Plumbagin (BioDeep_00000003768)

Main id: BioDeep_00000229786

 

human metabolite PANOMIX_OTCML-2023 blood metabolite Antitumor activity natural product


代谢物信息卡片


5-hydroxy-2-methyl-1,4-dihydronaphthalene-1,4-dione

化学式: C11H8O3 (188.0473)
中文名称: 兰雪醌
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC1=CC(=O)C2=C(C1=O)C=CC=C2O
InChI: InChI=1S/C11H8O3/c1-6-5-9(13)10-7(11(6)14)3-2-4-8(10)12/h2-5,12H,1H3

描述信息

Plumbagin, also known as 5-hydroxy-2-methyl-1,4-naphthoquinone or 2-methyljuglone, is a member of the class of compounds known as naphthoquinones. Naphthoquinones are compounds containing a naphthohydroquinone moiety, which consists of a benzene ring linearly fused to a bezene-1,4-dione (quinone). Plumbagin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Plumbagin can be found in black walnut, common walnut, japanese persimmon, and persimmon, which makes plumbagin a potential biomarker for the consumption of these food products. Plumbagin is named after the plant genus Plumbago, from which it was originally isolated. It is also commonly found in the carnivorous plant genera Drosera and Nepenthes. It is also a component of the black walnut drupe .
D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics
D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents
C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor
D020011 - Protective Agents > D002316 - Cardiotonic Agents
D006401 - Hematologic Agents > D000925 - Anticoagulants
D000970 - Antineoplastic Agents
D002317 - Cardiovascular Agents
D007155 - Immunologic Factors
Plumbagin (2-Methyljuglone) is a naphthoquinone isolated from Plumbago zeylanica, exhibits anticancer and antiproliferative activities[1].
Plumbagin (2-Methyljuglone) is a naphthoquinone isolated from Plumbago zeylanica, exhibits anticancer and antiproliferative activities[1].

同义名列表

10 个代谢物同义名

5-hydroxy-2-methyl-1,4-dihydronaphthalene-1,4-dione; 5-Hydroxy-2-methyl-1,4-naphthalenedione; 2-methyl-5-hydroxy-1,4-naphthoquinone; 5-hydroxy-2-methyl-1,4-naphthoquinone; 2-Methyljuglone; Plumbagine; Plumbagone; Plumbaein; Plumbagin; Plumbagin



数据库引用编号

21 个数据库交叉引用编号

分类词条

254 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 16 ANG, BRCA1, CAT, CCND1, CDKN1A, CTNNB1, EGFR, EP300, ERBB2, MAPK8, MSMP, MTOR, NOX4, PIK3CA, STAT3, TP53
Peripheral membrane protein 1 MTOR
Endosome membrane 2 EGFR, ERBB2
Endoplasmic reticulum membrane 3 EGFR, MTOR, NOX4
Nucleus 13 ANG, BRCA1, CCND1, CDKN1A, CTNNB1, EGFR, EP300, ERBB2, MAPK8, MTOR, NOX4, STAT3, TP53
cytosol 12 ANG, CAT, CCND1, CDKN1A, CTNNB1, EP300, ERBB2, MAPK8, MTOR, PIK3CA, STAT3, TP53
dendrite 1 MTOR
nuclear body 2 BRCA1, CDKN1A
phagocytic vesicle 1 MTOR
centrosome 3 CCND1, CTNNB1, TP53
nucleoplasm 10 BRCA1, CCND1, CDKN1A, CTNNB1, EP300, ERBB2, MAPK8, MTOR, STAT3, TP53
RNA polymerase II transcription regulator complex 1 STAT3
Cell membrane 5 CTNNB1, EGFR, ERBB2, NOX4, TNF
Cytoplasmic side 1 MTOR
lamellipodium 2 CTNNB1, PIK3CA
ruffle membrane 2 EGFR, ERBB2
Early endosome membrane 1 EGFR
Multi-pass membrane protein 1 NOX4
Golgi apparatus membrane 1 MTOR
Synapse 2 CTNNB1, MAPK8
cell cortex 1 CTNNB1
cell junction 2 CTNNB1, EGFR
cell surface 2 EGFR, TNF
glutamatergic synapse 2 CTNNB1, EGFR
Golgi membrane 2 EGFR, MTOR
growth cone 1 ANG
lysosomal membrane 1 MTOR
neuromuscular junction 1 ERBB2
neuronal cell body 2 ANG, TNF
presynaptic membrane 2 CTNNB1, ERBB2
Lysosome 1 MTOR
endosome 1 EGFR
plasma membrane 8 BRCA1, CTNNB1, EGFR, ERBB2, NOX4, PIK3CA, STAT3, TNF
Membrane 8 BRCA1, CAT, CTNNB1, EGFR, ERBB2, MTOR, NOX4, TP53
apical plasma membrane 2 EGFR, ERBB2
axon 2 CCK, MAPK8
basolateral plasma membrane 3 CTNNB1, EGFR, ERBB2
extracellular exosome 2 CAT, CTNNB1
Lysosome membrane 1 MTOR
endoplasmic reticulum 2 NOX4, TP53
extracellular space 7 ANG, CCK, EGFR, IL17A, IL6, MSMP, TNF
perinuclear region of cytoplasm 6 CDKN1A, CTNNB1, EGFR, ERBB2, NOX4, PIK3CA
Schaffer collateral - CA1 synapse 1 CTNNB1
adherens junction 1 CTNNB1
apicolateral plasma membrane 1 CTNNB1
bicellular tight junction 2 CCND1, CTNNB1
intercalated disc 1 PIK3CA
mitochondrion 3 CAT, NOX4, TP53
protein-containing complex 6 BRCA1, CAT, CDKN1A, CTNNB1, EGFR, TP53
intracellular membrane-bounded organelle 1 CAT
Microsome membrane 1 MTOR
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 2 EGFR, ERBB2
Secreted 5 ANG, CCK, IL17A, IL6, MSMP
extracellular region 7 ANG, CAT, CCK, ERBB2, IL17A, IL6, TNF
Mitochondrion outer membrane 1 MTOR
mitochondrial outer membrane 1 MTOR
Mitochondrion matrix 1 TP53
mitochondrial matrix 2 CAT, TP53
transcription regulator complex 4 CTNNB1, EP300, STAT3, TP53
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 TP53
Nucleus membrane 1 CCND1
nuclear membrane 2 CCND1, EGFR
external side of plasma membrane 2 IL17A, TNF
actin cytoskeleton 1 ANG
Z disc 1 CTNNB1
beta-catenin destruction complex 1 CTNNB1
cytoplasmic vesicle 1 ERBB2
nucleolus 4 ANG, CDKN1A, NOX4, TP53
Wnt signalosome 1 CTNNB1
Early endosome 1 ERBB2
apical part of cell 1 CTNNB1
cell-cell junction 1 CTNNB1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
postsynaptic membrane 1 CTNNB1
Cell projection, ruffle membrane 1 ERBB2
Cytoplasm, perinuclear region 2 ERBB2, NOX4
Membrane raft 2 EGFR, TNF
Cell junction, focal adhesion 1 NOX4
Cytoplasm, cytoskeleton 2 CTNNB1, TP53
focal adhesion 4 CAT, CTNNB1, EGFR, NOX4
Cell junction, adherens junction 1 CTNNB1
flotillin complex 1 CTNNB1
Peroxisome 1 CAT
basement membrane 1 ANG
intracellular vesicle 1 EGFR
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Nucleus, PML body 2 MTOR, TP53
PML body 2 MTOR, TP53
fascia adherens 1 CTNNB1
lateral plasma membrane 1 CTNNB1
receptor complex 2 EGFR, ERBB2
chromatin 3 EP300, STAT3, TP53
phagocytic cup 1 TNF
cell periphery 1 CTNNB1
Chromosome 3 ANG, BRCA1, EP300
Cytoplasm, cytoskeleton, cilium basal body 1 CTNNB1
[Isoform 5]: Cytoplasm 2 BRCA1, NOX4
Nucleus, nucleolus 2 ANG, NOX4
spindle pole 1 CTNNB1
postsynaptic density, intracellular component 1 CTNNB1
microvillus membrane 1 CTNNB1
site of double-strand break 1 TP53
nuclear envelope 1 MTOR
Endomembrane system 2 CTNNB1, MTOR
lateral element 1 BRCA1
Cytoplasm, Stress granule 1 ANG
cytoplasmic stress granule 1 ANG
euchromatin 1 CTNNB1
germ cell nucleus 1 TP53
replication fork 1 TP53
myelin sheath 1 ERBB2
ubiquitin ligase complex 1 BRCA1
basal plasma membrane 2 EGFR, ERBB2
[Isoform 3]: Cytoplasm 1 NOX4
synaptic membrane 1 EGFR
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 1 CAT
endoplasmic reticulum lumen 1 IL6
nuclear matrix 1 TP53
transcription repressor complex 2 CCND1, TP53
male germ cell nucleus 1 BRCA1
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
XY body 1 BRCA1
endocytic vesicle 1 ANG
beta-catenin-TCF complex 1 CTNNB1
perinuclear endoplasmic reticulum 1 NOX4
semaphorin receptor complex 1 ERBB2
presynaptic active zone cytoplasmic component 1 CTNNB1
clathrin-coated endocytic vesicle membrane 1 EGFR
ribonucleoprotein complex 1 BRCA1
[Isoform 1]: Nucleus 1 TP53
histone acetyltransferase complex 1 EP300
protein-DNA complex 2 CTNNB1, EP300
basal dendrite 1 MAPK8
[Isoform 1]: Cell membrane 1 ERBB2
intracellular non-membrane-bounded organelle 1 BRCA1
DNA repair complex 1 BRCA1
Cytoplasmic vesicle, phagosome 1 MTOR
catenin complex 1 CTNNB1
BRCA1-C complex 1 BRCA1
[Isoform 4]: Nucleus 1 NOX4
cyclin-dependent protein kinase holoenzyme complex 2 CCND1, CDKN1A
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
angiogenin-PRI complex 1 ANG
catalase complex 1 CAT
ERBB3:ERBB2 complex 1 ERBB2
NADPH oxidase complex 1 NOX4
interleukin-6 receptor complex 1 IL6
[Isoform 6]: Cytoplasm 1 NOX4
cyclin D1-CDK4 complex 1 CCND1
PCNA-p21 complex 1 CDKN1A
beta-catenin-TCF7L2 complex 1 CTNNB1
cyclin D1-CDK6 complex 1 CCND1
beta-catenin-ICAT complex 1 CTNNB1
Scrib-APC-beta-catenin complex 1 CTNNB1
BRCA1-A complex 1 BRCA1
BRCA1-B complex 1 BRCA1
BRCA1-BARD1 complex 1 BRCA1
gamma-tubulin ring complex 1 BRCA1
nuclear ubiquitin ligase complex 1 BRCA1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Carlos José Rocha Teixeira, Barbara Pereira Dos Santos, Carolina Julia Costa Saraiva, Heloísa de Paula Pedroza, Silvia Catarina Salgado Oloris, Benito Soto-Blanco. TLC and HPLC methods for the determination of plumbagin for the diagnosis of poisoning by Plumbago scandens L. Toxicon : official journal of the International Society on Toxinology. 2024 Feb; 239(?):107634. doi: 10.1016/j.toxicon.2024.107634. [PMID: 38307130]
  • Ranjith Palanisamy, Nimnaka Indrajith Kahingalage, David Archibald, Ilaria Casari, Marco Falasca. Synergistic Anticancer Activity of Plumbagin and Xanthohumol Combination on Pancreatic Cancer Models. International journal of molecular sciences. 2024 Feb; 25(4):. doi: 10.3390/ijms25042340. [PMID: 38397018]
  • Songtao Bie, Qiuyue Mo, Chen Shi, Hui Yuan, Chunshuang Li, Tong Wu, Wenlong Li, Heshui Yu. Interactions of plumbagin with five common antibiotics against Staphylococcus aureus in vitro. PloS one. 2024; 19(1):e0297493. doi: 10.1371/journal.pone.0297493. [PMID: 38277418]
  • Tiehan Cui, Yun Lan, Fei Yu, Suai Lin, Jiaxuan Qiu. Plumbagin alleviates temporomandibular joint osteoarthritis progression by inhibiting chondrocyte ferroptosis via the MAPK signaling pathways. Aging. 2023 11; 15(22):13452-13470. doi: 10.18632/aging.205253. [PMID: 38032278]
  • Suresh Awale, Hayato Baba, Nguyen Duy Phan, Min Jo Kim, Juthamart Maneenet, Koichi Sawaki, Mitsuro Kanda, Tomoyuki Okumura, Tsutomu Fujii, Takuya Okada, Takahiro Maruyama, Takahiro Okada, Naoki Toyooka. Targeting Pancreatic Cancer with Novel Plumbagin Derivatives: Design, Synthesis, Molecular Mechanism, In Vitro and In Vivo Evaluation. Journal of medicinal chemistry. 2023 May; ?(?):. doi: 10.1021/acs.jmedchem.3c00394. [PMID: 37257133]
  • Devendra Kumar Pandey, Kajal Katoch, Tuyelee Das, Madhumita Majumder, Kuldeep Dhama, Abhijit Bhagwan Mane, Abilash Valsala Gopalakrishnan, Abhijit Dey. Approaches for in vitro propagation and production of plumbagin in Plumbago spp. Applied microbiology and biotechnology. 2023 May; ?(?):. doi: 10.1007/s00253-023-12511-6. [PMID: 37199750]
  • Kaihua Wang, Beibei Wang, Henan Ma, Ziwen Wang, Yuxiu Liu, Qingmin Wang. Natural Products for Pesticides Discovery: Structural Diversity Derivation and Biological Activities of Naphthoquinones Plumbagin and Juglone. Molecules (Basel, Switzerland). 2023 Apr; 28(8):. doi: 10.3390/molecules28083328. [PMID: 37110562]
  • Beatrycze Nowicka, Jan Walczak, Maja Kapsiak, Karolina Barnaś, Julia Dziuba, Aleksandra Suchoń. Impact of cytotoxic plant naphthoquinones, juglone, plumbagin, lawsone and 2-methoxy-1,4-naphthoquinone, on Chlamydomonas reinhardtii reveals the biochemical mechanism of juglone toxicity by rapid depletion of plastoquinol. Plant physiology and biochemistry : PPB. 2023 Apr; 197(?):107660. doi: 10.1016/j.plaphy.2023.107660. [PMID: 36996637]
  • Huan Liu, Wenchao Zhang, Lijie Jin, Shasha Liu, Liying Liang, Yanfei Wei. Plumbagin Exhibits Genotoxicity and Induces G2/M Cell Cycle Arrest via ROS-Mediated Oxidative Stress and Activation of ATM-p53 Signaling Pathway in Hepatocellular Cells. International journal of molecular sciences. 2023 Mar; 24(7):. doi: 10.3390/ijms24076279. [PMID: 37047251]
  • Babita Shukla, Poonam Kushwaha. Development and Validation of HPLC Method for Quantification of Plumbagin in Plumbago Zeylanica L. Roots. Drug research. 2023 Feb; ?(?):. doi: 10.1055/a-2019-4985. [PMID: 36822215]
  • Arati P Vasav, Balu G Meshram, Anupama A Pable, Vitthal T Barvkar. Artificial microRNA mediated silencing of cyclase and aldo-keto reductase genes reveal their involvement in the plumbagin biosynthetic pathway. Journal of plant research. 2023 Jan; 136(1):47-62. doi: 10.1007/s10265-022-01415-7. [PMID: 36227455]
  • Zhaowei Cai, Shaojuan He, Rongju Liu, Liling Zhou, Li Zhao. Plumbagin rescues the granulosa cell's pyroptosis by reducing WTAP-mediated N6-methylation in polycystic ovary syndrome. Journal of ovarian research. 2022 Dec; 15(1):126. doi: 10.1186/s13048-022-01058-1. [PMID: 36463191]
  • Arati P Vasav, Rucha C Godbole, Ashwini M Darshetkar, Anupama A Pable, Vitthal T Barvkar. Functional genomics-enabled characterization of CYP81B140 and CYP81B141 from Plumbago zeylanica L. substantiates their involvement in plumbagin biosynthesis. Planta. 2022 Oct; 256(6):102. doi: 10.1007/s00425-022-04014-x. [PMID: 36282353]
  • Shulan Han, Shengnan Bi, Tingting Guo, Dandan Sun, Yifang Zou, Lingzhi Wang, Liu Song, Di Chu, Anqi Liao, Xiaohuan Song, Zhuo Yu, Jianfeng Guo. Nano co-delivery of Plumbagin and Dihydrotanshinone I reverses immunosuppressive TME of liver cancer. Journal of controlled release : official journal of the Controlled Release Society. 2022 08; 348(?):250-263. doi: 10.1016/j.jconrel.2022.05.057. [PMID: 35660631]
  • Mandeep Kumar Arora, Anish Ratra, Syed Mohammed Basheeruddin Asdaq, Ali A Alshamrani, Abdulkhaliq J Alsalman, Mehnaz Kamal, Ritu Tomar, Jagannath Sahoo, Jangra Ashok, Mohd Imran. Plumbagin Alleviates Intracerebroventricular-Quinolinic Acid Induced Depression-like Behavior and Memory Deficits in Wistar Rats. Molecules (Basel, Switzerland). 2022 Mar; 27(6):. doi: 10.3390/molecules27061834. [PMID: 35335195]
  • Mitayani Purwoko, Harijono Kario Sentono, Bambang Purwanto, Dono Indarto. Phytochemical evaluation of Plumbago zeylanica roots from Indonesia and assessment of its plumbagin concentration. Folia medica. 2022 Feb; 64(1):96-102. doi: 10.3897/folmed.64.e58086. [PMID: 35851881]
  • Avinash M Yadav, Manali M Bagade, Soni Ghumnani, Sujatha Raman, Bhaskar Saha, Katharina F Kubatzky, Richa Ashma. The phytochemical plumbagin reciprocally modulates osteoblasts and osteoclasts. Biological chemistry. 2022 01; 403(2):211-229. doi: 10.1515/hsz-2021-0290. [PMID: 34882360]
  • Niyatee Thakor, Bhavyata Janathia. Plumbagin: A Potential Candidate for Future Research and Development. Current pharmaceutical biotechnology. 2022; 23(15):1800-1812. doi: 10.2174/1389201023666211230113146. [PMID: 34967293]
  • Kinga Siatkowska, Milena Chraniuk, Piotr Bollin, Rafał Banasiuk. Light emitting diodes optimisation for secondary metabolites production by Droseraceae plants. Journal of photochemistry and photobiology. B, Biology. 2021 Nov; 224(?):112308. doi: 10.1016/j.jphotobiol.2021.112308. [PMID: 34543848]
  • Yang Zhang, Ri Wang, He Zhang, Liya Liu, Jianbin An, Jun Hao, Jingxue Ma. Plumbagin Inhibits Proliferation, Migration, and Invasion of Retinal Pigment Epithelial Cells Induced by FGF-2. Tissue & cell. 2021 Oct; 72(?):101547. doi: 10.1016/j.tice.2021.101547. [PMID: 33964605]
  • Madhu Manti Patra, Poulami Ghosh, Shreya Sengupta, Sujoy K Das Gupta. DNA binding and gene regulatory functions of MSMEG_2295, a repressor encoded by the dinB2 operon of Mycobacterium smegmatis. Microbiology (Reading, England). 2021 10; 167(10):. doi: 10.1099/mic.0.001097. [PMID: 34665112]
  • Isaac J Bello, Olubukola T Oyebode, John O Olanlokun, Todiimu O Omodara, Olufunso O Olorunsogo. Plumbagin induces testicular damage via mitochondrial-dependent cell death. Chemico-biological interactions. 2021 Sep; 347(?):109582. doi: 10.1016/j.cbi.2021.109582. [PMID: 34302802]
  • Liang Yue, Nan Jiang, Anguo Wu, Wenqiao Qiu, Xin Shen, Dalian Qin, Hong Li, Jing Lin, Sicheng Liang, Jianming Wu. Plumbagin can potently enhance the activity of xanthine oxidase: in vitro, in vivo and in silico studies. BMC pharmacology & toxicology. 2021 07; 22(1):45. doi: 10.1186/s40360-021-00511-z. [PMID: 34274011]
  • Nidal Jaradat, Ahmad Ibrahim Khasati, Nawaf Al-Maharik, Ahmad M Eid, Waheed Jundi, Nidal Abd Aljaber Zatar, Mohammed Saleem Ali-Shtayeh, Rana Jamous. Isolation, identification, and antimycotic activity of plumbagin from Plumbago europaea L. roots, leaves and stems. Pakistan journal of pharmaceutical sciences. 2021 Jul; 34(4):1421-1428. doi: ". [PMID: 34799317]
  • Ze-Bo Jiang, Cong Xu, Wenjun Wang, Yi-Zhong Zhang, Ju-Min Huang, Ya-Jia Xie, Qian-Qian Wang, Xing-Xing Fan, Xiao-Jun Yao, Chun Xie, Xuan-Run Wang, Pei-Yu Yan, Yu-Po Ma, Qi-Biao Wu, Elaine Lai-Han Leung. Plumbagin suppresses non-small cell lung cancer progression through downregulating ARF1 and by elevating CD8+ T cells. Pharmacological research. 2021 07; 169(?):105656. doi: 10.1016/j.phrs.2021.105656. [PMID: 33964470]
  • Hong-Hsiang Guan, Yen-Hua Huang, En-Shyh Lin, Chun-Jung Chen, Cheng-Yang Huang. Plumbagin, a Natural Product with Potent Anticancer Activities, Binds to and Inhibits Dihydroorotase, a Key Enzyme in Pyrimidine Biosynthesis. International journal of molecular sciences. 2021 Jun; 22(13):. doi: 10.3390/ijms22136861. [PMID: 34202294]
  • Yuqin Lei, Yuling Li, Yuping Tan, Zhiyong Qian, Qiao Zhou, Da Jia, Qingxiang Sun. Novel Mechanistic Observations and NES-Binding Groove Features Revealed by the CRM1 Inhibitors Plumbagin and Oridonin. Journal of natural products. 2021 05; 84(5):1478-1488. doi: 10.1021/acs.jnatprod.0c01231. [PMID: 33890470]
  • Marta Krychowiak-Maśnicka, Mirosława Krauze-Baranowska, Sylwia Godlewska, Zbigniew Kaczyński, Aleksandra Bielicka-Giełdoń, Natalia Grzegorczyk, Magdalena Narajczyk, Joanna E Frackowiak, Aleksandra Krolicka. Potential of Silver Nanoparticles in Overcoming the Intrinsic Resistance of Pseudomonas aeruginosa to Secondary Metabolites from Carnivorous Plants. International journal of molecular sciences. 2021 May; 22(9):. doi: 10.3390/ijms22094849. [PMID: 34063704]
  • Nattawut Suchaichit, Natcha P Suchaichit, Kwanjai Kanokmedhakul, Patcharaporn Boottanun, Rasana W Sermswan, Panawan Moosophon, Somdej Kanokmedhakul. A new cytotoxic plumbagin derivative from roots of Diospyros undulata. Natural product research. 2021 May; 35(10):1605-1612. doi: 10.1080/14786419.2019.1630120. [PMID: 31203668]
  • Edward Owen Norman, Hayden Tuohey, David Pizzi, Milane Saidah, Rachael Bell, Robert Brkljača, Jonathan M White, Robin B Gasser, Aya C Taki, Sylvia Urban. Phytochemical Profiling and Biological Activity of the Australian Carnivorous Plant, Drosera magna. Journal of natural products. 2021 04; 84(4):964-971. doi: 10.1021/acs.jnatprod.0c00869. [PMID: 33631073]
  • Sevinj Sultanli, Soni Ghumnani, Richa Ashma, Katharina F Kubatzky. Plumbagin, a Biomolecule with (Anti)Osteoclastic Properties. International journal of molecular sciences. 2021 Mar; 22(5):. doi: 10.3390/ijms22052779. [PMID: 33803472]
  • Danfeng Xue, Xiongming Zhou, Jiaxuan Qiu. Cytotoxicity mechanisms of plumbagin in drug-resistant tongue squamous cell carcinoma. The Journal of pharmacy and pharmacology. 2021 Mar; 73(1):98-109. doi: 10.1093/jpp/rgaa027. [PMID: 33791802]
  • Asifur Rahman-Soad, Alberto Dávila-Lara, Christian Paetz, Axel Mithöfer. Plumbagin, a Potent Naphthoquinone from Nepenthes Plants with Growth Inhibiting and Larvicidal Activities. Molecules (Basel, Switzerland). 2021 Feb; 26(4):. doi: 10.3390/molecules26040825. [PMID: 33562562]
  • Revathy Nadhan, Dipyaman Patra, Neethu Krishnan, Arathi Rajan, Srinivas Gopala, Dashnamoorthy Ravi, Priya Srinivas. Perspectives on mechanistic implications of ROS inducers for targeting viral infections. European journal of pharmacology. 2021 Jan; 890(?):173621. doi: 10.1016/j.ejphar.2020.173621. [PMID: 33068588]
  • Arpita Roy. Plumbagin: A Potential Anti-cancer Compound. Mini reviews in medicinal chemistry. 2021; 21(6):731-737. doi: 10.2174/1389557520666201116144421. [PMID: 33200707]
  • Alberto Dávila-Lara, Asifur Rahman-Soad, Michael Reichelt, Axel Mithöfer. Carnivorous Nepenthes x ventrata plants use a naphthoquinone as phytoanticipin against herbivory. PloS one. 2021; 16(10):e0258235. doi: 10.1371/journal.pone.0258235. [PMID: 34679089]
  • Intouch Sakpakdeejaroen, Sukrut Somani, Partha Laskar, Margaret Mullin, Christine Dufès. Regression of Melanoma Following Intravenous Injection of Plumbagin Entrapped in Transferrin-Conjugated, Lipid-Polymer Hybrid Nanoparticles. International journal of nanomedicine. 2021; 16(?):2615-2631. doi: 10.2147/ijn.s293480. [PMID: 33854311]
  • Yongming Li, Songzuo Yu, Yu Li, Xiao Liang, Min Su, Rong Li. Medical Significance of Uterine Corpus Endometrial Carcinoma Patients Infected With SARS-CoV-2 and Pharmacological Characteristics of Plumbagin. Frontiers in endocrinology. 2021; 12(?):714909. doi: 10.3389/fendo.2021.714909. [PMID: 34712201]
  • Zhe Li, Arunachalam Chinnathambi, Sulaiman Ali Alharbi, Fuyu Yin. Plumbagin protects the myocardial damage by modulating the cardiac biomarkers, antioxidants, and apoptosis signaling in the doxorubicin-induced cardiotoxicity in rats. Environmental toxicology. 2020 Dec; 35(12):1374-1385. doi: 10.1002/tox.23002. [PMID: 32691977]
  • Arati P Vasav, Anupama A Pable, Vitthal T Barvkar. Differential transcriptome and metabolome analysis of Plumbago zeylanica L. reveal putative genes involved in plumbagin biosynthesis. Fitoterapia. 2020 Nov; 147(?):104761. doi: 10.1016/j.fitote.2020.104761. [PMID: 33069837]
  • Adrian Chrastina, John Welsh, Gaelle Rondeau, Parisa Abedinpour, Per Borgström, Véronique T Baron. Plumbagin-Serum Albumin Interaction: Spectral, Electrochemical, Structure-Binding Analysis, Antiproliferative and Cell Signaling Aspects with Implications for Anticancer Therapy. ChemMedChem. 2020 07; 15(14):1338-1347. doi: 10.1002/cmdc.202000157. [PMID: 32410390]
  • Alberto Dávila-Lara, Carlos E Rodríguez-López, Sarah E O'Connor, Axel Mithöfer. Metabolomics Analysis Reveals Tissue-Specific Metabolite Compositions in Leaf Blade and Traps of Carnivorous Nepenthes Plants. International journal of molecular sciences. 2020 Jun; 21(12):. doi: 10.3390/ijms21124376. [PMID: 32575527]
  • Soo Yeon Lee, Mi Jeong Kim, Subhin Jang, Gyeong-Eun Lee, Soo-Yeon Hwang, Youngjoo Kwon, Jung Yeon Hong, Myung Hyun Sohn, Soo-Yeon Park, Ho-Geun Yoon. Plumbagin Suppresses Pulmonary Fibrosis via Inhibition of p300 Histone Acetyltransferase Activity. Journal of medicinal food. 2020 Jun; 23(6):633-640. doi: 10.1089/jmf.2019.4670. [PMID: 32311286]
  • Fatima-Zahra Alem, Meriem Bejaoui, Myra O Villareal, Boutayna Rhourri-Frih, Hiroko Isoda. Elucidation of the effect of plumbagin on the metastatic potential of B16F10 murine melanoma cells via MAPK signalling pathway. Experimental dermatology. 2020 04; 29(4):427-435. doi: 10.1111/exd.14079. [PMID: 32012353]
  • Yen-Hua Huang, Yi Lien, Jung-Hung Chen, En-Shyh Lin, Cheng-Yang Huang. Identification and characterization of dihydropyrimidinase inhibited by plumbagin isolated from Nepenthes miranda extract. Biochimie. 2020 Apr; 171-172(?):124-135. doi: 10.1016/j.biochi.2020.03.005. [PMID: 32147511]
  • Mina Beigmohamadi, Ali Movafeghi, Samineh Jafari, Ali Sharafi. Potential of the genetically transformed root cultures of Plumbago europaea for biomass and plumbagin production. Biotechnology progress. 2020 03; 36(2):e2905. doi: 10.1002/btpr.2905. [PMID: 31513731]
  • Nalinee Pradubyat, Nithidol Sakunrangsit, Apiwat Mutirangura, Wannarasmi Ketchart. NADPH: Quinone oxidoreductase 1 (NQO1) mediated anti-cancer effects of plumbagin in endocrine resistant MCF7 breast cancer cells. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2020 Jan; 66(?):153133. doi: 10.1016/j.phymed.2019.153133. [PMID: 31790893]
  • Zhenhua Yin, Juanjuan Zhang, Lin Chen, Qingfeng Guo, Baocheng Yang, Wei Zhang, Wenyi Kang. Anticancer Effects and Mechanisms of Action of Plumbagin: Review of Research Advances. BioMed research international. 2020; 2020(?):6940953. doi: 10.1155/2020/6940953. [PMID: 33344645]
  • Qianrui Zhang, Sheng Zhao, Wenxia Zheng, Haitan Fu, Tao Wu, Fei Hu. Plumbagin attenuated oxygen-glucose deprivation/reoxygenation-induced injury in human SH-SY5Y cells by inhibiting NOX4-derived ROS-activated NLRP3 inflammasome. Bioscience, biotechnology, and biochemistry. 2020 Jan; 84(1):134-142. doi: 10.1080/09168451.2019.1664893. [PMID: 31490096]
  • Apurba Sarkar, Shreya Ghosh, Rahul Shaw, Madhu Manti Patra, Fatema Calcuttawala, Noyonika Mukherjee, Sujoy K Das Gupta. Mycobacterium tuberculosis thymidylate synthase (ThyX) is a target for plumbagin, a natural product with antimycobacterial activity. PloS one. 2020; 15(2):e0228657. doi: 10.1371/journal.pone.0228657. [PMID: 32017790]
  • Igor Alves Mancilla, Giuliana Castello Coatti, Bruna Isabela Biazi, Thalita Alves Zanetti, Adrivanio Baranoski, Lilian Areal Marques, Amanda Cristina Corveloni, Sandra Regina Lepri, Mario Sergio Mantovani. Molecular pathways related to the control of proliferation and cell death in 786-O cells treated with plumbagin. Molecular biology reports. 2019 Dec; 46(6):6071-6078. doi: 10.1007/s11033-019-05042-9. [PMID: 31456160]
  • Panitch Boonsnongcheep, Worapol Sae-Foo, Kanpawee Banpakoat, Suwaphat Channarong, Sukanda Chitsaithan, Pornpimon Uafua, Wattika Putha, Kanchanok Kerdsiri, Waraporn Putalun. Artificial color light sources and precursor feeding enhance plumbagin production of the carnivorous plants Drosera burmannii and Drosera indica. Journal of photochemistry and photobiology. B, Biology. 2019 Oct; 199(?):111628. doi: 10.1016/j.jphotobiol.2019.111628. [PMID: 31610432]
  • Alexandra G Durán, Nuria Chinchilla, José Mg Molinillo, Francisco A Macías. Structure-activity relationship studies on naphthoquinone analogs. The search for new herbicides based on natural products. Pest management science. 2019 Sep; 75(9):2517-2529. doi: 10.1002/ps.5442. [PMID: 30972945]
  • Jing Zhong, Junxuan Li, Jiexiao Wei, Delun Huang, Lini Huo, Chuan Zhao, Yuning Lin, Wanjun Chen, Yanfei Wei. Plumbagin Restrains Hepatocellular Carcinoma Angiogenesis by Stromal Cell-Derived Factor (SDF-1)/CXCR4-CXCR7 Axis. Medical science monitor : international medical journal of experimental and clinical research. 2019 Aug; 25(?):6110-6119. doi: 10.12659/msm.915782. [PMID: 31415486]
  • Yi Shao, Minyan Dang, Yukiat Lin, Feng Xue. Evaluation of wound healing activity of plumbagin in diabetic rats. Life sciences. 2019 Aug; 231(?):116422. doi: 10.1016/j.lfs.2019.04.048. [PMID: 31059689]
  • H Periasamy, S Iswarya, N Pavithra, S Senthilnathan, A Gnanamani. In vitro antibacterial activity of plumbagin isolated from Plumbago zeylanica L. against methicillin-resistant Staphylococcus aureus. Letters in applied microbiology. 2019 Jul; 69(1):41-49. doi: 10.1111/lam.13160. [PMID: 31044446]
  • Daiva Majiene, Jolita Kuseliauskyte, Arturas Stimbirys, Aiste Jekabsone. Comparison of the Effect of Native 1,4-Naphthoquinones Plumbagin, Menadione, and Lawsone on Viability, Redox Status, and Mitochondrial Functions of C6 Glioblastoma Cells. Nutrients. 2019 Jun; 11(6):. doi: 10.3390/nu11061294. [PMID: 31181639]
  • Sarayu A Pai, Renuka P Munshi, Falguni H Panchal, Ila-Shruti Gaur, Snehal N Mestry, Malvika S Gursahani, Archana R Juvekar. Plumbagin reduces obesity and nonalcoholic fatty liver disease induced by fructose in rats through regulation of lipid metabolism, inflammation and oxidative stress. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2019 Mar; 111(?):686-694. doi: 10.1016/j.biopha.2018.12.139. [PMID: 30611993]
  • Yanfei Wei, Beibei Lv, Jinling Xie, Yuan Zhang, Yuning Lin, Shengshan Wang, Jing Zhong, Yongxin Chen, Yue Peng, Jing Ma. Plumbagin promotes human hepatoma SMMC-7721 cell apoptosis via caspase-3/vimentin signal-mediated EMT. Drug design, development and therapy. 2019; 13(?):2343-2355. doi: 10.2147/dddt.s204787. [PMID: 31409969]
  • Umasankar De, Ji Yeon Son, Yukyoung Jeon, Song-Yi Ha, Yu Jin Park, Sungpil Yoon, Ki-Tae Ha, Wahn Soo Choi, Byung Mu Lee, In Su Kim, Jong Hwan Kwak, Hyung Sik Kim. Plumbagin from a tropical pitcher plant (Nepenthes alata Blanco) induces apoptotic cell death via a p53-dependent pathway in MCF-7 human breast cancer cells. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2019 Jan; 123(?):492-500. doi: 10.1016/j.fct.2018.11.040. [PMID: 30458268]
  • Suhong Wang, Zhecheng Zhang, Shuxin Zhao. Plumbagin inhibits amyloid-β-induced neurotoxicity: regulation of oxidative stress and nuclear factor erythroid 2-related factor 2 activation. Neuroreport. 2018 10; 29(15):1269-1274. doi: 10.1097/wnr.0000000000001103. [PMID: 30095583]
  • Baisen Li, Xiuhui Gu, Mingbo Wu, Ye Zhao, Jie Yang, Li Feng, Junjie Gou, Linyi Chen, Ting Li, Linpeng Li, Lan Wang, Li Zhu, Kun Zhang. Plumbagin inhibits the proliferation of nasopharyngeal carcinoma 6-10B cells by upregulation of reactive oxygen species. Anti-cancer drugs. 2018 10; 29(9):890-897. doi: 10.1097/cad.0000000000000665. [PMID: 30119131]
  • Aya M Zaki, Dalia M El-Tanbouly, Rania M Abdelsalam, Hala F Zaki. Plumbagin ameliorates hepatic ischemia-reperfusion injury in rats: Role of high mobility group box 1 in inflammation, oxidative stress and apoptosis. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2018 Oct; 106(?):785-793. doi: 10.1016/j.biopha.2018.07.004. [PMID: 29990872]
  • Chihiro Ito, Takuya Matsui, Makiko Takano, Tian-Shung Wu, Masataka Itoigawa. Anti-cell proliferation effect of naphthoquinone dimers isolated from Plumbago zeylanica. Natural product research. 2018 Sep; 32(18):2127-2132. doi: 10.1080/14786419.2017.1366476. [PMID: 28823173]
  • S A Pai, E A F Martis, S G Joshi, R P Munshi, A R Juvekar. Plumbagin exerts antiobesity effects through inhibition of pancreatic lipase and adipocyte differentiation. Phytotherapy research : PTR. 2018 Aug; 32(8):1631-1635. doi: 10.1002/ptr.6085. [PMID: 29672969]
  • Prashant Joshi, Vinay R Sonawane, Ibidapo S Williams, Glen J P McCann, Linda Gatchie, Rajni Sharma, Naresh Satti, Bhabatosh Chaudhuri, Sandip B Bharate. Identification of karanjin isolated from the Indian beech tree as a potent CYP1 enzyme inhibitor with cellular efficacy via screening of a natural product repository. MedChemComm. 2018 Feb; 9(2):371-382. doi: 10.1039/c7md00388a. [PMID: 30108931]
  • Jian Lu, Daozhi Liu, Xiaojing Zhou, Ang Chen, Zhenran Jiang, Xiyun Ye, Mingyao Liu, Xin Wang. Plant natural product plumbagin presents potent inhibitory effect on human cytochrome P450 2J2 enzyme. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2018 Jan; 39(?):137-145. doi: 10.1016/j.phymed.2017.12.026. [PMID: 29433675]
  • S Rajalakshmi, Niraj Vyawahare, Atmaram Pawar, Paresh Mahaparale, Bothiraja Chellampillai. Current development in novel drug delivery systems of bioactive molecule plumbagin. Artificial cells, nanomedicine, and biotechnology. 2018; 46(sup1):209-218. doi: 10.1080/21691401.2017.1417865. [PMID: 29298523]
  • Adrian Chrastina, Veronique T Baron, Parisa Abedinpour, Gaelle Rondeau, John Welsh, Per Borgström. Plumbagin-Loaded Nanoemulsion Drug Delivery Formulation and Evaluation of Antiproliferative Effect on Prostate Cancer Cells. BioMed research international. 2018; 2018(?):9035452. doi: 10.1155/2018/9035452. [PMID: 30534567]
  • Arpita Roy, Navneeta Bharadvaja. Biotechnological Approaches for the Production of Pharmaceutically Important Compound: Plumbagin. Current pharmaceutical biotechnology. 2018; 19(5):372-381. doi: 10.2174/1389201019666180629143842. [PMID: 29956626]
  • Samia S Messeha, Najla O Zarmouh, Patricia Mendonca, Malak G Kolta, Karam F A Soliman. The attenuating effects of plumbagin on pro-inflammatory cytokine expression in LPS-activated BV-2 microglial cells. Journal of neuroimmunology. 2017 12; 313(?):129-137. doi: 10.1016/j.jneuroim.2017.09.007. [PMID: 28950995]
  • Jing Li, Jia Li, Guowei Cai, Lin Shen, Furong Lu. Proapoptotic and Growth-inhibitory Effects of Plumbagin on Human Gastric Cancer Cells Via Suppression of Signal Transducer and Activator of Transcription 3 and Protein Kinase B. Alternative therapies in health and medicine. 2017 Sep; 23(5):42-48. doi: ". [PMID: 28236621]
  • Xin-Yi Zheng, Chuan-Yuan Mao, Han Qiao, Xi Zhang, Li Yu, Ting-Yu Wang, Er-Yi Lu. Plumbagin suppresses chronic periodontitis in rats via down-regulation of TNF-α, IL-1β and IL-6 expression. Acta pharmacologica Sinica. 2017 Aug; 38(8):1150-1160. doi: 10.1038/aps.2017.19. [PMID: 28552911]
  • Xiaoyang Kong, Jing Luo, Tongpeng Xu, Yunjiao Zhou, Zengkai Pan, Yinghua Xie, Limin Zhao, Yingting Lu, Xiyao Han, Zhixiong Li, Ligen Liu. Plumbagin enhances TRAIL-induced apoptosis of human leukemic Kasumi‑1 cells through upregulation of TRAIL death receptor expression, activation of caspase-8 and inhibition of cFLIP. Oncology reports. 2017 Jun; 37(6):3423-3432. doi: 10.3892/or.2017.5627. [PMID: 28498435]
  • Guanghui Chen, Yan Yue, Jun Qin, Xinping Xiao, Qing Ren, Bin Xiao. Plumbagin suppresses the migration and invasion of glioma cells via downregulation of MMP-2/9 expression and inaction of PI3K/Akt signaling pathway in vitro. Journal of pharmacological sciences. 2017 May; 134(1):59-67. doi: 10.1016/j.jphs.2017.04.003. [PMID: 28506595]
  • Chi Gu Kang, Eunji Im, Hyo-Jeong Lee, Eun-Ok Lee. Plumbagin reduces osteopontin-induced invasion through inhibiting the Rho-associated kinase signaling pathway in A549 cells and suppresses osteopontin-induced lung metastasis in BalB/c mice. Bioorganic & medicinal chemistry letters. 2017 05; 27(9):1914-1918. doi: 10.1016/j.bmcl.2017.03.047. [PMID: 28359791]
  • Yong-Xian Guo, Liang Liu, Dong-Zhan Yan, Jian-Ping Guo. Plumbagin prevents osteoarthritis in human chondrocytes through Nrf-2 activation. Molecular medicine reports. 2017 Apr; 15(4):2333-2338. doi: 10.3892/mmr.2017.6234. [PMID: 28259976]
  • Christina Lieberherr, Guoliang Zhang, Anika Grafen, Katrin Singethan, Sabine Kendl, Valentin Vogt, Jonathan Maier, Gerhard Bringmann, Jürgen Schneider-Schaulies. The Plant-Derived Naphthoquinone Droserone Inhibits In Vitro Measles Virus Infection. Planta medica. 2017 Feb; 83(3-04):232-238. doi: 10.1055/s-0042-111825. [PMID: 27420351]
  • Yuling Liu, Yuee Cai, Chengwei He, Meiwan Chen, Hui Li. Anticancer Properties and Pharmaceutical Applications of Plumbagin: A Review. The American journal of Chinese medicine. 2017; 45(3):423-441. doi: 10.1142/s0192415x17500264. [PMID: 28359198]
  • Victor Kuete, Leonidah K Omosa, Viviane R Sipowo Tala, Jacob O Midiwo, Armelle T Mbaveng, Sauda Swaleh, Oğuzhan Karaosmanoğlu, Hülya Sivas. Cytotoxicity of Plumbagin, Rapanone and 12 other naturally occurring Quinones from Kenyan Flora towards human carcinoma cells. BMC pharmacology & toxicology. 2016 12; 17(1):60. doi: 10.1186/s40360-016-0104-7. [PMID: 27998305]
  • Huafeng Wang, Huan Zhang, Yuqing Zhang, Dan Wang, Xixi Cheng, Fengrui Yang, Qi Zhang, Zhenyi Xue, Yan Li, Lijuan Zhang, Luhong Yang, Guolin Miao, Daiqing Li, Zhiyu Guan, Yurong Da, Zhi Yao, Fei Gao, Liang Qiao, Li Kong, Rongxin Zhang. Plumbagin protects liver against fulminant hepatic failure and chronic liver fibrosis via inhibiting inflammation and collagen production. Oncotarget. 2016 Dec; 7(50):82864-82875. doi: 10.18632/oncotarget.12655. [PMID: 27756878]
  • Wiriyaporn Sumsakul, Tullayakorn Plengsuriyakarn, Kesara Na-Bangchang. Pharmacokinetics, toxicity, and cytochrome P450 modulatory activity of plumbagin. BMC pharmacology & toxicology. 2016 11; 17(1):50. doi: 10.1186/s40360-016-0094-5. [PMID: 27839515]
  • Venkatraman Pradeepa, Sengottayan Senthil-Nathan, Subbiah Sathish-Narayanan, Selvaraj Selin-Rani, Prabhakaran Vasantha-Srinivasan, Annamalai Thanigaivel, Athirstam Ponsankar, Edward-Sam Edwin, Muthiah Sakthi-Bagavathy, Kandaswamy Kalaivani, Kadarkarai Murugan, Veeramuthu Duraipandiyan, Naif Abdullah Al-Dhabi. Potential mode of action of a novel plumbagin as a mosquito repellent against the malarial vector Anopheles stephensi, (Culicidae: Diptera). Pesticide biochemistry and physiology. 2016 Nov; 134(?):84-93. doi: 10.1016/j.pestbp.2016.04.001. [PMID: 27914545]
  • Hosam O Elansary, Kowiyou Yessoufou', Eman A Mahmoud, Krystyna Skalicka-Woźniak. In vitro Antioxidant and Antimicrobial Effects of Ceratostigma plumbaginoides. Natural product communications. 2016 Oct; 11(10):1455-1458. doi: . [PMID: 30549598]
  • Sherif T S Hassan, Kateřina Berchová-Bímová, Jan Petráš. Plumbagin, a Plant-Derived Compound, Exhibits Antifungal Combinatory Effect with Amphotericin B against Candida albicans Clinical Isolates and Anti-hepatitis C Virus Activity. Phytotherapy research : PTR. 2016 Sep; 30(9):1487-92. doi: 10.1002/ptr.5650. [PMID: 27215409]
  • Gerhard Bringmann, Andreas Irmer, Tobias Büttner, Anu Schaumlöffel, Guoliang Zhang, Raina Seupel, Doris Feineis, Karin Fester. Axially Chiral Dimeric Naphthalene and Naphthoquinone Metabolites, from Root Cultures of the West African Liana Triphyophyllum peltatum. Journal of natural products. 2016 08; 79(8):2094-103. doi: 10.1021/acs.jnatprod.6b00439. [PMID: 27438403]
  • Safoura Sameni, M Prakash Hande. Plumbagin triggers DNA damage response, telomere dysfunction and genome instability of human breast cancer cells. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2016 Aug; 82(?):256-68. doi: 10.1016/j.biopha.2016.05.007. [PMID: 27470362]
  • Bhanu Priya Awasthi, Manoj Kathuria, Garima Pant, Neema Kumari, Kalyan Mitra. Plumbagin, a plant-derived naphthoquinone metabolite induces mitochondria mediated apoptosis-like cell death in Leishmania donovani: an ultrastructural and physiological study. Apoptosis : an international journal on programmed cell death. 2016 08; 21(8):941-53. doi: 10.1007/s10495-016-1259-9. [PMID: 27315817]
  • Hui Chu, Hang Yu, Ding Ren, Kejun Zhu, Hong Huang. Plumbagin exerts protective effects in nucleus pulposus cells by attenuating hydrogen peroxide-induced oxidative stress, inflammation and apoptosis through NF-κB and Nrf-2. International journal of molecular medicine. 2016 Jun; 37(6):1669-76. doi: 10.3892/ijmm.2016.2564. [PMID: 27082014]
  • Kyoung Jun Bae, Yura Lee, Soon Ae Kim, Jiyeon Kim. Plumbagin exerts an immunosuppressive effect on human T-cell acute lymphoblastic leukemia MOLT-4 cells. Biochemical and biophysical research communications. 2016 Apr; 473(1):272-277. doi: 10.1016/j.bbrc.2016.03.092. [PMID: 27018383]
  • Shi-Xun Wang, Jian Wang, Jing-Bo Shao, Wei-Ning Tang, Jing-Quan Zhong. Plumbagin Mediates Cardioprotection Against Myocardial Ischemia/Reperfusion Injury Through Nrf-2 Signaling. Medical science monitor : international medical journal of experimental and clinical research. 2016 Apr; 22(?):1250-7. doi: 10.12659/msm.897618. [PMID: 27078001]
  • W Sumsakul, J Karbwang, K Na-Bangchang. Application of SPECT/CT imaging system and radiochemical analysis for investigation of blood kinetics and tissue distribution of radiolabeled plumbagin in healthy and Plasmodium berghei-infected mice. Experimental parasitology. 2016 Feb; 161(?):54-61. doi: 10.1016/j.exppara.2015.12.001. [PMID: 26713669]
  • Amit Jaisi, Pharkphoom Panichayupakaranant. Increased production of plumbagin in Plumbago indica root cultures by biotic and abiotic elicitors. Biotechnology letters. 2016 Feb; 38(2):351-5. doi: 10.1007/s10529-015-1969-z. [PMID: 26428368]
  • Serena Fiorito, Salvatore Genovese, Vito Alessandro Taddeo, Véronique Mathieu, Robert Kiss, Francesco Epifano. Novel juglone and plumbagin 5-O derivatives and their in vitro growth inhibitory activity against apoptosis-resistant cancer cells. Bioorganic & medicinal chemistry letters. 2016 Jan; 26(2):334-337. doi: 10.1016/j.bmcl.2015.12.017. [PMID: 26706169]
  • Pharkphoom Panichayupakaranant, Md Iftekhar Ahmad. Plumbagin and Its Role in Chronic Diseases. Advances in experimental medicine and biology. 2016; 929(?):229-246. doi: 10.1007/978-3-319-41342-6_10. [PMID: 27771927]
  • Phantip Chaweeborisuit, Chinnawut Suriyonplengsaeng, Worawit Suphamungmee, Prasert Sobhon, Krai Meemon. Nematicidal effect of plumbagin on Caenorhabditis elegans: a model for testing a nematicidal drug. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2016; 71(5-6):121-31. doi: 10.1515/znc-2015-0222. [PMID: 27140303]
  • Yi Gou, Zhan Zhang, Jinxu Qi, Shichu Liang, Zuping Zhou, Feng Yang, Hong Liang. Folate-functionalized human serum albumin carrier for anticancer copper(II) complexes derived from natural plumbagin. Journal of inorganic biochemistry. 2015 Dec; 153(?):13-22. doi: 10.1016/j.jinorgbio.2015.09.004. [PMID: 26398432]
  • Aik Kia Khaw, Safoura Sameni, Shriram Venkatesan, Guruprasad Kalthur, M Prakash Hande. Plumbagin alters telomere dynamics, induces DNA damage and cell death in human brain tumour cells. Mutation research. Genetic toxicology and environmental mutagenesis. 2015 Nov; 793(?):86-95. doi: 10.1016/j.mrgentox.2015.06.004. [PMID: 26520377]
  • Muobarak J Tuorkey. Cancer Therapy with Phytochemicals: Present and Future Perspectives. Biomedical and environmental sciences : BES. 2015 Nov; 28(11):808-19. doi: 10.3967/bes2015.112. [PMID: 26695359]