl)-, (S)-; FWYSBEAFFPBAQU-LBPRGKRZSA-N; (+)-Marmesin;(S)-Marmesin; Marmesin ((+)-Marmesin); Spectrum2_000737; Spectrum3_001642; Spectrum4_001701; Spectrum5_000402; UNII-H5D33D6K5D; MARMESIN, (+)-; S-(+)-Marmesin; MEGxp0_001933; (7S)-marmesin; DivK1c_007014; S(+)-Marmesin; (+)-Marmesin; KBio2_007132; KBio3_002583; (S)-Marmesin; KBio1_001958; KBio2_001996; KBio2_004564; H5D33D6K5D; (2S)-2-(1-hydroxy-1-methyl-ethyl)-2,3-dihydrofuro[3,2-g]chromen-7-one; (2S)-2-(1-hydroxy-1-methylethyl)-2,3-dihydrofuro[3,2-g]chromen-7-one; SDCCGMLS-0066759.P001; Spectrum_001516; SpecPlus_000918; BSPBio_003363; KBioGR_002022; KBioSS_001996; ZINC00051924; SPBio_000694; 13849-08-6; NSC340840; C09276; Nodakenetin; Marmesin



数据库引用编号

33 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

330 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 AKT1, ANG, BCL2, CASP3, EGFR, MAPK1, PIK3CA, PPARG, PRPF19, VEGFA
Peripheral membrane protein 2 CYP1B1, GORASP1
Endosome membrane 1 EGFR
Endoplasmic reticulum membrane 3 BCL2, CYP1B1, EGFR
Nucleus 10 AKT1, ANG, BCL2, CASP3, EGFR, MAPK1, PCNA, PPARG, PRPF19, VEGFA
cytosol 7 AKT1, ANG, BCL2, CASP3, MAPK1, PIK3CA, PPARG
nuclear body 1 PCNA
centrosome 2 MAPK1, PCNA
nucleoplasm 6 AKT1, CASP3, MAPK1, PCNA, PPARG, PRPF19
RNA polymerase II transcription regulator complex 1 PPARG
Cell membrane 3 AKT1, EGFR, ITGAM
Cytoplasmic side 1 GORASP1
lamellipodium 2 AKT1, PIK3CA
ruffle membrane 1 EGFR
Early endosome membrane 1 EGFR
Golgi apparatus membrane 1 GORASP1
Synapse 1 MAPK1
cell cortex 1 AKT1
cell junction 1 EGFR
cell surface 4 EGFR, ITGAM, SULF2, VEGFA
glutamatergic synapse 3 AKT1, CASP3, EGFR
Golgi apparatus 3 GORASP1, MAPK1, VEGFA
Golgi membrane 2 EGFR, GORASP1
growth cone 1 ANG
neuronal cell body 2 ANG, CASP3
postsynapse 1 AKT1
endosome 1 EGFR
plasma membrane 6 AKT1, EGFR, ITGAM, MAPK1, PIK3CA, SULF2
Membrane 7 AKT1, BCL2, CYP1B1, EGFR, ITGAM, PRPF19, VEGFA
apical plasma membrane 1 EGFR
axon 1 CCK
basolateral plasma membrane 1 EGFR
caveola 1 MAPK1
extracellular exosome 3 ITGAM, MMP9, PCNA
endoplasmic reticulum 3 BCL2, SULF2, VEGFA
extracellular space 8 ANG, CCK, EGFR, IL6, ITGAM, MMP9, SULF2, VEGFA
perinuclear region of cytoplasm 3 EGFR, PIK3CA, PPARG
adherens junction 1 VEGFA
intercalated disc 1 PIK3CA
mitochondrion 3 BCL2, CYP1B1, MAPK1
protein-containing complex 3 AKT1, BCL2, EGFR
intracellular membrane-bounded organelle 2 CYP1B1, PPARG
Microsome membrane 1 CYP1B1
postsynaptic density 1 CASP3
Single-pass type I membrane protein 2 EGFR, ITGAM
Secreted 5 ANG, CCK, IL6, PRB1, VEGFA
extracellular region 8 ANG, CCK, IL6, MAPK1, MMP9, PRB1, SULF2, VEGFA
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 1 BCL2
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 MAPK1
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 2 BCL2, EGFR
external side of plasma membrane 1 ITGAM
Secreted, extracellular space, extracellular matrix 2 MMP9, VEGFA
actin cytoskeleton 1 ANG
microtubule cytoskeleton 1 AKT1
nucleolus 1 ANG
Early endosome 1 MAPK1
cell-cell junction 1 AKT1
vesicle 1 AKT1
Membrane raft 2 EGFR, ITGAM
pore complex 1 BCL2
Cell junction, focal adhesion 1 MAPK1
Cytoplasm, cytoskeleton, spindle 2 MAPK1, PRPF19
focal adhesion 2 EGFR, MAPK1
spindle 3 AKT1, MAPK1, PRPF19
cis-Golgi network 1 GORASP1
extracellular matrix 1 VEGFA
basement membrane 1 ANG
intracellular vesicle 1 EGFR
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
collagen-containing extracellular matrix 1 MMP9
secretory granule 1 VEGFA
nuclear speck 1 PRPF19
Late endosome 1 MAPK1
receptor complex 2 EGFR, PPARG
ciliary basal body 1 AKT1
chromatin 2 PCNA, PPARG
mitotic spindle 1 MAPK1
Chromosome 1 ANG
cytoskeleton 1 MAPK1
Nucleus, nucleolus 1 ANG
nuclear replication fork 1 PCNA
chromosome, telomeric region 1 PCNA
spliceosomal complex 1 PRPF19
site of double-strand break 1 PRPF19
Lipid droplet 1 PRPF19
Membrane, caveola 1 MAPK1
Nucleus, nucleoplasm 1 PRPF19
specific granule membrane 1 ITGAM
tertiary granule membrane 1 ITGAM
Cytoplasm, Stress granule 1 ANG
cytoplasmic stress granule 1 ANG
replication fork 1 PCNA
myelin sheath 1 BCL2
pseudopodium 1 MAPK1
basal plasma membrane 1 EGFR
synaptic membrane 1 EGFR
Golgi stack 1 SULF2
plasma membrane raft 1 ITGAM
ficolin-1-rich granule lumen 2 MAPK1, MMP9
endoplasmic reticulum lumen 2 IL6, MAPK1
male germ cell nucleus 1 PCNA
platelet alpha granule lumen 1 VEGFA
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
tertiary granule lumen 1 MMP9
endocytic vesicle 1 ANG
azurophil granule lumen 1 MAPK1
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 GORASP1
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
nuclear lamina 1 PCNA
clathrin-coated endocytic vesicle membrane 1 EGFR
U2-type catalytic step 1 spliceosome 1 PRPF19
death-inducing signaling complex 1 CASP3
catalytic step 2 spliceosome 1 PRPF19
Prp19 complex 1 PRPF19
U2-type catalytic step 2 spliceosome 1 PRPF19
integrin complex 1 ITGAM
cyclin-dependent protein kinase holoenzyme complex 1 PCNA
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
angiogenin-PRI complex 1 ANG
integrin alphaM-beta2 complex 1 ITGAM
interleukin-6 receptor complex 1 IL6
BAD-BCL-2 complex 1 BCL2
PCNA complex 1 PCNA
PCNA-p21 complex 1 PCNA
replisome 1 PCNA
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
Golgi apparatus, Golgi stack 1 SULF2
[Extracellular sulfatase Sulf-2 secreted form]: Secreted 1 SULF2


文献列表

  • Zhaoxin Wang, Ying Zhou, Yuefei Wang, Xiaohui Yan. Reconstitution and Optimization of the Marmesin Biosynthetic Pathway in Yeast. ACS synthetic biology. 2023 Sep; ?(?):. doi: 10.1021/acssynbio.3c00267. [PMID: 37767718]
  • Ifeoma C Ezenyi, Jersley D Chirawurah, Nekpen Erhunse, Prakhar Agrawal, Dinkar Sahal, John O Igoli. Marmesin isolated from Celtis durandii Engl. root bioactive fraction inhibits β-hematin formation and contributes to antiplasmodial activity. Journal of ethnopharmacology. 2023 Jun; 317(?):116804. doi: 10.1016/j.jep.2023.116804. [PMID: 37352945]
  • C Hemakumar, B S Ravindranath, G A Ravishankar, D C Ramirez, S V Kiran. Marmesin and Marmelosin Interact with the Heparan Sulfatase-2 Active Site: Potential Mechanism for Phytochemicals from Bael Fruit Extract as Antitumor Therapeutics. Oxidative medicine and cellular longevity. 2023; 2023(?):9982194. doi: 10.1155/2023/9982194. [PMID: 36644581]
  • Yiqin Lin, Yingle Chen, Jingyang Zeng, Shunyuan Li. Nodakenetin Alleviates Inflammatory Pain Hypersensitivity by Suppressing NF-κB Signal Pathway. Neuroimmunomodulation. 2022; 29(4):486-492. doi: 10.1159/000525690. [PMID: 35995035]
  • Xiangyun Jian, Yucheng Zhao, Ziwen Wang, Shan Li, Li Li, Jun Luo, Lingyi Kong. Two CYP71AJ enzymes function as psoralen synthase and angelicin synthase in the biosynthesis of furanocoumarins in Peucedanum praeruptorum Dunn. Plant molecular biology. 2020 Oct; 104(3):327-337. doi: 10.1007/s11103-020-01045-4. [PMID: 32761540]
  • Ping Lei, Chushu Liao, Jianjun Chen, Ming Zhou. In vitro and in vivo growth inhibition of human leukemia cells by Nodakenetin are mediated via mitochondrial apoptosis, cell cycle arrest and inhibition of cell migration and invasion. Journal of B.U.ON. : official journal of the Balkan Union of Oncology. 2019 May; 24(3):1219-1224. doi: . [PMID: 31424682]
  • Li-Shian Shi, Sheng-Chu Kuo, Han-Dong Sun, Susan L Morris-Natschke, Kuo-Hsiung Lee, Tian-Shung Wu. Cytotoxic cardiac glycosides and coumarins from Antiaris toxicaria. Bioorganic & medicinal chemistry. 2014 Mar; 22(6):1889-98. doi: 10.1016/j.bmc.2014.01.052. [PMID: 24582402]
  • Mahendra Jain, Rakhee Kapadia, Ravirajsinh N Jadeja, Menaka C Thounaojam, Ranjitsinh V Devkar, Shri H Mishra. Hepatoprotective activity of Feronia limonia root. The Journal of pharmacy and pharmacology. 2012 Jun; 64(6):888-96. doi: 10.1111/j.2042-7158.2012.01481.x. [PMID: 22571268]
  • Xian Ding, Bo Yin, Li Qian, Zhirui Zeng, Zeliang Yang, Huixian Li, Yongjun Lu, Shining Zhou. Screening for novel quorum-sensing inhibitors to interfere with the formation of Pseudomonas aeruginosa biofilm. Journal of medical microbiology. 2011 Dec; 60(Pt 12):1827-1834. doi: 10.1099/jmm.0.024166-0. [PMID: 21852522]
  • Peng Zhang, Xiu-Wei Yang. A new metabolite of nodakenetin by rat liver microsomes and its quantification by RP-HPLC method. Biomedical chromatography : BMC. 2010 Feb; 24(2):216-21. doi: 10.1002/bmc.1276. [PMID: 19572262]
  • Wen Li, Shilan Feng, Fangdi Hu, Erlin Chen. [Coumarins from Peucedanum harry-smithii var. subglabrum]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2009 May; 34(10):1231-4. doi: . [PMID: 19673384]
  • Peng Zhang, Xiu-Wei Yang. Biotransformation of nodakenin and simultaneous quantification of nodakenin and its aglycone in incubated system of human intestinal bacteria by HPLC method. Journal of Asian natural products research. 2009; 11(4):371-9. doi: 10.1080/10286020902767716. [PMID: 19431019]
  • Xi-Fei Ding, Xu Feng, Yun-Fa Dong, Xing-Zeng Zhao, Yu Chen, Ming Wang. [Studies on chemical constituents of the roots of Angelica pubescens]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2008 Apr; 31(4):516-8. doi: . [PMID: 18661821]
  • Yan-Yan Jiang, Bin Liu, Ren-Bing Shi, Guang-Zhong Tu. [Isolation and structure identification of chemical constituents from Saposhnikovia divaricata (Turcz.) Schischk]. Yao xue xue bao = Acta pharmaceutica Sinica. 2007 May; 42(5):505-10. doi: . [PMID: 17703773]
  • Ju Sun Kim, Jin Cheul Kim, Sang Hee Shim, Eun Ju Lee, WenYi Jin, KiHwan Bae, Kun Ho Son, Hyun Pyo Kim, Sam Sik Kang, Hyeun Wook Chang. Chemical constituents of the root of Dystaenia takeshimana and their anti-inflammatory activity. Archives of pharmacal research. 2006 Aug; 29(8):617-23. doi: 10.1007/bf02968244. [PMID: 16964755]
  • Yuan-yan Luu, Li Li, Cun Zhang, Yong-qing Xiao. [Studies on chemical constituents in roots of Heracleum rapula]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2006 Apr; 31(8):667-8. doi: . [PMID: 16830827]
  • S Y Kang, K Y Lee, S H Sung, M J Park, Y C Kim. Coumarins isolated from Angelica gigas inhibit acetylcholinesterase: structure-activity relationships. Journal of natural products. 2001 May; 64(5):683-5. doi: 10.1021/np000441w. [PMID: 11374978]
  • Y Q Xiao, L Li, B Yang, L Q Huang. [Studies on chemical constituents from root of Saposhnikovia divaricata (Turcz.) Schischk]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2001 Feb; 26(2):117-9. doi: ". [PMID: 12525107]
  • Y F Sun. [Isolation and identification of chemical constituents from an alcoholic extract of Notopterygium incisium]. Zhong yao tong bao (Beijing, China : 1981). 1985 Mar; 10(3):31-3. doi: ". [PMID: 2931199]
  • G Innocenti, A Bettero, G Caporale. [Determination of the coumarinic constituents of Ficus carica leaves by HPLC]. Il Farmaco; edizione scientifica. 1982 Jul; 37(7):475-85. doi: . [PMID: 7128806]
  • . . . . doi: . [PMID: 17068340]