Marmesin

(2S)-2-(2-hydroxypropan-2-yl)-2,3-dihydrofuro[3,2-g]chromen-7-one

C14H14O4 (246.0892)


Marmesin is a member of psoralens and a tertiary alcohol. 2-(2-Hydroxypropan-2-yl)-2,3-dihydrofuro[3,2-g]chromen-7-one is a natural product found in Zanthoxylum beecheyanum, Zanthoxylum arnottianum, and other organisms with data available. Nodakenetin is found in wild celery. Nodakenetin is a constituent of Angelica species Constituent of Angelica subspecies Nodakenetin is found in wild celery. (+)-marmesin is a marmesin. It is an enantiomer of a nodakenetin. Marmesin is a natural product found in Coronilla scorpioides, Clausena dunniana, and other organisms with data available. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. (+)-Marmesin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=13849-08-6 (retrieved 2024-09-04) (CAS RN: 13849-08-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Flavone

InChI=1/C15H10O2/c16-13-10-15(11-6-2-1-3-7-11)17-14-9-5-4-8-12(13)14/h1-10

C15H10O2 (222.0681)


Flavone is the simplest member of the class of flavones that consists of 4H-chromen-4-one bearing a phenyl substituent at position 2. It has a role as a metabolite and a nematicide. Flavone is a natural product found in Grindelia hirsutula, Asphodeline damascena, and other organisms with data available. Quercetin is a flavonoid that forms the "backbone" for many other flavonoids, including the citrus flavonoids rutin, hesperidin, naringin and tangeritin. In studies, quercetin is found to be the most active of the flavonoids, and many medicinal plants owe much of their activity to their high quercetin content. Quercetin has demonstrated significant anti-inflammatory activity because of direct inhibition of several initial processes of inflammation. For example, it inhibits both the manufacture and release of histamine and other allergic/inflammatory mediators. In addition, it exerts potent antioxidant activity and vitamin C-sparing action. Flavone is an endogenous metabolite. Flavone is an endogenous metabolite.

   

Ursolic acid

(1S,2R,4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O3 (456.3603)


Ursolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. Ursolic acid (UA), a pentacyclic triterpene acid, has been isolated from many kinds of medicinal plants, such as Eriobotrya japonica, Rosmarinns officinalis, Melaleuca leucadendron, Ocimum sanctum and Glechoma hederaceae. UA has been reported to produce antitumor activities and antioxidant activity, and is reported to have an antioxidant activity. UA may play an important role in regulating the apoptosis induced by high glucose presumably through scavenging of ROS (reactive oxygen species). It has been found recently that ursolic acid treatment affects growth and apoptosis in cancer cells. (PMID: 15994040, 17516235, 17213663). Ursolic acid is a pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite and a geroprotector. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It derives from a hydride of an ursane. Ursolic acid is a natural product found in Gladiolus italicus, Freziera, and other organisms with data available. Ursolic Acid is a pentacyclic triterpenoid found in various fruits, vegetables and medicinal herbs, with a variety of potential pharmacologic activities including anti-inflammatory, antioxidative, antiviral, serum lipid-lowering, and antineoplastic activities. Upon administration, ursolic acid may promote apoptosis and inhibit cancer cell proliferation through multiple mechanisms. This may include the regulation of mitochondrial function through various pathways including the ROCK/PTEN and p53 pathways, the suppression of the nuclear factor-kappa B (NF-kB) pathways, and the increase in caspase-3, caspase-8 and caspase-9 activities. See also: Holy basil leaf (part of); Jujube fruit (part of); Lagerstroemia speciosa leaf (part of). D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors A pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent Found in wax of apples, pears and other fruits. V. widely distributed in plants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   

Moupinamide

(Z,2E)-3-(4-hydroxy-3-methoxyphenyl)-N-[2-(4-hydroxyphenyl)ethyl]prop-2-enimidic acid

C18H19NO4 (313.1314)


N-feruloyltyramine is a member of tyramines. It has a role as a metabolite. Moupinamide is a natural product found in Zanthoxylum beecheyanum, Polyalthia suberosa, and other organisms with data available. See also: Tobacco Leaf (part of); Cannabis sativa subsp. indica top (part of); Ipomoea aquatica leaf (part of). Alkaloid from Piper nigrum. Moupinamide is found in many foods, some of which are nutmeg, amaranth, sapodilla, and orange bell pepper. Moupinamide is found in eggplant. Moupinamide is an alkaloid from Piper nigru CASMI2013 Challenge_1 MS2 data; [MS1] MSJ00001 CASMI2013 Challenge_1 MS1 data; [MS2] MSJ00002 N-trans-Feruloyltyramine (N-feruloyltyramine), an alkaloid from Piper nigru, is an inhibitor of COX1 and COX2, with potential antioxidant properties. N-trans-Feruloyltyramine possesses anti-inflammatory activity[1]. N-trans-Feruloyltyramine (N-feruloyltyramine), an alkaloid from Piper nigru, is an inhibitor of COX1 and COX2, with potential antioxidant properties. N-trans-Feruloyltyramine possesses anti-inflammatory activity[1].

   

Oleanolic acid

(4aS,5S,6aS,6bR,8R,8aR,10S,12aR,12bR,14bS)-10-Hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydro-2H-picene-4a-carboxylic acid

C30H48O3 (456.3603)


Oleanolic acid is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Oleanolic acid exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. Oleanolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. (PMID:17292619, 15522132, 15994040). Oleanolic acid is a pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It is a conjugate acid of an oleanolate. It derives from a hydride of an oleanane. Oleanolic acid is a natural product found in Ophiopogon japonicus, Freziera, and other organisms with data available. A pentacyclic triterpene that occurs widely in many PLANTS as the free acid or the aglycone for many SAPONINS. It is biosynthesized from lupane. It can rearrange to the isomer, ursolic acid, or be oxidized to taraxasterol and amyrin. See also: Holy basil leaf (part of); Jujube fruit (part of); Paeonia lactiflora root (part of) ... View More ... Occurs as glycosides in cloves (Syzygium aromaticum), sugar beet (Beta vulgaris), olive leaves, etc. Very widely distributed aglycone A pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. [Raw Data] CBA90_Oleanolic-acid_neg_50eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_20eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_10eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_30eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_40eV.txt Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.

   

Primuliten

InChI=1/C15H10O3/c16-11-7-4-8-13-15(11)12(17)9-14(18-13)10-5-2-1-3-6-10/h1-9,16H

C15H10O3 (238.063)


5-Hydroxyflavone is a member of flavones. 5-Hydroxyflavone is a natural product found in Conchocarpus heterophyllus, Primula denticulata, and Lophomyrtus bullata with data available. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.263 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.268 5-Hydroxyflavone, a flavonoid ligand, shows no cytotoxic activity against MCF-7, FaDU, MDA-MB-435S, U87, RPE-1, and HEK293 cells[1]. 5-Hydroxyflavone, a flavonoid ligand, shows no cytotoxic activity against MCF-7, FaDU, MDA-MB-435S, U87, RPE-1, and HEK293 cells[1].

   

Skimmianine

4,7,8-trimethoxy-furo(2,3-b)quinoline

C14H13NO4 (259.0845)


Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1]. Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1].

   

Arborinine

9(10H)-Acridinone, 1-hydroxy-2,3-dimethoxy-10-methyl- (9ci)

C16H15NO4 (285.1001)


Arborinine is found in herbs and spices. Arborinine is an alkaloid from Ruta graveolens (rue

   

Haplophyllidine

Haplophyllidine

C18H23NO4 (317.1627)


Origin: Plant; SubCategory_DNP: Alkaloids derived from anthranilic acid, Quinoline alkaloids

   

N-Methylflindersine

5H-Pyrano[3,2-c]quinolin-5-one, 2,6-dihydro-2,2,6-trimethyl-

C15H15NO2 (241.1103)


N-Methylflindersine is an oxacycle, an organic heterotricyclic compound and an organonitrogen heterocyclic compound. N-Methylflindersine is a natural product found in Zanthoxylum beecheyanum, Melicope denhamii, and other organisms with data available. N-Methylflindersine is a compound isolated as insect antifeedants from the East African Rutaceous medicinal plants Fagara chalybea and F. holtziana[1]. N-Methylflindersine is a compound isolated as insect antifeedants from the East African Rutaceous medicinal plants Fagara chalybea and F. holtziana[1].

   

Monogynol A

3beta,20-Dihydroxylupane

C30H52O2 (444.3967)


   

Flavone

2-Phenyl-4H-1-benzopyran-4-one

C15H10O2 (222.0681)


Quercetin is a flavonoid that forms the "backbone" for many other flavonoids, including the citrus flavonoids rutin, hesperidin, naringin and tangeritin. In studies, quercetin is found to be the most active of the flavonoids, and many medicinal plants owe much of their activity to their high quercetin content. Quercetin has demonstrated significant anti-inflammatory activity because of direct inhibition of several initial processes of inflammation. For example, it inhibits both the manufacture and release of histamine and other allergic/inflammatory mediators. In addition, it exerts potent antioxidant activity and vitamin C-sparing action. -- Wikipedia. CONFIDENCE standard compound; INTERNAL_ID 824; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9336; ORIGINAL_PRECURSOR_SCAN_NO 9335 CONFIDENCE standard compound; INTERNAL_ID 824; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9354; ORIGINAL_PRECURSOR_SCAN_NO 9353 CONFIDENCE standard compound; INTERNAL_ID 824; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9398; ORIGINAL_PRECURSOR_SCAN_NO 9396 CONFIDENCE standard compound; INTERNAL_ID 824; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9424; ORIGINAL_PRECURSOR_SCAN_NO 9423 CONFIDENCE standard compound; INTERNAL_ID 824; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9371; ORIGINAL_PRECURSOR_SCAN_NO 9370 CONFIDENCE standard compound; INTERNAL_ID 824; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9397; ORIGINAL_PRECURSOR_SCAN_NO 9396 Flavones (flavus = yellow), are a class of flavonoids based on the backbone of 2-phenylchromen-4-one (2-phenyl-1-benzopyran-4-one). Flavones is found in many foods, some of which are dill, feijoa, pomegranate, and rosemary. CONFIDENCE standard compound; INTERNAL_ID 8089 Flavone is an endogenous metabolite. Flavone is an endogenous metabolite.

   

Skimmianine

InChI=1/C14H13NO4/c1-16-10-5-4-8-11(13(10)18-3)15-14-9(6-7-19-14)12(8)17-2/h4-7H,1-3H

C14H13NO4 (259.0845)


Skimmianine is an organonitrogen heterocyclic compound, an organic heterotricyclic compound, an oxacycle and an alkaloid antibiotic. Skimmianine is a natural product found in Haplophyllum bucharicum, Haplophyllum cappadocicum, and other organisms with data available. Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1]. Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1].

   

N-(p-Hydroxyphenyl)ethyl p-hydroxycinnamide

(Z,2E)-3-(4-hydroxyphenyl)-N-[2-(4-hydroxyphenyl)ethyl]prop-2-enimidic acid

C17H17NO3 (283.1208)


Trans-N-p-coumaroyl tyramine is a hydroxycinnamic acid. It has a role as a metabolite. p-Coumaroyltyramine is a natural product found in Ophiopogon japonicus, Polyalthia suberosa, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of); Ipomoea aquatica leaf (part of). Constituent of Chinese onion (Allium chinense) and broad bean (Vicia faba). N-(p-Hydroxyphenyl)ethyl p-hydroxycinnamide is found in onion-family vegetables and pulses. N-p-cis-Coumaroyltyramine is found in onion-family vegetables. N-p-cis-Coumaroyltyramine is a constituent of Chinese onion Allium chinense. A natural product found particularly in Solanum melongena and Asimina triloba. N-p-trans-Coumaroyltyramine is a cinnamoylphenethyl amide isolated from polygonum hyrcanicum, acts as an acetylcholinesterase (AChE) inhibitor with an an IC50 of 122 μM. N-p-trans-Coumaroyltyramine exhibits anti-trypanosomal activity with an IC50 of 13.3 μM for T. brucei rhodesiense[1][2]. N-p-trans-Coumaroyltyramine is a cinnamoylphenethyl amide isolated from polygonum hyrcanicum, acts as an acetylcholinesterase (AChE) inhibitor with an an IC50 of 122 μM. N-p-trans-Coumaroyltyramine exhibits anti-trypanosomal activity with an IC50 of 13.3 μM for T. brucei rhodesiense[1][2].

   

5-Hydroxyflavone

5-Hydroxyflavone

C15H10O3 (238.063)


5-Hydroxyflavone, a flavonoid ligand, shows no cytotoxic activity against MCF-7, FaDU, MDA-MB-435S, U87, RPE-1, and HEK293 cells[1]. 5-Hydroxyflavone, a flavonoid ligand, shows no cytotoxic activity against MCF-7, FaDU, MDA-MB-435S, U87, RPE-1, and HEK293 cells[1].

   

1-Hydroxy-3-methoxy-10-methylacridone

1-hydroxy-3-methoxy-10-methyl-9,10-dihydroacridin-9-one

C15H13NO3 (255.0895)


1-Hydroxy-3-methoxy-10-methylacridone is found in herbs and spices. 1-Hydroxy-3-methoxy-10-methylacridone is an alkaloid from the roots Ruta graveolens (rue

   

Eduleine

7-methoxy-1-methyl-2-phenyl-1,4-dihydroquinolin-4-one

C17H15NO2 (265.1103)


Eduleine is found in pomes. Eduleine is an alkaloid from Casimiroa edulis (Mexican apple). Alkaloid from Casimiroa edulis (Mexican apple). Eduleine is found in pomes.

   

Xanthoxotin

1-hydroxy-2,3-dimethoxy-9,10-dihydroacridin-9-one

C15H13NO4 (271.0845)


Xanthoxotin is a member of the class of compounds known as acridones. Acridones are acridines containing a ketone group attached to the C9 carbon atom of the acridine moiety. Xanthoxotin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Xanthoxotin can be found in wild celery, which makes xanthoxotin a potential biomarker for the consumption of this food product.

   

Ursolic Acid

3-Hydroxy-12-ursen-28-oic acid

C30H48O3 (456.3603)


Origin: Plant; SubCategory_DNP: Triterpenoids relative retention time with respect to 9-anthracene Carboxylic Acid is 1.636 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.640 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.638 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.642 Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   

Isoswertisin

8-beta-D-Glucopyranosyl-5-hydroxy-2- (4-hydroxyphenyl) -7-methoxy-4H-1-benzopyran-4-one

C22H22O10 (446.1213)


   

Isodutadrupine

Isodutadrupine

C17H15NO3 (281.1052)


   

Isokokusagine

Isokokusagine

C13H9NO4 (243.0532)


   

7-Methoxyflavone

7-Methoxyflavone

C16H12O3 (252.0786)


7-Methoxyflavone is a compound isolated from Zornia brasiliensis. 7-Methoxyflavone has peripheral antinociceptive activity. 7-Methoxyflavone inhibits paw-licking time in the neurogenic phase of the formalin pain response (65.6\%) and did not decrease the nociceptive response in the inflammatory phase[1].

   

Flavone

2-Phenyl-4H-1-benzopyran-4-one

C15H10O2 (222.0681)


Annotation level-1 Flavone is an endogenous metabolite. Flavone is an endogenous metabolite.

   
   

Oleanolic Acid

Oleanolic Acid

C30H48O3 (456.3603)


   

Skimmianine

Skimmianine

C14H13NO4 (259.0845)


Origin: Plant; SubCategory_DNP: Alkaloids derived from anthranilic acid, Quinoline alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 1.053 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.048 Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1]. Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1].

   

5-Hydroxyflavone

5-Hydroxyflavone

C15H10O3 (238.063)


5-Hydroxyflavone, a flavonoid ligand, shows no cytotoxic activity against MCF-7, FaDU, MDA-MB-435S, U87, RPE-1, and HEK293 cells[1]. 5-Hydroxyflavone, a flavonoid ligand, shows no cytotoxic activity against MCF-7, FaDU, MDA-MB-435S, U87, RPE-1, and HEK293 cells[1].

   

5,7-dihydroxy-2-(4-hydroxyphenyl)-6,8-bis(3,4,5-trihydroxyoxan-2-yl)chromen-4-one

NCGC00384563-02!5,7-dihydroxy-2-(4-hydroxyphenyl)-6,8-bis(3,4,5-trihydroxyoxan-2-yl)chromen-4-one

C25H26O13 (534.1373)


   

5,7-dihydroxy-2-(4-hydroxyphenyl)-6,8-bis(3,4,5-trihydroxyoxan-2-yl)chromen-4-one

NCGC00384563-01!5,7-dihydroxy-2-(4-hydroxyphenyl)-6,8-bis(3,4,5-trihydroxyoxan-2-yl)chromen-4-one

C25H26O13 (534.1373)


   
   

1-Hydroxy-3-methoxy-N-methylacridone

1-hydroxy-3-methoxy-10-methyl-9,10-dihydroacridin-9-one

C15H13NO3 (255.0895)


   

EDULEINE

7-methoxy-1-methyl-2-phenyl-1,4-dihydroquinolin-4-one

C17H15NO2 (265.1103)


   

Paprazine

(2e)-3-(4-hydroxyphenyl)-n-[2-(4-hydroxyphenyl)ethyl]prop-2-enamide

C17H17NO3 (283.1208)


N-p-trans-Coumaroyltyramine is a cinnamoylphenethyl amide isolated from polygonum hyrcanicum, acts as an acetylcholinesterase (AChE) inhibitor with an an IC50 of 122 μM. N-p-trans-Coumaroyltyramine exhibits anti-trypanosomal activity with an IC50 of 13.3 μM for T. brucei rhodesiense[1][2]. N-p-trans-Coumaroyltyramine is a cinnamoylphenethyl amide isolated from polygonum hyrcanicum, acts as an acetylcholinesterase (AChE) inhibitor with an an IC50 of 122 μM. N-p-trans-Coumaroyltyramine exhibits anti-trypanosomal activity with an IC50 of 13.3 μM for T. brucei rhodesiense[1][2].

   

Tropanserin

Tropanserin

C17H23NO2 (273.1729)


C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist Tropanserin is a serotoninergic active compound, as well as a 5HT3 receptor antagonist. Tropanserin modulates Cardio-respiratory reflex effects of an exogenous serotonin challenge[1].

   

Cinnamamide, p-hydroxy-N-(p-hydroxyphenethyl)-

Cinnamamide, p-hydroxy-N-(p-hydroxyphenethyl)-

C17H17NO3 (283.1208)


   

Caryophyllin

(4aS,5S,6aS,6bR,8R,8aR,10S,12aR,12bR,14bS)-10-Hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydro-2H-picene-4a-carboxylic acid

C30H48O3 (456.3603)


Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.

   

Urson

(1S,2R,4aS,6aR,6aS,6bR,8aR,10S,12aR,14bS)-10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-4a-carboxylic acid

C30H48O3 (456.3603)


D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   

Marmesin

7H-Furo[3,2g][1]-benzopyran-7-one, (-2,3-dihydro-2-(1-hydroxy-1-hydroxymethylethyl)-, (R)

C14H14O4 (246.0892)


Nodakenetin is a marmesin with R-configuration. It has a role as a plant metabolite, a rat metabolite and a xenobiotic metabolite. It is an enantiomer of a (+)-marmesin. Nodakenetin is a natural product found in Zanthoxylum beecheyanum, Melicope barbigera, and other organisms with data available. A marmesin with R-configuration. (+)-marmesin is a marmesin. It is an enantiomer of a nodakenetin. Marmesin is a natural product found in Coronilla scorpioides, Clausena dunniana, and other organisms with data available. Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2]. Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2]. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity.

   

Skimmianin

InChI=1\C14H13NO4\c1-16-10-5-4-8-11(13(10)18-3)15-14-9(6-7-19-14)12(8)17-2\h4-7H,1-3H

C14H13NO4 (259.0845)


Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1]. Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1].

   

Flavon

InChI=1\C15H10O2\c16-13-10-15(11-6-2-1-3-7-11)17-14-9-5-4-8-12(13)14\h1-10

C15H10O2 (222.0681)


Flavone is an endogenous metabolite. Flavone is an endogenous metabolite.

   

Flavone

InChI=1/C15H10O2/c16-13-10-15(11-6-2-1-3-7-11)17-14-9-5-4-8-12(13)14/h1-10

C15H10O2 (222.0681)


Flavone is the simplest member of the class of flavones that consists of 4H-chromen-4-one bearing a phenyl substituent at position 2. It has a role as a metabolite and a nematicide. Flavone is a natural product found in Grindelia hirsutula, Asphodeline damascena, and other organisms with data available. Quercetin is a flavonoid that forms the "backbone" for many other flavonoids, including the citrus flavonoids rutin, hesperidin, naringin and tangeritin. In studies, quercetin is found to be the most active of the flavonoids, and many medicinal plants owe much of their activity to their high quercetin content. Quercetin has demonstrated significant anti-inflammatory activity because of direct inhibition of several initial processes of inflammation. For example, it inhibits both the manufacture and release of histamine and other allergic/inflammatory mediators. In addition, it exerts potent antioxidant activity and vitamin C-sparing action. Quercetin is a flavonoid that forms the "backbone" for many other flavonoids, including the citrus flavonoids rutin, hesperidin, naringin and tangeritin. In studies, quercetin is found to be the most active of the flavonoids, and many medicinal plants owe much of their activity to their high quercetin content. Quercetin has demonstrated significant anti-inflammatory activity because of direct inhibition of several initial processes of inflammation. For example, it inhibits both the manufacture and release of histamine and other allergic/inflammatory mediators. In addition, it exerts potent antioxidant activity and vitamin C-sparing action. -- Wikipedia. Flavones (flavus = yellow), are a class of flavonoids based on the backbone of 2-phenylchromen-4-one (2-phenyl-1-benzopyran-4-one). Flavones is found in many foods, some of which are dill, feijoa, pomegranate, and rosemary. The simplest member of the class of flavones that consists of 4H-chromen-4-one bearing a phenyl substituent at position 2. Flavone is an endogenous metabolite. Flavone is an endogenous metabolite.

   

4,8-dimethoxy-8-(3-methylbut-2-en-1-yl)-5h,6h,7h-furo[2,3-b]quinolin-7-yl acetate

4,8-dimethoxy-8-(3-methylbut-2-en-1-yl)-5h,6h,7h-furo[2,3-b]quinolin-7-yl acetate

C20H25NO5 (359.1733)


   

7,8-dimethoxy-9-methylfuro[2,3-b]quinolin-4-one

7,8-dimethoxy-9-methylfuro[2,3-b]quinolin-4-one

C14H13NO4 (259.0845)


   

5-methyl-2-(prop-1-en-2-yl)-2h,3h-furo[3,2-c]quinolin-4-one

5-methyl-2-(prop-1-en-2-yl)-2h,3h-furo[3,2-c]quinolin-4-one

C15H15NO2 (241.1103)


   

5,7-dihydroxy-2-(4-hydroxyphenyl)-6,8-bis[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]chromen-4-one

5,7-dihydroxy-2-(4-hydroxyphenyl)-6,8-bis[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]chromen-4-one

C25H26O13 (534.1373)


   

1-hydroxy-2,3,5,6-tetramethoxy-10h-acridin-9-one

1-hydroxy-2,3,5,6-tetramethoxy-10h-acridin-9-one

C17H17NO6 (331.1056)


   

16-methyl-3,5,14-trioxa-16-azatetracyclo[7.7.0.0²,⁶.0¹¹,¹⁵]hexadeca-1,6,8,11(15),12-pentaen-10-one

16-methyl-3,5,14-trioxa-16-azatetracyclo[7.7.0.0²,⁶.0¹¹,¹⁵]hexadeca-1,6,8,11(15),12-pentaen-10-one

C13H9NO4 (243.0532)


   

5,5,17-trimethyl-6,15-dioxa-17-azatetracyclo[8.7.0.0²,⁷.0¹²,¹⁶]heptadeca-1,3,7,9,12(16),13-hexaen-11-one

5,5,17-trimethyl-6,15-dioxa-17-azatetracyclo[8.7.0.0²,⁷.0¹²,¹⁶]heptadeca-1,3,7,9,12(16),13-hexaen-11-one

C17H15NO3 (281.1052)


   

11-[(16e)-octadec-16-en-1-yl]-11h-5,10-dioxatetraphen-12-one

11-[(16e)-octadec-16-en-1-yl]-11h-5,10-dioxatetraphen-12-one

C34H44O3 (500.329)


   

(1s,3r,6s,12s,16r)-15-(5,6-dimethylheptan-2-yl)-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl (2e)-2-methylbut-2-enoate

(1s,3r,6s,12s,16r)-15-(5,6-dimethylheptan-2-yl)-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl (2e)-2-methylbut-2-enoate

C36H60O2 (524.4593)


   

1,2,3-trimethoxy-10-methylacridin-9-one

1,2,3-trimethoxy-10-methylacridin-9-one

C17H17NO4 (299.1158)


   

1,2,3,5-tetramethoxy-10-methylacridin-9-one

1,2,3,5-tetramethoxy-10-methylacridin-9-one

C18H19NO5 (329.1263)


   

3-(2-{7,7-dimethyl-3h-chromeno[6,5-b]pyrrol-1-yl}ethyl)-2-hydroxyquinazolin-4-one

3-(2-{7,7-dimethyl-3h-chromeno[6,5-b]pyrrol-1-yl}ethyl)-2-hydroxyquinazolin-4-one

C23H21N3O3 (387.1583)


   

(1s,3r,6s,8r,11s,12s,15r,16r)-7,7,12,16-tetramethyl-15-[(2r)-6-methylheptan-2-yl]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl (2e)-2-methylbut-2-enoate

(1s,3r,6s,8r,11s,12s,15r,16r)-7,7,12,16-tetramethyl-15-[(2r)-6-methylheptan-2-yl]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl (2e)-2-methylbut-2-enoate

C35H58O2 (510.4437)


   

(2e)-3-(4-hydroxy-3-methoxyphenyl)-n-[2-(4-hydroxyphenyl)ethyl]prop-2-enimidic acid

(2e)-3-(4-hydroxy-3-methoxyphenyl)-n-[2-(4-hydroxyphenyl)ethyl]prop-2-enimidic acid

C18H19NO4 (313.1314)


   

7,7,20,20-tetramethyl-8,12,19,25-tetraoxahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosa-2,4(9),10,15(24),16,18(23),21-heptaene

7,7,20,20-tetramethyl-8,12,19,25-tetraoxahexacyclo[12.11.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁴.0¹⁸,²³]pentacosa-2,4(9),10,15(24),16,18(23),21-heptaene

C25H26O4 (390.1831)


   

1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl benzoate

1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl benzoate

C36H54O2 (518.4124)


   

3-[(2e)-6,7-dihydroxy-3,7-dimethyloct-2-en-1-yl]-4-methoxy-1-methylquinolin-2-one

3-[(2e)-6,7-dihydroxy-3,7-dimethyloct-2-en-1-yl]-4-methoxy-1-methylquinolin-2-one

C21H29NO4 (359.2096)


   

(2r)-5-methyl-2-(prop-1-en-2-yl)-2h,3h-furo[3,2-c]quinolin-4-one

(2r)-5-methyl-2-(prop-1-en-2-yl)-2h,3h-furo[3,2-c]quinolin-4-one

C15H15NO2 (241.1103)


   

(2e)-3-(4-hydroxyphenyl)-n-[2-(4-hydroxyphenyl)ethyl]prop-2-enimidic acid

(2e)-3-(4-hydroxyphenyl)-n-[2-(4-hydroxyphenyl)ethyl]prop-2-enimidic acid

C17H17NO3 (283.1208)


   

1-(2-hydroxypropan-2-yl)-3a,5a,5b,8,8,11a-hexamethyl-hexadecahydrocyclopenta[a]chrysen-9-ol

1-(2-hydroxypropan-2-yl)-3a,5a,5b,8,8,11a-hexamethyl-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H52O2 (444.3967)


   

3-(3-hydroxy-4-methoxyphenyl)-n-[2-(4-hydroxyphenyl)ethyl]prop-2-enimidic acid

3-(3-hydroxy-4-methoxyphenyl)-n-[2-(4-hydroxyphenyl)ethyl]prop-2-enimidic acid

C18H19NO4 (313.1314)


   

(2e)-3-(3-hydroxy-4-methoxyphenyl)-n-[2-(4-hydroxyphenyl)ethyl]prop-2-enimidic acid

(2e)-3-(3-hydroxy-4-methoxyphenyl)-n-[2-(4-hydroxyphenyl)ethyl]prop-2-enimidic acid

C18H19NO4 (313.1314)


   

1,4-dimethoxyquinolin-2-one

1,4-dimethoxyquinolin-2-one

C11H11NO3 (205.0739)


   

4-methoxy-6-[2-(methylamino)phenyl]pyran-2-one

4-methoxy-6-[2-(methylamino)phenyl]pyran-2-one

C13H13NO3 (231.0895)


   

2,2,10-trimethyl-3h,4h-pyrano[2,3-b]quinolin-5-one

2,2,10-trimethyl-3h,4h-pyrano[2,3-b]quinolin-5-one

C15H17NO2 (243.1259)


   

11-methoxy-5,5-dimethyl-6,15-dioxa-17-azatetracyclo[8.7.0.0²,⁷.0¹²,¹⁶]heptadeca-1,3,7,9,11,13,16-heptaene

11-methoxy-5,5-dimethyl-6,15-dioxa-17-azatetracyclo[8.7.0.0²,⁷.0¹²,¹⁶]heptadeca-1,3,7,9,11,13,16-heptaene

C17H15NO3 (281.1052)


   

5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-(3,4,5-trihydroxyoxan-2-yl)chromen-4-one

5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-(3,4,5-trihydroxyoxan-2-yl)chromen-4-one

C27H30O14 (578.1635)


   

11-dodecyl-11h-5,10-dioxatetraphen-12-one

11-dodecyl-11h-5,10-dioxatetraphen-12-one

C28H34O3 (418.2508)


   

3-(4-hydroxyphenyl)-n-[2-(4-hydroxyphenyl)ethyl]prop-2-enimidic acid

3-(4-hydroxyphenyl)-n-[2-(4-hydroxyphenyl)ethyl]prop-2-enimidic acid

C17H17NO3 (283.1208)


   

8-[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxychromen-4-one

8-[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxychromen-4-one

C26H28O13 (548.153)


   

4,8-dimethoxy-1-methylquinolin-2-one

4,8-dimethoxy-1-methylquinolin-2-one

C12H13NO3 (219.0895)


   

methyl 2-methoxy-1,5-dioxopyrrolo[1,2-a]quinoline-4-carboxylate

methyl 2-methoxy-1,5-dioxopyrrolo[1,2-a]quinoline-4-carboxylate

C15H11NO5 (285.0637)


   

1,2,3,5,6-pentamethoxy-10h-acridin-9-one

1,2,3,5,6-pentamethoxy-10h-acridin-9-one

C18H19NO6 (345.1212)


   

(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl benzoate

(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl benzoate

C36H54O2 (518.4124)


   

4,7-dimethoxy-8-(3-methylbut-2-en-1-yl)furo[2,3-b]quinoline

4,7-dimethoxy-8-(3-methylbut-2-en-1-yl)furo[2,3-b]quinoline

C18H19NO3 (297.1365)


   

(1-hydroxy-2,3-dimethoxy-9-oxoacridin-10-yl)methyl acetate

(1-hydroxy-2,3-dimethoxy-9-oxoacridin-10-yl)methyl acetate

C18H17NO6 (343.1056)


   

8-{4,5-dihydroxy-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxychromen-4-one

8-{4,5-dihydroxy-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxychromen-4-one

C26H28O13 (548.153)


   

5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-6-[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]chromen-4-one

5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-6-[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]chromen-4-one

C27H30O14 (578.1635)


   

4,4,17-trimethyl-3,15-dioxa-17-azatetracyclo[8.7.0.0²,⁷.0¹²,¹⁶]heptadeca-1,5,7,9,12(16),13-hexaen-11-one

4,4,17-trimethyl-3,15-dioxa-17-azatetracyclo[8.7.0.0²,⁷.0¹²,¹⁶]heptadeca-1,5,7,9,12(16),13-hexaen-11-one

C17H15NO3 (281.1052)


   

3-(6,7-dihydroxy-3,7-dimethyloct-2-en-1-yl)-4-methoxy-1-methylquinolin-2-one

3-(6,7-dihydroxy-3,7-dimethyloct-2-en-1-yl)-4-methoxy-1-methylquinolin-2-one

C21H29NO4 (359.2096)


   

(7r,8r)-8-[(1e)-3-hydroxy-3-methylbut-1-en-1-yl]-4,8-dimethoxy-5h,6h,7h-furo[2,3-b]quinolin-7-yl acetate

(7r,8r)-8-[(1e)-3-hydroxy-3-methylbut-1-en-1-yl]-4,8-dimethoxy-5h,6h,7h-furo[2,3-b]quinolin-7-yl acetate

C20H25NO6 (375.1682)


   

4-methoxy-1-methyl-3-(3-methylbut-2-en-1-yl)quinolin-2-one

4-methoxy-1-methyl-3-(3-methylbut-2-en-1-yl)quinolin-2-one

C16H19NO2 (257.1416)


   

(7r,8r)-4,8-dimethoxy-8-(3-methylbut-2-en-1-yl)-5h,6h,7h-furo[2,3-b]quinolin-7-yl acetate

(7r,8r)-4,8-dimethoxy-8-(3-methylbut-2-en-1-yl)-5h,6h,7h-furo[2,3-b]quinolin-7-yl acetate

C20H25NO5 (359.1733)


   

11-octadecyl-11h-5,10-dioxatetraphen-12-one

11-octadecyl-11h-5,10-dioxatetraphen-12-one

C34H46O3 (502.3447)


   

11-heptadecyl-11h-5,10-dioxatetraphen-12-one

11-heptadecyl-11h-5,10-dioxatetraphen-12-one

C33H44O3 (488.329)


   

11-(octadec-16-en-1-yl)-11h-5,10-dioxatetraphen-12-one

11-(octadec-16-en-1-yl)-11h-5,10-dioxatetraphen-12-one

C34H44O3 (500.329)


   

10-methoxy-3,5,14-trioxa-16-azatetracyclo[7.7.0.0²,⁶.0¹¹,¹⁵]hexadeca-1,6,8,10,12,15-hexaene

10-methoxy-3,5,14-trioxa-16-azatetracyclo[7.7.0.0²,⁶.0¹¹,¹⁵]hexadeca-1,6,8,10,12,15-hexaene

C13H9NO4 (243.0532)


   

3-(2-{7,7-dimethyl-3h-chromeno[6,5-b]pyrrol-1-yl}ethyl)-1-methylquinazoline-2,4-dione

3-(2-{7,7-dimethyl-3h-chromeno[6,5-b]pyrrol-1-yl}ethyl)-1-methylquinazoline-2,4-dione

C24H23N3O3 (401.1739)


   

6-hydroxy-3,13,21-triazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2(10),4,6,8,15,17,19-octaen-14-one

6-hydroxy-3,13,21-triazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2(10),4,6,8,15,17,19-octaen-14-one

C18H13N3O2 (303.1008)


   

8-(3-hydroxy-3-methylbut-1-en-1-yl)-4,8-dimethoxy-5h,6h,7h-furo[2,3-b]quinolin-7-yl acetate

8-(3-hydroxy-3-methylbut-1-en-1-yl)-4,8-dimethoxy-5h,6h,7h-furo[2,3-b]quinolin-7-yl acetate

C20H25NO6 (375.1682)


   

(1s,3r,6s,12s,16r)-15-(5,6-dimethylheptan-2-yl)-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-ol

(1s,3r,6s,12s,16r)-15-(5,6-dimethylheptan-2-yl)-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-ol

C31H54O (442.4174)


   

1-methyl-2-phenylquinolin-4-one

1-methyl-2-phenylquinolin-4-one

C16H13NO (235.0997)


   

11-decyl-11h-5,10-dioxatetraphen-12-one

11-decyl-11h-5,10-dioxatetraphen-12-one

C26H30O3 (390.2195)


   

3-(2-{7,7-dimethyl-3h-chromeno[6,5-b]pyrrol-1-yl}ethyl)-1-hydroxyquinazoline-2,4-dione

3-(2-{7,7-dimethyl-3h-chromeno[6,5-b]pyrrol-1-yl}ethyl)-1-hydroxyquinazoline-2,4-dione

C23H21N3O4 (403.1532)


   

(1r,3ar,5ar,5br,9s,11ar)-1-(2-hydroxypropan-2-yl)-3a,5a,5b,8,8,11a-hexamethyl-hexadecahydrocyclopenta[a]chrysen-9-ol

(1r,3ar,5ar,5br,9s,11ar)-1-(2-hydroxypropan-2-yl)-3a,5a,5b,8,8,11a-hexamethyl-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H52O2 (444.3967)


   

11-methoxy-4,4-dimethyl-3,15-dioxa-17-azatetracyclo[8.7.0.0²,⁷.0¹²,¹⁶]heptadeca-1,5,7,9,11,13,16-heptaene

11-methoxy-4,4-dimethyl-3,15-dioxa-17-azatetracyclo[8.7.0.0²,⁷.0¹²,¹⁶]heptadeca-1,5,7,9,11,13,16-heptaene

C17H15NO3 (281.1052)