Coniferaldehyde (BioDeep_00000000189)
Secondary id: BioDeep_00000269040, BioDeep_00000861087
natural product human metabolite PANOMIX_OTCML-2023 Endogenous
代谢物信息卡片
化学式: C10H10O3 (178.063)
中文名称: 4-羟基-3-甲氧基肉桂醛, 松柏醛
谱图信息:
最多检出来源 Viridiplantae(plant) 13.16%
Last reviewed on 2024-09-04.
Cite this Page
Coniferaldehyde. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/coniferaldehyde (retrieved
2025-01-07) (BioDeep RN: BioDeep_00000000189). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: c1(c(ccc(c1)/C=C/C=O)O)OC
InChI: InChI=1/C10H10O3/c1-13-10-7-8(3-2-6-11)4-5-9(10)12/h2-7,12H,1H3/b3-2+
描述信息
Coniferaldehyde (CAS: 458-36-6), also known as 4-hydroxy-3-methoxycinnamaldehyde or ferulaldehyde, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Coniferaldehyde is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, coniferaldehyde is found, on average, in the highest concentration within sherries. Coniferaldehyde has also been detected, but not quantified in, several different foods, such as highbush blueberries, lima beans, Chinese cabbages, loquats, and greenthread tea. This could make coniferaldehyde a potential biomarker for the consumption of these foods. BioTransformer predicts that coniferaldehyde is a product of caffeic aldehyde metabolism via a catechol-O-methylation-pattern2 reaction catalyzed by the enzyme catechol O-methyltransferase (PMID: 30612223).
Coniferyl aldehyde, also known as 4-hydroxy-3-methoxycinnamaldehyde or 4-hm-ca, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Coniferyl aldehyde is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Coniferyl aldehyde can be found in a number of food items such as pear, common walnut, kelp, and citrus, which makes coniferyl aldehyde a potential biomarker for the consumption of these food products. Coniferyl aldehyde is a low molecular weight phenolic compound susceptible to be extracted from cork stoppers into wine .
Coniferyl aldehyde is a member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and a methoxy group at position 3. It has a role as an antifungal agent and a plant metabolite. It is a member of cinnamaldehydes, a phenylpropanoid and a member of guaiacols. It is functionally related to an (E)-cinnamaldehyde.
4-Hydroxy-3-methoxycinnamaldehyde is a natural product found in Pandanus utilis, Microtropis japonica, and other organisms with data available.
A member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and a methoxy group at position 3.
Acquisition and generation of the data is financially supported in part by CREST/JST.
Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1].
Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells
Coniferaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=458-36-6 (retrieved 2024-09-04) (CAS RN: 458-36-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
同义名列表
49 个代谢物同义名
E-Coniferyl aldehyde; trans-Coniferaldehyde; trans-Coniferyl aldehyde; InChI=1/C10H10O3/c1-13-10-7-8(3-2-6-11)4-5-9(10)12/h2-7,12H,1H3/b3-2; 2-Propenal, 3-(4-hydroxy-3-methoxyphenyl)-, (2E)-; 2-Propenal, 3-(4-hydroxy-3-methoxyphenyl), (E)-; (E)-3-(4-Hydroxy-3-methoxyphenyl)acrylaldehyde; (2E)-3-(4-Hydroxy-3-methoxyphenyl)-2-propenal; (2e)-3-(4-Hydroxy-3-Methoxyphenyl)prop-2-Enal; (E)-3-(4-hydroxy-3-methoxy-phenyl)prop-2-enal; (e)-3-(4-Hydroxy-m-methoxyphenyl)prop-2-enal; (E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enal; 3-(4-Hydroxy-3-methoxyphenyl)acrylaldehyde; 3-(4-Hydroxy-3-methoxyphenyl)prop-2-enal; 4-Hydroxy-3-methoxy-trans-cinnamaldehyde; 3-(4-Hydroxy-3-methoxyphenyl)-2-propenal; 4-Hydroxy-3-methoxycinnamaldehyde, 98\\%; (2E)-4-Hydroxy-3-methoxycinnamaldehyde; 3-(4-Hydroxy-3-methoxyphenyl)acrolein; 3-(4-Hydroxy-3-methoxyphenyl)propenal; 5DF06912-B0DD-4C76-B493-29D29F746430; 4-hydroxy-3-methoxycinnamic aldehyde; 2-Methoxy-4-(3-oxo-1-propenyl)phenol; Cinnamaldehyde, 4-hydroxy-3-methoxy-; 3-Methoxy-4-hydroxycinnamaldehyde; 4-Hydroxy-3-methoxycinnamaldehyde; 4-Hydroxy3-Methoxy Cinnamaldehyde; 4-Hydroxy-3-methoxyzimtaldehyde; 3-BIPHENYL-3-AMINO-ACETICACID; coniferaldehyde, (E)-isomer; trans-coniferyl aldehyde; Trans-Coniferylaldehyde; (e)-Coniferyl aldehyde; trans-Coniferaldehyde; e-Coniferyl aldehyde; Coniferylic aldehyde; trans-Ferulaldehyde; (E)-coniferaldehyde; coniferyl aldehyde; p-Coniferaldehyde; (E)-Ferulaldehyde; coniferylaldehyde; Ferulic Aldehyde; Ferulyl aldehyde; UNII-06TPT01AD5; coniferaldehyde; Ferulaldehyde; 06TPT01AD5; 4-HM-CA; Coniferyl aldehyde; Coniferyl aldehyde
数据库引用编号
32 个数据库交叉引用编号
- ChEBI: CHEBI:16547
- KEGG: C02666
- PubChem: 5280536
- PubChem: 9984
- HMDB: HMDB0141782
- Metlin: METLIN63108
- ChEMBL: CHEMBL242529
- Wikipedia: Coniferyl_aldehyde
- MeSH: coniferaldehyde
- ChemIDplus: 0020649427
- MetaCyc: CONIFERYL-ALDEHYDE
- KNApSAcK: C00002728
- foodb: FDB001513
- chemspider: 4444167
- chemspider: 9590
- CAS: 458-36-6
- MoNA: PS000602
- MoNA: PS000601
- MoNA: PS000609
- MoNA: PR100480
- MoNA: PS000608
- MoNA: PR100003
- MoNA: PS000607
- medchemexpress: HY-N2535
- PMhub: MS000008107
- MetaboLights: MTBLC16547
- PDB-CCD: CIY
- 3DMET: B00482
- NIKKAJI: J196.170E
- LOTUS: LTS0009773
- PubChem: 5637
- KNApSAcK: 16547
分类词条
相关代谢途径
Reactome(0)
代谢反应
433 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(7)
- phenylpropanoid biosynthesis:
5-hydroxy-coniferaldehyde + SAM ⟶ H+ + SAH + sinapaldehyde
- phenylpropanoid biosynthesis:
5-hydroxy-coniferaldehyde + SAM ⟶ H+ + SAH + sinapaldehyde
- ferulate and sinapate biosynthesis:
H2O + NADP+ + sinapaldehyde ⟶ H+ + NADPH + sinapate
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapaldehyde ⟶ H+ + UDP + sinapaldehyde glucoside
- dihydroconiferyl alcohol biosynthesis:
H+ + NADPH + coniferaldehyde ⟶ NADP+ + dihydroconiferyl aldehyde
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapaldehyde ⟶ H+ + UDP + sinapaldehyde glucoside
- ferulate and sinapate biosynthesis:
5-hydroxy-coniferaldehyde + SAM ⟶ H+ + SAH + sinapaldehyde
WikiPathways(0)
Plant Reactome(231)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
L-Phe ⟶ ammonia + trans-cinnamate
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroylshikimate + H+ + Oxygen + TPNH ⟶ H2O + TPN + caffeoylshikimate
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Secondary metabolism:
Fru(6)P + L-Gln ⟶ GlcN6P + L-Glu
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Lignin biosynthesis:
4-coumarate + ATP + CoA-SH ⟶ 4-coumaroyl-CoA + AMP + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Lignin biosynthesis:
4-coumaroyl-CoA + H+ + TPNH + coumaroyl-CoA ⟶ CoA-SH + TPN + coumaraldehyde
INOH(0)
PlantCyc(195)
- phenylpropanoid biosynthesis:
4-coumaryl alcohol + NADP+ ⟶ 4-coumaraldehyde + H+ + NADPH
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + NADPH ⟶ 4-coumaraldehyde + NADP+ + coenzyme A
- phenylpropanoid biosynthesis:
trans-feruloyl-CoA + H+ + NADPH ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
NADP+ + sinapyl alcohol ⟶ H+ + NADPH + sinapaldehyde
- phenylpropanoid biosynthesis:
4-coumaryl alcohol + NADP+ ⟶ 4-coumaraldehyde + H+ + NADPH
- phenylpropanoid biosynthesis:
5-hydroxy-coniferaldehyde + SAM ⟶ H+ + SAH + sinapaldehyde
- phenylpropanoid biosynthesis:
trans-feruloyl-CoA + H+ + NADPH ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
trans-feruloyl-CoA + H+ + NADPH ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
H+ + NADPH + feruloyl-CoA ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
NADP+ + coniferyl alcohol ⟶ H+ + NADPH + coniferaldehyde
- phenylpropanoid biosynthesis:
4-coumaryl alcohol + NADP+ ⟶ 4-coumaraldehyde + H+ + NADPH
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + NADPH ⟶ 4-coumaraldehyde + NADP+ + coenzyme A
- phenylpropanoid biosynthesis:
NADP+ + sinapyl alcohol ⟶ H+ + NADPH + sinapaldehyde
- phenylpropanoid biosynthesis:
NADP+ + coniferyl alcohol ⟶ H+ + NADPH + coniferaldehyde
- phenylpropanoid biosynthesis:
NADP+ + sinapyl alcohol ⟶ H+ + NADPH + sinapaldehyde
- phenylpropanoid biosynthesis:
NADP+ + coniferyl alcohol ⟶ H+ + NADPH + coniferaldehyde
- capsiconiate biosynthesis:
H+ + NADPH + feruloyl-CoA ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
NADP+ + coniferyl alcohol ⟶ H+ + NADPH + coniferaldehyde
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + NADPH ⟶ 4-coumaraldehyde + NADP+ + coenzyme A
- phenylpropanoid biosynthesis:
4-coumaryl alcohol + NADP+ ⟶ 4-coumaraldehyde + H+ + NADPH
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + NADPH ⟶ 4-coumaraldehyde + NADP+ + coenzyme A
- phenylpropanoid biosynthesis:
4-coumaryl alcohol + NADP+ ⟶ 4-coumaraldehyde + H+ + NADPH
- phenylpropanoid biosynthesis:
H+ + NADPH + feruloyl-CoA ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
NADP+ + coniferyl alcohol ⟶ H+ + NADPH + coniferaldehyde
- phenylpropanoid biosynthesis:
NADP+ + coniferyl alcohol ⟶ H+ + NADPH + coniferaldehyde
- phenylpropanoid biosynthesis:
4-coumaryl alcohol + NADP+ ⟶ 4-coumaraldehyde + H+ + NADPH
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + NADPH ⟶ 4-coumaraldehyde + NADP+ + coenzyme A
- phenylpropanoid biosynthesis:
H+ + NADPH + feruloyl-CoA ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
4-coumaryl alcohol + NADP+ ⟶ 4-coumaraldehyde + H+ + NADPH
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + NADPH ⟶ 4-coumaraldehyde + NADP+ + coenzyme A
- phenylpropanoid biosynthesis:
4-coumaryl alcohol + NADP+ ⟶ 4-coumaraldehyde + H+ + NADPH
- phenylpropanoid biosynthesis:
trans-feruloyl-CoA + H+ + NADPH ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
trans-feruloyl-CoA + H+ + NADPH ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
trans-feruloyl-CoA + H+ + NADPH ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
trans-feruloyl-CoA + H+ + NADPH ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + NADPH ⟶ 4-coumaraldehyde + NADP+ + coenzyme A
- phenylpropanoid biosynthesis:
4-coumaryl alcohol + NADP+ ⟶ 4-coumaraldehyde + H+ + NADPH
- phenylpropanoid biosynthesis:
NADP+ + sinapyl alcohol ⟶ H+ + NADPH + sinapaldehyde
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + NADPH ⟶ 4-coumaraldehyde + NADP+ + coenzyme A
- phenylpropanoid biosynthesis:
trans-feruloyl-CoA + H+ + NADPH ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + NADPH ⟶ 4-coumaraldehyde + NADP+ + coenzyme A
- phenylpropanoid biosynthesis:
H+ + NADPH + feruloyl-CoA ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
trans-feruloyl-CoA + H+ + NADPH ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
NADP+ + coniferyl alcohol ⟶ H+ + NADPH + coniferaldehyde
- phenylpropanoid biosynthesis:
trans-feruloyl-CoA + H+ + NADPH ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
H+ + NADPH + feruloyl-CoA ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + H+ + NADPH ⟶ 4-coumaraldehyde + NADP+ + coenzyme A
- phenylpropanoid biosynthesis:
trans-feruloyl-CoA + H+ + NADPH ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
4-coumaryl alcohol + NADP+ ⟶ 4-coumaraldehyde + H+ + NADPH
- phenylpropanoid biosynthesis:
trans-feruloyl-CoA + H+ + NADPH ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
H+ + NADPH + feruloyl-CoA ⟶ NADP+ + coenzyme A + coniferaldehyde
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
5-hydroxy-coniferaldehyde + SAM ⟶ H+ + SAH + sinapaldehyde
- capsiconiate biosynthesis:
8-methyl-6-nonenoate + H+ + coniferyl alcohol ⟶ H2O + capsiconiate
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
NADP+ + sinapyl alcohol ⟶ H+ + NADPH + sinapaldehyde
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
(E)-4-coumaroyl-CoA + L-quinate ⟶ trans-5-O-(4-coumaroyl)-D-quinate + coenzyme A
- phenylpropanoid biosynthesis:
trans-5-O-caffeoyl-D-quinate + coenzyme A ⟶ trans-caffeoyl-CoA + L-quinate
- phenylpropanoid biosynthesis:
H+ + NADPH + feruloyl-CoA ⟶ NADP+ + coenzyme A + coniferaldehyde
- ferulate and sinapate biosynthesis:
H+ + NADPH + O2 + coniferaldehyde ⟶ 5-hydroxy-coniferaldehyde + H2O + NADP+
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- ferulate and sinapate biosynthesis:
H2O + NADP+ + sinapaldehyde ⟶ H+ + NADPH + sinapate
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- ferulate and sinapate biosynthesis:
H2O + NADP+ + sinapaldehyde ⟶ H+ + NADPH + sinapate
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapaldehyde ⟶ H+ + UDP + sinapaldehyde glucoside
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- ferulate and sinapate biosynthesis:
H+ + NADPH + O2 + coniferaldehyde ⟶ 5-hydroxy-coniferaldehyde + H2O + NADP+
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- ferulate and sinapate biosynthesis:
H2O + NADP+ + sinapaldehyde ⟶ H+ + NADPH + sinapate
- ferulate and sinapate biosynthesis:
H+ + NADPH + O2 + coniferaldehyde ⟶ 5-hydroxy-coniferaldehyde + H2O + NADP+
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- ferulate and sinapate biosynthesis:
H2O + NADP+ + sinapaldehyde ⟶ H+ + NADPH + sinapate
- ferulate and sinapate biosynthesis:
H2O + NADP+ + sinapaldehyde ⟶ H+ + NADPH + sinapate
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- ferulate and sinapate biosynthesis:
H+ + NADPH + O2 + coniferaldehyde ⟶ 5-hydroxy-coniferaldehyde + H2O + NADP+
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- ferulate and sinapate biosynthesis:
H2O + NADP+ + sinapaldehyde ⟶ H+ + NADPH + sinapate
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- ferulate and sinapate biosynthesis:
H+ + NADPH + O2 + coniferaldehyde ⟶ 5-hydroxy-coniferaldehyde + H2O + NADP+
- ferulate and sinapate biosynthesis:
H+ + NADPH + O2 + coniferaldehyde ⟶ 5-hydroxy-coniferaldehyde + H2O + NADP+
- ferulate and sinapate biosynthesis:
H2O + NADP+ + sinapaldehyde ⟶ H+ + NADPH + sinapate
- ferulate and sinapate biosynthesis:
H+ + NADPH + O2 + coniferaldehyde ⟶ 5-hydroxy-coniferaldehyde + H2O + NADP+
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- ferulate and sinapate biosynthesis:
H2O + NADP+ + sinapaldehyde ⟶ H+ + NADPH + sinapate
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- ferulate and sinapate biosynthesis:
H+ + NADPH + O2 + coniferaldehyde ⟶ 5-hydroxy-coniferaldehyde + H2O + NADP+
- ferulate and sinapate biosynthesis:
H2O + NADP+ + sinapaldehyde ⟶ H+ + NADPH + sinapate
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- ferulate and sinapate biosynthesis:
H2O + NADP+ + sinapaldehyde ⟶ H+ + NADPH + sinapate
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- ferulate and sinapate biosynthesis:
H+ + NADPH + O2 + coniferaldehyde ⟶ 5-hydroxy-coniferaldehyde + H2O + NADP+
- ferulate and sinapate biosynthesis:
H2O + NADP+ + sinapaldehyde ⟶ H+ + NADPH + sinapate
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- ferulate and sinapate biosynthesis:
H2O + NADP+ + sinapaldehyde ⟶ H+ + NADPH + sinapate
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- ferulate and sinapate biosynthesis:
H+ + NADPH + O2 + coniferaldehyde ⟶ 5-hydroxy-coniferaldehyde + H2O + NADP+
- ferulate and sinapate biosynthesis:
H+ + NADPH + O2 + coniferaldehyde ⟶ 5-hydroxy-coniferaldehyde + H2O + NADP+
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- ferulate and sinapate biosynthesis:
H+ + NADPH + O2 + coniferaldehyde ⟶ 5-hydroxy-coniferaldehyde + H2O + NADP+
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- ferulate and sinapate biosynthesis:
H2O + NADP+ + sinapaldehyde ⟶ H+ + NADPH + sinapate
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- ferulate and sinapate biosynthesis:
H2O + NADP+ + sinapaldehyde ⟶ H+ + NADPH + sinapate
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- ferulate and sinapate biosynthesis:
H+ + NADPH + O2 + coniferaldehyde ⟶ 5-hydroxy-coniferaldehyde + H2O + NADP+
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapaldehyde ⟶ H+ + UDP + sinapaldehyde glucoside
- dihydroconiferyl alcohol biosynthesis:
H+ + NADPH + coniferaldehyde ⟶ NADP+ + dihydroconiferyl aldehyde
- ferulate and sinapate biosynthesis:
5-hydroxy-coniferaldehyde + SAM ⟶ H+ + SAH + sinapaldehyde
- ferulate and sinapate biosynthesis:
H+ + NADPH + O2 + coniferaldehyde ⟶ 5-hydroxy-coniferaldehyde + H2O + NADP+
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- ferulate and sinapate biosynthesis:
H+ + NADPH + O2 + coniferaldehyde ⟶ 5-hydroxy-coniferaldehyde + H2O + NADP+
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- ferulate and sinapate biosynthesis:
H+ + NADPH + O2 + coniferaldehyde ⟶ 5-hydroxy-coniferaldehyde + H2O + NADP+
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- ferulate and sinapate biosynthesis:
H2O + NADP+ + sinapaldehyde ⟶ H+ + NADPH + sinapate
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- ferulate and sinapate biosynthesis:
H2O + NADP+ + sinapaldehyde ⟶ H+ + NADPH + sinapate
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- ferulate and sinapate biosynthesis:
H2O + NADP+ + sinapaldehyde ⟶ H+ + NADPH + sinapate
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- ferulate and sinapate biosynthesis:
H2O + NADP+ + sinapaldehyde ⟶ H+ + NADPH + sinapate
- ferulate and sinapate biosynthesis:
H+ + NADPH + O2 + coniferaldehyde ⟶ 5-hydroxy-coniferaldehyde + H2O + NADP+
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- ferulate and sinapate biosynthesis:
H2O + NADP+ + sinapaldehyde ⟶ H+ + NADPH + sinapate
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapaldehyde ⟶ H+ + UDP + sinapaldehyde glucoside
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
- monolignol glucosides biosynthesis:
UDP-α-D-glucose + sinapyl alcohol ⟶ H+ + UDP + syringin
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
376 个相关的物种来源信息
- 3319 - Abies: LTS0009773
- 78264 - Abies sachalinensis: 10.1016/S0031-9422(00)97525-3
- 78264 - Abies sachalinensis: LTS0009773
- 4185 - Acanthaceae: LTS0009773
- 290219 - Aeginetia: LTS0009773
- 290220 - Aeginetia indica: 10.1002/JCCS.200400160
- 290220 - Aeginetia indica: LTS0009773
- 45165 - Aeschynanthus: LTS0009773
- 175969 - Aeschynanthus bracteatus: 10.1016/J.PHYTOCHEM.2008.05.012
- 175969 - Aeschynanthus bracteatus: LTS0009773
- 175969 - Aeschynanthus bracteatus: NA
- 199616 - Aframomum daniellii: 10.1016/S1875-5364(13)60026-6
- 23809 - Ailanthus: LTS0009773
- 459109 - Ailanthus integrifolia: 10.1248/CPB.42.1669
- 4211 - Ambrosia: LTS0009773
- 2067514 - Ambrosia cumanensis: 10.1016/S0031-9422(00)86988-5
- 2067514 - Ambrosia cumanensis: LTS0009773
- 29715 - Ambrosia psilostachya: 10.1016/S0031-9422(00)86988-5
- 29715 - Ambrosia psilostachya: LTS0009773
- 663964 - Anastatica: LTS0009773
- 663965 - Anastatica hierochuntica:
- 663965 - Anastatica hierochuntica: 10.1016/J.BMC.2010.01.046
- 663965 - Anastatica hierochuntica: 10.1016/S0960-894X(03)00088-X
- 663965 - Anastatica hierochuntica: LTS0009773
- 22140 - Annonaceae: LTS0009773
- 4056 - Apocynaceae: LTS0009773
- 13340 - Aralia: LTS0009773
- 137934 - Aralia bipinnata:
- 137934 - Aralia bipinnata: 10.1016/0031-9422(94)00943-N
- 137934 - Aralia bipinnata: 10.1016/0031-9422(95)00072-F
- 137934 - Aralia bipinnata: LTS0009773
- 4050 - Araliaceae: LTS0009773
- 25666 - Araucaria: LTS0009773
- 56992 - Araucaria angustifolia: 10.1016/S0031-9422(00)00239-9
- 56992 - Araucaria angustifolia: LTS0009773
- 25664 - Araucariaceae: LTS0009773
- 4219 - Artemisia: LTS0009773
- 35608 - Artemisia annua: 10.1016/S0031-9422(98)00607-4
- 35608 - Artemisia annua: LTS0009773
- 1227633 - Artemisia minor: 10.1007/S10600-015-1519-X
- 1227633 - Artemisia minor: 10.1021/NP800643N
- 1227633 - Artemisia minor: LTS0009773
- 6656 - Arthropoda: LTS0009773
- 4890 - Ascomycota: LTS0009773
- 1131492 - Aspergillaceae: LTS0009773
- 4210 - Asteraceae: LTS0009773
- 56520 - Asteriscus: LTS0009773
- 73976 - Asteriscus graveolens: 10.1016/S0040-4020(01)96422-1
- 73976 - Asteriscus graveolens: LTS0009773
- 25674 - Balanophora: LTS0009773
- 2906540 - Balanophora abbreviata: LTS0009773
- 1128102 - Balanophora japonica:
- 1128102 - Balanophora japonica: 10.1248/CPB.30.1525
- 1128102 - Balanophora japonica: LTS0009773
- 25673 - Balanophoraceae: LTS0009773
- 318046 - Bambusa tuldoides Munro: -
- 41773 - Berberidaceae: LTS0009773
- 22774 - Berberis: LTS0009773
- 211974 - Berberis koreana: 10.1016/J.BMCL.2011.02.104
- 211974 - Berberis koreana: LTS0009773
- 24079 - Bignoniaceae: LTS0009773
- 72903 - Boltonia: LTS0009773
- 72904 - Boltonia asteroides: 10.1016/S0031-9422(00)89801-5
- 72904 - Boltonia asteroides: LTS0009773
- 21571 - Boraginaceae: LTS0009773
- 3700 - Brassicaceae: LTS0009773
- 194252 - Brosimum: LTS0009773
- 1835378 - Brosimum acutifolium: 10.1016/S0031-9422(99)00608-1
- 1835378 - Brosimum acutifolium: LTS0009773
- 26473 - Buddleja: LTS0009773
- 28540 - Buddleja davidii:
- 28540 - Buddleja davidii: 10.1016/0378-8741(84)90075-8
- 28540 - Buddleja davidii: 10.1016/S0031-9422(00)84901-8
- 28540 - Buddleja davidii: LTS0009773
- 4014 - Burseraceae: LTS0009773
- 89137 - Byssochlamys fulva: 10.1271/BBB.63.1141
- 4441 - Camellia: LTS0009773
- 4442 - Camellia sinensis: 10.1248/CPB.58.939
- 4442 - Camellia sinensis: LTS0009773
- 4381 - Campanulaceae: LTS0009773
- 43690 - Canarium: LTS0009773
- 533031 - Canarium schweinfurthii: 10.4314/BCSE.V14I2.71972
- 533031 - Canarium schweinfurthii: LTS0009773
- 92905 - Carduus: LTS0009773
- 196703 - Carduus tenuiflorus: 10.1016/S0031-9422(00)97569-1
- 196703 - Carduus tenuiflorus: LTS0009773
- 84860 - Carissa: LTS0009773
- 992661 - Carissa edulis: 10.1016/S0031-9422(00)86976-9
- 992661 - Carissa edulis: LTS0009773
- 429256 - Carissa spinarum: 10.1016/S0031-9422(00)86976-9
- 429256 - Carissa spinarum: LTS0009773
- 13402 - Carya: LTS0009773
- 139927 - Carya cathayensis: 10.1016/J.BMCL.2012.01.062
- 139927 - Carya cathayensis: LTS0009773
- 125672 - Cassinia: LTS0009773
- 1284885 - Cassinia uncata: 10.1016/0031-9422(88)83027-9
- 1284885 - Cassinia uncata: LTS0009773
- 4305 - Celastraceae: LTS0009773
- 85180 - Celastrus: LTS0009773
- 1172579 - Celastrus kusanoi: 10.1021/JF903833A
- 1172579 - Celastrus kusanoi: LTS0009773
- 30102 - Cicadellidae: LTS0009773
- 13428 - Cinnamomum: LTS0009773
- 119260 - Cinnamomum aromaticum:
- 119260 - Cinnamomum aromaticum: 10.1021/NP900031Q
- 119260 - Cinnamomum aromaticum: LTS0009773
- 1155220 - Cinnamomum iners:
- 1155220 - Cinnamomum iners: 10.1021/NP900031Q
- 128608 - Cinnamomum verum:
- 128608 - Cinnamomum verum: 10.1021/NP900031Q
- 306910 - Cleistopholis: LTS0009773
- 306911 - Cleistopholis glauca: 10.1021/NP9901478
- 306911 - Cleistopholis glauca: LTS0009773
- 231645 - Clematis delavayi: 10.3390/MOLECULES14114433
- 16399 - Codonopsis: LTS0009773
- 1392592 - Codonopsis cordifolioidea:
- 1392592 - Codonopsis cordifolioidea: 10.1002/HLCA.200890018
- 1392592 - Codonopsis cordifolioidea: 10.5012/BKCS.2012.33.1.278
- 1392592 - Codonopsis cordifolioidea: LTS0009773
- 79331 - Cordia: LTS0009773
- 992840 - Cordia dichotoma: 10.1002/CBDV.201000058
- 1561080 - Cordiaceae: LTS0009773
- 13448 - Coreopsis: LTS0009773
- 13449 - Coreopsis grandiflora: 10.1016/S0031-9422(00)97716-1
- 13449 - Coreopsis grandiflora: LTS0009773
- 3367 - Cupressaceae: LTS0009773
- 66679 - Daphne: LTS0009773
- 2753873 - Daphne feddei: 10.1021/NP8004166
- 2753873 - Daphne feddei: LTS0009773
- 257357 - Dendrobium longicornu: 10.1007/S10600-009-9293-2
- 13492 - Diospyros: LTS0009773
- 413758 - Diospyros maritima: 10.3390/MOLECULES14125281
- 413758 - Diospyros maritima: LTS0009773
- 56524 - Dittrichia: LTS0009773
- 56525 - Dittrichia viscosa: 10.1021/NP50086A007
- 56525 - Dittrichia viscosa: LTS0009773
- 344434 - Drypetes littoralis: 10.1021/NP0005964
- 313930 - Duhaldea: LTS0009773
- 313931 - Duhaldea cappa: 10.1007/S10600-010-9595-4
- 313931 - Duhaldea cappa: LTS0009773
- 19955 - Ebenaceae: LTS0009773
- 1561073 - Ehretiaceae: LTS0009773
- 3932 - Eucalyptus: LTS0009773
- 99019 - Eucalyptus saligna: 10.1016/S0305-1978(00)00108-3
- 99019 - Eucalyptus saligna: LTS0009773
- 2759 - Eukaryota: LTS0009773
- 147545 - Eurotiomycetes: LTS0009773
- 3803 - Fabaceae: LTS0009773
- 3503 - Fagaceae: LTS0009773
- 38871 - Fraxinus: LTS0009773
- 56033 - Fraxinus chinensis: 10.1055/S-2006-960840
- 56033 - Fraxinus chinensis: LTS0009773
- 126596 - Fraxinus chinensis subsp. rhynchophylla: 10.1055/S-2006-960840
- 126596 - Fraxinus chinensis subsp. rhynchophylla: LTS0009773
- 4751 - Fungi: LTS0009773
- 26122 - Gesneriaceae: LTS0009773
- 3310 - Ginkgo: LTS0009773
- 3311 - Ginkgo biloba: 10.3389/FPLS.2019.00983
- 3311 - Ginkgo biloba: LTS0009773
- 3309 - Ginkgoaceae: LTS0009773
- 29811 - Ginkgoopsida: LTS0009773
- 167660 - Gliricidia: LTS0009773
- 167663 - Gliricidia sepium: 10.1016/S0031-9422(97)00517-7
- 167663 - Gliricidia sepium: LTS0009773
- 43716 - Harrisonia: LTS0009773
- 43717 - Harrisonia perforata: 10.1016/0031-9422(95)00472-J
- 43717 - Harrisonia perforata: LTS0009773
- 4645 - Hedychium: LTS0009773
- 71610 - Hedychium coronarium: 10.1016/J.BMCL.2010.09.024
- 71610 - Hedychium coronarium: LTS0009773
- 229543 - Hibiscus cannabinus: 10.1016/S0031-9422(00)00473-8
- 9606 - Homo sapiens: -
- 544665 - Hydnocarpus annamensis: 10.1055/S-2006-946678
- 50557 - Insecta: LTS0009773
- 16714 - Juglandaceae: LTS0009773
- 13100 - Juniperus: LTS0009773
- 746017 - Juniperus brevifolia: 10.1055/S-2008-1074529
- 746017 - Juniperus brevifolia: LTS0009773
- 58039 - Juniperus communis: 10.1248/CPB.58.742
- 58039 - Juniperus communis: LTS0009773
- 884034 - Juniperus communis var. depressa: 10.1248/CPB.58.742
- 884034 - Juniperus communis var. depressa: LTS0009773
- 4136 - Lamiaceae: LTS0009773
- 3433 - Lauraceae: LTS0009773
- 156240 - Leptadenia: LTS0009773
- 236003 - Leptadenia arborea: 10.1016/S0367-326X(02)00314-3
- 236003 - Leptadenia arborea: LTS0009773
- 4447 - Liliopsida: LTS0009773
- 3413 - Liriodendron: LTS0009773
- 3415 - Liriodendron tulipifera: 10.1007/S10600-012-0141-4
- 3415 - Liriodendron tulipifera: LTS0009773
- 3402 - Magnolia: LTS0009773
- 1172173 - Magnolia crassipes: 10.4268/CJCMM20141019
- 1172173 - Magnolia crassipes: LTS0009773
- 85864 - Magnolia officinalis: 10.1021/NP800494E
- 85864 - Magnolia officinalis: LTS0009773
- 3401 - Magnoliaceae: LTS0009773
- 3398 - Magnoliopsida: LTS0009773
- 3629 - Malvaceae: LTS0009773
- 3877 - Medicago: LTS0009773
- 3879 - Medicago sativa: 10.1016/S0031-9422(02)00375-8
- 3879 - Medicago sativa: LTS0009773
- 43708 - Melia: LTS0009773
- 155640 - Melia azedarach:
- 155640 - Melia azedarach: 10.1021/JF026083F
- 155640 - Melia azedarach: 10.1021/JF0482461
- 155640 - Melia azedarach: LTS0009773
- 43707 - Meliaceae: LTS0009773
- 33208 - Metazoa: LTS0009773
- 1089415 - Microtropis: LTS0009773
- 1089418 - Microtropis japonica: 10.1021/NP800097T
- 1089418 - Microtropis japonica: LTS0009773
- 102786 - Mikania: LTS0009773
- 3487 - Moraceae: LTS0009773
- 43521 - Morinda: LTS0009773
- 43522 - Morinda citrifolia:
- 43522 - Morinda citrifolia: 10.1021/NP050383K
- 43522 - Morinda citrifolia: 10.1021/NP070501Z
- 43522 - Morinda citrifolia: LTS0009773
- 659048 - Morinda morindoides: 10.1021/NP050383K
- 3931 - Myrtaceae: LTS0009773
- 39173 - Ocimum: LTS0009773
- 204149 - Ocimum tenuiflorum: 10.1248/CPB.57.245
- 204149 - Ocimum tenuiflorum: LTS0009773
- 4144 - Oleaceae: LTS0009773
- 92914 - Onopordum: LTS0009773
- 91896 - Orobanchaceae: LTS0009773
- 33202 - Paecilomyces: LTS0009773
- 89137 - Paecilomyces fulvus: 10.1271/BBB.63.1141
- 89137 - Paecilomyces fulvus: LTS0009773
- 4724 - Pandanaceae: LTS0009773
- 4725 - Pandanus: LTS0009773
- 240453 - Pandanus odoratissimus: 10.1016/S0031-9422(98)00390-2
- 240453 - Pandanus odoratissimus: LTS0009773
- 1165086 - Pandanus odorifer: 10.1016/S0031-9422(98)00390-2
- 1165086 - Pandanus odorifer: LTS0009773
- 4726 - Pandanus tectorius: 10.1016/S0031-9422(98)00390-2
- 4726 - Pandanus tectorius: LTS0009773
- 101712 - Pandanus utilis: 10.1016/S0031-9422(98)00390-2
- 56018 - Petasites: LTS0009773
- 186966 - Petasites tricholobus: 10.1016/J.PHYTOCHEM.2005.03.032
- 186966 - Petasites tricholobus: LTS0009773
- 15747 - Phyllostachys: LTS0009773
- 38705 - Phyllostachys edulis: 10.1016/S0031-9422(03)00422-9
- 38705 - Phyllostachys edulis: LTS0009773
- 281083 - Phyllostachys nigra: 10.1248/CPB.32.578
- 281083 - Phyllostachys nigra: LTS0009773
- 281083 - Phyllostachys nigra ( Lodd. ) Munrovar. hr,lo,lis ( Mitf.) Stapf ex Rendle: -
- 210333 - Picrasma: LTS0009773
- 459138 - Picrasma crenata: 10.1515/ZNB-2001-0316
- 459138 - Picrasma crenata: LTS0009773
- 122541 - Picris: LTS0009773
- 1885115 - Picris conyzoides: 10.1002/MRC.2801
- 1885115 - Picris conyzoides: LTS0009773
- 260138 - Pimenta: LTS0009773
- 375272 - Pimenta dioica: 10.1016/S0031-9422(99)00406-9
- 375272 - Pimenta dioica: LTS0009773
- 3318 - Pinaceae: LTS0009773
- 58019 - Pinopsida: LTS0009773
- 3337 - Pinus: LTS0009773
- 3341 - Pinus wallichiana: 10.1002/JCCS.200900089
- 3341 - Pinus wallichiana: LTS0009773
- 33090 - Plants: -
- 91223 - Platycarya: LTS0009773
- 91224 - Platycarya strobilacea: 10.1016/J.PHYTOCHEM.2011.02.020
- 91224 - Platycarya strobilacea: LTS0009773
- 175518 - Pluchea indica: 10.3390/MOLECULES23092104
- 4479 - Poaceae: LTS0009773
- 3689 - Populus: LTS0009773
- 75702 - Populus euphratica: 10.1007/S10600-008-0003-2
- 75702 - Populus euphratica: LTS0009773
- 41393 - Premna: LTS0009773
- 2963287 - Premna tomentosa: LTS0009773
- 3511 - Quercus: LTS0009773
- 501392 - Quercus faginea: 10.1021/JF9502461
- 501392 - Quercus faginea: LTS0009773
- 38865 - Quercus petraea: 10.1021/JF9502461
- 38865 - Quercus petraea: LTS0009773
- 568692 - Quercus petraea subsp. petraea: 10.1016/S0021-9673(01)82097-5
- 568692 - Quercus petraea subsp. petraea: LTS0009773
- 453298 - Quercus pyrenaica: 10.1021/JF9502461
- 453298 - Quercus pyrenaica: LTS0009773
- 38942 - Quercus robur: 10.1021/JF9502461
- 38942 - Quercus robur: LTS0009773
- 58331 - Quercus suber:
- 58331 - Quercus suber: 10.1021/JF960486W
- 58331 - Quercus suber: 10.1021/JF970863K
- 58331 - Quercus suber: LTS0009773
- 24966 - Rubiaceae: LTS0009773
- 23513 - Rutaceae: LTS0009773
- 3688 - Salicaceae: LTS0009773
- 46944 - Sassafras: LTS0009773
- 46945 - Sassafras albidum: 10.1055/S-2006-959379
- 46945 - Sassafras albidum: LTS0009773
- 41629 - Saussurea: LTS0009773
- 2893703 - Saussurea macrota: 10.1002/CHIN.200516160
- 2893703 - Saussurea macrota: LTS0009773
- 4149 - Scrophulariaceae: LTS0009773
- 387609 - Semiarundinaria: LTS0009773
- 387610 - Semiarundinaria fastuosa: 10.1248/YAKUSHI1947.118.8_332
- 387610 - Semiarundinaria fastuosa: LTS0009773
- 53922 - Senna: 10.1055/S-2006-961380
- 53922 - Senna: LTS0009773
- 2862194 - Senra: LTS0009773
- 2862310 - Senra incana: 10.1055/S-2006-961380
- 2862310 - Senra incana: LTS0009773
- 23808 - Simaroubaceae: LTS0009773
- 60077 - Simira: LTS0009773
- 260324 - Stereospermum: LTS0009773
- 2708984 - Stereospermum acuminatissimum: 10.1080/10286020.2011.619182
- 2708984 - Stereospermum acuminatissimum: LTS0009773
- 1090621 - Stereospermum colais: 10.1021/NP058036Y
- 1090621 - Stereospermum colais: LTS0009773
- 1401051 - Stereospermum tetragonum: 10.1021/NP058036Y
- 35493 - Streptophyta: LTS0009773
- 24051 - Strobilanthes: LTS0009773
- 1603837 - Strobilanthes dimorphotricha: 10.1055/S-2005-873125
- 178174 - Syzygium: LTS0009773
- 219868 - Syzygium aromaticum: 10.1021/JF030247Q
- 219868 - Syzygium aromaticum: LTS0009773
- 63083 - Tamaricaceae: LTS0009773
- 63084 - Tamarix: LTS0009773
- 189799 - Tamarix nilotica: 10.1016/S0031-9422(00)82300-6
- 189799 - Tamarix nilotica: LTS0009773
- 2544982 - Tamarix senegalensis: 10.1016/S0031-9422(00)82300-6
- 49743 - Taraxacum: LTS0009773
- 1041103 - Taraxacum coreanum: 10.1248/CPB.53.853
- 170733 - Taraxacum formosanum: 10.1248/CPB.53.853
- 170733 - Taraxacum formosanum: LTS0009773
- 90037 - Taraxacum mongolicum: 10.1248/CPB.53.853
- 90037 - Taraxacum mongolicum: LTS0009773
- 50225 - Taraxacum officinale: 10.1248/CPB.53.853
- 170727 - Taraxacum platycarpum: 10.1002/PTR.5276
- 170727 - Taraxacum platycarpum: 10.1248/CPB.53.853
- 170727 - Taraxacum platycarpum: LTS0009773
- 524209 - Taraxacum sinicum: 10.1248/CPB.53.853
- 25623 - Taxaceae: LTS0009773
- 25628 - Taxus: LTS0009773
- 25629 - Taxus baccata: 10.1016/S0367-326X(00)00233-1
- 25629 - Taxus baccata: LTS0009773
- 99806 - Taxus cuspidata: 10.1016/S0367-326X(00)00233-1
- 99806 - Taxus cuspidata: LTS0009773
- 120273 - Taxus mairei: 10.1002/JCCS.199900109
- 120273 - Taxus mairei: LTS0009773
- 147273 - Taxus wallichiana: 10.1016/S0031-9422(03)00503-X
- 147273 - Taxus wallichiana: LTS0009773
- 147275 - Taxus wallichiana var. wallichiana:
- 147275 - Taxus wallichiana var. wallichiana: 10.1016/S0031-9422(03)00503-X
- 147275 - Taxus wallichiana var. wallichiana: 10.1248/BPB.29.2310
- 147275 - Taxus wallichiana var. wallichiana: LTS0009773
- 354519 - Tetradium: LTS0009773
- 354522 - Tetradium glabrifolium: 10.1016/0031-9422(95)00248-6
- 354522 - Tetradium glabrifolium: LTS0009773
- 27065 - Theaceae: LTS0009773
- 1131624 - Thermoascaceae: LTS0009773
- 39987 - Thymelaeaceae: LTS0009773
- 50188 - Torreya: LTS0009773
- 58047 - Torreya grandis: LTS0009773
- 58047 - Torreya grandis: NA
- 58023 - Tracheophyta: LTS0009773
- 28568 - Trichocomaceae: LTS0009773
- 3358 - Tsuga: LTS0009773
- 93694 - Tsuga chinensis: 10.1002/JCCS.198500013
- 93694 - Tsuga chinensis: LTS0009773
- 33090 - Viridiplantae: LTS0009773
- 142693 - Wikstroemia: LTS0009773
- 224084 - Wikstroemia canescens: 10.1248/CPB.60.554
- 224084 - Wikstroemia canescens: LTS0009773
- 36590 - Xanthium: LTS0009773
- 318068 - Xanthium strumarium: 10.1055/S-2008-1081295
- 318068 - Xanthium strumarium: LTS0009773
- 67937 - Zanthoxylum: LTS0009773
- 4642 - Zingiberaceae: LTS0009773
- 33090 - 苍耳子: -
- 33090 - 蒿本: -
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Edouard Pesquet, Leonard Blaschek, Junko Takahashi, Masanobu Yamamoto, Antoine Champagne, Nuoendagula, Elena Subbotina, Charilaos Dimotakis, Zoltan Bascik, Shinya Kajita. Bulk and In Situ Quantification of Coniferaldehyde Residues in Lignin.
Methods in molecular biology (Clifton, N.J.).
2024; 2722(?):201-226. doi:
10.1007/978-1-0716-3477-6_14
. [PMID: 37897609] - Koichi Yoshioka, Hoon Kim, Fachuang Lu, Nette De Ridder, Ruben Vanholme, Shinya Kajita, Wout Boerjan, John Ralph. Hydroxycinnamaldehyde-derived benzofuran components in lignins.
Plant physiology.
2023 Sep; ?(?):. doi:
10.1093/plphys/kiad514
. [PMID: 37773018] - Hend Dawood, Ismail Celik, Reham S Ibrahim. Computational biology and in vitro studies for anticipating cancer-related molecular targets of sweet wormwood (Artemisia annua).
BMC complementary medicine and therapies.
2023 Sep; 23(1):312. doi:
10.1186/s12906-023-04135-0
. [PMID: 37684586] - Danni Feng, Zhongxiang Fang, Pangzhen Zhang. The melanin inhibitory effect of plants and phytochemicals: A systematic review.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2022 Dec; 107(?):154449. doi:
10.1016/j.phymed.2022.154449
. [PMID: 36126406] - Thae Thae San, Yue-Hu Wang, Dong-Bao Hu, Jun Yang, Dong-Dong Zhang, Meng-Yuan Xia, Xue-Fei Yang, Yong-Ping Yang. A new sesquineolignan and four new neolignans isolated from the leaves of Piper betle, a traditional medicinal plant in Myanmar.
Bioorganic & medicinal chemistry letters.
2021 01; 31(?):127682. doi:
10.1016/j.bmcl.2020.127682
. [PMID: 33207281] - S Pramod, Thakurdas Saha, K Rekha, P B Kavi Kishor. Hevea brasiliensis coniferaldehyde-5-hydroxylase (HbCAld5H) regulates xylogenesis, structure and lignin chemistry of xylem cell wall in Nicotiana tabacum.
Plant cell reports.
2021 Jan; 40(1):127-142. doi:
10.1007/s00299-020-02619-8
. [PMID: 33068174] - Hongyu Gai, Fang Zhou, Yuxin Zhang, Jingya Ai, Jicheng Zhan, Yilin You, Weidong Huang. Coniferaldehyde ameliorates the lipid and glucose metabolism in palmitic acid-induced HepG2 cells via the LKB1/AMPK signaling pathway.
Journal of food science.
2020 Nov; 85(11):4050-4060. doi:
10.1111/1750-3841.15482
. [PMID: 33037652] - Eugene Fletcher, Kai Gao, Kevin Mercurio, Mariam Ali, Kristin Baetz. Yeast chemogenomic screen identifies distinct metabolic pathways required to tolerate exposure to phenolic fermentation inhibitors ferulic acid, 4-hydroxybenzoic acid and coniferyl aldehyde.
Metabolic engineering.
2019 03; 52(?):98-109. doi:
10.1016/j.ymben.2018.11.010
. [PMID: 30471359] - Yuri Takeda, Shiro Suzuki, Yuki Tobimatsu, Keishi Osakabe, Yuriko Osakabe, Safendrri K Ragamustari, Masahiro Sakamoto, Toshiaki Umezawa. Lignin characterization of rice CONIFERALDEHYDE 5-HYDROXYLASE loss-of-function mutants generated with the CRISPR/Cas9 system.
The Plant journal : for cell and molecular biology.
2019 02; 97(3):543-554. doi:
10.1111/tpj.14141
. [PMID: 30375064] - Yuri Takeda, Taichi Koshiba, Yuki Tobimatsu, Shiro Suzuki, Shinya Murakami, Masaomi Yamamura, Md Mahabubur Rahman, Toshiyuki Takano, Takefumi Hattori, Masahiro Sakamoto, Toshiaki Umezawa. Regulation of CONIFERALDEHYDE 5-HYDROXYLASE expression to modulate cell wall lignin structure in rice.
Planta.
2017 Aug; 246(2):337-349. doi:
10.1007/s00425-017-2692-x
. [PMID: 28421330] - Vijay P Sonar, Angela Corona, Simona Distinto, Elias Maccioni, Rita Meleddu, Benedetta Fois, Costantino Floris, Nilesh V Malpure, Stefano Alcaro, Enzo Tramontano, Filippo Cottiglia. Natural product-inspired esters and amides of ferulic and caffeic acid as dual inhibitors of HIV-1 reverse transcriptase.
European journal of medicinal chemistry.
2017 Apr; 130(?):248-260. doi:
10.1016/j.ejmech.2017.02.054
. [PMID: 28254698] - Magdalena Karamać, Lidiya Koleva, Vessela D Kancheva, Ryszard Amarowicz. The Structure-Antioxidant Activity Relationship of Ferulates.
Molecules (Basel, Switzerland).
2017 Mar; 22(4):. doi:
10.3390/molecules22040527
. [PMID: 28346342] - Ahmed Mohammed AlJabr, Abid Hussain, Muhammad Rizwan-Ul-Haq, Hassan Al-Ayedh. Toxicity of Plant Secondary Metabolites Modulating Detoxification Genes Expression for Natural Red Palm Weevil Pesticide Development.
Molecules (Basel, Switzerland).
2017 Jan; 22(1):. doi:
10.3390/molecules22010169
. [PMID: 28117698] - Najmeh Ahmadian Chashmi, Mohsen Sharifi, Mehrdad Behmanesh. Lignan enhancement in hairy root cultures of Linum album using coniferaldehyde and methylenedioxycinnamic acid.
Preparative biochemistry & biotechnology.
2016 Jul; 46(5):454-60. doi:
10.1080/10826068.2015.1068802
. [PMID: 26444150] - José Renán García, Nickolas Anderson, Regis Le-Feuvre, Carolina Iturra, Juan Elissetche, Clint Chapple, Sofía Valenzuela. Rescue of syringyl lignin and sinapate ester biosynthesis in Arabidopsis thaliana by a coniferaldehyde 5-hydroxylase from Eucalyptus globulus.
Plant cell reports.
2014 Aug; 33(8):1263-74. doi:
10.1007/s00299-014-1614-7
. [PMID: 24737414] - Yi Sun, Yifeng Wu, Yu Zhao, Xiaojuan Han, Hongxiang Lou, Aixia Cheng. Molecular cloning and biochemical characterization of two cinnamyl alcohol dehydrogenases from a liverwort Plagiochasma appendiculatum.
Plant physiology and biochemistry : PPB.
2013 Sep; 70(?):133-41. doi:
10.1016/j.plaphy.2013.05.027
. [PMID: 23774375] - Qiao Zhao, Yuki Tobimatsu, Rui Zhou, Sivakumar Pattathil, Lina Gallego-Giraldo, Chunxiang Fu, Lisa A Jackson, Michael G Hahn, Hoon Kim, Fang Chen, John Ralph, Richard A Dixon. Loss of function of cinnamyl alcohol dehydrogenase 1 leads to unconventional lignin and a temperature-sensitive growth defect in Medicago truncatula.
Proceedings of the National Academy of Sciences of the United States of America.
2013 Aug; 110(33):13660-5. doi:
10.1073/pnas.1312234110
. [PMID: 23901113] - Sheikh Shreaz, Rimple Bhatia, Neelofar Khan, Sumathi Muralidhar, Nikhat Manzoor, Luqman Ahmad Khan. Influences of cinnamic aldehydes on H⁺ extrusion activity and ultrastructure of Candida.
Journal of medical microbiology.
2013 Feb; 62(Pt 2):232-240. doi:
10.1099/jmm.0.036145-0
. [PMID: 22034160] - Jianfeng Ma, Zhe Ji, Xia Zhou, Zhiheng Zhang, Feng Xu. Transmission electron microscopy, fluorescence microscopy, and confocal raman microscopic analysis of ultrastructural and compositional heterogeneity of Cornus alba L. wood cell wall.
Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada.
2013 Feb; 19(1):243-53. doi:
10.1017/s1431927612013906
. [PMID: 23380008] - Zhiheng Zhang, Jianfeng Ma, Zhe Ji, Feng Xu. Comparison of anatomy and composition distribution between normal and compression wood of Pinus bungeana Zucc. revealed by microscopic imaging techniques.
Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada.
2012 Dec; 18(6):1459-66. doi:
10.1017/s1431927612013451
. [PMID: 23237521] - Christian Bukh, Pia Haugaard Nord-Larsen, Søren K Rasmussen. Phylogeny and structure of the cinnamyl alcohol dehydrogenase gene family in Brachypodium distachyon.
Journal of experimental botany.
2012 Oct; 63(17):6223-36. doi:
10.1093/jxb/ers275
. [PMID: 23028019] - Jack P Wang, Christopher M Shuford, Quanzi Li, Jina Song, Ying-Chung Lin, Ying-Hsuan Sun, Hsi-Chuan Chen, Cranos M Williams, David C Muddiman, Ronald R Sederoff, Vincent L Chiang. Functional redundancy of the two 5-hydroxylases in monolignol biosynthesis of Populus trichocarpa: LC-MS/MS based protein quantification and metabolic flux analysis.
Planta.
2012 Sep; 236(3):795-808. doi:
10.1007/s00425-012-1663-5
. [PMID: 22628084] - Xing Li, Dongming Ma, Jianlin Chen, Gaobin Pu, Yunpeng Ji, Caiyan Lei, Zhigao Du, Benye Liu, Hechun Ye, Hong Wang. Biochemical characterization and identification of a cinnamyl alcohol dehydrogenase from Artemisia annua.
Plant science : an international journal of experimental plant biology.
2012 Sep; 193-194(?):85-95. doi:
10.1016/j.plantsci.2012.05.011
. [PMID: 22794921] - Nicolas Richet, Koffi Tozo, Dany Afif, Jacques Banvoy, Sylvain Legay, Pierre Dizengremel, Mireille Cabané. The response to daylight or continuous ozone of phenylpropanoid and lignin biosynthesis pathways in poplar differs between leaves and wood.
Planta.
2012 Aug; 236(2):727-37. doi:
10.1007/s00425-012-1644-8
. [PMID: 22526501] - Rocío Santiago, Borja Alarcón, Roberto de Armas, Carlos Vicente, María Estrella Legaz. Changes in cinnamyl alcohol dehydrogenase activities from sugarcane cultivars inoculated with Sporisorium scitamineum sporidia.
Physiologia plantarum.
2012 Jun; 145(2):245-59. doi:
10.1111/j.1399-3054.2012.01577.x
. [PMID: 22248248] - Alex Van Moerkercke, Carlos S Galván-Ampudia, Julian C Verdonk, Michel A Haring, Robert C Schuurink. Regulators of floral fragrance production and their target genes in petunia are not exclusively active in the epidermal cells of petals.
Journal of experimental botany.
2012 May; 63(8):3157-71. doi:
10.1093/jxb/ers034
. [PMID: 22345641] - Sridhar Rao Ayinampudi, Ramesh Domala, Ramchander Merugu, Sreenivasulu Bathula, Madhusudana Rao Janaswamy. New icetexane diterpenes with intestinal α-glucosidase inhibitory and free-radical scavenging activity isolated from Premna tomentosa roots.
Fitoterapia.
2012 Jan; 83(1):88-92. doi:
10.1016/j.fitote.2011.09.018
. [PMID: 22004726] - Hari Prasad Devkota, Masato Watanabe, Takashi Watanabe, Shoji Yahara. Phenolic compounds from the aerial parts of Diplomorpha canescens.
Chemical & pharmaceutical bulletin.
2012; 60(4):554-6. doi:
10.1248/cpb.60.554
. [PMID: 22466741] - Gang Ren, Zhang-Ping Luo, Hui-Lian Huang, Feng Shao, Gong-Hui Li, Chang-Xin Zhou, Rong-Hua Liu. [Study on the chemical constituents of the roots of Dendropanax chevalieri].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2012 Jan; 35(1):62-4. doi:
. [PMID: 22734412]
- Zakir Hossain, Lisa Amyot, Brian McGarvey, Margaret Gruber, Jinwook Jung, Abdelali Hannoufa. The translation elongation factor eEF-1Bβ1 is involved in cell wall biosynthesis and plant development in Arabidopsis thaliana.
PloS one.
2012; 7(1):e30425. doi:
10.1371/journal.pone.0030425
. [PMID: 22272350] - Ilga Porth, Björn Hamberger, Richard White, Kermit Ritland. Defense mechanisms against herbivory in Picea: sequence evolution and expression regulation of gene family members in the phenylpropanoid pathway.
BMC genomics.
2011 Dec; 12(?):608. doi:
10.1186/1471-2164-12-608
. [PMID: 22177423] - Bo Yi, Lifei Hu, Wenli Mei, Kaibing Zhou, Hui Wang, Ying Luo, Xiaoyi Wei, Haofu Dai. Antioxidant phenolic compounds of cassava (Manihot esculenta) from Hainan.
Molecules (Basel, Switzerland).
2011 Dec; 16(12):10157-67. doi:
10.3390/molecules161210157
. [PMID: 22157579] - Marcelo F de Araújo, Ivo J Curcino Vieira, Raimundo Braz-Filho, Mário G de Carvalho. Simiranes A and B: erythroxylanes diterpenes and other compounds from Simira eliezeriana (Rubiaceae).
Natural product research.
2011 Oct; 25(18):1713-9. doi:
10.1080/14786419.2011.560575
. [PMID: 21936665] - Takao Koeduka, Bunta Watanabe, Shiro Suzuki, Jun Hiratake, Jun'ichi Mano, Kazufumi Yazaki. Characterization of raspberry ketone/zingerone synthase, catalyzing the alpha, beta-hydrogenation of phenylbutenones in raspberry fruits.
Biochemical and biophysical research communications.
2011 Aug; 412(1):104-8. doi:
10.1016/j.bbrc.2011.07.052
. [PMID: 21802408] - Gao Sheng Hu, Jing Ming Jia, Yeon Jae Hur, Young Soo Chung, Jai Heon Lee, Dae Jin Yun, Woo Sik Chung, Gi Hwan Yi, Tae Ho Kim, Doh Hoon Kim. Molecular characterization of phenylalanine ammonia lyase gene from Cistanche deserticola.
Molecular biology reports.
2011 Aug; 38(6):3741-50. doi:
10.1007/s11033-010-0489-0
. [PMID: 21104014] - Fuqiang Jiang, Xuemei Zhang, Yunbao Ma, Chang'an Geng, Zhiyong Jiang, Jijun Chen. [Chemical constituents of Swertia hispidicalyx].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2011 Aug; 36(16):2215-8. doi:
. [PMID: 22097333]
- Huoqiang Huang, Meina Yan, Xianglan Piao. [Isoprenoids and phenylpropanoids from Saussurea deltoidea].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2011 Aug; 36(16):2211-4. doi:
. [PMID: 22097332]
- Huang-Hui Chen, Wenchang Chiang, Jang-Yang Chang, Ya-Lin Chien, Ching-Kuo Lee, Ko-Jiunn Liu, Yen-Ting Cheng, Ting-Fang Chen, Yueh-Hsiung Kuo, Ching-Chuan Kuo. Antimutagenic constituents of adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) with potential cancer chemopreventive activity.
Journal of agricultural and food chemistry.
2011 Jun; 59(12):6444-52. doi:
10.1021/jf200539r
. [PMID: 21561091] - Huan-Kai Yao, Jing-Yu Duan, Yan Li, Jian-Hui Wang, Xiao-Xing Yin, Hong-Quan Duan. [Studies on the chemical constituents from the roots of Kalopanax septemlobus].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2011 May; 34(5):716-8. doi:
. [PMID: 21954557]
- Yun Lee, Fang Chen, Lina Gallego-Giraldo, Richard A Dixon, Eberhard O Voit. Integrative analysis of transgenic alfalfa (Medicago sativa L.) suggests new metabolic control mechanisms for monolignol biosynthesis.
PLoS computational biology.
2011 May; 7(5):e1002047. doi:
10.1371/journal.pcbi.1002047
. [PMID: 21625579] - Işil Hacibekiroğlu, Ufuk Kolak. Antioxidant and anticholinesterase constituents from the petroleum ether and chloroform extracts of Iris suaveolens.
Phytotherapy research : PTR.
2011 Apr; 25(4):522-9. doi:
10.1002/ptr.3299
. [PMID: 20830698] - Madana M R Ambavaram, Arjun Krishnan, Kurniawan R Trijatmiko, Andy Pereira. Coordinated activation of cellulose and repression of lignin biosynthesis pathways in rice.
Plant physiology.
2011 Feb; 155(2):916-31. doi:
10.1104/pp.110.168641
. [PMID: 21205614] - Johanne Thévenin, Brigitte Pollet, Bruno Letarnec, Luc Saulnier, Lionel Gissot, Alessandra Maia-Grondard, Catherine Lapierre, Lise Jouanin. The simultaneous repression of CCR and CAD, two enzymes of the lignin biosynthetic pathway, results in sterility and dwarfism in Arabidopsis thaliana.
Molecular plant.
2011 Jan; 4(1):70-82. doi:
10.1093/mp/ssq045
. [PMID: 20829305] - Rajib Saha, Patrick F Suthers, Costas D Maranas. Zea mays iRS1563: a comprehensive genome-scale metabolic reconstruction of maize metabolism.
PloS one.
2011; 6(7):e21784. doi:
10.1371/journal.pone.0021784
. [PMID: 21755001] - Gordon V Louie, Marianne E Bowman, Yi Tu, Aidyn Mouradov, German Spangenberg, Joseph P Noel. Structure-function analyses of a caffeic acid O-methyltransferase from perennial ryegrass reveal the molecular basis for substrate preference.
The Plant cell.
2010 Dec; 22(12):4114-27. doi:
10.1105/tpc.110.077578
. [PMID: 21177481] - Satish K Guttikonda, Joshi Trupti, Naveen C Bisht, Hui Chen, Yong-Qiang C An, Sona Pandey, Dong Xu, Oliver Yu. Whole genome co-expression analysis of soybean cytochrome P450 genes identifies nodulation-specific P450 monooxygenases.
BMC plant biology.
2010 Nov; 10(?):243. doi:
10.1186/1471-2229-10-243
. [PMID: 21062474] - Li-Wen Zhang, Saleh A Al-Suwayeh, Pei-Wen Hsieh, Jia-You Fang. A comparison of skin delivery of ferulic acid and its derivatives: evaluation of their efficacy and safety.
International journal of pharmaceutics.
2010 Oct; 399(1-2):44-51. doi:
10.1016/j.ijpharm.2010.07.054
. [PMID: 20692328] - Carmen Gayoso, Federico Pomar, Esther Novo-Uzal, Fuencisla Merino, Oskar Martínez de Ilárduya. The Ve-mediated resistance response of the tomato to Verticillium dahliae involves H2O2, peroxidase and lignins and drives PAL gene expression.
BMC plant biology.
2010 Oct; 10(?):232. doi:
10.1186/1471-2229-10-232
. [PMID: 20977727] - Glen Meades, Rachel L Henken, Grover L Waldrop, Md Mukhlesur Rahman, S Douglass Gilman, Guy P P Kamatou, Alvaro M Viljoen, Simon Gibbons. Constituents of cinnamon inhibit bacterial acetyl CoA carboxylase.
Planta medica.
2010 Oct; 76(14):1570-5. doi:
10.1055/s-0030-1249778
. [PMID: 20379951] - Sun Young Kim, Yean Kyoung Koo, Ja Yong Koo, Tran Minh Ngoc, Sam Sik Kang, KiHwan Bae, Yeong Sik Kim, Hye Sook Yun-Choi. Platelet anti-aggregation activities of compounds from Cinnamomum cassia.
Journal of medicinal food.
2010 Oct; 13(5):1069-74. doi:
10.1089/jmf.2009.1365
. [PMID: 20828311] - Jifeng Liu, Xuemei Zhang, Yao Shi, Zhiyong Jiang, Yunbao Ma, Jijun Chen. [Chemical constituents from rhizomes of Illicium henryi].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2010 Sep; 35(17):2281-4. doi:
"
. [PMID: 21137338] - Young-Hwa Kim, Jung Myung Bae, Gyung-Hye Huh. Transcriptional regulation of the cinnamyl alcohol dehydrogenase gene from sweet potato in response to plant developmental stage and environmental stress.
Plant cell reports.
2010 Jul; 29(7):779-91. doi:
10.1007/s00299-010-0864-2
. [PMID: 20454964] - Sadaf Khan, Scott C Rowe, Frank G Harmon. Coordination of the maize transcriptome by a conserved circadian clock.
BMC plant biology.
2010 Jun; 10(?):126. doi:
10.1186/1471-2229-10-126
. [PMID: 20576144] - Biao Yang, Guangying Chen, Xiaoping Song, Zhong Chen, Xinming Song, Jing Wang. Chemical constituents and antimicrobial activities of Canthium horridum.
Natural product communications.
2010 Jun; 5(6):913-4. doi:
. [PMID: 20614823]
- Qing-Hu Ma. Functional analysis of a cinnamyl alcohol dehydrogenase involved in lignin biosynthesis in wheat.
Journal of experimental botany.
2010 Jun; 61(10):2735-44. doi:
10.1093/jxb/erq107
. [PMID: 20400532] - Xu Li, Nicholas D Bonawitz, Jing-Ke Weng, Clint Chapple. The growth reduction associated with repressed lignin biosynthesis in Arabidopsis thaliana is independent of flavonoids.
The Plant cell.
2010 May; 22(5):1620-32. doi:
10.1105/tpc.110.074161
. [PMID: 20511296] - Souichi Nakashima, Hisashi Matsuda, Yoshimi Oda, Seikou Nakamura, Fengming Xu, Masayuki Yoshikawa. Melanogenesis inhibitors from the desert plant Anastatica hierochuntica in B16 melanoma cells.
Bioorganic & medicinal chemistry.
2010 Mar; 18(6):2337-2345. doi:
10.1016/j.bmc.2010.01.046
. [PMID: 20189399] - Rui Shi, Ying-Hsuan Sun, Quanzi Li, Steffen Heber, Ronald Sederoff, Vincent L Chiang. Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes.
Plant & cell physiology.
2010 Jan; 51(1):144-63. doi:
10.1093/pcp/pcp175
. [PMID: 19996151] - Elisabetta Aracri, Josep F Colom, Teresa Vidal. Application of laccase-natural mediator systems to sisal pulp: an effective approach to biobleaching or functionalizing pulp fibres?.
Bioresource technology.
2009 Dec; 100(23):5911-6. doi:
10.1016/j.biortech.2009.06.016
. [PMID: 19574042] - Boussenane H Nadia, Kebsa Wided, Boutabet Kheira, Rouibah Hassiba, Benguedouar Lamia, S Rhouati, M Alyane, A Zellagui, M Lahouel. Disruption of mitochondrial membrane potential by ferulenol and restoration by propolis extract: antiapoptotic role of propolis.
Acta biologica Hungarica.
2009 Dec; 60(4):385-98. doi:
10.1556/abiol.60.2009.4.5
. [PMID: 20015830] - Haiming Shi, Huandi Wang, Mengyue Wang, Xiaobo Li. Antioxidant activity and chemical composition of Torreya grandis cv. Merrillii seed.
Natural product communications.
2009 Nov; 4(11):1565-70. doi:
. [PMID: 19967992]
- Zhanyou Xu, Dandan Zhang, Jun Hu, Xin Zhou, Xia Ye, Kristen L Reichel, Nathan R Stewart, Ryan D Syrenne, Xiaohan Yang, Peng Gao, Weibing Shi, Crissa Doeppke, Robert W Sykes, Jason N Burris, Joseph J Bozell, Max Zong-Ming Cheng, Douglas G Hayes, Nicole Labbe, Mark Davis, C Neal Stewart, Joshua S Yuan. Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom.
BMC bioinformatics.
2009 Oct; 10 Suppl 11(?):S3. doi:
10.1186/1471-2105-10-s11-s3
. [PMID: 19811687] - A Hymavathi, K Suresh Babu, V G M Naidu, S Rama Krishna, Prakash V Diwan, J Madhusudana Rao. Bioactivity-guided isolation of cytotoxic constituents from stem-bark of Premna tomentosa.
Bioorganic & medicinal chemistry letters.
2009 Oct; 19(19):5727-31. doi:
10.1016/j.bmcl.2009.08.002
. [PMID: 19700323] - Tran Minh Ngoc, IkSoo Lee, Do Thi Ha, Hongjin Kim, ByungSun Min, KiHwan Bae. Tyrosinase-inhibitory constituents from the twigs of Cinnamomum cassia.
Journal of natural products.
2009 Jun; 72(6):1205-8. doi:
10.1021/np900031q
. [PMID: 19555125] - Abdelali Barakat, Agnieszka Bagniewska-Zadworna, Alex Choi, Urmila Plakkat, Denis S DiLoreto, Priyadarshini Yellanki, John E Carlson. The cinnamyl alcohol dehydrogenase gene family in Populus: phylogeny, organization, and expression.
BMC plant biology.
2009 Mar; 9(?):26. doi:
10.1186/1471-2229-9-26
. [PMID: 19267902] - Chien-Chang Shen, Ching-Li Ni, Yuh-Chiang Shen, Yu-Ling Huang, Ching-Hsia Kuo, Tian-Shung Wu, Chien-Chih Chen. Phenolic constituents from the stem bark of Magnolia officinalis.
Journal of natural products.
2009 Jan; 72(1):168-71. doi:
10.1021/np800494e
. [PMID: 19086868] - Marina A Naoumkina, XianZhi He, Richard A Dixon. Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula.
BMC plant biology.
2008 Dec; 8(?):132. doi:
10.1186/1471-2229-8-132
. [PMID: 19102779] - Shuang Liang, Yun-Heng Shen, Jun-Mian Tian, Zhi-Jun Wu, Hui-Zi Jin, Wei-Dong Zhang, Shi-Kai Yan. Phenylpropanoids from Daphne feddei and their inhibitory activities against NO production.
Journal of natural products.
2008 Nov; 71(11):1902-5. doi:
10.1021/np8004166
. [PMID: 18986199] - Jih-Jung Chen, Chang-Syun Yang, Chien-Fang Peng, Ih-Sheng Chen, Chang-Ling Miaw. Dihydroagarofuranoid sesquiterpenes, a lignan derivative, a benzenoid, and antitubercular constituents from the stem of Microtropis japonica.
Journal of natural products.
2008 Jun; 71(6):1016-21. doi:
10.1021/np800097t
. [PMID: 18471021] - Noélia Duarte, Hermann Lage, Maria-José U Ferreira. Three new jatrophane polyesters and antiproliferative constituents from Euphorbia tuckeyana.
Planta medica.
2008 Jan; 74(1):61-8. doi:
10.1055/s-2007-993765
. [PMID: 18176909] - Monia Monti, Mirko Pinotti, Giovanni Appendino, Franco Dallocchio, Tiziana Bellini, Fabiana Antognoni, Ferruccio Poli, Francesco Bernardi. Characterization of anti-coagulant properties of prenylated coumarin ferulenol.
Biochimica et biophysica acta.
2007 Oct; 1770(10):1437-40. doi:
10.1016/j.bbagen.2007.06.013
. [PMID: 17693024] - Riccardo Flamini, Antonio Dalla Vedova, Davide Cancian, Annarita Panighel, Mirko De Rosso. GC/MS-positive ion chemical ionization and MS/MS study of volatile benzene compounds in five different woods used in barrel making.
Journal of mass spectrometry : JMS.
2007 May; 42(5):641-6. doi:
10.1002/jms.1193
. [PMID: 17370248] - Mesbah Lahouel, Roland Zini, Ammar Zellagui, Salah Rhouati, Pierre-Alain Carrupt, Didier Morin. Ferulenol specifically inhibits succinate ubiquinone reductase at the level of the ubiquinone cycle.
Biochemical and biophysical research communications.
2007 Mar; 355(1):252-7. doi:
10.1016/j.bbrc.2007.01.145
. [PMID: 17292330] - Javier Terol, Ana Conesa, Jose M Colmenero, Manuel Cercos, Francisco Tadeo, Javier Agustí, Enriqueta Alós, Fernando Andres, Guillermo Soler, Javier Brumos, Domingo J Iglesias, Stefan Götz, Francisco Legaz, Xavier Argout, Brigitte Courtois, Patrick Ollitrault, Carole Dossat, Patrick Wincker, Raphael Morillon, Manuel Talon. Analysis of 13000 unique Citrus clusters associated with fruit quality, production and salinity tolerance.
BMC genomics.
2007 Jan; 8(?):31. doi:
10.1186/1471-2164-8-31
. [PMID: 17254327] - Buhyun Youn, Sung-Jin Kim, Syed G A Moinuddin, Choonseok Lee, Diana L Bedgar, Athena R Harper, Laurence B Davin, Norman G Lewis, Chulhee Kang. Mechanistic and structural studies of apoform, binary, and ternary complexes of the Arabidopsis alkenal double bond reductase At5g16970.
The Journal of biological chemistry.
2006 Dec; 281(52):40076-88. doi:
10.1074/jbc.m605900200
. [PMID: 17028190] - Umesh P Agarwal. Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana).
Planta.
2006 Oct; 224(5):1141-53. doi:
10.1007/s00425-006-0295-z
. [PMID: 16761135] - W D dos Santos, Maria de Lourdes Lucio Ferrarese, O Ferrarese-Filho. High performance liquid chromatography method for the determination of cinnamyl alcohol dehydrogenase activity in soybean roots.
Plant physiology and biochemistry : PPB.
2006 Jul; 44(7-9):511-5. doi:
10.1016/j.plaphy.2006.08.004
. [PMID: 17023167] - Young Jin Kim, Dong Gwan Kim, Sun Hi Lee, Incheol Lee. Wound-induced expression of the ferulate 5-hydroxylase gene in Camptotheca acuminata.
Biochimica et biophysica acta.
2006 Feb; 1760(2):182-90. doi:
10.1016/j.bbagen.2005.08.015
. [PMID: 16332414] - Ralf Möller, Diane Steward, Lorelle Phillips, Heather Flint, Armin Wagner. Gene silencing of cinnamyl alcohol dehydrogenase in Pinus radiata callus cultures.
Plant physiology and biochemistry : PPB.
2005 Dec; 43(12):1061-6. doi:
10.1016/j.plaphy.2005.11.001
. [PMID: 16386427] - Isabelle Damiani, Kris Morreel, Saïda Danoun, Geert Goeminne, Nabila Yahiaoui, Christiane Marque, Joachim Kopka, Eric Messens, Deborah Goffner, Wout Boerjan, Alain-Michel Boudet, Soizic Rochange. Metabolite profiling reveals a role for atypical cinnamyl alcohol dehydrogenase CAD1 in the synthesis of coniferyl alcohol in tobacco xylem.
Plant molecular biology.
2005 Nov; 59(5):753-69. doi:
10.1007/s11103-005-0947-6
. [PMID: 16270228] - Laigeng Li, Xiaofei Cheng, Shanfa Lu, Tomoyuki Nakatsubo, Toshiaki Umezawa, Vincent L Chiang. Clarification of cinnamoyl co-enzyme A reductase catalysis in monolignol biosynthesis of Aspen.
Plant & cell physiology.
2005 Jul; 46(7):1073-82. doi:
10.1093/pcp/pci120
. [PMID: 15870094] - Jaber S Mossa, Farouk S El-Feraly, Ilias Muhammad. Antimycobacterial constituents from Juniperus procera, Ferula communis and Plumbago zeylanica and their in vitro synergistic activity with isonicotinic acid hydrazide.
Phytotherapy research : PTR.
2004 Nov; 18(11):934-7. doi:
10.1002/ptr.1420
. [PMID: 15597311] - Daniel R Cardoso, Luiz G Andrade-Sobrinho, Alexandre F Leite-Neto, Roni V Reche, William D Isique, Marcia M C Ferreira, Benedito S Lima-Neto, Douglas W Franco. Comparison between cachaça and rum using pattern recognition methods.
Journal of agricultural and food chemistry.
2004 Jun; 52(11):3429-33. doi:
10.1021/jf035262+
. [PMID: 15161210] - Lolita Arnoldi, Mauro Ballero, Nicola Fuzzati, Andrea Maxia, Enrico Mercalli, Luca Pagni. HPLC-DAD-MS identification of bioactive secondary metabolites from Ferula communis roots.
Fitoterapia.
2004 Jun; 75(3-4):342-54. doi:
10.1016/j.fitote.2004.03.001
. [PMID: 15158993] - K Murugan, N S Arunkumar, C Mohankumar. Purification and characterization of cinnamyl alcohol-NADPH-dehydrogenase from the leaf tissues of a basin mangrove Lumnitzera racemosa Willd.
Indian journal of biochemistry & biophysics.
2004 Apr; 41(2-3):96-101. doi:
. [PMID: 22900336]
- Ramesh B Nair, Kristen L Bastress, Max O Ruegger, Jeff W Denault, Clint Chapple. The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis.
The Plant cell.
2004 Feb; 16(2):544-54. doi:
10.1105/tpc.017509
. [PMID: 14729911] - Lei Chen, Chung-Kyoon Auh, Paul Dowling, Jeremey Bell, Fang Chen, Andrew Hopkins, Richard A Dixon, Zeng-Yu Wang. Improved forage digestibility of tall fescue (Festuca arundinacea) by transgenic down-regulation of cinnamyl alcohol dehydrogenase.
Plant biotechnology journal.
2003 Nov; 1(6):437-49. doi:
10.1046/j.1467-7652.2003.00040.x
. [PMID: 17134402] - Rong Tsao, Raymond Yang, J Christopher Young. Antioxidant isoflavones in Osage orange, Maclura pomifera (Raf.) Schneid.
Journal of agricultural and food chemistry.
2003 Oct; 51(22):6445-51. doi:
10.1021/jf0342369
. [PMID: 14558760] - Arjun H Banskota, Yasuhiro Tezuka, Nhan Trung Nguyen, Suresh Awale, Takahiro Nobukawa, Shigetoshi Kadota. DPPH radical scavenging and nitric oxide inhibitory activities of the constituents from the wood of Taxus yunnanensis.
Planta medica.
2003 Jun; 69(6):500-5. doi:
10.1055/s-2003-40641
. [PMID: 12865966] - María C Carpinella, Laura M Giorda, Carlos G Ferrayoli, Sara M Palacios. Antifungal effects of different organic extracts from Melia azedarach L. on phytopathogenic fungi and their isolated active components.
Journal of agricultural and food chemistry.
2003 Apr; 51(9):2506-11. doi:
10.1021/jf026083f
. [PMID: 12696928] - Nikolaos Nenadis, Hong-Yu Zhang, Maria Z Tsimidou. Structure-antioxidant activity relationship of ferulic acid derivatives: effect of carbon side chain characteristic groups.
Journal of agricultural and food chemistry.
2003 Mar; 51(7):1874-9. doi:
10.1021/jf0261452
. [PMID: 12643644] - A El-Hassan, M El-Sayed, A I Hamed, I K Rhee, A A Ahmed, K P Zeller, R Verpoorte. Bioactive constituents of Leptadenia arborea.
Fitoterapia.
2003 Feb; 74(1-2):184-7. doi:
10.1016/s0367-326x(02)00314-3
. [PMID: 12628421] - Claudia Bocca, Ludovica Gabriel, Francesca Bozzo, Antonella Miglietta. Microtubule-interacting activity and cytotoxicity of the prenylated coumarin ferulenol.
Planta medica.
2002 Dec; 68(12):1135-7. doi:
10.1055/s-2002-36342
. [PMID: 12494346] - Dianjing Guo, Fang Chen, Richard A Dixon. Monolignol biosynthesis in microsomal preparations from lignifying stems of alfalfa (Medicago sativa L.).
Phytochemistry.
2002 Nov; 61(6):657-67. doi:
10.1016/s0031-9422(02)00375-8
. [PMID: 12423886] - F Pomar, F Merino, A Ros Barceló. O-4-Linked coniferyl and sinapyl aldehydes in lignifying cell walls are the main targets of the Wiesner (phloroglucinol-HCl) reaction.
Protoplasma.
2002 Oct; 220(1-2):17-28. doi:
10.1007/s00709-002-0030-y
. [PMID: 12417933] - Hans Onnerud, Liming Zhang, Göran Gellerstedt, Gunnar Henriksson. Polymerization of monolignols by redox shuttle-mediated enzymatic oxidation: a new model in lignin biosynthesis I.
The Plant cell.
2002 Aug; 14(8):1953-62. doi:
10.1105/tpc.001487
. [PMID: 12172033] - Wilfred Vermerris, Karen J Thompson, Lauren M McIntyre, John D Axtell. Evidence for an evolutionarily conserved interaction between cell wall biosynthesis and flowering in maize and sorghum.
BMC evolutionary biology.
2002; 2(?):2. doi:
10.1186/1471-2148-2-2
. [PMID: 11835688] - T Sonoda, T Ona, H Yokoi, Y Ishida, H Ohtani, S Tsuge. Quantitative analysis of detailed lignin monomer composition by pyrolysis-gas chromatography combined with preliminary acetylation of the samples.
Analytical chemistry.
2001 Nov; 73(22):5429-35. doi:
10.1021/ac010557c
. [PMID: 11816569] - M Hosokawa, S Suzuki, T Umezawa, Y Sato. Progress of lignification mediated by intercellular transportation of monolignols during tracheary element differentiation of isolated Zinnia mesophyll cells.
Plant & cell physiology.
2001 Sep; 42(9):959-68. doi:
10.1093/pcp/pce124
. [PMID: 11577190]