Plumbagin (BioDeep_00000229786)
Secondary id: BioDeep_00000003768
natural product PANOMIX_OTCML-2023 Antitumor activity
代谢物信息卡片
化学式: C11H8O3 (188.0473)
中文名称: 白花丹醌, 白花丹素, 兰雪醌, 1,4-二氨基-2,3-二氯蒽醌
谱图信息:
最多检出来源 Homo sapiens(blood) 10.73%
分子结构信息
SMILES: CC1=CC(=O)C2=C(C1=O)C=CC=C2O
InChI: InChI=1S/C11H8O3/c1-6-5-9(13)10-7(11(6)14)3-2-4-8(10)12/h2-5,12H,1H3
描述信息
Plumbagin is a hydroxy-1,4-naphthoquinone that is 1,4-naphthoquinone in which the hydrogens at positions 2 and 5 are substituted by methyl and hydroxy groups, respectively. It has a role as a metabolite, an immunological adjuvant, an anticoagulant and an antineoplastic agent. It is a member of phenols and a hydroxy-1,4-naphthoquinone.
Plumbagin is a compound investigated for its anticancer activity. It has been found that it inactivates the Akt/NF-kB, MMP-9 and VEGF pathways.
Plumbagin is a natural product found in Drosera slackii, Diospyros hebecarpa, and other organisms with data available.
Synthetic Plumbagin PCUR-101 is a synthetic form of the plant-derived medicinal agent, plumbagin, with potential antineoplastic activity. Plumbagin may act by inhibiting the expression of protein kinase C epsilon (PKCe), signal transducers and activators of transcription 3 phosphorylation (Stat3), protein kinase B (AKT), and certain epithelial-to-mesenchymal transition (EMT) markers, including vimentin and slug. This results in possible inhibition of proliferation in susceptible tumor cells. PKCe, Stat3, AKT, and the EMT markers vimentin and slug have been linked to the induction and progression of prostate cancer.
A hydroxy-1,4-naphthoquinone that is 1,4-naphthoquinone in which the hydrogens at positions 2 and 5 are substituted by methyl and hydroxy groups, respectively.
D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics
D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents
C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor
D020011 - Protective Agents > D002316 - Cardiotonic Agents
D006401 - Hematologic Agents > D000925 - Anticoagulants
D000970 - Antineoplastic Agents
D002317 - Cardiovascular Agents
D007155 - Immunologic Factors
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.955
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.957
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.960
Plumbagin (2-Methyljuglone) is a naphthoquinone isolated from Plumbago zeylanica, exhibits anticancer and antiproliferative activities[1].
Plumbagin (2-Methyljuglone) is a naphthoquinone isolated from Plumbago zeylanica, exhibits anticancer and antiproliferative activities[1].
同义名列表
33 个代谢物同义名
InChI=1/C11H8O3/c1-6-5-9(13)10-7(11(6)14)3-2-4-8(10)12/h2-5,12H,1H; 5-hydroxy-2-methyl-1,4-dihydronaphthalene-1,4-dione; 4-08-00-02376 (Beilstein Handbook Reference); 1,4-Naphthalenedione, 5-hydroxy-2-methyl-; 5-Hydroxy-2-methyl-naphthalene-1,4-dione; 1,4-NAPHTHOQUINONE, 5-HYDROXY-2-METHYL-; 5-Hydroxy-2-methyl-1,4-naphthalenedione; 5-Hydroxy-2-methylnaphthalene-1,4-dione; 5-Hydroxy-2-methyl-[1,4]naphthoquinone; 2-methyl-5-hydroxy-1,4-naphthoquinone; 5-hydroxy-2-methyl-1,4-naphthoquinone; 5- HYDROXY,2-METHYL-1,4-NAPHTOQUINONE; Plumbagin from Plumbago indica; 1, 5-hydroxy-2-methyl-; WLN: L66 BV EVJ C1 GQ; Plumbagin [WHO-DD]; 2-Methyljuglone; UNII-YAS4TBQ4OQ; PLUMBAGIN [MI]; NCI60_001904; ACon1_001611; Plumbagine; Plumbagone; Ophioxylin; YAS4TBQ4OQ; Plumbaein; Plumbagin; AI3-38055; plumbapin; Pumbagin; A1-00788; RTK1; Plumbagin
数据库引用编号
33 个数据库交叉引用编号
- ChEBI: CHEBI:8273
- KEGG: C10387
- PubChem: 10205
- DrugBank: DB17048
- ChEMBL: CHEMBL295316
- Wikipedia: Plumbagin
- MeSH: plumbagin
- ChemIDplus: 0000481425
- KNApSAcK: C00002852
- CAS: 481-42-5
- MoNA: VF-NPL-LTQ006412
- MoNA: VF-NPL-LTQ006411
- MoNA: VF-NPL-LTQ006410
- MoNA: VF-NPL-LTQ006409
- MoNA: VF-NPL-QEHF003324
- MoNA: VF-NPL-QEHF003323
- MoNA: VF-NPL-QEHF003322
- MoNA: VF-NPL-QEHF003321
- MoNA: VF-NPL-QEHF003320
- MoNA: VF-NPL-QEHF003319
- MoNA: BML81983
- MoNA: BML81982
- MoNA: BML81981
- MoNA: BML81980
- medchemexpress: HY-N1497
- MetaboLights: MTBLC8273
- PubChem: 12573
- PDB-CCD: 90R
- 3DMET: B03800
- NIKKAJI: J5.778I
- RefMet: Plumbagin
- KNApSAcK: 8273
- LOTUS: LTS0212929
分类词条
相关代谢途径
Reactome(0)
BioCyc(7)
- (-)-maackiain biosynthesis
- tetrahydroxyxanthone biosynthesis (from benzoate)
- tetrahydroxyxanthone biosynthesis (from 3-hydroxybenzoate)
- plumbagin biosynthesis
- superpathway of pterocarpan biosynthesis (via formononetin)
- superpathway of tetrahydroxyxanthone biosynthesis
- superpathway of formononetin derivative biosynthesis
PlantCyc(7)
- tetrahydroxyxanthone biosynthesis (from 3-hydroxybenzoate)
- superpathway of tetrahydroxyxanthone biosynthesis
- (-)-maackiain biosynthesis
- superpathway of pterocarpan biosynthesis (via formononetin)
- plumbagin biosynthesis
- tetrahydroxyxanthone biosynthesis (from benzoate)
- superpathway of formononetin derivative biosynthesis
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
253 个相关的物种来源信息
- 68526 - Aegle: LTS0212929
- 68527 - Aegle marmelos: 10.1016/J.PHYTOCHEM.2009.10.013
- 68527 - Aegle marmelos: LTS0212929
- 173385 - Aldrovanda: LTS0212929
- 173386 - Aldrovanda vesiculosa: 10.1016/0305-1978(94)90045-0
- 173386 - Aldrovanda vesiculosa: LTS0212929
- 63070 - Ancistrocladaceae: LTS0212929
- 63071 - Ancistrocladus: LTS0212929
- 122295 - Ancistrocladus abbreviatus: 10.1016/J.PHYTOCHEM.2008.06.019
- 122295 - Ancistrocladus abbreviatus: LTS0212929
- 714096 - Ancistrocladus cochinchinensis: 10.1016/S0031-9422(96)00510-9
- 714096 - Ancistrocladus cochinchinensis: LTS0212929
- 122297 - Ancistrocladus heyneanus: 10.1016/S0040-4039(98)01935-2
- 122297 - Ancistrocladus heyneanus: LTS0212929
- 714108 - Ancistrocladus tectorius: 10.1016/S0031-9422(96)00510-9
- 714108 - Ancistrocladus tectorius: LTS0212929
- 6854 - Arachnida: LTS0212929
- 58982 - Aristea: LTS0212929
- 2984540 - Aristea alata: LTS0212929
- 1142941 - Aristea ecklonii: 10.1016/S0031-9422(00)83204-5
- 1142941 - Aristea ecklonii: LTS0212929
- 58984 - Aristea platycaulis: 10.1515/ZNC-1985-5-608
- 58984 - Aristea platycaulis: LTS0212929
- 6656 - Arthropoda: LTS0212929
- 2793657 - Barleria alluaudii: 10.1021/NP200805Z
- 63087 - Ceratostigma: LTS0212929
- 63094 - Ceratostigma minus: 10.1016/S0031-9422(00)90660-5
- 63094 - Ceratostigma minus: LTS0212929
- 278073 - Ceratostigma plumbaginoides: 10.1021/NP970044U
- 2054445 - Ceratostigma willmottianum:
- 2054445 - Ceratostigma willmottianum: 10.1007/BF00568230
- 2054445 - Ceratostigma willmottianum: 10.1021/NP970044U
- 2054445 - Ceratostigma willmottianum: LTS0212929
- 4361 - Dionaea: LTS0212929
- 4362 - Dionaea muscipula:
- 4362 - Dionaea muscipula: -
- 4362 - Dionaea muscipula: 10.1016/0031-9422(90)85125-Y
- 4362 - Dionaea muscipula: 10.1016/0031-9422(96)89675-0
- 4362 - Dionaea muscipula: 10.1016/0305-1978(94)90045-0
- 4362 - Dionaea muscipula: 10.1016/S0031-9422(00)80563-4
- 4362 - Dionaea muscipula: 10.1055/S-2008-1081303
- 4362 - Dionaea muscipula: 10.1246/BCSJ.77.537
- 4362 - Dionaea muscipula: LTS0212929
- 63072 - Dioncophyllaceae: LTS0212929
- 13492 - Diospyros: LTS0212929
- 1367289 - Diospyros anisandra: 10.1016/J.FITOTE.2007.03.004
- 1367289 - Diospyros anisandra: LTS0212929
- 983402 - Diospyros argentea: 10.1016/S0031-9422(00)80490-2
- 983402 - Diospyros argentea: LTS0212929
- 1932074 - Diospyros blancoi: 10.1016/S0031-9422(00)80490-2
- 1932074 - Diospyros blancoi: LTS0212929
- 2945278 - Diospyros canaliculata:
- 2945278 - Diospyros canaliculata: LTS0212929
- 570480 - Diospyros crassiflora: 10.1016/J.TETLET.2006.03.006
- 570480 - Diospyros crassiflora: LTS0212929
- 268838 - Diospyros discolor: 10.1016/S0031-9422(00)80490-2
- 268838 - Diospyros discolor: LTS0212929
- 570484 - Diospyros ebenum:
- 570484 - Diospyros ebenum: 10.1016/J.PHYTOCHEM.2006.05.039
- 570484 - Diospyros ebenum: 10.1016/S0031-9422(97)01020-0
- 570484 - Diospyros ebenum: LTS0212929
- 2945281 - Diospyros elliptifolia:
- 2945281 - Diospyros elliptifolia: LTS0212929
- 413748 - Diospyros gracilipes:
- 413748 - Diospyros gracilipes: 10.1016/S0031-9422(97)01020-0
- 413748 - Diospyros gracilipes: LTS0212929
- 1085411 - Diospyros hebecarpa:
- 1085411 - Diospyros hebecarpa: 10.1016/S0031-9422(97)01020-0
- 1085411 - Diospyros hebecarpa: 10.1071/CH9520760
- 1085411 - Diospyros hebecarpa: LTS0212929
- 35925 - Diospyros kaki:
- 35925 - Diospyros kaki: 10.1016/0165-1218(83)90182-9
- 35925 - Diospyros kaki: 10.1016/S0031-9422(97)01020-0
- 35925 - Diospyros kaki: LTS0212929
- 55363 - Diospyros lotus: 10.1016/S0031-9422(00)80490-2
- 55363 - Diospyros lotus: LTS0212929
- 413754 - Diospyros maingayi: 10.1016/S0031-9422(00)80490-2
- 413754 - Diospyros maingayi: LTS0212929
- 413758 - Diospyros maritima:
- 413758 - Diospyros maritima: 10.1002/RECL.19470660309
- 413758 - Diospyros maritima: 10.1016/S0031-9422(00)84643-9
- 413758 - Diospyros maritima: 10.1021/NP040027M
- 413758 - Diospyros maritima: 10.1021/NP040027M.S001
- 413758 - Diospyros maritima: 10.1021/NP200805Z
- 413758 - Diospyros maritima: 10.1055/S-2006-957703
- 413758 - Diospyros maritima: 10.1248/CPB.35.4366
- 413758 - Diospyros maritima: 10.1248/CPB.46.1189
- 413758 - Diospyros maritima: 10.1248/CPB.50.590
- 413758 - Diospyros maritima: LTS0212929
- 413760 - Diospyros mespiliformis: 10.1002/PTR.2650090508
- 413760 - Diospyros mespiliformis: LTS0212929
- 413765 - Diospyros olen: 10.3390/M93
- 413765 - Diospyros olen: LTS0212929
- 589123 - Diospyros samoensis:
- 589123 - Diospyros samoensis: 10.1016/S0031-9422(98)00294-5
- 589123 - Diospyros samoensis: LTS0212929
- 1938276 - Diospyros siderophylla:
- 1938276 - Diospyros siderophylla: 10.1016/S0031-9422(97)01020-0
- 1938276 - Diospyros siderophylla: LTS0212929
- 268846 - Diospyros sumatrana: 10.1016/S0031-9422(00)80490-2
- 268846 - Diospyros sumatrana: LTS0212929
- 2945307 - Diospyros walkeri:
- 2945307 - Diospyros walkeri: LTS0212929
- 589132 - Diospyros wallichii:
- 589132 - Diospyros wallichii: 10.1016/S0031-9422(00)80490-2
- 589132 - Diospyros wallichii: 10.1016/S0031-9422(97)01020-0
- 589132 - Diospyros wallichii: 10.1139/V10-084
- 589132 - Diospyros wallichii: LTS0212929
- 4363 - Drosera: 10.1002/(SICI)1099-1565(199903/04)10:2<64::AID-PCA434>3.0.CO;2-T
- 4363 - Drosera: LTS0212929
- 1632261 - Drosera auriculata: 10.1016/0305-1978(94)90045-0
- 1632261 - Drosera auriculata: LTS0212929
- 4364 - Drosera binata:
- 4364 - Drosera binata: 10.1016/0305-1978(94)90045-0
- 4364 - Drosera binata: 10.3109/13880208909053952
- 4364 - Drosera binata: LTS0212929
- 4366 - Drosera capensis: 10.1016/0305-1978(94)90045-0
- 4366 - Drosera capensis: LTS0212929
- 173396 - Drosera cistiflora: 10.1016/0305-1978(94)90045-0
- 173396 - Drosera cistiflora: LTS0212929
- 2005751 - Drosera erythrorhiza: 10.1016/0305-1978(94)90045-0
- 2005751 - Drosera erythrorhiza: LTS0212929
- 16679 - Drosera gigantea: 10.1055/S-2000-8617
- 16679 - Drosera gigantea: LTS0212929
- 16680 - Drosera indica: 10.1016/0305-1978(94)90045-0
- 16680 - Drosera indica: LTS0212929
- 463625 - Drosera intermedia:
- 463625 - Drosera intermedia: 10.1016/0031-9422(96)00076-3
- 463625 - Drosera intermedia: 10.1016/0305-1978(94)90045-0
- 463625 - Drosera intermedia: 10.3891/ACTA.CHEM.SCAND.22-2722
- 463625 - Drosera intermedia: LTS0212929
- 173410 - Drosera madagascariensis:
- 173410 - Drosera madagascariensis: 10.1078/0944-7113-00031
- 173410 - Drosera madagascariensis: 10.1080/10826079808001264
- 173410 - Drosera madagascariensis: LTS0212929
- 173414 - Drosera natalensis: 10.1016/0305-1978(94)90045-0
- 173414 - Drosera natalensis: LTS0212929
- 4369 - Drosera peltata:
- 4369 - Drosera peltata: 10.1016/0305-1978(94)90045-0
- 4369 - Drosera peltata: 10.1016/S0378-8741(97)00129-3
- 4369 - Drosera peltata: 10.1080/10826079808001264
- 4369 - Drosera peltata: LTS0212929
- 173419 - Drosera platypoda: 10.1016/0305-1978(94)90045-0
- 173419 - Drosera platypoda: LTS0212929
- 1382066 - Drosera prolifera: 10.1016/0305-1978(94)90045-0
- 1382066 - Drosera prolifera: LTS0212929
- 4371 - Drosera regia: 10.1016/0305-1978(94)90045-0
- 4371 - Drosera regia: LTS0212929
- 173423 - Drosera rotundifolia:
- 173423 - Drosera rotundifolia: 10.1002/ARDP.19362740801
- 173423 - Drosera rotundifolia: 10.1016/0305-1978(94)90045-0
- 173423 - Drosera rotundifolia: 10.3109/13880208909053952
- 173423 - Drosera rotundifolia: 10.3891/ACTA.CHEM.SCAND.24-1082
- 173423 - Drosera rotundifolia: LTS0212929
- 1030021 - Drosera slackii: 10.1016/0305-1978(94)90045-0
- 1030021 - Drosera slackii: LTS0212929
- 16682 - Drosera stolonifera: 10.1016/0305-1978(94)90045-0
- 16682 - Drosera stolonifera: LTS0212929
- 1478274 - Drosera venusta: 10.1016/0305-1978(94)90045-0
- 1478274 - Drosera venusta: LTS0212929
- 173429 - Drosera villosa: 10.1016/0305-1978(94)90045-0
- 173429 - Drosera villosa: LTS0212929
- 4360 - Droseraceae: LTS0212929
- 232384 - Drosophyllaceae: LTS0212929
- 4372 - Drosophyllum: LTS0212929
- 4373 - Drosophyllum lusitanicum:
- 4373 - Drosophyllum lusitanicum: 10.1016/0168-1656(96)01537-4
- 4373 - Drosophyllum lusitanicum: 10.1016/0305-1978(94)90045-0
- 4373 - Drosophyllum lusitanicum: 10.1016/S0031-9422(02)00258-3
- 4373 - Drosophyllum lusitanicum: LTS0212929
- 19955 - Ebenaceae: LTS0212929
- 2759 - Eukaryota: LTS0212929
- 40093 - Hesperiidae: LTS0212929
- 50557 - Insecta: LTS0212929
- 26339 - Iridaceae: LTS0212929
- 16714 - Juglandaceae: LTS0212929
- 16718 - Juglans: LTS0212929
- 16719 - Juglans nigra: 10.1016/S0031-9422(00)98092-0
- 16719 - Juglans nigra: LTS0212929
- 51240 - Juglans regia: 10.1016/S0031-9422(00)98092-0
- 51240 - Juglans regia: LTS0212929
- 4447 - Liliopsida: LTS0212929
- 3398 - Magnoliopsida: LTS0212929
- 33208 - Metazoa: LTS0212929
- 4374 - Nepenthaceae: LTS0212929
- 4375 - Nepenthes: LTS0212929
- 150966 - Nepenthes gracilis: 10.1016/S0367-326X(02)00113-2
- 150966 - Nepenthes gracilis: LTS0212929
- 150971 - Nepenthes insignis: 10.1016/S0031-9422(02)00003-1
- 150971 - Nepenthes insignis: LTS0212929
- 150990 - Nepenthes rafflesiana: 10.1071/CH9801073
- 150990 - Nepenthes rafflesiana: LTS0212929
- 122314 - Nepenthes thorelii:
- 122314 - Nepenthes thorelii: 10.1055/S-2006-957417
- 122314 - Nepenthes thorelii: LTS0212929
- 256812 - Pera: LTS0212929
- 397184 - Pera glabrata: 10.1007/S11101-008-9090-8
- 629717 - Peraceae: LTS0212929
- 33090 - Plants: -
- 1840156 - Plumbagella: LTS0212929
- 1898903 - Plumbagella micrantha: 10.1007/BF00563824
- 1898903 - Plumbagella micrantha: LTS0212929
- 4437 - Plumbaginaceae: 10.1016/J.FCT.2013.11.027
- 4437 - Plumbaginaceae: LTS0212929
- 4439 - Plumbago: 10.1021/NP3000409
- 4439 - Plumbago: LTS0212929
- 45172 - Plumbago auriculata:
- 45172 - Plumbago auriculata: 10.1016/J.BMCL.2010.02.107
- 45172 - Plumbago auriculata: 10.1271/BBB1961.47.911
- 45172 - Plumbago auriculata: LTS0212929
- 114226 - Plumbago europaea:
- 114226 - Plumbago europaea: 10.1016/J.CHROMA.2005.06.030
- 114226 - Plumbago europaea: 10.1080/00387019408007247
- 114226 - Plumbago europaea: 10.1080/14786410902941329
- 114226 - Plumbago europaea: 10.1590/S0074-02762003000700017
- 114226 - Plumbago europaea: 10.2225/VOL5-ISSUE3-FULLTEXT-4
- 114226 - Plumbago europaea: LTS0212929
- 122308 - Plumbago indica:
- 122308 - Plumbago indica: 10.1016/0031-9422(92)83750-S
- 122308 - Plumbago indica: 10.1016/J.CHROMA.2005.06.030
- 122308 - Plumbago indica: 10.1076/PHBI.37.3.231.6299
- 122308 - Plumbago indica: 10.1080/13880200500220888
- 122308 - Plumbago indica: 10.1259/BJR.70.834.9227253
- 122308 - Plumbago indica: 10.1590/S0074-02762003000700017
- 122308 - Plumbago indica: 10.2225/VOL5-ISSUE3-FULLTEXT-4
- 122308 - Plumbago indica: 10.4028/WWW.SCIENTIFIC.NET/AMR.308-310.1662
- 122308 - Plumbago indica: LTS0212929
- 2038230 - Plumbago scandens:
- 2038230 - Plumbago scandens: 10.1016/0031-9422(86)88047-5
- 2038230 - Plumbago scandens: 10.1590/S0074-02762003000700017
- 2038230 - Plumbago scandens: LTS0212929
- 76149 - Plumbago zeylanica:
- 76149 - Plumbago zeylanica: 10.1016/0031-9422(83)80232-5
- 76149 - Plumbago zeylanica: 10.1016/0031-9422(86)88047-5
- 76149 - Plumbago zeylanica: 10.1016/J.CHROMA.2005.06.030
- 76149 - Plumbago zeylanica: 10.1016/J.FITOTE.2004.03.009
- 76149 - Plumbago zeylanica: 10.1016/J.PHYTOL.2009.11.007
- 76149 - Plumbago zeylanica: 10.1016/S0031-9422(02)00519-8
- 76149 - Plumbago zeylanica: 10.1038/APS.2011.152
- 76149 - Plumbago zeylanica: 10.1093/CARCIN/BGR249
- 76149 - Plumbago zeylanica: 10.1159/000210028
- 76149 - Plumbago zeylanica: 10.1517/17460441.2.12.1631
- 76149 - Plumbago zeylanica: 10.1590/S0074-02762003000700017
- 76149 - Plumbago zeylanica: 10.3109/13880208209083305
- 76149 - Plumbago zeylanica: LTS0212929
- 23513 - Rutaceae: LTS0212929
- 35493 - Streptophyta: LTS0212929
- 58023 - Tracheophyta: LTS0212929
- 63073 - Triphyophyllum: LTS0212929
- 63090 - Triphyophyllum peltatum: 10.1016/S0031-9422(99)00543-9
- 63090 - Triphyophyllum peltatum: LTS0212929
- 122022 - Uroactiniidae: LTS0212929
- 33090 - Viridiplantae: LTS0212929
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Carlos José Rocha Teixeira, Barbara Pereira Dos Santos, Carolina Julia Costa Saraiva, Heloísa de Paula Pedroza, Silvia Catarina Salgado Oloris, Benito Soto-Blanco. TLC and HPLC methods for the determination of plumbagin for the diagnosis of poisoning by Plumbago scandens L.
Toxicon : official journal of the International Society on Toxinology.
2024 Feb; 239(?):107634. doi:
10.1016/j.toxicon.2024.107634
. [PMID: 38307130] - Ranjith Palanisamy, Nimnaka Indrajith Kahingalage, David Archibald, Ilaria Casari, Marco Falasca. Synergistic Anticancer Activity of Plumbagin and Xanthohumol Combination on Pancreatic Cancer Models.
International journal of molecular sciences.
2024 Feb; 25(4):. doi:
10.3390/ijms25042340
. [PMID: 38397018] - Songtao Bie, Qiuyue Mo, Chen Shi, Hui Yuan, Chunshuang Li, Tong Wu, Wenlong Li, Heshui Yu. Interactions of plumbagin with five common antibiotics against Staphylococcus aureus in vitro.
PloS one.
2024; 19(1):e0297493. doi:
10.1371/journal.pone.0297493
. [PMID: 38277418] - Tiehan Cui, Yun Lan, Fei Yu, Suai Lin, Jiaxuan Qiu. Plumbagin alleviates temporomandibular joint osteoarthritis progression by inhibiting chondrocyte ferroptosis via the MAPK signaling pathways.
Aging.
2023 11; 15(22):13452-13470. doi:
10.18632/aging.205253
. [PMID: 38032278] - Suresh Awale, Hayato Baba, Nguyen Duy Phan, Min Jo Kim, Juthamart Maneenet, Koichi Sawaki, Mitsuro Kanda, Tomoyuki Okumura, Tsutomu Fujii, Takuya Okada, Takahiro Maruyama, Takahiro Okada, Naoki Toyooka. Targeting Pancreatic Cancer with Novel Plumbagin Derivatives: Design, Synthesis, Molecular Mechanism, In Vitro and In Vivo Evaluation.
Journal of medicinal chemistry.
2023 May; ?(?):. doi:
10.1021/acs.jmedchem.3c00394
. [PMID: 37257133] - Devendra Kumar Pandey, Kajal Katoch, Tuyelee Das, Madhumita Majumder, Kuldeep Dhama, Abhijit Bhagwan Mane, Abilash Valsala Gopalakrishnan, Abhijit Dey. Approaches for in vitro propagation and production of plumbagin in Plumbago spp.
Applied microbiology and biotechnology.
2023 May; ?(?):. doi:
10.1007/s00253-023-12511-6
. [PMID: 37199750] - Kaihua Wang, Beibei Wang, Henan Ma, Ziwen Wang, Yuxiu Liu, Qingmin Wang. Natural Products for Pesticides Discovery: Structural Diversity Derivation and Biological Activities of Naphthoquinones Plumbagin and Juglone.
Molecules (Basel, Switzerland).
2023 Apr; 28(8):. doi:
10.3390/molecules28083328
. [PMID: 37110562] - Beatrycze Nowicka, Jan Walczak, Maja Kapsiak, Karolina Barnaś, Julia Dziuba, Aleksandra Suchoń. Impact of cytotoxic plant naphthoquinones, juglone, plumbagin, lawsone and 2-methoxy-1,4-naphthoquinone, on Chlamydomonas reinhardtii reveals the biochemical mechanism of juglone toxicity by rapid depletion of plastoquinol.
Plant physiology and biochemistry : PPB.
2023 Apr; 197(?):107660. doi:
10.1016/j.plaphy.2023.107660
. [PMID: 36996637] - Huan Liu, Wenchao Zhang, Lijie Jin, Shasha Liu, Liying Liang, Yanfei Wei. Plumbagin Exhibits Genotoxicity and Induces G2/M Cell Cycle Arrest via ROS-Mediated Oxidative Stress and Activation of ATM-p53 Signaling Pathway in Hepatocellular Cells.
International journal of molecular sciences.
2023 Mar; 24(7):. doi:
10.3390/ijms24076279
. [PMID: 37047251] - Babita Shukla, Poonam Kushwaha. Development and Validation of HPLC Method for Quantification of Plumbagin in Plumbago Zeylanica L. Roots.
Drug research.
2023 Feb; ?(?):. doi:
10.1055/a-2019-4985
. [PMID: 36822215] - Arati P Vasav, Balu G Meshram, Anupama A Pable, Vitthal T Barvkar. Artificial microRNA mediated silencing of cyclase and aldo-keto reductase genes reveal their involvement in the plumbagin biosynthetic pathway.
Journal of plant research.
2023 Jan; 136(1):47-62. doi:
10.1007/s10265-022-01415-7
. [PMID: 36227455] - Zhaowei Cai, Shaojuan He, Rongju Liu, Liling Zhou, Li Zhao. Plumbagin rescues the granulosa cell's pyroptosis by reducing WTAP-mediated N6-methylation in polycystic ovary syndrome.
Journal of ovarian research.
2022 Dec; 15(1):126. doi:
10.1186/s13048-022-01058-1
. [PMID: 36463191] - Arati P Vasav, Rucha C Godbole, Ashwini M Darshetkar, Anupama A Pable, Vitthal T Barvkar. Functional genomics-enabled characterization of CYP81B140 and CYP81B141 from Plumbago zeylanica L. substantiates their involvement in plumbagin biosynthesis.
Planta.
2022 Oct; 256(6):102. doi:
10.1007/s00425-022-04014-x
. [PMID: 36282353] - Shulan Han, Shengnan Bi, Tingting Guo, Dandan Sun, Yifang Zou, Lingzhi Wang, Liu Song, Di Chu, Anqi Liao, Xiaohuan Song, Zhuo Yu, Jianfeng Guo. Nano co-delivery of Plumbagin and Dihydrotanshinone I reverses immunosuppressive TME of liver cancer.
Journal of controlled release : official journal of the Controlled Release Society.
2022 08; 348(?):250-263. doi:
10.1016/j.jconrel.2022.05.057
. [PMID: 35660631] - Mandeep Kumar Arora, Anish Ratra, Syed Mohammed Basheeruddin Asdaq, Ali A Alshamrani, Abdulkhaliq J Alsalman, Mehnaz Kamal, Ritu Tomar, Jagannath Sahoo, Jangra Ashok, Mohd Imran. Plumbagin Alleviates Intracerebroventricular-Quinolinic Acid Induced Depression-like Behavior and Memory Deficits in Wistar Rats.
Molecules (Basel, Switzerland).
2022 Mar; 27(6):. doi:
10.3390/molecules27061834
. [PMID: 35335195] - Mitayani Purwoko, Harijono Kario Sentono, Bambang Purwanto, Dono Indarto. Phytochemical evaluation of Plumbago zeylanica roots from Indonesia and assessment of its plumbagin concentration.
Folia medica.
2022 Feb; 64(1):96-102. doi:
10.3897/folmed.64.e58086
. [PMID: 35851881] - Avinash M Yadav, Manali M Bagade, Soni Ghumnani, Sujatha Raman, Bhaskar Saha, Katharina F Kubatzky, Richa Ashma. The phytochemical plumbagin reciprocally modulates osteoblasts and osteoclasts.
Biological chemistry.
2022 01; 403(2):211-229. doi:
10.1515/hsz-2021-0290
. [PMID: 34882360] - Niyatee Thakor, Bhavyata Janathia. Plumbagin: A Potential Candidate for Future Research and Development.
Current pharmaceutical biotechnology.
2022; 23(15):1800-1812. doi:
10.2174/1389201023666211230113146
. [PMID: 34967293] - Kinga Siatkowska, Milena Chraniuk, Piotr Bollin, Rafał Banasiuk. Light emitting diodes optimisation for secondary metabolites production by Droseraceae plants.
Journal of photochemistry and photobiology. B, Biology.
2021 Nov; 224(?):112308. doi:
10.1016/j.jphotobiol.2021.112308
. [PMID: 34543848] - Yang Zhang, Ri Wang, He Zhang, Liya Liu, Jianbin An, Jun Hao, Jingxue Ma. Plumbagin Inhibits Proliferation, Migration, and Invasion of Retinal Pigment Epithelial Cells Induced by FGF-2.
Tissue & cell.
2021 Oct; 72(?):101547. doi:
10.1016/j.tice.2021.101547
. [PMID: 33964605] - Madhu Manti Patra, Poulami Ghosh, Shreya Sengupta, Sujoy K Das Gupta. DNA binding and gene regulatory functions of MSMEG_2295, a repressor encoded by the dinB2 operon of Mycobacterium smegmatis.
Microbiology (Reading, England).
2021 10; 167(10):. doi:
10.1099/mic.0.001097
. [PMID: 34665112] - Isaac J Bello, Olubukola T Oyebode, John O Olanlokun, Todiimu O Omodara, Olufunso O Olorunsogo. Plumbagin induces testicular damage via mitochondrial-dependent cell death.
Chemico-biological interactions.
2021 Sep; 347(?):109582. doi:
10.1016/j.cbi.2021.109582
. [PMID: 34302802] - Liang Yue, Nan Jiang, Anguo Wu, Wenqiao Qiu, Xin Shen, Dalian Qin, Hong Li, Jing Lin, Sicheng Liang, Jianming Wu. Plumbagin can potently enhance the activity of xanthine oxidase: in vitro, in vivo and in silico studies.
BMC pharmacology & toxicology.
2021 07; 22(1):45. doi:
10.1186/s40360-021-00511-z
. [PMID: 34274011] - Nidal Jaradat, Ahmad Ibrahim Khasati, Nawaf Al-Maharik, Ahmad M Eid, Waheed Jundi, Nidal Abd Aljaber Zatar, Mohammed Saleem Ali-Shtayeh, Rana Jamous. Isolation, identification, and antimycotic activity of plumbagin from Plumbago europaea L. roots, leaves and stems.
Pakistan journal of pharmaceutical sciences.
2021 Jul; 34(4):1421-1428. doi:
"
. [PMID: 34799317] - Ze-Bo Jiang, Cong Xu, Wenjun Wang, Yi-Zhong Zhang, Ju-Min Huang, Ya-Jia Xie, Qian-Qian Wang, Xing-Xing Fan, Xiao-Jun Yao, Chun Xie, Xuan-Run Wang, Pei-Yu Yan, Yu-Po Ma, Qi-Biao Wu, Elaine Lai-Han Leung. Plumbagin suppresses non-small cell lung cancer progression through downregulating ARF1 and by elevating CD8+ T cells.
Pharmacological research.
2021 07; 169(?):105656. doi:
10.1016/j.phrs.2021.105656
. [PMID: 33964470] - Hong-Hsiang Guan, Yen-Hua Huang, En-Shyh Lin, Chun-Jung Chen, Cheng-Yang Huang. Plumbagin, a Natural Product with Potent Anticancer Activities, Binds to and Inhibits Dihydroorotase, a Key Enzyme in Pyrimidine Biosynthesis.
International journal of molecular sciences.
2021 Jun; 22(13):. doi:
10.3390/ijms22136861
. [PMID: 34202294] - Yuqin Lei, Yuling Li, Yuping Tan, Zhiyong Qian, Qiao Zhou, Da Jia, Qingxiang Sun. Novel Mechanistic Observations and NES-Binding Groove Features Revealed by the CRM1 Inhibitors Plumbagin and Oridonin.
Journal of natural products.
2021 05; 84(5):1478-1488. doi:
10.1021/acs.jnatprod.0c01231
. [PMID: 33890470] - Marta Krychowiak-Maśnicka, Mirosława Krauze-Baranowska, Sylwia Godlewska, Zbigniew Kaczyński, Aleksandra Bielicka-Giełdoń, Natalia Grzegorczyk, Magdalena Narajczyk, Joanna E Frackowiak, Aleksandra Krolicka. Potential of Silver Nanoparticles in Overcoming the Intrinsic Resistance of Pseudomonas aeruginosa to Secondary Metabolites from Carnivorous Plants.
International journal of molecular sciences.
2021 May; 22(9):. doi:
10.3390/ijms22094849
. [PMID: 34063704] - Nattawut Suchaichit, Natcha P Suchaichit, Kwanjai Kanokmedhakul, Patcharaporn Boottanun, Rasana W Sermswan, Panawan Moosophon, Somdej Kanokmedhakul. A new cytotoxic plumbagin derivative from roots of Diospyros undulata.
Natural product research.
2021 May; 35(10):1605-1612. doi:
10.1080/14786419.2019.1630120
. [PMID: 31203668] - Edward Owen Norman, Hayden Tuohey, David Pizzi, Milane Saidah, Rachael Bell, Robert Brkljača, Jonathan M White, Robin B Gasser, Aya C Taki, Sylvia Urban. Phytochemical Profiling and Biological Activity of the Australian Carnivorous Plant, Drosera magna.
Journal of natural products.
2021 04; 84(4):964-971. doi:
10.1021/acs.jnatprod.0c00869
. [PMID: 33631073] - Sevinj Sultanli, Soni Ghumnani, Richa Ashma, Katharina F Kubatzky. Plumbagin, a Biomolecule with (Anti)Osteoclastic Properties.
International journal of molecular sciences.
2021 Mar; 22(5):. doi:
10.3390/ijms22052779
. [PMID: 33803472] - Danfeng Xue, Xiongming Zhou, Jiaxuan Qiu. Cytotoxicity mechanisms of plumbagin in drug-resistant tongue squamous cell carcinoma.
The Journal of pharmacy and pharmacology.
2021 Mar; 73(1):98-109. doi:
10.1093/jpp/rgaa027
. [PMID: 33791802] - Asifur Rahman-Soad, Alberto Dávila-Lara, Christian Paetz, Axel Mithöfer. Plumbagin, a Potent Naphthoquinone from Nepenthes Plants with Growth Inhibiting and Larvicidal Activities.
Molecules (Basel, Switzerland).
2021 Feb; 26(4):. doi:
10.3390/molecules26040825
. [PMID: 33562562] - Revathy Nadhan, Dipyaman Patra, Neethu Krishnan, Arathi Rajan, Srinivas Gopala, Dashnamoorthy Ravi, Priya Srinivas. Perspectives on mechanistic implications of ROS inducers for targeting viral infections.
European journal of pharmacology.
2021 Jan; 890(?):173621. doi:
10.1016/j.ejphar.2020.173621
. [PMID: 33068588] - Arpita Roy. Plumbagin: A Potential Anti-cancer Compound.
Mini reviews in medicinal chemistry.
2021; 21(6):731-737. doi:
10.2174/1389557520666201116144421
. [PMID: 33200707] - Alberto Dávila-Lara, Asifur Rahman-Soad, Michael Reichelt, Axel Mithöfer. Carnivorous Nepenthes x ventrata plants use a naphthoquinone as phytoanticipin against herbivory.
PloS one.
2021; 16(10):e0258235. doi:
10.1371/journal.pone.0258235
. [PMID: 34679089] - Intouch Sakpakdeejaroen, Sukrut Somani, Partha Laskar, Margaret Mullin, Christine Dufès. Regression of Melanoma Following Intravenous Injection of Plumbagin Entrapped in Transferrin-Conjugated, Lipid-Polymer Hybrid Nanoparticles.
International journal of nanomedicine.
2021; 16(?):2615-2631. doi:
10.2147/ijn.s293480
. [PMID: 33854311] - Yongming Li, Songzuo Yu, Yu Li, Xiao Liang, Min Su, Rong Li. Medical Significance of Uterine Corpus Endometrial Carcinoma Patients Infected With SARS-CoV-2 and Pharmacological Characteristics of Plumbagin.
Frontiers in endocrinology.
2021; 12(?):714909. doi:
10.3389/fendo.2021.714909
. [PMID: 34712201] - Zhe Li, Arunachalam Chinnathambi, Sulaiman Ali Alharbi, Fuyu Yin. Plumbagin protects the myocardial damage by modulating the cardiac biomarkers, antioxidants, and apoptosis signaling in the doxorubicin-induced cardiotoxicity in rats.
Environmental toxicology.
2020 Dec; 35(12):1374-1385. doi:
10.1002/tox.23002
. [PMID: 32691977] - Arati P Vasav, Anupama A Pable, Vitthal T Barvkar. Differential transcriptome and metabolome analysis of Plumbago zeylanica L. reveal putative genes involved in plumbagin biosynthesis.
Fitoterapia.
2020 Nov; 147(?):104761. doi:
10.1016/j.fitote.2020.104761
. [PMID: 33069837] - Adrian Chrastina, John Welsh, Gaelle Rondeau, Parisa Abedinpour, Per Borgström, Véronique T Baron. Plumbagin-Serum Albumin Interaction: Spectral, Electrochemical, Structure-Binding Analysis, Antiproliferative and Cell Signaling Aspects with Implications for Anticancer Therapy.
ChemMedChem.
2020 07; 15(14):1338-1347. doi:
10.1002/cmdc.202000157
. [PMID: 32410390] - Alberto Dávila-Lara, Carlos E Rodríguez-López, Sarah E O'Connor, Axel Mithöfer. Metabolomics Analysis Reveals Tissue-Specific Metabolite Compositions in Leaf Blade and Traps of Carnivorous Nepenthes Plants.
International journal of molecular sciences.
2020 Jun; 21(12):. doi:
10.3390/ijms21124376
. [PMID: 32575527] - Soo Yeon Lee, Mi Jeong Kim, Subhin Jang, Gyeong-Eun Lee, Soo-Yeon Hwang, Youngjoo Kwon, Jung Yeon Hong, Myung Hyun Sohn, Soo-Yeon Park, Ho-Geun Yoon. Plumbagin Suppresses Pulmonary Fibrosis via Inhibition of p300 Histone Acetyltransferase Activity.
Journal of medicinal food.
2020 Jun; 23(6):633-640. doi:
10.1089/jmf.2019.4670
. [PMID: 32311286] - Fatima-Zahra Alem, Meriem Bejaoui, Myra O Villareal, Boutayna Rhourri-Frih, Hiroko Isoda. Elucidation of the effect of plumbagin on the metastatic potential of B16F10 murine melanoma cells via MAPK signalling pathway.
Experimental dermatology.
2020 04; 29(4):427-435. doi:
10.1111/exd.14079
. [PMID: 32012353] - Yen-Hua Huang, Yi Lien, Jung-Hung Chen, En-Shyh Lin, Cheng-Yang Huang. Identification and characterization of dihydropyrimidinase inhibited by plumbagin isolated from Nepenthes miranda extract.
Biochimie.
2020 Apr; 171-172(?):124-135. doi:
10.1016/j.biochi.2020.03.005
. [PMID: 32147511] - Mina Beigmohamadi, Ali Movafeghi, Samineh Jafari, Ali Sharafi. Potential of the genetically transformed root cultures of Plumbago europaea for biomass and plumbagin production.
Biotechnology progress.
2020 03; 36(2):e2905. doi:
10.1002/btpr.2905
. [PMID: 31513731] - Nalinee Pradubyat, Nithidol Sakunrangsit, Apiwat Mutirangura, Wannarasmi Ketchart. NADPH: Quinone oxidoreductase 1 (NQO1) mediated anti-cancer effects of plumbagin in endocrine resistant MCF7 breast cancer cells.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2020 Jan; 66(?):153133. doi:
10.1016/j.phymed.2019.153133
. [PMID: 31790893] - Zhenhua Yin, Juanjuan Zhang, Lin Chen, Qingfeng Guo, Baocheng Yang, Wei Zhang, Wenyi Kang. Anticancer Effects and Mechanisms of Action of Plumbagin: Review of Research Advances.
BioMed research international.
2020; 2020(?):6940953. doi:
10.1155/2020/6940953
. [PMID: 33344645] - Qianrui Zhang, Sheng Zhao, Wenxia Zheng, Haitan Fu, Tao Wu, Fei Hu. Plumbagin attenuated oxygen-glucose deprivation/reoxygenation-induced injury in human SH-SY5Y cells by inhibiting NOX4-derived ROS-activated NLRP3 inflammasome.
Bioscience, biotechnology, and biochemistry.
2020 Jan; 84(1):134-142. doi:
10.1080/09168451.2019.1664893
. [PMID: 31490096] - Apurba Sarkar, Shreya Ghosh, Rahul Shaw, Madhu Manti Patra, Fatema Calcuttawala, Noyonika Mukherjee, Sujoy K Das Gupta. Mycobacterium tuberculosis thymidylate synthase (ThyX) is a target for plumbagin, a natural product with antimycobacterial activity.
PloS one.
2020; 15(2):e0228657. doi:
10.1371/journal.pone.0228657
. [PMID: 32017790] - Igor Alves Mancilla, Giuliana Castello Coatti, Bruna Isabela Biazi, Thalita Alves Zanetti, Adrivanio Baranoski, Lilian Areal Marques, Amanda Cristina Corveloni, Sandra Regina Lepri, Mario Sergio Mantovani. Molecular pathways related to the control of proliferation and cell death in 786-O cells treated with plumbagin.
Molecular biology reports.
2019 Dec; 46(6):6071-6078. doi:
10.1007/s11033-019-05042-9
. [PMID: 31456160] - Panitch Boonsnongcheep, Worapol Sae-Foo, Kanpawee Banpakoat, Suwaphat Channarong, Sukanda Chitsaithan, Pornpimon Uafua, Wattika Putha, Kanchanok Kerdsiri, Waraporn Putalun. Artificial color light sources and precursor feeding enhance plumbagin production of the carnivorous plants Drosera burmannii and Drosera indica.
Journal of photochemistry and photobiology. B, Biology.
2019 Oct; 199(?):111628. doi:
10.1016/j.jphotobiol.2019.111628
. [PMID: 31610432] - Alexandra G Durán, Nuria Chinchilla, José Mg Molinillo, Francisco A Macías. Structure-activity relationship studies on naphthoquinone analogs. The search for new herbicides based on natural products.
Pest management science.
2019 Sep; 75(9):2517-2529. doi:
10.1002/ps.5442
. [PMID: 30972945] - Jing Zhong, Junxuan Li, Jiexiao Wei, Delun Huang, Lini Huo, Chuan Zhao, Yuning Lin, Wanjun Chen, Yanfei Wei. Plumbagin Restrains Hepatocellular Carcinoma Angiogenesis by Stromal Cell-Derived Factor (SDF-1)/CXCR4-CXCR7 Axis.
Medical science monitor : international medical journal of experimental and clinical research.
2019 Aug; 25(?):6110-6119. doi:
10.12659/msm.915782
. [PMID: 31415486] - Yi Shao, Minyan Dang, Yukiat Lin, Feng Xue. Evaluation of wound healing activity of plumbagin in diabetic rats.
Life sciences.
2019 Aug; 231(?):116422. doi:
10.1016/j.lfs.2019.04.048
. [PMID: 31059689] - H Periasamy, S Iswarya, N Pavithra, S Senthilnathan, A Gnanamani. In vitro antibacterial activity of plumbagin isolated from Plumbago zeylanica L. against methicillin-resistant Staphylococcus aureus.
Letters in applied microbiology.
2019 Jul; 69(1):41-49. doi:
10.1111/lam.13160
. [PMID: 31044446] - Daiva Majiene, Jolita Kuseliauskyte, Arturas Stimbirys, Aiste Jekabsone. Comparison of the Effect of Native 1,4-Naphthoquinones Plumbagin, Menadione, and Lawsone on Viability, Redox Status, and Mitochondrial Functions of C6 Glioblastoma Cells.
Nutrients.
2019 Jun; 11(6):. doi:
10.3390/nu11061294
. [PMID: 31181639] - Sarayu A Pai, Renuka P Munshi, Falguni H Panchal, Ila-Shruti Gaur, Snehal N Mestry, Malvika S Gursahani, Archana R Juvekar. Plumbagin reduces obesity and nonalcoholic fatty liver disease induced by fructose in rats through regulation of lipid metabolism, inflammation and oxidative stress.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2019 Mar; 111(?):686-694. doi:
10.1016/j.biopha.2018.12.139
. [PMID: 30611993] - Yanfei Wei, Beibei Lv, Jinling Xie, Yuan Zhang, Yuning Lin, Shengshan Wang, Jing Zhong, Yongxin Chen, Yue Peng, Jing Ma. Plumbagin promotes human hepatoma SMMC-7721 cell apoptosis via caspase-3/vimentin signal-mediated EMT.
Drug design, development and therapy.
2019; 13(?):2343-2355. doi:
10.2147/dddt.s204787
. [PMID: 31409969] - Umasankar De, Ji Yeon Son, Yukyoung Jeon, Song-Yi Ha, Yu Jin Park, Sungpil Yoon, Ki-Tae Ha, Wahn Soo Choi, Byung Mu Lee, In Su Kim, Jong Hwan Kwak, Hyung Sik Kim. Plumbagin from a tropical pitcher plant (Nepenthes alata Blanco) induces apoptotic cell death via a p53-dependent pathway in MCF-7 human breast cancer cells.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2019 Jan; 123(?):492-500. doi:
10.1016/j.fct.2018.11.040
. [PMID: 30458268] - Suhong Wang, Zhecheng Zhang, Shuxin Zhao. Plumbagin inhibits amyloid-β-induced neurotoxicity: regulation of oxidative stress and nuclear factor erythroid 2-related factor 2 activation.
Neuroreport.
2018 10; 29(15):1269-1274. doi:
10.1097/wnr.0000000000001103
. [PMID: 30095583] - Baisen Li, Xiuhui Gu, Mingbo Wu, Ye Zhao, Jie Yang, Li Feng, Junjie Gou, Linyi Chen, Ting Li, Linpeng Li, Lan Wang, Li Zhu, Kun Zhang. Plumbagin inhibits the proliferation of nasopharyngeal carcinoma 6-10B cells by upregulation of reactive oxygen species.
Anti-cancer drugs.
2018 10; 29(9):890-897. doi:
10.1097/cad.0000000000000665
. [PMID: 30119131] - Aya M Zaki, Dalia M El-Tanbouly, Rania M Abdelsalam, Hala F Zaki. Plumbagin ameliorates hepatic ischemia-reperfusion injury in rats: Role of high mobility group box 1 in inflammation, oxidative stress and apoptosis.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2018 Oct; 106(?):785-793. doi:
10.1016/j.biopha.2018.07.004
. [PMID: 29990872] - Chihiro Ito, Takuya Matsui, Makiko Takano, Tian-Shung Wu, Masataka Itoigawa. Anti-cell proliferation effect of naphthoquinone dimers isolated from Plumbago zeylanica.
Natural product research.
2018 Sep; 32(18):2127-2132. doi:
10.1080/14786419.2017.1366476
. [PMID: 28823173] - S A Pai, E A F Martis, S G Joshi, R P Munshi, A R Juvekar. Plumbagin exerts antiobesity effects through inhibition of pancreatic lipase and adipocyte differentiation.
Phytotherapy research : PTR.
2018 Aug; 32(8):1631-1635. doi:
10.1002/ptr.6085
. [PMID: 29672969] - Prashant Joshi, Vinay R Sonawane, Ibidapo S Williams, Glen J P McCann, Linda Gatchie, Rajni Sharma, Naresh Satti, Bhabatosh Chaudhuri, Sandip B Bharate. Identification of karanjin isolated from the Indian beech tree as a potent CYP1 enzyme inhibitor with cellular efficacy via screening of a natural product repository.
MedChemComm.
2018 Feb; 9(2):371-382. doi:
10.1039/c7md00388a
. [PMID: 30108931] - Jian Lu, Daozhi Liu, Xiaojing Zhou, Ang Chen, Zhenran Jiang, Xiyun Ye, Mingyao Liu, Xin Wang. Plant natural product plumbagin presents potent inhibitory effect on human cytochrome P450 2J2 enzyme.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2018 Jan; 39(?):137-145. doi:
10.1016/j.phymed.2017.12.026
. [PMID: 29433675] - S Rajalakshmi, Niraj Vyawahare, Atmaram Pawar, Paresh Mahaparale, Bothiraja Chellampillai. Current development in novel drug delivery systems of bioactive molecule plumbagin.
Artificial cells, nanomedicine, and biotechnology.
2018; 46(sup1):209-218. doi:
10.1080/21691401.2017.1417865
. [PMID: 29298523] - Adrian Chrastina, Veronique T Baron, Parisa Abedinpour, Gaelle Rondeau, John Welsh, Per Borgström. Plumbagin-Loaded Nanoemulsion Drug Delivery Formulation and Evaluation of Antiproliferative Effect on Prostate Cancer Cells.
BioMed research international.
2018; 2018(?):9035452. doi:
10.1155/2018/9035452
. [PMID: 30534567] - Arpita Roy, Navneeta Bharadvaja. Biotechnological Approaches for the Production of Pharmaceutically Important Compound: Plumbagin.
Current pharmaceutical biotechnology.
2018; 19(5):372-381. doi:
10.2174/1389201019666180629143842
. [PMID: 29956626] - Samia S Messeha, Najla O Zarmouh, Patricia Mendonca, Malak G Kolta, Karam F A Soliman. The attenuating effects of plumbagin on pro-inflammatory cytokine expression in LPS-activated BV-2 microglial cells.
Journal of neuroimmunology.
2017 12; 313(?):129-137. doi:
10.1016/j.jneuroim.2017.09.007
. [PMID: 28950995] - Jing Li, Jia Li, Guowei Cai, Lin Shen, Furong Lu. Proapoptotic and Growth-inhibitory Effects of Plumbagin on Human Gastric Cancer Cells Via Suppression of Signal Transducer and Activator of Transcription 3 and Protein Kinase B.
Alternative therapies in health and medicine.
2017 Sep; 23(5):42-48. doi:
"
. [PMID: 28236621] - Xin-Yi Zheng, Chuan-Yuan Mao, Han Qiao, Xi Zhang, Li Yu, Ting-Yu Wang, Er-Yi Lu. Plumbagin suppresses chronic periodontitis in rats via down-regulation of TNF-α, IL-1β and IL-6 expression.
Acta pharmacologica Sinica.
2017 Aug; 38(8):1150-1160. doi:
10.1038/aps.2017.19
. [PMID: 28552911] - Xiaoyang Kong, Jing Luo, Tongpeng Xu, Yunjiao Zhou, Zengkai Pan, Yinghua Xie, Limin Zhao, Yingting Lu, Xiyao Han, Zhixiong Li, Ligen Liu. Plumbagin enhances TRAIL-induced apoptosis of human leukemic Kasumi‑1 cells through upregulation of TRAIL death receptor expression, activation of caspase-8 and inhibition of cFLIP.
Oncology reports.
2017 Jun; 37(6):3423-3432. doi:
10.3892/or.2017.5627
. [PMID: 28498435] - Guanghui Chen, Yan Yue, Jun Qin, Xinping Xiao, Qing Ren, Bin Xiao. Plumbagin suppresses the migration and invasion of glioma cells via downregulation of MMP-2/9 expression and inaction of PI3K/Akt signaling pathway in vitro.
Journal of pharmacological sciences.
2017 May; 134(1):59-67. doi:
10.1016/j.jphs.2017.04.003
. [PMID: 28506595] - Chi Gu Kang, Eunji Im, Hyo-Jeong Lee, Eun-Ok Lee. Plumbagin reduces osteopontin-induced invasion through inhibiting the Rho-associated kinase signaling pathway in A549 cells and suppresses osteopontin-induced lung metastasis in BalB/c mice.
Bioorganic & medicinal chemistry letters.
2017 05; 27(9):1914-1918. doi:
10.1016/j.bmcl.2017.03.047
. [PMID: 28359791] - Yong-Xian Guo, Liang Liu, Dong-Zhan Yan, Jian-Ping Guo. Plumbagin prevents osteoarthritis in human chondrocytes through Nrf-2 activation.
Molecular medicine reports.
2017 Apr; 15(4):2333-2338. doi:
10.3892/mmr.2017.6234
. [PMID: 28259976] - Christina Lieberherr, Guoliang Zhang, Anika Grafen, Katrin Singethan, Sabine Kendl, Valentin Vogt, Jonathan Maier, Gerhard Bringmann, Jürgen Schneider-Schaulies. The Plant-Derived Naphthoquinone Droserone Inhibits In Vitro Measles Virus Infection.
Planta medica.
2017 Feb; 83(3-04):232-238. doi:
10.1055/s-0042-111825
. [PMID: 27420351] - Yuling Liu, Yuee Cai, Chengwei He, Meiwan Chen, Hui Li. Anticancer Properties and Pharmaceutical Applications of Plumbagin: A Review.
The American journal of Chinese medicine.
2017; 45(3):423-441. doi:
10.1142/s0192415x17500264
. [PMID: 28359198] - Victor Kuete, Leonidah K Omosa, Viviane R Sipowo Tala, Jacob O Midiwo, Armelle T Mbaveng, Sauda Swaleh, Oğuzhan Karaosmanoğlu, Hülya Sivas. Cytotoxicity of Plumbagin, Rapanone and 12 other naturally occurring Quinones from Kenyan Flora towards human carcinoma cells.
BMC pharmacology & toxicology.
2016 12; 17(1):60. doi:
10.1186/s40360-016-0104-7
. [PMID: 27998305] - Huafeng Wang, Huan Zhang, Yuqing Zhang, Dan Wang, Xixi Cheng, Fengrui Yang, Qi Zhang, Zhenyi Xue, Yan Li, Lijuan Zhang, Luhong Yang, Guolin Miao, Daiqing Li, Zhiyu Guan, Yurong Da, Zhi Yao, Fei Gao, Liang Qiao, Li Kong, Rongxin Zhang. Plumbagin protects liver against fulminant hepatic failure and chronic liver fibrosis via inhibiting inflammation and collagen production.
Oncotarget.
2016 Dec; 7(50):82864-82875. doi:
10.18632/oncotarget.12655
. [PMID: 27756878] - Wiriyaporn Sumsakul, Tullayakorn Plengsuriyakarn, Kesara Na-Bangchang. Pharmacokinetics, toxicity, and cytochrome P450 modulatory activity of plumbagin.
BMC pharmacology & toxicology.
2016 11; 17(1):50. doi:
10.1186/s40360-016-0094-5
. [PMID: 27839515] - Venkatraman Pradeepa, Sengottayan Senthil-Nathan, Subbiah Sathish-Narayanan, Selvaraj Selin-Rani, Prabhakaran Vasantha-Srinivasan, Annamalai Thanigaivel, Athirstam Ponsankar, Edward-Sam Edwin, Muthiah Sakthi-Bagavathy, Kandaswamy Kalaivani, Kadarkarai Murugan, Veeramuthu Duraipandiyan, Naif Abdullah Al-Dhabi. Potential mode of action of a novel plumbagin as a mosquito repellent against the malarial vector Anopheles stephensi, (Culicidae: Diptera).
Pesticide biochemistry and physiology.
2016 Nov; 134(?):84-93. doi:
10.1016/j.pestbp.2016.04.001
. [PMID: 27914545] - Hosam O Elansary, Kowiyou Yessoufou', Eman A Mahmoud, Krystyna Skalicka-Woźniak. In vitro Antioxidant and Antimicrobial Effects of Ceratostigma plumbaginoides.
Natural product communications.
2016 Oct; 11(10):1455-1458. doi:
. [PMID: 30549598]
- Sherif T S Hassan, Kateřina Berchová-Bímová, Jan Petráš. Plumbagin, a Plant-Derived Compound, Exhibits Antifungal Combinatory Effect with Amphotericin B against Candida albicans Clinical Isolates and Anti-hepatitis C Virus Activity.
Phytotherapy research : PTR.
2016 Sep; 30(9):1487-92. doi:
10.1002/ptr.5650
. [PMID: 27215409] - Gerhard Bringmann, Andreas Irmer, Tobias Büttner, Anu Schaumlöffel, Guoliang Zhang, Raina Seupel, Doris Feineis, Karin Fester. Axially Chiral Dimeric Naphthalene and Naphthoquinone Metabolites, from Root Cultures of the West African Liana Triphyophyllum peltatum.
Journal of natural products.
2016 08; 79(8):2094-103. doi:
10.1021/acs.jnatprod.6b00439
. [PMID: 27438403] - Safoura Sameni, M Prakash Hande. Plumbagin triggers DNA damage response, telomere dysfunction and genome instability of human breast cancer cells.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2016 Aug; 82(?):256-68. doi:
10.1016/j.biopha.2016.05.007
. [PMID: 27470362] - Bhanu Priya Awasthi, Manoj Kathuria, Garima Pant, Neema Kumari, Kalyan Mitra. Plumbagin, a plant-derived naphthoquinone metabolite induces mitochondria mediated apoptosis-like cell death in Leishmania donovani: an ultrastructural and physiological study.
Apoptosis : an international journal on programmed cell death.
2016 08; 21(8):941-53. doi:
10.1007/s10495-016-1259-9
. [PMID: 27315817] - Hui Chu, Hang Yu, Ding Ren, Kejun Zhu, Hong Huang. Plumbagin exerts protective effects in nucleus pulposus cells by attenuating hydrogen peroxide-induced oxidative stress, inflammation and apoptosis through NF-κB and Nrf-2.
International journal of molecular medicine.
2016 Jun; 37(6):1669-76. doi:
10.3892/ijmm.2016.2564
. [PMID: 27082014] - Kyoung Jun Bae, Yura Lee, Soon Ae Kim, Jiyeon Kim. Plumbagin exerts an immunosuppressive effect on human T-cell acute lymphoblastic leukemia MOLT-4 cells.
Biochemical and biophysical research communications.
2016 Apr; 473(1):272-277. doi:
10.1016/j.bbrc.2016.03.092
. [PMID: 27018383] - Shi-Xun Wang, Jian Wang, Jing-Bo Shao, Wei-Ning Tang, Jing-Quan Zhong. Plumbagin Mediates Cardioprotection Against Myocardial Ischemia/Reperfusion Injury Through Nrf-2 Signaling.
Medical science monitor : international medical journal of experimental and clinical research.
2016 Apr; 22(?):1250-7. doi:
10.12659/msm.897618
. [PMID: 27078001] - W Sumsakul, J Karbwang, K Na-Bangchang. Application of SPECT/CT imaging system and radiochemical analysis for investigation of blood kinetics and tissue distribution of radiolabeled plumbagin in healthy and Plasmodium berghei-infected mice.
Experimental parasitology.
2016 Feb; 161(?):54-61. doi:
10.1016/j.exppara.2015.12.001
. [PMID: 26713669] - Amit Jaisi, Pharkphoom Panichayupakaranant. Increased production of plumbagin in Plumbago indica root cultures by biotic and abiotic elicitors.
Biotechnology letters.
2016 Feb; 38(2):351-5. doi:
10.1007/s10529-015-1969-z
. [PMID: 26428368] - Serena Fiorito, Salvatore Genovese, Vito Alessandro Taddeo, Véronique Mathieu, Robert Kiss, Francesco Epifano. Novel juglone and plumbagin 5-O derivatives and their in vitro growth inhibitory activity against apoptosis-resistant cancer cells.
Bioorganic & medicinal chemistry letters.
2016 Jan; 26(2):334-337. doi:
10.1016/j.bmcl.2015.12.017
. [PMID: 26706169] - Pharkphoom Panichayupakaranant, Md Iftekhar Ahmad. Plumbagin and Its Role in Chronic Diseases.
Advances in experimental medicine and biology.
2016; 929(?):229-246. doi:
10.1007/978-3-319-41342-6_10
. [PMID: 27771927] - Phantip Chaweeborisuit, Chinnawut Suriyonplengsaeng, Worawit Suphamungmee, Prasert Sobhon, Krai Meemon. Nematicidal effect of plumbagin on Caenorhabditis elegans: a model for testing a nematicidal drug.
Zeitschrift fur Naturforschung. C, Journal of biosciences.
2016; 71(5-6):121-31. doi:
10.1515/znc-2015-0222
. [PMID: 27140303] - Yi Gou, Zhan Zhang, Jinxu Qi, Shichu Liang, Zuping Zhou, Feng Yang, Hong Liang. Folate-functionalized human serum albumin carrier for anticancer copper(II) complexes derived from natural plumbagin.
Journal of inorganic biochemistry.
2015 Dec; 153(?):13-22. doi:
10.1016/j.jinorgbio.2015.09.004
. [PMID: 26398432] - Aik Kia Khaw, Safoura Sameni, Shriram Venkatesan, Guruprasad Kalthur, M Prakash Hande. Plumbagin alters telomere dynamics, induces DNA damage and cell death in human brain tumour cells.
Mutation research. Genetic toxicology and environmental mutagenesis.
2015 Nov; 793(?):86-95. doi:
10.1016/j.mrgentox.2015.06.004
. [PMID: 26520377] - Muobarak J Tuorkey. Cancer Therapy with Phytochemicals: Present and Future Perspectives.
Biomedical and environmental sciences : BES.
2015 Nov; 28(11):808-19. doi:
10.3967/bes2015.112
. [PMID: 26695359]