Palmitoleic acid (BioDeep_00000001633)
Secondary id: BioDeep_00000400558, BioDeep_00000860819
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C16H30O2 (254.2246)
中文名称: 顺-9-十六碳烯酸, 棕榈油酸, (9Z)-十六碳-9-烯酸
谱图信息:
最多检出来源 Homo sapiens(blood) 12.63%
Last reviewed on 2024-07-15.
Cite this Page
Palmitoleic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/palmitoleic_acid (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000001633). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(CCCCCCC(=O)O)/C=C\CCCCCC
InChI: InChI=1S/C16H30O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16(17)18/h7-8H,2-6,9-15H2,1H3,(H,17,18)/b8-7-
描述信息
Cis-9-palmitoleic acid, also known as palmitoleate or (Z)-9-hexadecenoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, cis-9-palmitoleic acid is considered to be a fatty acid lipid molecule. Cis-9-palmitoleic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Cis-9-palmitoleic acid can be found in a number of food items such as mixed nuts, carrot, hedge mustard, and chanterelle, which makes cis-9-palmitoleic acid a potential biomarker for the consumption of these food products. Cis-9-palmitoleic acid can be found primarily in most biofluids, including urine, blood, saliva, and feces, as well as in human adipose tissue, prostate and skeletal muscle tissues. Cis-9-palmitoleic acid exists in all living species, ranging from bacteria to humans. Moreover, cis-9-palmitoleic acid is found to be associated with isovaleric acidemia.
Palmitoleic acid, or (9Z)-hexadec-9-enoic acid, is an omega-7 monounsaturated fatty acid (16:1n-7) with the formula CH3(CH2)5CH=CH(CH2)7COOH that is a common constituent of the glycerides of human adipose tissue. Present in all tissues, it is generally found in higher concentrations in the liver. Macadamia oil (Macadamia integrifolia) and sea buckthorn oil (Hippophae rhamnoides) are botanical sources of palmitoleic acid, containing 22 and 40\\\\\% respectively. Palmitoleic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism.
Palmitoleic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=373-49-9 (retrieved 2024-07-15) (CAS RN: 373-49-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats.
Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats.
同义名列表
63 个代谢物同义名
cis-Delta(9)-Hexadecenoic acid; cis-delta-9-Hexadecenoic acid; cis-delta9-Hexadecenoic acid; Palmitoleic acid, (Z)-isomer; Palmitoleic acid, (e)-isomer; cis-Δ(9)-hexadecenoic acid; 9-Hexadecenoic acid, (9Z)-; cis-delta(9)-Hexadecenoate; trans-9-hexadecenoic acid; (9Z)-Hexadec-9-enoic acid; cis-Δ-9-hexadecenoic acid; cis-delta-9-Hexadecenoate; (9Z)-9-Hexadecenoic acid; (Z)-Hexadec-9-enoic acid; cis-Δ9-hexadecenoic acid; trans-9-palmitoleic acid; Hexadecenoate (N-C16:1); (Z)-9-Hexadecenoic acid; cis-9-hexadecenoic acid; 9-cis-Hexadecenoic acid; (9Z)-Hexadecenoic acid; cis-Δ(9)-hexadecenoate; cis-9-palmitoleic acid; cis-Δ-9-hexadecenoate; (9Z)-Hexadec-9-enoate; (Z)-Palmitoleic acid; Palmitolinoleic acid; (Z)-Hexadec-9-enoate; 9Z-hexadecenoic acid; cis-Palmitoleic acid; 9E-hexadecenoic acid; cis-9-Hexadecenoate; 9Z-palmitoleic acid; 9-Hexadecenoic acid; 9-cis-Hexadecenoate; (Z)-9-Hexadecenoate; (9Z)-Hexadecenoate; cis-9-Palmitoleate; Palmitelaidic acid; Hexadecenoic acid; Oleopalmitic acid; Palmitolinoleate; Palmitoleic acid; Physetoleic acid; cis-Palmitoleate; 9-Hexadecenoate; Zoomeric acid; Oleopalmitate; Hexadecenoate; C16:1 trans-9; Zoomaric acid; Palmitoleate; FA(16:1(9Z)); 16:1DElta9; FA(16:1n7); Zoomerate; Zoomarate; C16:1n-7; FA 16:1; C16:1; Palmitoleic acid; Palmitoleic Acid; (9Z)-Hexadecenoic acid
数据库引用编号
45 个数据库交叉引用编号
- ChEBI: CHEBI:28716
- KEGG: C08362
- PubChem: 445638
- PubChem: 4668
- HMDB: HMDB0003229
- Metlin: METLIN34744
- Metlin: METLIN188
- DrugBank: DB04257
- ChEMBL: CHEMBL453509
- Wikipedia: Palmitoleic acid
- LipidMAPS: LMFA01030056
- MetaCyc: CPD-9245
- KNApSAcK: C00001234
- foodb: FDB031085
- chemspider: 393216
- CAS: 373-49-9
- MoNA: LU105253
- MoNA: PS056601
- MoNA: LU105252
- MoNA: KO001626
- MoNA: LU138252
- MoNA: LU138254
- MoNA: LU138256
- MoNA: LU105251
- MoNA: LU138255
- MoNA: KO001628
- MoNA: PS056602
- MoNA: LU138253
- MoNA: LU105254
- MoNA: LU105256
- MoNA: KO001630
- MoNA: LU105255
- MoNA: LU138251
- MoNA: KO001629
- MoNA: KO001627
- PMhub: MS000000888
- PDB-CCD: PAM
- 3DMET: B02171
- NIKKAJI: J12.503B
- RefMet: Palmitoleic acid
- medchemexpress: HY-W011873
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-582
- PubChem: 10558
- KNApSAcK: 28716
- LOTUS: LTS0261591
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
5 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(3)
- Elongation of (very) long chain fatty acids:
C18:3 ⟶ C20:3
- Omega-9 fatty acid synthesis:
CoA(18:1(9Z)) ⟶ Oleic acid
- Mitochondrial beta oxidation:
5Z,8Z-tetradecadienoyl-CoA ⟶ 2E,5Z,8Z-tetradecatrienoyl-CoA
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(2)
- Fatty Acid Metabolism:
Hydrogen Ion + NADPH + a 3-oxo-cis- 7-tetradecenoyl-[acp] ⟶ NADP + a 3R-hydroxy cis 7-tetradecenoyl-[acp]
- Fatty Acid Metabolism:
3-oxo-cis- 5-dodecenoyl-[acp] + Hydrogen Ion + NADPH ⟶ NADP + a (3R)-hydroxy cis 5-dodecenoyl-[acp]
PharmGKB(0)
772 个相关的物种来源信息
- 183218 - Abelmoschus: LTS0261591
- 455045 - Abelmoschus esculentus: 10.1007/BF02663762
- 455045 - Abelmoschus esculentus: LTS0261591
- 3319 - Abies: LTS0261591
- 56046 - Abies pinsapo: LTS0261591
- 928731 - Abies pinsapo var. marocana: 10.1016/S0031-9422(00)94835-0
- 928731 - Abies pinsapo var. marocana: LTS0261591
- 3630 - Abutilon: LTS0261591
- 1812452 - Abutilon ramosum: 10.1002/LIPI.19860880305
- 1812452 - Abutilon ramosum: LTS0261591
- 3808 - Acacia: LTS0261591
- 82148 - Acioa: LTS0261591
- 2893770 - Acioa longipendula: 10.1007/BF02663764
- 2893770 - Acioa longipendula: LTS0261591
- 42228 - Acoraceae: LTS0261591
- 4464 - Acorus: LTS0261591
- 4465 - Acorus calamus: 10.1002/LIPI.19840860106
- 4465 - Acorus calamus: LTS0261591
- 263995 - Acorus calamus var. americanus: LTS0261591
- 186623 - Actinopteri: LTS0261591
- 7898 - Actinopterygii: LTS0261591
- 654 - Aeromonas veronii: 10.3389/FCIMB.2020.00044
- 43363 - Aesculus: LTS0261591
- 43364 - Aesculus hippocastanum: 10.1016/S0031-9422(00)85174-2
- 43364 - Aesculus hippocastanum: LTS0261591
- 5339 - Agaricaceae: LTS0261591
- 155619 - Agaricomycetes: LTS0261591
- 5340 - Agaricus: LTS0261591
- 79798 - Agaricus blazei: 10.1248/YAKUSHI1947.114.5_342
- 79798 - Agaricus blazei: LTS0261591
- 39509 - Agave: LTS0261591
- 2695036 - Agave decipiens: 10.1016/S0367-326X(99)00057-X
- 2695036 - Agave decipiens: LTS0261591
- 72714 - Agelas: 10.1007/BF02536001
- 295242 - Agelas conifera: 10.1007/BF02536002
- 74656 - Agrimonia pilosa: 10.1002/CBDV.201100239
- 23138 - Alchemilla: LTS0261591
- 478333 - Alchemilla pentaphyllea: 10.1016/S0031-9422(00)94502-3
- 478333 - Alchemilla pentaphyllea: LTS0261591
- 475881 - Alkanna: LTS0261591
- 554522 - Alkanna froedinii: 10.1016/B0-12-227055-X/00448-X
- 554522 - Alkanna froedinii: LTS0261591
- 543563 - Alkanna orientalis: 10.1016/B0-12-227055-X/00448-X
- 543563 - Alkanna orientalis: LTS0261591
- 52818 - Allamanda cathartica: 10.1016/S0031-9422(98)00111-3
- 25641 - Aloe: -
- 34199 - Aloe vera: 10.1271/BBB.57.1350
- 94326 - Alpinia: LTS0261591
- 125261 - Alpinia oxyphylla: 10.1021/NP020078O
- 125261 - Alpinia oxyphylla: LTS0261591
- 125261 - Alpinia oxyphylla Miq.: -
- 97723 - Alpinia zerumbet: 10.1021/NP020078O
- 3563 - Amaranthaceae: LTS0261591
- 3564 - Amaranthus: LTS0261591
- 3567 - Amaranthus caudatus: 10.1007/BF02249626
- 3567 - Amaranthus caudatus: LTS0261591
- 52997 - Amblystegiaceae: LTS0261591
- 178514 - Amphimedon compressa: 10.1021/NP50081A009
- 255583 - Amsinckia: LTS0261591
- 2005080 - Amsinckia intermedia: 10.1016/B0-12-227055-X/00448-X
- 2005080 - Amsinckia intermedia: LTS0261591
- 4011 - Anacardiaceae: LTS0261591
- 89629 - Anchusa: LTS0261591
- 256480 - Anchusa strigosa: 10.1016/B0-12-227055-X/00448-X
- 256480 - Anchusa strigosa: LTS0261591
- 77184 - Ancorinidae: LTS0261591
- 85163 - Androsace: LTS0261591
- 199610 - Androsace helvetica: 10.1016/S0031-9422(00)94502-3
- 199610 - Androsace helvetica: LTS0261591
- 40921 - Anethum: LTS0261591
- 40922 - Anethum graveolens: 10.1007/BF00563627
- 40922 - Anethum graveolens: LTS0261591
- 68823 - Anisophyllea: LTS0261591
- 2708713 - Anisophyllea laurina: 10.1007/BF00580077
- 2708713 - Anisophyllea laurina: LTS0261591
- 61129 - Anisophylleaceae: LTS0261591
- 4037 - Apiaceae: LTS0261591
- 7458 - Apidae: LTS0261591
- 7459 - Apis: LTS0261591
- 7461 - Apis cerana: 10.1371/JOURNAL.PONE.0175573
- 7461 - Apis cerana: LTS0261591
- 202113 - Aplysina fistularis: 10.1007/BF02536024
- 289403 - Aplysina lacunosa: 10.1007/BF02536024
- 4056 - Apocynaceae: LTS0261591
- 69461 - Aquilaria: LTS0261591
- 210372 - Aquilaria sinensis: 10.3390/MOLECULES16064884
- 210372 - Aquilaria sinensis: LTS0261591
- 4710 - Arecaceae: LTS0261591
- 436207 - Arnica montana: 10.1055/S-0028-1099547
- 6656 - Arthropoda: LTS0261591
- 21199 - Asclepias: LTS0261591
- 48545 - Asclepias syriaca: 10.1139/V60-116
- 48545 - Asclepias syriaca: LTS0261591
- 4890 - Ascomycota: LTS0261591
- 40552 - Asparagaceae: LTS0261591
- 1131492 - Aspergillaceae: LTS0261591
- 4210 - Asteraceae: LTS0261591
- 20400 - Astragalus: LTS0261591
- 20414 - Astragalus hamosus: 10.1021/NP50075A009
- 20414 - Astragalus hamosus: LTS0261591
- 33852 - Bacillariaceae: LTS0261591
- 33849 - Bacillariophyceae: LTS0261591
- 2836 - Bacillariophyta: LTS0261591
- 2 - Bacteria: LTS0261591
- 52975 - Bartramia: LTS0261591
- 52976 - Bartramia pomiformis: 10.1016/0031-9422(91)83188-Q
- 52976 - Bartramia pomiformis: LTS0261591
- 52974 - Bartramiaceae: LTS0261591
- 5204 - Basidiomycota: LTS0261591
- 41491 - Bellis: LTS0261591
- 41492 - Bellis perennis: 10.1016/0031-9422(95)00183-8
- 41492 - Bellis perennis: LTS0261591
- 21571 - Boraginaceae: LTS0261591
- 37421 - Brachytheciaceae: LTS0261591
- 53004 - Brachythecium: LTS0261591
- 184619 - Brachythecium buchananii: 10.1016/0031-9422(91)83188-Q
- 184619 - Brachythecium buchananii: LTS0261591
- 3700 - Brassicaceae: LTS0261591
- 13800 - Brotherella: LTS0261591
- 98356 - Brotherella henonii: 10.1016/0031-9422(91)83188-Q
- 98356 - Brotherella henonii: LTS0261591
- 21590 - Brunnera: LTS0261591
- 204255 - Brunnera orientalis: 10.1016/B0-12-227055-X/00448-X
- 204255 - Brunnera orientalis: LTS0261591
- 3651 - Bryonia: LTS0261591
- 243967 - Bryonia alba: 10.1056/NEJM186707250762502
- 243967 - Bryonia alba: LTS0261591
- 3208 - Bryophyta: LTS0261591
- 3214 - Bryopsida: LTS0261591
- 489419 - Cachrys: LTS0261591
- 489421 - Cachrys sicula: 10.1016/S0031-9422(00)85511-9
- 489421 - Cachrys sicula: LTS0261591
- 2676333 - Callicladiaceae: LTS0261591
- 306427 - Callicladium: LTS0261591
- 455284 - Callicladium fujiyamae: 10.1016/0031-9422(91)83188-Q
- 455284 - Callicladium fujiyamae: LTS0261591
- 178537 - Callyspongia: LTS0261591
- 469326 - Callyspongia fallax: 10.1021/NP000537Q
- 469326 - Callyspongia fallax: LTS0261591
- 178536 - Callyspongiidae: LTS0261591
- 703253 - Calophyllaceae: LTS0261591
- 73121 - Calophyllum: LTS0261591
- 883767 - Calophyllum calaba: 10.1016/J.PHYTOCHEM.2005.06.009
- 883767 - Calophyllum calaba: LTS0261591
- 158927 - Calophyllum inophyllum: 10.1016/J.PHYTOCHEM.2005.06.009
- 158927 - Calophyllum inophyllum: LTS0261591
- 94682 - Campylopus: LTS0261591
- 193026 - Campylopus richardii: 10.1016/0031-9422(91)83188-Q
- 193026 - Campylopus richardii: LTS0261591
- 3822 - Canavalia: LTS0261591
- 3823 - Canavalia ensiformis: 10.1007/BF02540958
- 3823 - Canavalia ensiformis: LTS0261591
- 3481 - Cannabaceae: LTS0261591
- 3482 - Cannabis: LTS0261591
- 3483 - Cannabis sativa: 10.1021/NP50008A001
- 3483 - Cannabis sativa: LTS0261591
- 3483 - Cannabis Sativa L.: -
- 301453 - Capparaceae: LTS0261591
- 13398 - Carex: LTS0261591
- 140872 - Carex capillifolia: 10.1016/S0031-9422(00)94502-3
- 140872 - Carex capillifolia: LTS0261591
- 140873 - Carex myosuroides: 10.1016/S0031-9422(00)94502-3
- 3648 - Carica: LTS0261591
- 3649 - Carica papaya: 10.1111/J.1365-2621.1985.TB13019.X
- 3649 - Carica papaya: LTS0261591
- 3647 - Caricaceae: LTS0261591
- 3568 - Caryophyllaceae: LTS0261591
- 53851 - Cassia: LTS0261591
- 53852 - Cassia fistula:
- 53852 - Cassia fistula: 10.21608/BFSA.1985.75705
- 53852 - Cassia fistula: 10.5962/BHL.TITLE.108605
- 53852 - Cassia fistula: LTS0261591
- 508996 - Cassia javanica: 10.21608/BFSA.1985.75705
- 508996 - Cassia javanica: LTS0261591
- 1003248 - Cervantesiaceae: LTS0261591
- 283503 - Cervicornia cuspidifera: 10.1007/BF02537064
- 1804623 - Chenopodiaceae: LTS0261591
- 3051 - Chlamydomonadaceae: LTS0261591
- 3052 - Chlamydomonas: LTS0261591
- 3055 - Chlamydomonas reinhardtii: 10.1111/TPJ.12747
- 3055 - Chlamydomonas reinhardtii: LTS0261591
- 3166 - Chlorophyceae: LTS0261591
- 3041 - Chlorophyta: LTS0261591
- 68574 - Chondrosia reniformis: 10.1021/NP50100A032
- 7711 - Chordata: LTS0261591
- 22973 - Chrysobalanaceae: LTS0261591
- 690524 - Chylismia: LTS0261591
- 2995965 - Chylismia brevipes: LTS0261591
- 2995966 - Chylismia brevipes subsp. brevipes: LTS0261591
- 2995984 - Chylismia cardiophylla: LTS0261591
- 3653 - Citrullus: LTS0261591
- 252529 - Citrullus colocynthis: 10.1055/S-0028-1099467
- 252529 - Citrullus colocynthis: LTS0261591
- 2706 - Citrus: 10.1002/LIPI.19860880806
- 2706 - Citrus: LTS0261591
- 558547 - Citrus deliciosa: 10.1002/LIPI.19860880806
- 85571 - Citrus reticulata: 10.1002/LIPI.19860880806
- 85571 - Citrus reticulata: LTS0261591
- 283089 - Cleistanthus: LTS0261591
- 1357584 - Cleistanthus collinus: 10.1016/0040-4020(69)80025-6
- 1357584 - Cleistanthus collinus: LTS0261591
- 55961 - Clusiaceae: LTS0261591
- 16906 - Cornus Officinalis Sieb. Et Zucc.: -
- 1238147 - Corydalis bungeana Turcz.: -
- 69982 - Cratoneuron: LTS0261591
- 99398 - Cratoneuron filicinum: 10.1016/0031-9422(91)83188-Q
- 99398 - Cratoneuron filicinum: LTS0261591
- 90308 - Ctenidium: LTS0261591
- 455261 - Ctenidium percrassum: 10.1016/0031-9422(91)83188-Q
- 455261 - Ctenidium percrassum: LTS0261591
- 3650 - Cucurbitaceae: LTS0261591
- 136217 - Curcuma longa: 10.1016/S0021-9673(96)00802-3
- 3028117 - Cyanophyceae: LTS0261591
- 181188 - Cynoglossum: LTS0261591
- 4609 - Cyperaceae: LTS0261591
- 6042 - Demospongiae: LTS0261591
- 3220 - Dicranaceae: LTS0261591
- 3221 - Dicranum: LTS0261591
- 1385677 - Dicranum japonicum: 10.1016/0031-9422(91)83188-Q
- 1385677 - Dicranum japonicum: LTS0261591
- 77005 - Dictamnus: LTS0261591
- 298346 - Dictamnus albus: 10.1007/BF00563628
- 298346 - Dictamnus albus: LTS0261591
- 2874 - Dictyotaceae: LTS0261591
- 195669 - Dolichomitra: LTS0261591
- 195670 - Dolichomitra cymbifolia: 10.1016/0031-9422(91)83188-Q
- 195670 - Dolichomitra cymbifolia: LTS0261591
- 29607 - Dryopteridaceae: LTS0261591
- 3287 - Dryopteris: LTS0261591
- 239547 - Dryopteris affinis: 10.1055/S-2007-969987
- 1091245 - Dryopteris assimilis: 10.1055/S-2007-969987
- 1091245 - Dryopteris assimilis: LTS0261591
- 239555 - Dryopteris carthusiana: 10.1055/S-2007-969987
- 239555 - Dryopteris carthusiana: LTS0261591
- 239563 - Dryopteris expansa: 10.1055/S-2007-969987
- 239563 - Dryopteris expansa: LTS0261591
- 3289 - Dryopteris filix-mas: 10.1055/S-2007-969987
- 3289 - Dryopteris filix-mas: LTS0261591
- 1663599 - Dryopteris spinulosa: 10.1055/S-2007-969987
- 1663599 - Dryopteris spinulosa: LTS0261591
- 7674 - Echinacea: LTS0261591
- 53751 - Echinacea purpurea: 10.1021/NP900003A
- 53751 - Echinacea purpurea: LTS0261591
- 21610 - Echium: LTS0261591
- 2650422 - Echium glomeratum: 10.1016/B0-12-227055-X/00448-X
- 2650422 - Echium glomeratum: LTS0261591
- 25996 - Elaeagnaceae: LTS0261591
- 36776 - Elaeagnus: LTS0261591
- 36777 - Elaeagnus angustifolia: 10.1007/BF02249647
- 36777 - Elaeagnus angustifolia: LTS0261591
- 543 - Enterobacteriaceae: LTS0261591
- 13054 - Epilobium: LTS0261591
- 644182 - Epilobium parviflorum: 10.1007/978-0-85729-323-7_2078
- 644182 - Epilobium parviflorum: LTS0261591
- 41574 - Erigeron: LTS0261591
- 1532809 - Erigeron alpinus: 10.1007/BF00630128
- 1532809 - Erigeron alpinus: LTS0261591
- 1611304 - Erigeron caucasicus: LTS0261591
- 1611305 - Erigeron caucasicus subsp. venustus: 10.1007/BF00630128
- 1611305 - Erigeron caucasicus subsp. venustus: LTS0261591
- 22118 - Erythroxylaceae: LTS0261591
- 13511 - Erythroxylum: LTS0261591
- 591145 - Erythroxylum monogynum: 10.1002/LIPI.19860880806
- 591145 - Erythroxylum monogynum: LTS0261591
- 561 - Escherichia: LTS0261591
- 562 - Escherichia coli: LTS0261591
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 33682 - Euglenozoa: LTS0261591
- 2759 - Eukaryota: LTS0261591
- 1402219 - Eulobus: LTS0261591
- 238249 - Eulobus californicus: 10.1016/B0-12-227055-X/00448-X
- 238249 - Eulobus californicus: LTS0261591
- 147545 - Eurotiomycetes: LTS0261591
- 4414 - Euryale ferox Salisb.: -
- 5747 - Eustigmatophyceae: LTS0261591
- 3803 - Fabaceae: LTS0261591
- 4605 - Festuca: LTS0261591
- 52153 - Festuca rubra: 10.1016/0031-9422(91)84185-U
- 52153 - Festuca rubra: LTS0261591
- 52982 - Fissidens: LTS0261591
- 2008595 - Fissidens nobilis: 10.1016/0031-9422(91)83188-Q
- 2008595 - Fissidens nobilis: LTS0261591
- 52981 - Fissidentaceae: LTS0261591
- 36668 - Formicidae: LTS0261591
- 200992 - Fumaria: LTS0261591
- 367484 - Fumaria vaillantii: 10.1007/BF02249627
- 367484 - Fumaria vaillantii: LTS0261591
- 4751 - Fungi: LTS0261591
- 1236 - Gammaproteobacteria: LTS0261591
- 5314 - Ganoderma: LTS0261591
- 34456 - Ganoderma adspersum: 10.1016/S0953-7562(09)80038-5
- 29884 - Ganoderma applanatum: 10.1016/S0953-7562(09)80038-5
- 29884 - Ganoderma applanatum: LTS0261591
- 34457 - Ganoderma australe: 10.1016/S0953-7562(09)80038-5
- 34457 - Ganoderma australe: LTS0261591
- 5315 - Ganoderma lucidum: 10.1248/BPB.21.444
- 5315 - Ganoderma lucidum: LTS0261591
- 58227 - Garcinia: LTS0261591
- 231905 - Garcinia dulcis: 10.4038/JNSFSR.V10I2.8431
- 231905 - Garcinia dulcis: LTS0261591
- 198766 - Garcinia xanthochymus: 10.4038/JNSFSR.V10I2.8431
- 198766 - Garcinia xanthochymus: LTS0261591
- 3761 - Geum: LTS0261591
- 148896 - Geum reptans: 10.1016/S0031-9422(00)94502-3
- 148896 - Geum reptans: LTS0261591
- 54873 - Gleditsia: LTS0261591
- 54874 - Gleditsia triacanthos: 10.3109/13880208309070615
- 54874 - Gleditsia triacanthos: LTS0261591
- 3633 - Gossypium: LTS0261591
- 3635 - Gossypium hirsutum:
- 3635 - Gossypium hirsutum: 10.1007/BF00563626
- 3635 - Gossypium hirsutum: 10.1007/BF02531935
- 3635 - Gossypium hirsutum: 10.1016/S0031-9422(97)00265-3
- 3635 - Gossypium hirsutum: 10.32388/D0O6OH
- 3635 - Gossypium hirsutum: LTS0261591
- 115593 - Grimmia: LTS0261591
- 254107 - Grimmia pilifera: 10.1016/0031-9422(91)83188-Q
- 254107 - Grimmia pilifera: LTS0261591
- 65550 - Grimmiaceae: LTS0261591
- 23066 - Grossulariaceae: LTS0261591
- 764727 - Hackelia: LTS0261591
- 1213334 - Hackelia floribunda: 10.1016/B0-12-227055-X/00448-X
- 1213334 - Hackelia floribunda: LTS0261591
- 6060 - Halichondriidae: 10.1021/JO00275A032
- 52987 - Hedwigia: LTS0261591
- 52988 - Hedwigia ciliata: 10.1016/0031-9422(91)83188-Q
- 52988 - Hedwigia ciliata: LTS0261591
- 52986 - Hedwigiaceae: LTS0261591
- 47605 - Hibiscus: LTS0261591
- 229543 - Hibiscus cannabinus: 10.1002/1099-1565(200011/12)11:6<345::AID-PCA540>3.0.CO;2-T
- 229543 - Hibiscus cannabinus: LTS0261591
- 48233 - Hippophae: LTS0261591
- 193516 - Hippophae rhamnoides:
- 193516 - Hippophae rhamnoides: 10.1007/BF00565207
- 193516 - Hippophae rhamnoides: 10.1007/BF00713311
- 193516 - Hippophae rhamnoides: 10.1016/J.PHYMED.2007.03.018
- 193516 - Hippophae rhamnoides: 10.1021/JF001059S
- 193516 - Hippophae rhamnoides: LTS0261591
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 4512 - Hordeum: LTS0261591
- 4513 - Hordeum vulgare: 10.1016/S0031-9422(00)94502-3
- 4513 - Hordeum vulgare: LTS0261591
- 28466 - Hylocomiaceae: LTS0261591
- 629714 - Hypericaceae: LTS0261591
- 55962 - Hypericum: LTS0261591
- 269006 - Hypericum maculatum: 10.1016/S0305-1978(02)00076-5
- 269006 - Hypericum maculatum: LTS0261591
- 282549 - Hypericum olympicum: 10.1016/S0305-1978(02)00076-5
- 282549 - Hypericum olympicum: LTS0261591
- 65561 - Hypericum perforatum: 10.1016/S0305-1978(02)00076-5
- 65561 - Hypericum perforatum: LTS0261591
- 53009 - Hypnaceae: LTS0261591
- 49761 - Hypnum: LTS0261591
- 50557 - Insecta: LTS0261591
- 41589 - Inula: LTS0261591
- 1548589 - Inula grandis: 10.1007/BF00564338
- 1548589 - Inula grandis: LTS0261591
- 161755 - Isatis: LTS0261591
- 161756 - Isatis tinctoria:
- 161756 - Isatis tinctoria: 10.1016/J.PHYTOCHEM.2009.04.019
- 161756 - Isatis tinctoria: 10.1055/S-2006-949964
- 161756 - Isatis tinctoria: LTS0261591
- 1336932 - Jaspis: LTS0261591
- 350582 - Jodina: LTS0261591
- 350583 - Jodina rhombifolia: 10.1007/BF02541352
- 350583 - Jodina rhombifolia: LTS0261591
- 1213301 - Johnstonella: LTS0261591
- 2006908 - Johnstonella grayi: 10.1016/B0-12-227055-X/00448-X
- 2006908 - Johnstonella grayi: LTS0261591
- 5653 - Kinetoplastea: LTS0261591
- 4235 - Lactuca: LTS0261591
- 75948 - Lactuca saligna: 10.3109/13880209209054625
- 75948 - Lactuca saligna: LTS0261591
- 4136 - Lamiaceae: LTS0261591
- 85451 - Lembophyllaceae: LTS0261591
- 19205 - Lepidium: LTS0261591
- 153348 - Lepidium meyenii: 10.1016/S0090-4295(99)00549-X
- 153348 - Lepidium meyenii: LTS0261591
- 47251 - Leptolyngbya: LTS0261591
- 882062 - Leptolyngbya tenuis:
- 882062 - Leptolyngbya tenuis: 10.1248/CPB.38.812
- 882062 - Leptolyngbya tenuis: 10.1248/CPB.41.1863
- 882062 - Leptolyngbya tenuis: LTS0261591
- 1890438 - Leptolyngbyaceae: LTS0261591
- 80887 - Leucobryaceae: LTS0261591
- 80888 - Leucobryum: LTS0261591
- 22986 - Licania: LTS0261591
- 22987 - Licania tomentosa: 10.1016/J.FITOTE.2005.04.018
- 4447 - Liliopsida: LTS0261591
- 475890 - Lithodora fruticosa: 10.1021/NP50034A043
- 90278 - Loeskeobryum: LTS0261591
- 94452 - Loeskeobryum brevirostre: 10.1016/0031-9422(91)83188-Q
- 94452 - Loeskeobryum brevirostre: LTS0261591
- 4606 - Lolium arundinaceum: 10.1016/0031-9422(91)84185-U
- 4329 - Macadamia: LTS0261591
- 60698 - Macadamia integrifolia: 10.1007/978-3-540-71095-0_6175
- 60698 - Macadamia integrifolia: LTS0261591
- 202644 - Maerua: LTS0261591
- 2830726 - Maerua oblongifolia: 10.1016/S0031-9422(98)00771-7
- 2830726 - Maerua oblongifolia: LTS0261591
- 3398 - Magnoliopsida: LTS0261591
- 3629 - Malvaceae: LTS0261591
- 23461 - Mangifera: LTS0261591
- 29780 - Mangifera indica:
- 29780 - Mangifera indica: 10.1007/BF02541638
- 29780 - Mangifera indica: 10.1016/S0031-9422(03)00466-7
- 29780 - Mangifera indica: 10.1021/JF60230A024
- 29780 - Mangifera indica: LTS0261591
- 3196 - Marchantia: LTS0261591
- 3197 - Marchantia polymorpha: 10.1016/0031-9422(91)83188-Q
- 3197 - Marchantia polymorpha: LTS0261591
- 29585 - Marchantiaceae: LTS0261591
- 3195 - Marchantiophyta: LTS0261591
- 186770 - Marchantiopsida: LTS0261591
- 21819 - Mentha: LTS0261591
- 29719 - Mentha spicata: 10.1007/BF02249628
- 29719 - Mentha spicata: LTS0261591
- 33208 - Metazoa: LTS0261591
- 60380 - Mitracarpus: LTS0261591
- 1620150 - Mitracarpus hirtus: 10.1002/FFJ.2730080506
- 1620150 - Mitracarpus hirtus: LTS0261591
- 3227 - Mniaceae: LTS0261591
- 475913 - Moltkia: LTS0261591
- 475915 - Moltkia suffruticosa: LTS0261591
- 3671 - Momordica: LTS0261591
- 3673 - Momordica charantia: 10.1021/JF00010A013
- 3673 - Momordica charantia: LTS0261591
- 5098 - Monascus purpureus: 10.1016/0031-9422(96)00236-1
- 425072 - Monodopsidaceae: LTS0261591
- 22987 - Moquilea tomentosa: 10.1016/J.FITOTE.2005.04.018
- 3487 - Moraceae: LTS0261591
- 4640 - Musa: LTS0261591
- 89151 - Musa × paradisiaca: 10.1021/JF00035A046
- 4637 - Musaceae: LTS0261591
- 698782 - Mycale laevis: 10.1021/NP50081A009
- 1336873 - Myrmekioderma rea: 10.1021/NP50100A032
- 94550 - Myuriaceae: LTS0261591
- 98945 - Myuroclada: LTS0261591
- 98946 - Myuroclada maximowiczii: 10.1016/0031-9422(91)83188-Q
- 98946 - Myuroclada maximowiczii: LTS0261591
- 5748 - Nannochloropsis: 10.1016/S0271-5317(05)80784-5
- 5748 - Nannochloropsis: LTS0261591
- 67442 - Neckeraceae: LTS0261591
- 3443 - Nigella: LTS0261591
- 555479 - Nigella sativa:
- 555479 - Nigella sativa: 10.1016/0031-9422(86)88046-3
- 555479 - Nigella sativa: 10.5962/BHL.TITLE.108605
- 555479 - Nigella sativa: LTS0261591
- 657340 - Niphotrichum: LTS0261591
- 95767 - Niphotrichum canescens: 10.1016/0031-9422(91)83188-Q
- 95767 - Niphotrichum canescens: LTS0261591
- 203745 - Nonea: LTS0261591
- 356571 - Nonea macrosperma: 10.1016/B0-12-227055-X/00448-X
- 356571 - Nonea macrosperma: LTS0261591
- 2696291 - Ochrophyta: LTS0261591
- 84546 - Oecophylla: LTS0261591
- 84561 - Oecophylla smaragdina: 10.1271/BBB1961.54.3335
- 84561 - Oecophylla smaragdina: LTS0261591
- 3939 - Oenothera: LTS0261591
- 3940 - Oenothera argillicola: 10.1016/B0-12-227055-X/00448-X
- 3940 - Oenothera argillicola: LTS0261591
- 3942 - Oenothera biennis: 10.1016/B0-12-227055-X/00448-X
- 3942 - Oenothera biennis: LTS0261591
- 260700 - Oenothera drummondii: 10.1016/B0-12-227055-X/00448-X
- 260700 - Oenothera drummondii: LTS0261591
- 44456 - Oenothera elata: 10.1016/B0-12-227055-X/00448-X
- 44456 - Oenothera elata: LTS0261591
- 85636 - Oenothera elata subsp. hookeri: 10.1016/B0-12-227055-X/00448-X
- 85636 - Oenothera elata subsp. hookeri: LTS0261591
- 203951 - Oenothera fruticosa: LTS0261591
- 482428 - Oenothera glazioviana: 10.1016/B0-12-227055-X/00448-X
- 49455 - Oenothera grandiflora: 10.1016/B0-12-227055-X/00448-X
- 49455 - Oenothera grandiflora: LTS0261591
- 238288 - Oenothera laciniata: 10.1016/B0-12-227055-X/00448-X
- 238288 - Oenothera laciniata: LTS0261591
- 44479 - Oenothera lamarckiana: 10.1016/B0-12-227055-X/00448-X
- 44479 - Oenothera lamarckiana: LTS0261591
- 260701 - Oenothera macrocarpa: 10.1016/B0-12-227055-X/00448-X
- 260701 - Oenothera macrocarpa: LTS0261591
- 3951 - Oenothera odorata: 10.1016/B0-12-227055-X/00448-X
- 3951 - Oenothera odorata: LTS0261591
- 482429 - Oenothera parviflora: 10.1016/B0-12-227055-X/00448-X
- 482429 - Oenothera parviflora: LTS0261591
- 690548 - Oenothera rhombipetala: 10.1016/B0-12-227055-X/00448-X
- 690548 - Oenothera rhombipetala: LTS0261591
- 238298 - Oenothera rosea: 10.1016/B0-12-227055-X/00448-X
- 238298 - Oenothera rosea: LTS0261591
- 690550 - Oenothera serrulata: 10.1016/B0-12-227055-X/00448-X
- 690550 - Oenothera serrulata: LTS0261591
- 690551 - Oenothera stricta: LTS0261591
- 690552 - Oenothera stricta subsp. stricta: 10.1016/B0-12-227055-X/00448-X
- 690552 - Oenothera stricta subsp. stricta: LTS0261591
- 482603 - Oenothera villosa: LTS0261591
- 2922941 - Oenothera villosa subsp. strigosa: LTS0261591
- 482604 - Oenothera villosa subsp. villosa: 10.1016/B0-12-227055-X/00448-X
- 482604 - Oenothera villosa subsp. villosa: LTS0261591
- 4145 - Olea: LTS0261591
- 4146 - Olea europaea: 10.1007/BF00579077
- 4146 - Olea europaea: LTS0261591
- 4144 - Oleaceae: LTS0261591
- 3934 - Onagraceae: LTS0261591
- 96533 - Oncophorus: LTS0261591
- 1852632 - Oncophorus crispifolius: 10.1016/0031-9422(91)83188-Q
- 52989 - Orthotrichaceae: LTS0261591
- 1892254 - Oscillatoriaceae: LTS0261591
- 4054 - Panax ginseng C.A.Mey.: -
- 44586 - Panax Notoginseng (Burk.) F. H. Chen Ex C. Chow: -
- 3465 - Papaveraceae: LTS0261591
- 3683 - Passifloraceae: LTS0261591
- 1213335 - Pectocarya: LTS0261591
- 1955009 - Pectocarya platycarpa: 10.1016/B0-12-227055-X/00448-X
- 1955009 - Pectocarya platycarpa: LTS0261591
- 4180 - Pedaliaceae: LTS0261591
- 5073 - Penicillium: LTS0261591
- 69781 - Penicillium oxalicum: 10.1055/S-2005-837755
- 69781 - Penicillium oxalicum: LTS0261591
- 48386 - Perilla Frutescens: -
- 2849249 - Petrosia pellasarca: 10.1021/NP50070A010
- 2870 - Phaeophyceae: LTS0261591
- 3883 - Phaseolus: LTS0261591
- 3886 - Phaseolus coccineus:
- 3886 - Phaseolus coccineus: 10.3109/13880208309070615
- 3886 - Phaseolus coccineus: 10.3109/13880208409070644
- 3886 - Phaseolus coccineus: LTS0261591
- 126344 - Phormidium tenue: 10.1248/CPB.38.812
- 126344 - Phormidium tenue: 10.1248/CPB.41.1863
- 233880 - Phyllanthaceae: LTS0261591
- 3318 - Pinaceae: LTS0261591
- 58019 - Pinopsida: LTS0261591
- 3337 - Pinus: LTS0261591
- 3347 - Pinus radiata: 10.1016/0031-9422(82)83099-9
- 3347 - Pinus radiata: LTS0261591
- 55512 - Pistacia: LTS0261591
- 55513 - Pistacia vera: 10.1023/B:CONC.0000003408.63300.B5
- 55513 - Pistacia vera: LTS0261591
- 3230 - Plagiomnium: LTS0261591
- 417139 - Plagiomnium maximoviczii: 10.1016/0031-9422(91)83188-Q
- 417139 - Plagiomnium maximoviczii: LTS0261591
- 53001 - Plagiotheciaceae: LTS0261591
- 53002 - Plagiothecium: LTS0261591
- 90297 - Plagiothecium euryphyllum: 10.1016/0031-9422(91)83188-Q
- 90297 - Plagiothecium euryphyllum: LTS0261591
- 4479 - Poaceae: LTS0261591
- 111663 - Pogonatum: LTS0261591
- 185755 - Pogonatum inflexum: 10.1016/0031-9422(91)83188-Q
- 185755 - Pogonatum inflexum: LTS0261591
- 241806 - Polypodiopsida: LTS0261591
- 5317 - Polyporaceae: LTS0261591
- 3211 - Polytrichaceae: LTS0261591
- 113509 - Polytrichopsida: LTS0261591
- 6040 - Porifera: LTS0261591
- 3582 - Portulaca: LTS0261591
- 46147 - Portulaca oleracea:
- 46147 - Portulaca oleracea: 10.1002/LIPI.19860880806
- 46147 - Portulaca oleracea: 10.21608/BFSA.1985.75707
- 46147 - Portulaca oleracea: LTS0261591
- 3581 - Portulacaceae: LTS0261591
- 13228 - Potamogeton: LTS0261591
- 16362 - Potamogetonaceae: LTS0261591
- 38586 - Pottiaceae: LTS0261591
- 4335 - Primulaceae: LTS0261591
- 82229 - Proiphys amboinensis: 10.1016/S0305-1978(97)00097-5
- 4328 - Proteaceae: LTS0261591
- 41953 - Pseudo-nitzschia: LTS0261591
- 183589 - Pseudo-nitzschia multistriata: 10.3390/MD18060313
- 183589 - Pseudo-nitzschia multistriata: LTS0261591
- 135621 - Pseudomonadaceae: LTS0261591
- 286 - Pseudomonas: LTS0261591
- 303 - Pseudomonas putida: 10.1371/JOURNAL.PONE.0156509
- 303 - Pseudomonas putida: LTS0261591
- 283540 - Pseudosuberites: 10.1021/NP50102A012
- 104317 - Pterodon: LTS0261591
- 1079077 - Pterodon emarginatus: 10.1016/S0031-9422(00)97084-5
- 1079077 - Pterodon emarginatus: LTS0261591
- 22663 - Punica granatum: 10.3390/MOLECULES22101606
- 2231517 - Pylaisiaceae: LTS0261591
- 404319 - Pylaisiadelphaceae: LTS0261591
- 67398 - Pyrrhobryum: LTS0261591
- 67399 - Pyrrhobryum spiniforme: 10.1016/0031-9422(91)83188-Q
- 67399 - Pyrrhobryum spiniforme: LTS0261591
- 70137 - Racomitrium: LTS0261591
- 3440 - Ranunculaceae: LTS0261591
- 3445 - Ranunculus: LTS0261591
- 235900 - Ranunculus glacialis: 10.1016/S0031-9422(00)94502-3
- 235900 - Ranunculus glacialis: LTS0261591
- 61530 - Rhabdoweisiaceae: LTS0261591
- 67392 - Rhizogoniaceae: LTS0261591
- 187991 - Rhizomnium: LTS0261591
- 2006508 - Rhizomnium tuomikoskii: 10.1016/0031-9422(91)83188-Q
- 2006508 - Rhizomnium tuomikoskii: LTS0261591
- 3801 - Ribes: LTS0261591
- 134913 - Ribes alpinum: 10.1016/B0-12-227055-X/00448-X
- 134913 - Ribes alpinum: LTS0261591
- 175189 - Ribes cereum: LTS0261591
- 175219 - Ribes montigenum: 10.1016/B0-12-227055-X/00448-X
- 175219 - Ribes montigenum: LTS0261591
- 208501 - Ribes orientale: 10.1016/B0-12-227055-X/00448-X
- 208501 - Ribes orientale: LTS0261591
- 3745 - Rosaceae: LTS0261591
- 24966 - Rubiaceae: LTS0261591
- 23513 - Rutaceae: LTS0261591
- 13253 - Sabal: LTS0261591
- 34172 - Sabal minor: 10.1021/BK-2002-0803.CH009
- 34172 - Sabal minor: LTS0261591
- 4893 - Saccharomycetaceae: LTS0261591
- 4891 - Saccharomycetes: LTS0261591
- 3688 - Salicaceae: LTS0261591
- 40685 - Salix: LTS0261591
- 77064 - Salix herbacea: 10.1016/S0031-9422(00)94502-3
- 77064 - Salix herbacea: LTS0261591
- 75717 - Salix reticulata: 10.1016/S0031-9422(00)94502-3
- 75717 - Salix reticulata: LTS0261591
- 77066 - Salix retusa: 10.1016/S0031-9422(00)94502-3
- 77066 - Salix retusa: LTS0261591
- 590 - Salmonella: LTS0261591
- 28901 - Salmonella enterica:
- 28901 - Salmonella enterica: 10.1021/ACS.JPROTEOME.0C00281
- 28901 - Salmonella enterica: 10.1039/C3MB25598K
- 28901 - Salmonella enterica: LTS0261591
- 569448 - Salpa thompsoni: 10.1248/CPB.34.4562
- 3958 - Santalaceae: LTS0261591
- 23672 - Sapindaceae: LTS0261591
- 41629 - Saussurea: LTS0261591
- 218135 - Schedonorus: LTS0261591
- 61510 - Schlotheimia: LTS0261591
- 408846 - Schlotheimia grevilleana: 10.1016/0031-9422(91)83188-Q
- 408846 - Schlotheimia grevilleana: LTS0261591
- 375856 - Scolochloa: LTS0261591
- 375857 - Scolochloa festucacea: 10.1016/0031-9422(91)84185-U
- 375857 - Scolochloa festucacea: LTS0261591
- 13675 - Scomber: LTS0261591
- 13676 - Scomber japonicus: 10.1246/BCSJ.59.3709
- 13676 - Scomber japonicus: LTS0261591
- 8224 - Scombridae: LTS0261591
- 146585 - Scopelophila: LTS0261591
- 146586 - Scopelophila cataractae: 10.1016/0031-9422(91)83188-Q
- 146586 - Scopelophila cataractae: LTS0261591
- 39249 - Scrophularia: LTS0261591
- 2077124 - Scrophularia alata: 10.1016/B0-12-227055-X/00448-X
- 2077124 - Scrophularia alata: LTS0261591
- 1357594 - Scrophularia alpestris: 10.1016/B0-12-227055-X/00448-X
- 258519 - Scrophularia canina: 10.1016/B0-12-227055-X/00448-X
- 258519 - Scrophularia canina: LTS0261591
- 692145 - Scrophularia grayana: 10.1016/B0-12-227055-X/00448-X
- 692145 - Scrophularia grayana: LTS0261591
- 692147 - Scrophularia kakudensis: 10.1016/B0-12-227055-X/00448-X
- 692147 - Scrophularia kakudensis: LTS0261591
- 476208 - Scrophularia koraiensis: 10.1016/B0-12-227055-X/00448-X
- 476208 - Scrophularia koraiensis: LTS0261591
- 942075 - Scrophularia lanceolata: 10.1016/B0-12-227055-X/00448-X
- 942075 - Scrophularia lanceolata: LTS0261591
- 764929 - Scrophularia marilandica: 10.1016/B0-12-227055-X/00448-X
- 764929 - Scrophularia marilandica: LTS0261591
- 1357650 - Scrophularia rubricaulis: 10.1016/B0-12-227055-X/00448-X
- 1357650 - Scrophularia rubricaulis: LTS0261591
- 942083 - Scrophularia umbrosa: 10.1016/B0-12-227055-X/00448-X
- 4149 - Scrophulariaceae: LTS0261591
- 13799 - Sematophyllaceae: LTS0261591
- 468156 - Senegalia: LTS0261591
- 138017 - Senegalia catechu: 10.5962/BHL.TITLE.108605
- 875646 - Senegalia polyacantha: 10.5962/BHL.TITLE.108605
- 875646 - Senegalia polyacantha: LTS0261591
- 53922 - Senna: LTS0261591
- 72401 - Senna didymobotrya: 10.21608/BFSA.1985.75705
- 72401 - Senna didymobotrya: LTS0261591
- 346999 - Senna siamea: 10.21608/BFSA.1985.75705
- 346999 - Senna siamea: LTS0261591
- 4721 - Serenoa: LTS0261591
- 4722 - Serenoa repens: 10.1021/BK-2002-0803.CH009
- 4722 - Serenoa repens: LTS0261591
- 4181 - Sesamum: LTS0261591
- 4182 - Sesamum indicum: 10.3109/10915819309140647
- 4182 - Sesamum indicum: LTS0261591
- 155231 - Sideritis: LTS0261591
- 155265 - Sideritis syriaca: 10.1016/S0378-8741(02)00172-1
- 155266 - Sideritis taurica: 10.1016/S0378-8741(02)00172-1
- 155266 - Sideritis taurica: LTS0261591
- 289409 - Smenospongia aurea: 10.1007/BF02536024
- 13803 - Sphagnaceae: LTS0261591
- 113508 - Sphagnopsida: LTS0261591
- 13804 - Sphagnum: LTS0261591
- 13805 - Sphagnum palustre: 10.1016/0031-9422(91)83188-Q
- 13805 - Sphagnum palustre: LTS0261591
- 3561 - Spinacia: LTS0261591
- 3562 - Spinacia oleracea: 10.1016/S0031-9422(00)94502-3
- 3562 - Spinacia oleracea: LTS0261591
- 13273 - Stellaria: LTS0261591
- 1826902 - Stellaria dichotoma:
- 1826902 - Stellaria dichotoma: 10.1021/NP040080A
- 66667 - Sterculia: LTS0261591
- 195802 - Sterculia foetida: 10.1007/BF02663950
- 195802 - Sterculia foetida: LTS0261591
- 66668 - Sterculia tragacantha: 10.1007/BF02542627
- 66668 - Sterculia tragacantha: LTS0261591
- 1883 - Streptomyces: 10.3389/FMICB.2018.01302
- 1883 - Streptomyces: LTS0261591
- 2062 - Streptomycetaceae: LTS0261591
- 35493 - Streptophyta: LTS0261591
- 246706 - Stuckenia: LTS0261591
- 55444 - Stuckenia pectinata: 10.1016/J.PHYTOCHEM.2003.08.014
- 55444 - Stuckenia pectinata: LTS0261591
- 46108 - Suaeda: LTS0261591
- 224153 - Suaeda aegyptiaca: 10.4197/SCI.16-1.4
- 224153 - Suaeda aegyptiaca: LTS0261591
- 279590 - Suberites massa: 10.1021/NP50102A012
- 115519 - Syagrus: LTS0261591
- 290277 - Syagrus romanzoffiana: 10.1021/BK-2002-0803.CH009
- 290277 - Syagrus romanzoffiana: LTS0261591
- 5094 - Talaromyces: LTS0261591
- 5095 - Talaromyces flavus: 10.1135/CCCC19920408
- 5095 - Talaromyces flavus: LTS0261591
- 27953 - Taonia: LTS0261591
- 27954 - Taonia atomaria: 10.1016/0031-9422(95)00357-D
- 27954 - Taonia atomaria: LTS0261591
- 32443 - Teleostei: LTS0261591
- 67443 - Thamnobryum: LTS0261591
- 390907 - Thamnobryum plicatulum: 10.1016/0031-9422(91)83188-Q
- 390907 - Thamnobryum plicatulum: LTS0261591
- 61526 - Thuidiaceae: LTS0261591
- 67427 - Thuidium: LTS0261591
- 173666 - Thuidium glaucinum: 10.1016/0031-9422(91)83188-Q
- 173666 - Thuidium glaucinum: LTS0261591
- 171374 - Thuidium pristocalyx: 10.1016/0031-9422(91)83188-Q
- 171374 - Thuidium pristocalyx: LTS0261591
- 84223 - Thuidium recognitum: 10.1016/0031-9422(91)83188-Q
- 84223 - Thuidium recognitum: LTS0261591
- 67428 - Thuidium tamariscinum: 10.1016/0031-9422(91)83188-Q
- 67428 - Thuidium tamariscinum: LTS0261591
- 39987 - Thymelaeaceae: LTS0261591
- 58023 - Tracheophyta: LTS0261591
- 709071 - Treculia: LTS0261591
- 709072 - Treculia africana: 10.1007/BF02666050
- 709072 - Treculia africana: LTS0261591
- 28568 - Trichocomaceae: LTS0261591
- 203763 - Trichodesma: LTS0261591
- 764744 - Trichodesma zeylanicum: 10.1016/B0-12-227055-X/00448-X
- 764744 - Trichodesma zeylanicum: LTS0261591
- 3677 - Trichosanthes Kirilowii Maxim: -
- 3677 - Trichosanthes kirilowii Maxim.: -
- 676073 - Trichosanthes rosthornii Harms: -
- 3898 - Trifolium: LTS0261591
- 97006 - Trifolium alexandrinum: 10.1016/S0031-9422(00)88688-4
- 97006 - Trifolium alexandrinum: LTS0261591
- 105367 - Tripneustes ventricosus: 10.1021/NP50107A008
- 5690 - Trypanosoma: LTS0261591
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 5691 - Trypanosoma brucei: LTS0261591
- 5654 - Trypanosomatidae: LTS0261591
- 45183 - Turnera: LTS0261591
- 45184 - Turnera ulmifolia: 10.1016/0031-9422(91)80030-5
- 45184 - Turnera ulmifolia: LTS0261591
- 45182 - Turneraceae: LTS0261591
- 61518 - Ulota: LTS0261591
- 140636 - Ulota crispa: 10.1016/0031-9422(91)83188-Q
- 140636 - Ulota crispa: LTS0261591
- 246680 - Vesicularia: LTS0261591
- 455291 - Vesicularia ferriei: 10.1016/0031-9422(91)83188-Q
- 455291 - Vesicularia ferriei: LTS0261591
- 33090 - Viridiplantae: LTS0261591
- 204215 - Vitex trifolia L.: -
- 204215 - Vitex trifolia l.var.simplicifolia Cham.: -
- 98947 - Wijkia: LTS0261591
- 213177 - Wijkia concavifolia: 10.1016/0031-9422(91)83188-Q
- 213177 - Wijkia concavifolia: LTS0261591
- 178552 - Xestospongia muta: 10.1007/BF02535668
- 4642 - Zingiberaceae: LTS0261591
- 182395 - Ziziphora: LTS0261591
- 326968 - Ziziphus jujuba Mill.: -
- 4953 - Zygosaccharomyces: LTS0261591
- 4956 - Zygosaccharomyces rouxii: 10.1271/BBB.61.51
- 4956 - Zygosaccharomyces rouxii: LTS0261591
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Junhui Zhang, Minjie Zhao, Huilin Yu, Qianqian Wang, Fei Shen, Haiying Cai, Fengqin Feng, Jun Tang. Palmitoleic Acid Ameliorates Metabolic Disorders and Inflammation by Modulating Gut Microbiota and Serum Metabolites.
Molecular nutrition & food research.
2024 Apr; 68(7):e2300749. doi:
10.1002/mnfr.202300749
. [PMID: 38511225] - Qingting Yu, Yanzhuo Yang, Ting Xu, Yinsheng Cai, Zuisu Yang, Falei Yuan. Palmitoleic acid protects microglia from palmitate-induced neurotoxicity in vitro.
PloS one.
2024; 19(1):e0297031. doi:
10.1371/journal.pone.0297031
. [PMID: 38241239] - Xiujuan Qian, Huirui Lei, Xinhai Zhou, Lili Zhang, Wenxing Cui, Jie Zhou, Fengxue Xin, Weiliang Dong, Min Jiang, Katrin Ochsenreither. Engineering Scheffersomyces segobiensis for palmitoleic acid-rich lipid production.
Microbial biotechnology.
2024 Jan; 17(1):e14301. doi:
10.1111/1751-7915.14301
. [PMID: 37351580] - Jing Ning, Xiaoting Gu, Jiao Zhou, Hongxia Zhang, Jianghua Sun, Lilin Zhao. Palmitoleic acid as a coordinating molecule between the invasive pinewood nematode and its newly associated fungi.
The ISME journal.
2023 11; 17(11):1862-1871. doi:
10.1038/s41396-023-01489-8
. [PMID: 37604917] - Eliza Korkus, Marcin Szustak, Rafal Madaj, Arkadiusz Chworos, Anna Drzazga, Maria Koziołkiewicz, Grzegorz Dąbrowski, Sylwester Czaplicki, Iwona Konopka, Edyta Gendaszewska-Darmach. Trans-palmitoleic acid, a dairy fat biomarker, stimulates insulin secretion and activates G protein-coupled receptors with a different mechanism from the cis isomer.
Food & function.
2023 Jul; 14(14):6496-6512. doi:
10.1039/d2fo03412c
. [PMID: 37368452] - Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products.
ACS pharmacology & translational science.
2023 May; 6(5):683-701. doi:
10.1021/acsptsci.2c00194
. [PMID: 37200814] - Yiwei Chen, Qiongdan Mai, Zixu Chen, Tao Lin, Yongjie Cai, Jing Han, Ying Wang, Mudan Zhang, Shimin Tan, Zhiying Wu, Lingming Chen, Zhiyi Zhang, Yi Yang, Taimei Cui, Beiyin Ouyang, Yue Sun, Lijia Yang, Lin Xu, Sien Zhang, Jian Li, Hongbo Shen, Linna Liu, Lingchan Zeng, Shenghong Zhang, Gucheng Zeng. Dietary palmitoleic acid reprograms gut microbiota and improves biological therapy against colitis.
Gut microbes.
2023 Jan; 15(1):2211501. doi:
10.1080/19490976.2023.2211501
. [PMID: 37203220] - Ecesu Cetin, Brian Pedersen, Lindsey M Porter, Gail K Adler, Mehmet Furkan Burak. Protocol for a randomized placebo-controlled clinical trial using pure palmitoleic acid to ameliorate insulin resistance and lipogenesis in overweight and obese subjects with prediabetes.
Frontiers in endocrinology.
2023; 14(?):1306528. doi:
10.3389/fendo.2023.1306528
. [PMID: 38313838] - Wenwen Huang, Yiping Zhang, Liping Zhong, Chunlong Sun, Zaiwang Zhang. Simultaneous determination of cis- and trans-palmitoleic acid in rat serum by UPLC-MS/MS.
Scientific reports.
2022 10; 12(1):16637. doi:
10.1038/s41598-022-20739-x
. [PMID: 36198714] - Yasuhiro Takenouchi, Yoshie Seki, Sachiko Shiba, Kazuo Ohtake, Koji Nobe, Keizo Kasono. Effects of dietary palmitoleic acid on vascular function in aorta of diabetic mice.
BMC endocrine disorders.
2022 Apr; 22(1):103. doi:
10.1186/s12902-022-01018-2
. [PMID: 35436932] - Jian Ding, Chengjiang Ruan, Ying Guan, He Li, Wei Du, Shunguang Lu, Xiufeng Wen, Ke Tang, Ye Chen. Nontargeted metabolomic and multigene expression analyses reveal the mechanism of oil biosynthesis in sea buckthorn berry pulp rich in palmitoleic acid.
Food chemistry.
2022 Apr; 374(?):131719. doi:
10.1016/j.foodchem.2021.131719
. [PMID: 34875440] - Lidia Irasema Chávaro-Ortiz, Brenda D Tapia, Mariel Rico-Hidalgo, Ruth Gutiérrez-Aguilar, María E Frigolet. Trans-palmitoleic acid reduces adiposity via increased lipolysis in a rodent model of diet-induced obesity.
The British journal of nutrition.
2022 03; 127(6):801-809. doi:
10.1017/s0007114521001501
. [PMID: 33958011] - Oliver Konzock, Yuika Matsushita, Simone Zaghen, Aboubakar Sako, Joakim Norbeck. Altering the fatty acid profile of Yarrowia lipolytica to mimic cocoa butter by genetic engineering of desaturases.
Microbial cell factories.
2022 Feb; 21(1):25. doi:
10.1186/s12934-022-01748-x
. [PMID: 35183179] - Erin Vanessa LaRae Smith, Rebecca Maree Dyson, Christina M G Vanderboor, Ousseynou Sarr, Jane Anderson, Mary J Berry, Timothy R H Regnault, Lifeng Peng, Clint Gray. Maternal Fructose Intake Causes Developmental Reprogramming of Hepatic Mitochondrial Catalytic Activity and Lipid Metabolism in Weanling and Young Adult Offspring.
International journal of molecular sciences.
2022 Jan; 23(2):. doi:
10.3390/ijms23020999
. [PMID: 35055185] - Herlambang Herlambang, Anggelia Puspasari, Citra Maharani, Rina Nofri Enis, Susan Tarawifa, Amelia Dwi Fitri, Huntari Harahap, Asro Hayani Harahap, Erny Kusdiyah, Mas Rizky Anggun Adipurna Syamsunarno. Comprehensive fatty acid fractionation profilling in preeclampsia: a case control study with multivariable analysis.
BMC pregnancy and childbirth.
2022 Jan; 22(1):8. doi:
10.1186/s12884-021-04313-3
. [PMID: 34980007] - Denisa Miklankova, Irena Markova, Martina Hüttl, Barbora Stankova, Hana Malinska. The Different Insulin-Sensitising and Anti-Inflammatory Effects of Palmitoleic Acid and Oleic Acid in a Prediabetes Model.
Journal of diabetes research.
2022; 2022(?):4587907. doi:
10.1155/2022/4587907
. [PMID: 36147256] - Iris Rosa Betz, Sarah Julia Qaiyumi, Madeleine Goeritzer, Arne Thiele, Sarah Brix, Niklas Beyhoff, Jana Grune, Robert Klopfleisch, Franziska Greulich, Nina Henriette Uhlenhaut, Ulrich Kintscher, Anna Foryst-Ludwig. Cardioprotective Effects of Palmitoleic Acid (C16:1n7) in a Mouse Model of Catecholamine-Induced Cardiac Damage Are Mediated by PPAR Activation.
International journal of molecular sciences.
2021 Nov; 22(23):. doi:
10.3390/ijms222312695
. [PMID: 34884498] - Yanan Song, Xiaodan Wang, Hongli Cui, Chunli Ji, Jinai Xue, Xiaoyun Jia, Ruiyan Ma, Runzhi Li. Enhancing growth and oil accumulation of a palmitoleic acid-rich Scenedesmus obliquus in mixotrophic cultivation with acetate and its potential for ammonium-containing wastewater purification and biodiesel production.
Journal of environmental management.
2021 Nov; 297(?):113273. doi:
10.1016/j.jenvman.2021.113273
. [PMID: 34311253] - Neil K Huang, Petra Bůžková, Nirupa R Matthan, Luc Djoussé, Jorge R Kizer, Kenneth J Mukamal, Joseph F Polak, Alice H Lichtenstein. Serum Non-Esterified Fatty Acids, Carotid Artery Intima-Media Thickness and Flow-Mediated Dilation in Older Adults: The Cardiovascular Health Study (CHS).
Nutrients.
2021 Aug; 13(9):. doi:
10.3390/nu13093052
. [PMID: 34578930] - Yuko Akazawa, Tomohito Morisaki, Hiroko Fukuda, Kiyuu Norimatsu, Junya Shiota, Keiichi Hashiguchi, Maiko Tabuchi, Moto Kitayama, Kayoko Matsushima, Naoyuki Yamaguchi, Hisayoshi Kondo, Fumihiko Fujita, Hiroaki Takeshita, Kazuhiko Nakao, Fuminao Takeshima. Significance of serum palmitoleic acid levels in inflammatory bowel disease.
Scientific reports.
2021 08; 11(1):16260. doi:
10.1038/s41598-021-95923-6
. [PMID: 34376800] - Carmela Maria Montone, Sara Elsa Aita, Martina Catani, Chiara Cavaliere, Andrea Cerrato, Susy Piovesana, Aldo Laganà, Anna Laura Capriotti. Profiling and quantitative analysis of underivatized fatty acids in Chlorella vulgaris microalgae by liquid chromatography-high resolution mass spectrometry.
Journal of separation science.
2021 Aug; 44(16):3041-3051. doi:
10.1002/jssc.202100306
. [PMID: 34101991] - Rubén Tovar, Ana Luisa Gavito, Antonio Vargas, Laura Soverchia, Laura Hernandez-Folgado, Nadine Jagerovic, Elena Baixeras, Roberto Ciccocioppo, Fernando Rodríguez de Fonseca, Juan Decara. Palmitoleoylethanolamide Is an Efficient Anti-Obesity Endogenous Compound: Comparison with Oleylethanolamide in Diet-Induced Obesity.
Nutrients.
2021 Jul; 13(8):. doi:
10.3390/nu13082589
. [PMID: 34444748] - Emma Solé, Roger Ros-Freixedes, Marc Tor, Ramona N Pena, Joan Estany. A sequence variant in the diacylglycerol O-acyltransferase 2 gene influences palmitoleic acid content in pig muscle.
Scientific reports.
2021 07; 11(1):14797. doi:
10.1038/s41598-021-94235-z
. [PMID: 34285308] - Jason I E Bruce, Rosa Sánchez-Alvarez, Maria Dolors Sans, Sarah A Sugden, Nathan Qi, Andrew D James, John A Williams. Insulin protects acinar cells during pancreatitis by preserving glycolytic ATP supply to calcium pumps.
Nature communications.
2021 07; 12(1):4386. doi:
10.1038/s41467-021-24506-w
. [PMID: 34282152] - M Plante-Dubé, C Picard, I Gilbert, C Robert, V Fievez, B Vlaeminck, C Belleannée, R Gervais, P Y Chouinard. Effects of a dietary supplement enriched in palmitoleic acid on fatty acid composition of follicular fluid, granulosa cell metabolism, and oocyte developmental capacity in early lactation dairy cows.
Journal of dairy science.
2021 Mar; 104(3):3693-3706. doi:
10.3168/jds.2020-19191
. [PMID: 33455772] - Shanjie Wang, Wei Tian, Yige Liu, Guangcan Yan, Shaohong Fang, Yafeng Wang, Bo Yu. Temporal trend of circulating trans-fatty acids and risk of long-term mortality in general population.
Clinical nutrition (Edinburgh, Scotland).
2021 03; 40(3):1095-1101. doi:
10.1016/j.clnu.2020.07.010
. [PMID: 32768317] - Xinyi Cheng, Yaqi Huang, Zhuangzhuang Yang, Tong Wang, Xiaosan Wang. Enrichment of Palmitoleic Acid by a Combination of Two-step Solvent Crystallization and Molecular Distillation.
Journal of oleo science.
2021; 70(5):599-606. doi:
10.5650/jos.ess20273
. [PMID: 33952786] - Ian J McGough, Luca Vecchia, Benjamin Bishop, Tomas Malinauskas, Karen Beckett, Dhira Joshi, Nicola O'Reilly, Christian Siebold, E Yvonne Jones, Jean-Paul Vincent. Glypicans shield the Wnt lipid moiety to enable signalling at a distance.
Nature.
2020 09; 585(7823):85-90. doi:
10.1038/s41586-020-2498-z
. [PMID: 32699409] - N L Weir, B T Steffen, W Guan, L M Johnson, L Djousse, K J Mukamal, M Y Tsai. Circulating omega-7 fatty acids are differentially related to metabolic dysfunction and incident type II diabetes: The Multi-Ethnic Study of Atherosclerosis (MESA).
Diabetes & metabolism.
2020 09; 46(4):319-325. doi:
10.1016/j.diabet.2019.10.005
. [PMID: 31706030] - Myriam Lamine, Mahmoud Gargouri, Ahmed Mliki. Identification of the NaCl-responsive metabolites in Citrus roots: A lipidomic and volatomic signature.
Plant signaling & behavior.
2020 08; 15(8):1777376. doi:
10.1080/15592324.2020.1777376
. [PMID: 32508206] - Martin Rossmeisl, Jana Pavlisova, Kristina Bardova, Veronika Kalendova, Jana Buresova, Ondrej Kuda, Petra Kroupova, Barbora Stankova, Eva Tvrzicka, Eva Fiserova, Olga Horakova, Jan Kopecky. Increased plasma levels of palmitoleic acid may contribute to beneficial effects of Krill oil on glucose homeostasis in dietary obese mice.
Biochimica et biophysica acta. Molecular and cell biology of lipids.
2020 08; 1865(8):158732. doi:
10.1016/j.bbalip.2020.158732
. [PMID: 32371092] - Xinyue Huang, Shenglan Yi, Jianping Hu, Ziyu Du, Qingfeng Wang, Zi Ye, Qingfeng Cao, Guannan Su, Gangxiang Yuan, Chunjiang Zhou, Yao Wang, Aize Kijlstra, Peizeng Yang. Analysis of the role of palmitoleic acid in acute anterior uveitis.
International immunopharmacology.
2020 Jul; 84(?):106552. doi:
10.1016/j.intimp.2020.106552
. [PMID: 32422526] - Ping Jiang, Lixin Xia, ZiKang Jin, Shaokat Ali, Mengyan Wang, Xiaohui Li, Runjun Yang, Xibi Fang, Zhihui Zhao. New function of the CD44 gene: Lipid metabolism regulation in bovine mammary epithelial cells.
Journal of dairy science.
2020 Jul; 103(7):6661-6671. doi:
10.3168/jds.2019-17415
. [PMID: 32359993] - Paweł Rostoff, Magdalena Frączek-Jucha, Ewa Konduracka, Jadwiga Nessler, Grzegorz Gajos. Serum phospholipid cis-palmitoleic acid in patients with type 2 diabetes and chronic coronary syndrome: an assessment of the relationship with diabetes duration, systemic low-grade inflammation and circulating oxidized low-density lipoprotein.
Kardiologia polska.
2020 06; 78(6):584-587. doi:
10.33963/kp.15285
. [PMID: 32267132] - Neil K Huang, Nirupa R Matthan, Jean M Galluccio, Peilin Shi, Alice H Lichtenstein, Dariush Mozaffarian. Supplementation with Seabuckthorn Oil Augmented in 16:1n-7t Increases Serum Trans-Palmitoleic Acid in Metabolically Healthy Adults: A Randomized Crossover Dose-Escalation Study.
The Journal of nutrition.
2020 06; 150(6):1388-1396. doi:
10.1093/jn/nxaa060
. [PMID: 32140719] - Hans Albert Pedersen, Chi Ndi, Susan J Semple, Bevan Buirchell, Birger Lindberg Møller, Dan Staerk. PTP1B-Inhibiting Branched-Chain Fatty Acid Dimers from Eremophila oppositifolia subsp. angustifolia Identified by High-Resolution PTP1B Inhibition Profiling and HPLC-PDA-HRMS-SPE-NMR Analysis.
Journal of natural products.
2020 05; 83(5):1598-1610. doi:
10.1021/acs.jnatprod.0c00070
. [PMID: 32255628] - Yuki Murakami, Chiaki Murakami, Fumi Hoshino, Qiang Lu, Rino Akiyama, Atsumi Yamaki, Daisuke Takahashi, Fumio Sakane. Palmitic acid- and/or palmitoleic acid-containing phosphatidic acids are generated by diacylglycerol kinase α in starved Jurkat T cells.
Biochemical and biophysical research communications.
2020 05; 525(4):1054-1060. doi:
10.1016/j.bbrc.2020.02.162
. [PMID: 32184022] - Etienne Guillocheau, Philippe Legrand, Vincent Rioux. Trans-palmitoleic acid (trans-9-C16:1, or trans-C16:1 n-7): Nutritional impacts, metabolism, origin, compositional data, analytical methods and chemical synthesis. A review.
Biochimie.
2020 Feb; 169(?):144-160. doi:
10.1016/j.biochi.2019.12.004
. [PMID: 31837411] - Takahiko Mitsui, Satoru Kira, Tatsuya Ihara, Norifumi Sawada, Hiroshi Nakagomi, Tatsuya Miyamoto, Hiroshi Shimura, Sachiko Tsuchiya, Mie Kanda, Masayuki Takeda. Metabolism of fatty acids and bile acids in plasma is associated with overactive bladder in males: potential biomarkers and targets for novel treatments in a metabolomics analysis.
International urology and nephrology.
2020 Feb; 52(2):233-238. doi:
10.1007/s11255-019-02299-8
. [PMID: 31587188] - Maysa M Cruz, Jussara J Simão, Roberta D C C de Sá, Talita S M Farias, Viviane S da Silva, Fernanda Abdala, Vitor J Antraco, Lucia Armelin-Correa, Maria Isabel C Alonso-Vale. Palmitoleic Acid Decreases Non-alcoholic Hepatic Steatosis and Increases Lipogenesis and Fatty Acid Oxidation in Adipose Tissue From Obese Mice.
Frontiers in endocrinology.
2020; 11(?):537061. doi:
10.3389/fendo.2020.537061
. [PMID: 33117273] - Paola Ramos, Nikki C Bush, Michael D Jensen. Sex and Depot Differences in Palmitoleic Acid Content of Human Blood and Fat.
Lipids.
2020 01; 55(1):63-72. doi:
10.1002/lipd.12212
. [PMID: 31944322] - Domenico Tricò, Alessandro Mengozzi, Lorenzo Nesti, Mensud Hatunic, Rafael Gabriel Sanchez, Thomas Konrad, Katarina Lalić, Nebojša M Lalić, Andrea Mari, Andrea Natali. Circulating palmitoleic acid is an independent determinant of insulin sensitivity, beta cell function and glucose tolerance in non-diabetic individuals: a longitudinal analysis.
Diabetologia.
2020 01; 63(1):206-218. doi:
10.1007/s00125-019-05013-6
. [PMID: 31676981] - Heidi T M Lai, Marcia C de Oliveira Otto, Yujin Lee, Jason H Y Wu, Xiaoling Song, Irena B King, Bruce M Psaty, Rozenn N Lemaitre, Barbara McKnight, David S Siscovick, Dariush Mozaffarian. Serial Plasma Phospholipid Fatty Acids in the De Novo Lipogenesis Pathway and Total Mortality, Cause-Specific Mortality, and Cardiovascular Diseases in the Cardiovascular Health Study.
Journal of the American Heart Association.
2019 11; 8(22):e012881. doi:
10.1161/jaha.119.012881
. [PMID: 31711385] - Aleksander Siniarski, Paweł Rostoff, Radosław Rychlak, Krzysztof Krawczyk, Renata Gołębiowska-Wiatrak, Magdalena Mostowik, Krzysztof Piotr Malinowski, Ewa Konduracka, Jadwiga Nessler, Grzegorz Gajos. Unsaturated fatty acid composition in serum phospholipids in patients in the acute phase of myocardial infarction.
Kardiologia polska.
2019 10; 77(10):935-943. doi:
10.33963/kp.14923
. [PMID: 31387982] - Hiromu Kameoka, Ippo Tsutsui, Katsuharu Saito, Yusuke Kikuchi, Yoshihiro Handa, Tatsuhiro Ezawa, Hideo Hayashi, Masayoshi Kawaguchi, Kohki Akiyama. Stimulation of asymbiotic sporulation in arbuscular mycorrhizal fungi by fatty acids.
Nature microbiology.
2019 10; 4(10):1654-1660. doi:
10.1038/s41564-019-0485-7
. [PMID: 31235957] - M Slim, C Ha, C A Vanstone, S N Morin, E Rahme, H A Weiler. Evaluation of plasma and erythrocyte fatty acids C15:0, t-C16:1n-7 and C17:0 as biomarkers of dairy fat consumption in adolescents.
Prostaglandins, leukotrienes, and essential fatty acids.
2019 10; 149(?):24-29. doi:
10.1016/j.plefa.2019.07.007
. [PMID: 31421524] - Ismail Cimen, Zehra Yildirim, Asli Ekin Dogan, Asli Dilber Yildirim, Ozlem Tufanli, Umut Inci Onat, UyenThao Nguyen, Steven M Watkins, Christian Weber, Ebru Erbay. Double bond configuration of palmitoleate is critical for atheroprotection.
Molecular metabolism.
2019 10; 28(?):58-72. doi:
10.1016/j.molmet.2019.08.004
. [PMID: 31422082] - Wenjun Zhou, Hui Wang, Li Zheng, Wentao Cheng, Lili Gao, Tianzhong Liu. Comparison of Lipid and Palmitoleic Acid Induction of Tribonema minus under Heterotrophic and Phototrophic Regimes by Using High-Density Fermented Seeds.
International journal of molecular sciences.
2019 Sep; 20(18):. doi:
10.3390/ijms20184356
. [PMID: 31491935] - Paloma Acosta-Montaño, Eustolia Rodríguez-Velázquez, Esmeralda Ibarra-López, Héctor Frayde-Gómez, Jaime Mas-Oliva, Blanca Delgado-Coello, Ignacio A Rivero, Manuel Alatorre-Meda, Jorge Aguilera, Lizbeth Guevara-Olaya, Victor García-González. Fatty Acid and Lipopolysaccharide Effect on Beta Cells Proteostasis and its Impact on Insulin Secretion.
Cells.
2019 08; 8(8):. doi:
10.3390/cells8080884
. [PMID: 31412623] - Zhi-Hong Yang, Milton Pryor, Audrey Noguchi, Maureen Sampson, Brittany Johnson, Matthew Pryor, Kwame Donkor, Marcelo Amar, Alan T Remaley. Dietary Palmitoleic Acid Attenuates Atherosclerosis Progression and Hyperlipidemia in Low-Density Lipoprotein Receptor-Deficient Mice.
Molecular nutrition & food research.
2019 06; 63(12):e1900120. doi:
10.1002/mnfr.201900120
. [PMID: 30921498] - Jian Ding, Chengjiang Ruan, Wei Du, Ying Guan. RNA-seq data reveals a coordinated regulation mechanism of multigenes involved in the high accumulation of palmitoleic acid and oil in sea buckthorn berry pulp.
BMC plant biology.
2019 May; 19(1):207. doi:
10.1186/s12870-019-1815-x
. [PMID: 31109294] - Véronique Ferchaud-Roucher, Kelsey Barner, Thomas Jansson, Theresa L Powell. Maternal obesity results in decreased syncytiotrophoblast synthesis of palmitoleic acid, a fatty acid with anti-inflammatory and insulin-sensitizing properties.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2019 05; 33(5):6643-6654. doi:
10.1096/fj.201802444r
. [PMID: 30811959] - Buyun Liu, Yangbo Sun, Guifeng Xu, Yang Du, Avanthi S Ajjarapu, Linda G Snetselaar, Wei Bao. Association between plasma concentrations of elaidic acid, a major trans fatty acid, and depression in a nationally representative sample of U.S. adults.
Journal of affective disorders.
2019 Apr; 249(?):301-306. doi:
10.1016/j.jad.2019.02.032
. [PMID: 30797122] - Wen-Wen Huang, Bi-Hong Hong, Ji-Peng Sun, Ran Tan, Kai-Kai Bai, Ting Yang, Hao Wu, Rui-Zao Yi. Comparing the simultaneous determination of cis- and trans-palmitoleic acid in fish oil using HPLC and GC.
Lipids in health and disease.
2019 Apr; 18(1):86. doi:
10.1186/s12944-019-1033-4
. [PMID: 30947713] - Roberta Scanferlato, Massimo Bortolotti, Anna Sansone, Chryssostomos Chatgilialoglu, Letizia Polito, Marco De Spirito, Giuseppe Maulucci, Andrea Bolognesi, Carla Ferreri. Hexadecenoic Fatty Acid Positional Isomers and De Novo PUFA Synthesis in Colon Cancer Cells.
International journal of molecular sciences.
2019 Feb; 20(4):. doi:
10.3390/ijms20040832
. [PMID: 30769921] - Tianying Zhang, Cong Li, Lian Huang, Ning Song, Yanhong Cao, Juan J Loor, Jun Luo, Huaiping Shi. Regulation of Stearoyl-Coenzyme A Desaturase 1 by trans-10, cis-12 Conjugated Linoleic Acid via SREBP1 in Primary Goat Mammary Epithelial Cells.
Journal of agricultural and food chemistry.
2019 Feb; 67(5):1463-1469. doi:
10.1021/acs.jafc.8b06358
. [PMID: 30644742] - Feifei Wang, Baoyan Gao, Loudong Huang, Min Su, Chenming Dai, Chengwu Zhang. Evaluation of oleaginous eustigmatophycean microalgae as potential biorefinery feedstock for the production of palmitoleic acid and biodiesel.
Bioresource technology.
2018 Dec; 270(?):30-37. doi:
10.1016/j.biortech.2018.09.016
. [PMID: 30212771] - Qian Zhang, Yuwei Yang, Mingjun Hu, Haibo Li, Qi Zhong, Fen Huang. Relationship between plasma trans-fatty acid isomer concentrations and self-reported cardiovascular disease risk in US adults.
International journal of food sciences and nutrition.
2018 Dec; 69(8):976-984. doi:
10.1080/09637486.2018.1428538
. [PMID: 29376474] - Lu-Min Shih, Hsiang-Yu Tang, Ke-Shiuan Lynn, Cheng-Yu Huang, Hung-Yao Ho, Mei-Ling Cheng. Stable Isotope-Labeled Lipidomics to Unravel the Heterogeneous Development Lipotoxicity.
Molecules (Basel, Switzerland).
2018 Nov; 23(11):. doi:
10.3390/molecules23112862
. [PMID: 30400243] - Sabrina J Nolan, Julia D Romano, John T Kline, Isabelle Coppens. Novel Approaches To Kill Toxoplasma gondii by Exploiting the Uncontrolled Uptake of Unsaturated Fatty Acids and Vulnerability to Lipid Storage Inhibition of the Parasite.
Antimicrobial agents and chemotherapy.
2018 10; 62(10):. doi:
10.1128/aac.00347-18
. [PMID: 30061287] - Fumiaki Imamura, Amanda Fretts, Matti Marklund, Andres V Ardisson Korat, Wei-Sin Yang, Maria Lankinen, Waqas Qureshi, Catherine Helmer, Tzu-An Chen, Kerry Wong, Julie K Bassett, Rachel Murphy, Nathan Tintle, Chaoyu Ian Yu, Ingeborg A Brouwer, Kuo-Liong Chien, Alexis C Frazier-Wood, Liana C Del Gobbo, Luc Djoussé, Johanna M Geleijnse, Graham G Giles, Janette de Goede, Vilmundur Gudnason, William S Harris, Allison Hodge, Frank Hu, Albert Koulman, Markku Laakso, Lars Lind, Hung-Ju Lin, Barbara McKnight, Kalina Rajaobelina, Ulf Risérus, Jennifer G Robinson, Cécilia Samieri, David S Siscovick, Sabita S Soedamah-Muthu, Nona Sotoodehnia, Qi Sun, Michael Y Tsai, Matti Uusitupa, Lynne E Wagenknecht, Nick J Wareham, Jason Hy Wu, Renata Micha, Nita G Forouhi, Rozenn N Lemaitre, Dariush Mozaffarian. Fatty acid biomarkers of dairy fat consumption and incidence of type 2 diabetes: A pooled analysis of prospective cohort studies.
PLoS medicine.
2018 10; 15(10):e1002670. doi:
10.1371/journal.pmed.1002670
. [PMID: 30303968] - Sahar G Yammine, Farah Naja, Hani Tamim, Mona Nasrallah, Carine Biessy, Elom K Aglago, Michèle Matta, Isabelle Romieu, Marc J Gunter, Lara Nasreddine, Véronique Chajès. Association between Serum Phospholipid Fatty Acid Levels and Adiposity among Lebanese Adults: A Cross-Sectional Study.
Nutrients.
2018 Sep; 10(10):. doi:
10.3390/nu10101371
. [PMID: 30257485] - Marcia C de Oliveira Otto, Rozenn N Lemaitre, Xiaoling Song, Irena B King, David S Siscovick, Dariush Mozaffarian. Serial measures of circulating biomarkers of dairy fat and total and cause-specific mortality in older adults: the Cardiovascular Health Study.
The American journal of clinical nutrition.
2018 09; 108(3):476-484. doi:
10.1093/ajcn/nqy117
. [PMID: 30007304] - Buyun Liu, Yangbo Sun, Linda G Snetselaar, Qi Sun, Quanhe Yang, Zefeng Zhang, Liegang Liu, Frank B Hu, Wei Bao. Association between plasma trans-fatty acid concentrations and diabetes in a nationally representative sample of US adults.
Journal of diabetes.
2018 Aug; 10(8):653-664. doi:
10.1111/1753-0407.12652
. [PMID: 29446544] - Jun Guo, Weiwei Fang, Xiehui Chen, Yajun Lin, Gang Hu, Jie Wei, Xiaoyi Zhang, Chunxiao Yang, Jian Li. Upstream stimulating factor 1 suppresses autophagy and hepatic lipid droplet catabolism by activating mTOR.
FEBS letters.
2018 08; 592(16):2725-2738. doi:
10.1002/1873-3468.13203
. [PMID: 30054905] - Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics.
Scientific reports.
2018 07; 8(1):10056. doi:
10.1038/s41598-018-28477-9
. [PMID: 29968805] - Noriaki Kawanishi, Kana Takagi, Hyeon-Cheol Lee, Daiki Nakano, Toshiaki Okuno, Takehiko Yokomizo, Shuichi Machida. Endurance exercise training and high-fat diet differentially affect composition of diacylglycerol molecular species in rat skeletal muscle.
American journal of physiology. Regulatory, integrative and comparative physiology.
2018 06; 314(6):R892-R901. doi:
10.1152/ajpregu.00371.2017
. [PMID: 29443549] - Bei Yan, Yao Liu, Aixin Shi, Zhihong Wang, Jiye Aa, Xiaoping Huang, Yi Liu. Investigation of the Antifatigue Effects of Korean Ginseng on Professional Athletes by Gas Chromatography-Time-of-Flight-Mass Spectrometry-Based Metabolomics.
Journal of AOAC International.
2018 May; 101(3):701-707. doi:
10.5740/jaoacint.17-0220
. [PMID: 28927488] - Yuta Hatori, Sachiye Inouye, Reiko Akagi, Toshio Seyama. Local redox environment beneath biological membranes probed by palmitoylated-roGFP.
Redox biology.
2018 04; 14(?):679-685. doi:
10.1016/j.redox.2017.11.015
. [PMID: 29179107] - Maysa M Cruz, Andressa B Lopes, Amanda R Crisma, Roberta C C de Sá, Wilson M T Kuwabara, Rui Curi, Paula B M de Andrade, Maria I C Alonso-Vale. Palmitoleic acid (16:1n7) increases oxygen consumption, fatty acid oxidation and ATP content in white adipocytes.
Lipids in health and disease.
2018 Mar; 17(1):55. doi:
10.1186/s12944-018-0710-z
. [PMID: 29554895] - Tomasz Olszowski, Izabela Gutowska, Irena Baranowska-Bosiacka, Agnieszka Łukomska, Arleta Drozd, Dariusz Chlubek. Cadmium Alters the Concentration of Fatty Acids in THP-1 Macrophages.
Biological trace element research.
2018 Mar; 182(1):29-36. doi:
10.1007/s12011-017-1071-6
. [PMID: 28600650] - N S The, I B King, S C Couch, J L Crandell, D Dabelea, A D Liese, E J Mayer-Davis. Plasma trans-palmitoleic acid is associated with cardio-metabolic risk factors in youth with type 1 diabetes.
Diabetes & metabolism.
2018 Mar; 44(2):181-184. doi:
10.1016/j.diabet.2017.02.004
. [PMID: 28583347] - Anaïs Szpigel, Isabelle Hainault, Aurélie Carlier, Nicolas Venteclef, Anne-Françoise Batto, Eric Hajduch, Catherine Bernard, Alain Ktorza, Jean-François Gautier, Pascal Ferré, Olivier Bourron, Fabienne Foufelle. Lipid environment induces ER stress, TXNIP expression and inflammation in immune cells of individuals with type 2 diabetes.
Diabetologia.
2018 02; 61(2):399-412. doi:
10.1007/s00125-017-4462-5
. [PMID: 28988346] - Alma M Astudillo, Clara Meana, Carlos Guijas, Laura Pereira, Patricia Lebrero, María A Balboa, Jesús Balsinde. Occurrence and biological activity of palmitoleic acid isomers in phagocytic cells.
Journal of lipid research.
2018 02; 59(2):237-249. doi:
10.1194/jlr.m079145
. [PMID: 29167413] - Camila O de Souza, Gretchen K Vannice, José C Rosa Neto, Philip C Calder. Is Palmitoleic Acid a Plausible Nonpharmacological Strategy to Prevent or Control Chronic Metabolic and Inflammatory Disorders?.
Molecular nutrition & food research.
2018 01; 62(1):. doi:
10.1002/mnfr.201700504
. [PMID: 28980402] - Karamat Mohammad, Paméla Dakik, Younes Medkour, Mélissa McAuley, Darya Mitrofanova, Vladimir I Titorenko. Yeast Cells Exposed to Exogenous Palmitoleic Acid Either Adapt to Stress and Survive or Commit to Regulated Liponecrosis and Die.
Oxidative medicine and cellular longevity.
2018; 2018(?):3074769. doi:
10.1155/2018/3074769
. [PMID: 29636840] - Juan C Aristizabal, Laura I González-Zapata, Alejandro Estrada-Restrepo, Julia Monsalve-Alvarez, Sandra L Restrepo-Mesa, Diego Gaitán. Concentrations of Plasma Free Palmitoleic and Dihomo-Gamma Linoleic Fatty Acids Are Higher in Children with Abdominal Obesity.
Nutrients.
2018 Jan; 10(1):. doi:
10.3390/nu10010031
. [PMID: 29301242] - Shannon L Klingel, Kaitlin Roke, Bertha Hidalgo, Stella Aslibekyan, Robert J Straka, Ping An, Michael A Province, Paul N Hopkins, Donna K Arnett, Jose M Ordovas, Chao-Qiang Lai, David M Mutch. Sex Differences in Blood HDL-c, the Total Cholesterol/HDL-c Ratio, and Palmitoleic Acid are Not Associated with Variants in Common Candidate Genes.
Lipids.
2017 Dec; 52(12):969-980. doi:
10.1007/s11745-017-4307-5
. [PMID: 29080057] - Haibo Li, Qian Zhang, Jiangen Song, Anshi Wang, Yunfei Zou, Lei Ding, Yufeng Wen. Plasma trans-fatty acids levels and mortality: a cohort study based on 1999-2000 National Health and Nutrition Examination Survey (NHANES).
Lipids in health and disease.
2017 Sep; 16(1):176. doi:
10.1186/s12944-017-0567-6
. [PMID: 28915883] - Rennan Feng, Chao Luo, Chunlong Li, Shanshan Du, Akinkunmi Paul Okekunle, Yanchuan Li, Yang Chen, Tianqi Zi, Yucun Niu. Free fatty acids profile among lean, overweight and obese non-alcoholic fatty liver disease patients: a case - control study.
Lipids in health and disease.
2017 Sep; 16(1):165. doi:
10.1186/s12944-017-0551-1
. [PMID: 28870233] - Ashraf U Nissar, Love Sharma, Malik A Mudasir, Lone A Nazir, Sheikh A Umar, Parduman R Sharma, Ram A Vishwakarma, Sheikh A Tasduq. Chemical chaperone 4-phenyl butyric acid (4-PBA) reduces hepatocellular lipid accumulation and lipotoxicity through induction of autophagy.
Journal of lipid research.
2017 09; 58(9):1855-1868. doi:
10.1194/jlr.m077537
. [PMID: 28655725] - Wenjun Zhou, Hui Wang, Lin Chen, Wentao Cheng, Tianzhong Liu. Heterotrophy of filamentous oleaginous microalgae Tribonema minus for potential production of lipid and palmitoleic acid.
Bioresource technology.
2017 Sep; 239(?):250-257. doi:
10.1016/j.biortech.2017.05.045
. [PMID: 28531849] - F Caf, Ö Yilmaz, N Şen Özdemir. Potential of Laurencia obtusa as a substrate for the development of a probiotic Saccharomyces cerevisiae.
Cellular and molecular biology (Noisy-le-Grand, France).
2017 Aug; 63(8):71-76. doi:
10.14715/cmb/2017.63.8.16
. [PMID: 28886317] - Laurent Loiseau, Cameron Fyfe, Laurent Aussel, Mahmoud Hajj Chehade, Sara B Hernández, Bruno Faivre, Djemel Hamdane, Caroline Mellot-Draznieks, Bérengère Rascalou, Ludovic Pelosi, Christophe Velours, David Cornu, Murielle Lombard, Josep Casadesús, Fabien Pierrel, Marc Fontecave, Frédéric Barras. The UbiK protein is an accessory factor necessary for bacterial ubiquinone (UQ) biosynthesis and forms a complex with the UQ biogenesis factor UbiJ.
The Journal of biological chemistry.
2017 07; 292(28):11937-11950. doi:
10.1074/jbc.m117.789164
. [PMID: 28559279] - Todd Clark Brelje, Nicholas V Bhagroo, Laurence E Stout, Robert L Sorenson. Prolactin and oleic acid synergistically stimulate β-cell proliferation and growth in rat islets.
Islets.
2017 07; 9(4):e1330234. doi:
10.1080/19382014.2017.1330234
. [PMID: 28686504] - Sylwester Czaplicki, Dorota Ogrodowska, Ryszard Zadernowski, Iwona Konopka. Effect of Sea-Buckthorn (Hippophaë rhamnoides L.) Pulp Oil Consumption on Fatty Acids and Vitamin A and E Accumulation in Adipose Tissue and Liver of Rats.
Plant foods for human nutrition (Dordrecht, Netherlands).
2017 Jun; 72(2):198-204. doi:
10.1007/s11130-017-0610-9
. [PMID: 28466134] - A Manni, J P Richie, S E Schetter, A Calcagnotto, N Trushin, C Aliaga, K El-Bayoumy. Stearoyl-CoA desaturase-1, a novel target of omega-3 fatty acids for reducing breast cancer risk in obese postmenopausal women.
European journal of clinical nutrition.
2017 06; 71(6):762-765. doi:
10.1038/ejcn.2016.273
. [PMID: 28145413] - Erica Oki, Marina N Norde, Antônio A F Carioca, José M P Souza, Inar A Castro, Dirce M L Marchioni, Regina M Fisberg, Marcelo M Rogero. Polymorphisms of the TNF-α gene interact with plasma fatty acids on inflammatory biomarker profile: a population-based, cross-sectional study in São Paulo, Brazil.
The British journal of nutrition.
2017 Jun; 117(12):1663-1673. doi:
10.1017/s0007114517001416
. [PMID: 28633686] - Yuki Kimura, Daisuke Mori, Toshihiro Imada, Yusuke Izuta, Michiko Shibuya, Hisayo Sakaguchi, Erina Oonishi, Naoko Okada, Kenji Matsumoto, Kazuo Tsubota. Restoration of Tear Secretion in a Murine Dry Eye Model by Oral Administration of Palmitoleic Acid.
Nutrients.
2017 Apr; 9(4):. doi:
10.3390/nu9040364
. [PMID: 28379171] - Chia-Lung Wu, Kelly A Kimmerling, Dianne Little, Farshid Guilak. Serum and synovial fluid lipidomic profiles predict obesity-associated osteoarthritis, synovitis, and wound repair.
Scientific reports.
2017 03; 7(?):44315. doi:
10.1038/srep44315
. [PMID: 28317846] - Andrew H Huber, Alan M Kleinfeld. Unbound free fatty acid profiles in human plasma and the unexpected absence of unbound palmitoleate.
Journal of lipid research.
2017 03; 58(3):578-585. doi:
10.1194/jlr.m074260
. [PMID: 28082409] - Igor G Morgunov, Svetlana V Kamzolova, Emilia G Dedyukhina, Tatiana I Chistyakova, Julia N Lunina, Alexey A Mironov, Nadezda N Stepanova, Olga N Shemshura, Mikhail B Vainshtein. Application of organic acids for plant protection against phytopathogens.
Applied microbiology and biotechnology.
2017 Feb; 101(3):921-932. doi:
10.1007/s00253-016-8067-6
. [PMID: 28040844] - Wei Huang, Matthew C Cane, Rajarshi Mukherjee, Peter Szatmary, Xiaoying Zhang, Victoria Elliott, Yulin Ouyang, Michael Chvanov, Diane Latawiec, Li Wen, David M Booth, Andrea C Haynes, Ole H Petersen, Alexei V Tepikin, David N Criddle, Robert Sutton. Caffeine protects against experimental acute pancreatitis by inhibition of inositol 1,4,5-trisphosphate receptor-mediated Ca2+ release.
Gut.
2017 02; 66(2):301-313. doi:
10.1136/gutjnl-2015-309363
. [PMID: 26642860] - Everson Araujo Nunes, Alex Rafacho. Implications of Palmitoleic Acid (Palmitoleate) On Glucose Homeostasis, Insulin Resistance and Diabetes.
Current drug targets.
2017; 18(6):619-628. doi:
10.2174/1389450117666151209120345
. [PMID: 26648072] - Qing Liu, Man Wu, Baolong Zhang, Pushkar Shrestha, James Petrie, Allan G Green, Surinder P Singh. Genetic enhancement of palmitic acid accumulation in cotton seed oil through RNAi down-regulation of ghKAS2 encoding β-ketoacyl-ACP synthase II (KASII).
Plant biotechnology journal.
2017 01; 15(1):132-143. doi:
10.1111/pbi.12598
. [PMID: 27381745] - Michael Glenn O'Connor, Adam Seegmiller. The effects of ivacaftor on CF fatty acid metabolism: An analysis from the GOAL study.
Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.
2017 01; 16(1):132-138. doi:
10.1016/j.jcf.2016.07.006
. [PMID: 27473897] - Geng Yin, Ying Wang, Xiao-Min Cen, Yuan Yang, Min Yang, Qi-Bing Xie. Identification of Palmitoleic Acid Controlled by mTOR Signaling as a Biomarker of Polymyositis.
Journal of immunology research.
2017; 2017(?):3262384. doi:
10.1155/2017/3262384
. [PMID: 28194428] - Ting Li, Tristan M Cofer, Marie J Engelberth, Jurgen Engelberth. Defense priming by non-jasmonate producing fatty acids in maize (Zea mays).
Plant signaling & behavior.
2016 11; 11(11):e1243635. doi:
10.1080/15592324.2016.1243635
. [PMID: 27763804] - Paul F Langton, Satoshi Kakugawa, Jean-Paul Vincent. Making, Exporting, and Modulating Wnts.
Trends in cell biology.
2016 10; 26(10):756-765. doi:
10.1016/j.tcb.2016.05.011
. [PMID: 27325141]