Quercetin 3-galactoside (BioDeep_00000014692)

 

Secondary id: BioDeep_00000270337, BioDeep_00000397926, BioDeep_00000616500

natural product human metabolite PANOMIX_OTCML-2023


代谢物信息卡片


2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

化学式: C21H20O12 (464.09547200000003)
中文名称: 金丝桃苷, 金丝桃甙, 金丝桃苷
谱图信息: 最多检出来源 Viridiplantae(plant) 10.43%

分子结构信息

SMILES: c1(cc(c2c(c1)oc(c(c2=O)O[C@H]1[C@H]([C@@H]([C@H]([C@H](O1)CO)O)O)O)c1ccc(c(c1)O)O)O)O
InChI: InChI=1/C21H20O12/c22-6-13-15(27)17(29)18(30)21(32-13)33-20-16(28)14-11(26)4-8(23)5-12(14)31-19(20)7-1-2-9(24)10(25)3-7/h1-5,13,15,17-18,21-27,29-30H,6H2/t13-,15+,17+,18-,21+/m1/s1

描述信息

Quercetin 3-O-beta-D-galactopyranoside is a quercetin O-glycoside that is quercetin with a beta-D-galactosyl residue attached at position 3. Isolated from Artemisia capillaris, it exhibits hepatoprotective activity. It has a role as a hepatoprotective agent and a plant metabolite. It is a tetrahydroxyflavone, a monosaccharide derivative, a beta-D-galactoside and a quercetin O-glycoside.
Hyperoside is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available.
See also: Bilberry (part of); Menyanthes trifoliata leaf (part of); Crataegus monogyna flowering top (part of).
Quercetin 3-galactoside is found in alcoholic beverages. Quercetin 3-galactoside occurs widely in plants, e.g. in apple peel and Hypericum perforatum (St Johns wort).Hyperoside is the 3-O-galactoside of quercetin. It is a medicinally active compound that can be isolated from Drosera rotundifolia, from the Stachys plant, from Prunella vulgaris, from Rumex acetosella and from St Johns wort. (Wikipedia
A quercetin O-glycoside that is quercetin with a beta-D-galactosyl residue attached at position 3. Isolated from Artemisia capillaris, it exhibits hepatoprotective activity.
Occurs widely in plants, e.g. in apple peel and Hypericum perforatum (St Johns wort)
Acquisition and generation of the data is financially supported in part by CREST/JST.
Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].
Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].

同义名列表

83 个代谢物同义名

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one; 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yloxy)-4H-chromen-4-one; 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-chromen-4-one; 2-[3,4-bis(oxidanyl)phenyl]-3-[(2S,3R,4S,5R,6R)-6-(hydroxymethyl)-3,4,5-tris(oxidanyl)oxan-2-yl]oxy-5,7-bis(oxidanyl)chromen-4-one; 2-(3,4-Dihydroxy-phenyl)-5,7-dihydroxy-3-((2S,4R,5R)-3,4,5-trihydroxy-6-hydroxymethyl-tetrahydro-pyran-2-yloxy)-chromen-4-one; 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one; 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-4-one; 4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3-(.beta.-D-galactopyranosyloxy)-5,7-dihydroxy-; 4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3-(beta-D-galactopyranosyloxy)-5,7-dihydroxy-; 2-(3,4-DIHYDROXYPHENYL)-3-(.BETA.-D-GALACTOPYRANOSYLOXY)-5,7-DIHYDROXY-4H-1-BENZOPYRAN-4-ONE; 2-(3,4-dihydroxyphenyl)-3-(alpha-D-galactopyranosyloxy)-5,7-dihydroxy-4H-1-benzopyran-4-one; 2-(3,4-Dihydroxyphenyl)-3-(beta-D-galactopyranosyloxy)-5,7-dihydroxy-4H-1-benzopyran-4-one; 2-(3,4-Dihydroxyphenyl)-3-(β-D-galactopyranosyloxy)-5,7-dihydroxy-4H-1-benzopyran-4-one; 2-(3,4-Dihydroxyphenyl)-3-(b-D-galactopyranosyloxy)-5,7-dihydroxy-4H-1-benzopyran-4-one; 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-oxo-4H-chromen-3-yl beta-D-galactopyranoside; 2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-4-oxo-4H-chromen-3-yl hexopyranoside #; Hyperoside, United States Pharmacopeia (USP) Reference Standard; 3,3,4,5,7-Pentahydroxyflavone 3-O-beta-D-galactopyranoside; 3,3’,4’,5,7-Pentahydroxyflavone 3-O-β-D-galactopyranoside; 3-O-b-D-Galactopyranosyloxy-3,4,5,7-tetrahydroxyflavone; 3,3,4,5,7-Pentahydroxyflavone 3-O-β-D-galactopyranoside; Hyperoside, primary pharmaceutical reference standard; HYPEROSIDE (CONSTITUENT OF HAWTHORN LEAF WITH FLOWER); HYPEROSIDE (CONSTITUENT OF ST. JOHNS WORT) [DSC]; 3,3,4,5,7-Pentahydroxyflavone 3-D-galactoside; HYPEROSIDE (CONSTITUENT OF ST. JOHNS WORT); Quercetin 3-D-galactoside, >=97.0\\% (HPLC); Quercetin 3-O-.beta.-D-galactopyranoside; 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-; Quercetin 3-.beta.-D-galactopyranoside; Quercetin 3-O-beta-D-galactopyranoside; 3-((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-; 6-(hydroxymethyl)tetrahydro-2H-pyran-; 3-O-beta-D-Galactopyranosyl quercetin; Quercetin 3-O-beta-galactopyranoside; Quercetin 3-beta-D-galactopyranoside; 3-O-beta-D-Galactopyranosylquercetin; Quercetin 3-O-β-D-galactopyranoside; Quercetin 3-O-b-D-galactopyranoside; Quercetin 3-beta-galactopyranoside; QUERCETIN 3-O-.BETA.-D-GALACTOSIDE; 3-O-β-D-Galactopyranosyl quercetin; 3-O-β-D-Galactopyranosylquercetin; Quercetin 3-O-β-galactopyranoside; Quercetin 3-O-beta-D-galactoside; Quercetin 3-O-galactopyranoside; Quercetin 3-O-beta-galactoside; Quercetin 3-beta-D-galactoside; Quercetin 3-O-β-D-galactoside; Quercetin-3-beta-galactoside; Quercetin 3-beta-galactoside; Quercetin 3-β-D-galactoside; QUERCETIN 3-B-D-GALACTOSIDE; OVSQVDMCBVZWGM-DTGCRPNFSA-N; Quercetin 3-O-β-galactoside; 2-yloxy)-4H-chromen-4-one; Quercetin 3-D-galactoside; Quercetin 3-β-galactoside; quercetin 3-O-galactoside; quercetin-3-O-galactoside; Quercetin 3-galactoside; Quercetin-3-galactoside; 3-D-Galactosylquercetin; jm5b01461, Compound 84; quercetin galactoside; HYPEROSIDE (USP-RS); HYPEROSIDE [USP-RS]; UNII-8O1CR18L82; MEGxp0_000392; Isoquercitrin; ACon1_000623; Hyperin,(S); Hyperozide; Hyperoside; 8O1CR18L82; Hyperosid; Hyperasid; p Hyperin; Jyperin; hyperin; J6O; Quercetin-3-O-beta-D-galactoside; Quercetin-3-beta-O-galactoside



数据库引用编号

56 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

2172 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Bingqing Chi, Meng Zhang, Luping Sun, Hongyan Liu, Zhenhua Tian. Study on the hypotensive effect and mechanism of hawthorn (Crataegus pinnatifida) fruits and hyperoside in spontaneously hypertensive rats. Food & function. 2024 May; 15(10):5627-5640. doi: 10.1039/d3fo02641h. [PMID: 38722076]
  • Daijin Li, Jie Chang, Yujue Wang, Xiaoye Du, Jing Xu, Jingang Cui, Teng Zhang, Yu Chen. Hyperoside mitigates photoreceptor degeneration in part by targeting cGAS and suppressing DNA-induced microglial activation. Acta neuropathologica communications. 2024 May; 12(1):76. doi: 10.1186/s40478-024-01793-0. [PMID: 38755736]
  • Jia Xia, Yan Wan, Jiao-Jiao Wu, Yu Yang, Jin-Feng Xu, Li Zhang, Dong Liu, Lu Chen, Fei Tang, Hui Ao, Cheng Peng. Therapeutic potential of dietary flavonoid hyperoside against non-communicable diseases: targeting underlying properties of diseases. Critical reviews in food science and nutrition. 2024; 64(5):1340-1370. doi: 10.1080/10408398.2022.2115457. [PMID: 36073729]
  • Lei Shi, Chenchen Jiang, Hanghang Xu, Jiangping Wu, Jiajun Lu, Yuxiang He, Xiuyun Yin, Zhuo Chen, Di Cao, Xuebin Shen, Xuefeng Hou, Jun Han. Hyperoside ameliorates cerebral ischaemic-reperfusion injury by opening the TRPV4 channel in vivo through the IP3-PKC signalling pathway. Pharmaceutical biology. 2023 Dec; 61(1):1000-1012. doi: 10.1080/13880209.2023.2228379. [PMID: 37410551]
  • Qigang Fan, Ruifen He, Yi Li, Pu Gao, Runchun Huang, Rong Li, Jiayu Zhang, Hongli Li, Xiaolei Liang. Studying the effect of hyperoside on recovery from cyclophosphamide induced oligoasthenozoospermia. Systems biology in reproductive medicine. 2023 Oct; 69(5):333-346. doi: 10.1080/19396368.2023.2241600. [PMID: 37578152]
  • Daijin Li, Jing Xu, Jie Chang, Yujue Wang, Xiaoye Du, Hanhan Wu, Jingang Cui, Peiwei Wang, Teng Zhang, Yu Chen. Hyperoside protects against oxidative stress-mediated photoreceptor degeneration: therapeutic potentials for photoreceptor degenerative diseases. Journal of translational medicine. 2023 08; 21(1):569. doi: 10.1186/s12967-023-04459-y. [PMID: 37620913]
  • Yuwen Shi, Mengcheng Jiang, Yuhang Zhang, Yuanyuan Diao, Na Li, Weipeng Liu, Zhidong Qiu, Ye Qiu, Ailing Jia. Hyperoside Nanomicelles Alleviate Atherosclerosis by Modulating the Lipid Profile and Intestinal Flora Structure in High-Fat-Diet-Fed Apolipoprotein-E-Deficient Mice. Molecules (Basel, Switzerland). 2023 Jun; 28(13):. doi: 10.3390/molecules28135088. [PMID: 37446750]
  • Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products. ACS pharmacology & translational science. 2023 May; 6(5):683-701. doi: 10.1021/acsptsci.2c00194. [PMID: 37200814]
  • Hongqiang An, Chu Chu, Zhen Zhang, Yunhong Zhang, Ran Wei, Bin Wang, Ke Xu, Lihua Li, Yonglin Liu, Gang Li, Xia Li. Hyperoside alleviates postmenopausal osteoporosis via regulating miR-19a-5p/IL-17A axis. American journal of reproductive immunology (New York, N.Y. : 1989). 2023 May; ?(?):e13709. doi: 10.1111/aji.13709. [PMID: 37157916]
  • Xinyue Zhang, Dan Li, Kexin Wang, Jiao Xie, Yaojie Liu, Tianxin Wang, Suwen Liu, Qun Huang, Qingbin Guo, Hao Wang. Hyperoside inhibits pancreatic lipase activity in vitro and reduces fat accumulation in vivo. Food & function. 2023 May; ?(?):. doi: 10.1039/d2fo03219h. [PMID: 37128768]
  • Deniz Yuzbasioglu, Ummugulsum Kubra Dilek, Esra Erikel, Fatma Unal. Antigenotoxic effect of hyperoside against Mitomycin C and hydrogen peroxide-induced genotoxic damage on human lymphocytes. Toxicology in vitro : an international journal published in association with BIBRA. 2023 May; 90(?):105604. doi: 10.1016/j.tiv.2023.105604. [PMID: 37137419]
  • Siyao Cheng, Xintao Ni, Yanjing Yao, Yunxia Sun, Xiaofeng Yu, Daozong Xia, Zhenggang Yang, Miaofen G Hu, Xiaoli Hou. Hyperoside prevents high-fat diet-induced obesity by increasing white fat browning and lipophagy via CDK6-TFEB pathway. Journal of ethnopharmacology. 2023 Feb; 307(?):116259. doi: 10.1016/j.jep.2023.116259. [PMID: 36781055]
  • Yanli Song, Dongjie He, Shaoqi Shi, Tianwei Cui, Hui Zhang, Xianmin Zhao, Tingting Ni, Huidongzi Xiao, Aiwu Wei. Hyperoside exerts protective effects against anticardiolipin antibody-induced recurrent pregnancy loss in vivo and in vitro. Human & experimental toxicology. 2023 Jan; 42(?):9603271231163476. doi: 10.1177/09603271231163476. [PMID: 37042322]
  • Rui Song, Yunrui Xia, Zhe Zhao, Xing Yang, Nanyi Zhang. Effects of plant growth regulators on the contents of rutin, hyperoside and quercetin in Hypericum attenuatum Choisy. PloS one. 2023; 18(5):e0285134. doi: 10.1371/journal.pone.0285134. [PMID: 37134044]
  • Jingyin Mai, Qingqing He, Yuting Liu, Yuting Hou. Hyperoside Attenuates Sepsis-Induced Acute Lung Injury (ALI) through Autophagy Regulation and Inflammation Suppression. Mediators of inflammation. 2023; 2023(?):1257615. doi: 10.1155/2023/1257615. [PMID: 37545738]
  • Xing-Jie Xu, Tao Pan, Hui-Jie Fan, Xu Wang, Jie-Zhong Yu, Hai-Fei Zhang, Bao-Guo Xiao, Zhen-Yu Li, Bo Zhang, Cun-Gen Ma, Zhi Chai. Neuroprotective effect of hyperoside in MPP+/MPTP -induced dopaminergic neurodegeneration. Metabolic brain disease. 2022 Dec; ?(?):. doi: 10.1007/s11011-022-01153-8. [PMID: 36576692]
  • Ya-Ting Jiao, Wen-Shu Zhang, Shan-Shan Pan, Ming-Jie Xie. [Multi-omics analysis of regulating effects of hyperoside on lipid metabolism in high-fat diet mice]. Sheng li xue bao : [Acta physiologica Sinica]. 2022 Dec; 74(6):970-978. doi: ". [PMID: 36594385]
  • Jun Zhu, Min Zhang, Xiong-Li Liu, Zhi-Gang Yin, Xiao-Xue Han, Hui-Juan Wang, Ying Zhou. Hyperoside suppresses osteoclasts differentiation and function through downregulating TRAF6/p38 MAPK signaling pathway. Journal of Asian natural products research. 2022 Dec; 24(12):1157-1168. doi: 10.1080/10286020.2022.2056028. [PMID: 35435096]
  • Aoqi Song, Zhenghua Wu, Wenjuan Zhao, Wenqing Shi, Ru Cheng, Jingjing Jiang, Zhuojun Ni, Han Qu, Xijier Qiaolongbatu, Guorong Fan, Yuefen Lou. The Role and Mechanism of Hyperoside against Depression-like Behavior in Mice via the NLRP1 Inflammasome. Medicina (Kaunas, Lithuania). 2022 Nov; 58(12):. doi: 10.3390/medicina58121749. [PMID: 36556951]
  • Guo-Si Li, Fu-Cheng Zhu, Pei-Pei Wei, Fang-Li Gu, Qi-Ling Xu, Meng-Hua Ma. Development of an Escherichia coli whole cell biocatalyst for the production of hyperoside. Biotechnology letters. 2022 Sep; 44(9):1073-1080. doi: 10.1007/s10529-022-03285-4. [PMID: 35920962]
  • Tian Xie, Jun Yuan, Ling Mei, Ping Li, Ruijie Pan. Hyperoside ameliorates TNF‑α‑induced inflammation, ECM degradation and ER stress‑mediated apoptosis via the SIRT1/NF‑κB and Nrf2/ARE signaling pathways in vitro. Molecular medicine reports. 2022 Aug; 26(2):. doi: 10.3892/mmr.2022.12776. [PMID: 35730622]
  • Xiao Chen, Ademola C Famurewa, Jian Tang, Oladipupo Odunayo Olatunde, Opeyemi Joshua Olatunji. Hyperoside attenuates neuroinflammation, cognitive impairment and oxidative stress via suppressing TNF-α/NF-κB/caspase-3 signaling in type 2 diabetes rats. Nutritional neuroscience. 2022 Aug; 25(8):1774-1784. doi: 10.1080/1028415x.2021.1901047. [PMID: 33722183]
  • Qi Wang, Hao-Cheng Wei, Sheng-Jun Zhou, Ying Li, Ting-Ting Zheng, Chang-Zheng Zhou, Xin-Huan Wan. Hyperoside: A review on its sources, biological activities, and molecular mechanisms. Phytotherapy research : PTR. 2022 Jul; 36(7):2779-2802. doi: 10.1002/ptr.7478. [PMID: 35561084]
  • Yu Yan Xie, Yun Wei Lu, Gu Ran Yu. The protective effects of hyperoside on Ang II-mediated apoptosis of bEnd.3 cells and injury of blood-brain barrier model in vitro. BMC complementary medicine and therapies. 2022 Jun; 22(1):157. doi: 10.1186/s12906-022-03635-9. [PMID: 35698113]
  • Y Zhu, T Wang, N Dai, M Deng, H Liu, X Tong, L Li. [Hyperoside protects mouse spermatocytes GC-2 cells from oxidative damage by activating the Keap1/Nrf2/HO-1 pathway]. Nan fang yi ke da xue xue bao = Journal of Southern Medical University. 2022 May; 42(5):673-680. doi: 10.12122/j.issn.1673-4254.2022.05.07. [PMID: 35673910]
  • Sijin Xu, Shuaipeng Chen, Wenxin Xia, Hong Sui, Xueyan Fu. Hyperoside: A Review of Its Structure, Synthesis, Pharmacology, Pharmacokinetics and Toxicity. Molecules (Basel, Switzerland). 2022 May; 27(9):. doi: 10.3390/molecules27093009. [PMID: 35566359]
  • Xiaolei Yang, Guanghao Zhu, Ying Zhang, Xubo Wu, Bei Liu, Ye Liu, Qing Yang, Wandi Du, Jingru Liang, Jiarong Hu, Ping Yang, Guangbo Ge, Weimin Cai, Guo Ma. Inhibition of Human UDP-Glucuronosyltransferases1A1-Mediated Bilirubin Glucuronidation by the Popular Flavonoids Baicalein, Baicalin, and Hyperoside Is Responsible for Herb (Shuang-Huang-Lian)-Induced Jaundice. Drug metabolism and disposition: the biological fate of chemicals. 2022 05; 50(5):552-565. doi: 10.1124/dmd.121.000714. [PMID: 35241486]
  • Siqi Fan, Haida Pan, Jiaxing Huang, Zhiqiang Lei, Jinfu Liu. Hyperoside exerts osteoprotective effect on dexamethasone-induced osteoblasts by targeting NADPH Oxidase 4 (NOX4) to inhibit the reactive oxygen species (ROS) accumulation and activate c-Jun N-terminal kinase (JNK) pathway. Bioengineered. 2022 04; 13(4):8657-8666. doi: 10.1080/21655979.2022.2054499. [PMID: 35331079]
  • Esra Saçıcı, Erdem Yesilada. Development of new and validated HPTLC methods for the qualitative and quantitative analysis of hyperforin, hypericin and hyperoside contents in Hypericum species. Phytochemical analysis : PCA. 2022 Apr; 33(3):355-364. doi: 10.1002/pca.3093. [PMID: 34734668]
  • Songul Karakaya, Ipek Suntar, Bilge Aydin, Benan Dursunoglu, Sefa Gözcu, Onur Senol, Burak Bayrak, Hilal Ozbek, Mehmet Koca, Songul Ceribasi, Omer Faruk Yakinci, Zuhal Guvenalp, Yücel Kadıoglu. Evaluation of anticholinesterase effect of some Epilobium species and quantification of hyperoside by HPLC. Natural product research. 2022 Mar; 36(5):1296-1299. doi: 10.1080/14786419.2020.1856841. [PMID: 33305606]
  • Valentina Roviello, Melinda Gilhen-Baker, Caterina Vicidomini, Giovanni N Roviello. The Healing Power of Clean Rivers: In Silico Evaluation of the Antipsoriatic Potential of Apiin and Hyperoside Plant Metabolites Contained in River Waters. International journal of environmental research and public health. 2022 02; 19(5):. doi: 10.3390/ijerph19052502. [PMID: 35270196]
  • Mafalda V Moreira, Sara C Pereira, Bárbara Guerra-Carvalho, David F Carrageta, Soraia Pinto, Alberto Barros, Branca M Silva, Pedro F Oliveira, Marco G Alves. Hyperoside Supplementation in Preservation Media Surpasses Vitamin C Protection Against Oxidative Stress-Induced Damages in Human Spermatozoa. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2022 Jan; 56(S1):1-23. doi: 10.33594/000000487. [PMID: 34998002]
  • Songsong Wang, Feiya Sheng, Liang Zou, Jianbo Xiao, Peng Li. Hyperoside attenuates non-alcoholic fatty liver disease in rats via cholesterol metabolism and bile acid metabolism. Journal of advanced research. 2021 12; 34(?):109-122. doi: 10.1016/j.jare.2021.06.001. [PMID: 35024184]
  • Xu Pang, Mei Wang, Shuang-Yan Wang, Jie Zhang, Ya-Peng Du, Ye Zhao, Xiao-Hui Zheng, Bai-Ping Ma. Phenolic compounds from the leaves of Crataegus pinnatifida Bge. var. major N.E.Br. And their lipid-lowering effects. Bioorganic & medicinal chemistry letters. 2021 09; 47(?):128211. doi: 10.1016/j.bmcl.2021.128211. [PMID: 34157392]
  • Yongkang Yang, Jing Li, Tingcai Rao, Zhirui Fang, Junyan Zhang. The role and mechanism of hyperoside against myocardial infarction in mice by regulating autophagy via NLRP1 inflammation pathway. Journal of ethnopharmacology. 2021 Aug; 276(?):114187. doi: 10.1016/j.jep.2021.114187. [PMID: 33957207]
  • Di Wu, Lan Tang, Ran Duan, Xia Hu, Fang Geng, Yin Zhang, Lianxin Peng, Hui Li. Interaction mechanisms and structure-affinity relationships between hyperoside and soybean β-conglycinin and glycinin. Food chemistry. 2021 Jun; 347(?):129052. doi: 10.1016/j.foodchem.2021.129052. [PMID: 33482484]
  • Jing Zhao, Saisai Tian, Dong Lu, Jian Yang, Huawu Zeng, Feng Zhang, Dongzhu Tu, Guangbo Ge, Yuejuan Zheng, Ting Shi, Xin Xu, Shiyi Zhao, Yili Yang, Weidong Zhang. Systems pharmacological study illustrates the immune regulation, anti-infection, anti-inflammation, and multi-organ protection mechanism of Qing-Fei-Pai-Du decoction in the treatment of COVID-19. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2021 May; 85(?):153315. doi: 10.1016/j.phymed.2020.153315. [PMID: 32978039]
  • Xiulan Xin, Liang Chen, Ye Li, Ran Yu, Haitao Fan, Zheng Yan, Shuangshi Li, Hui Feng. Study on the interaction of hyperoside and human serum albumin in VC and VC -free environments by spectroscopic and molecular docking techniques. Luminescence : the journal of biological and chemical luminescence. 2021 May; 36(3):595-605. doi: 10.1002/bio.3978. [PMID: 33140531]
  • Wei-Rong Ma, Yong Tan. [The Effect and Mechanism of Hyperin on Ovarian Reserve of Tripterygium Glycosides-Induced POI Mice]. Sichuan da xue xue bao. Yi xue ban = Journal of Sichuan University. Medical science edition. 2021 May; 52(3):458-466. doi: 10.12182/20210560103. [PMID: 34018365]
  • Qing Yang, Zhihua Song, Biying Dong, Lili Niu, Hongyan Cao, Hanghang Li, Tingting Du, Tengyue Liu, Wanlong Yang, Dong Meng, Yujie Fu. Hyperoside regulates its own biosynthesis via MYB30 in promoting reproductive development and seed set in okra. Plant physiology. 2021 04; 185(3):951-968. doi: 10.1093/plphys/kiaa068. [PMID: 33743011]
  • Yali Zhang, Xiaomin Yu, Mimi Wang, Yan Ding, Hui Guo, Jiankang Liu, Ying Cheng. Hyperoside from Z. bungeanum leaves restores insulin secretion and mitochondrial function by regulating pancreatic cellular redox status in diabetic mice. Free radical biology & medicine. 2021 01; 162(?):412-422. doi: 10.1016/j.freeradbiomed.2020.10.320. [PMID: 33161043]
  • Yufei Feng, Guozhao Qin, Shuyuan Chang, Zhongxu Jing, Yanyan Zhang, Yanhong Wang. Antitumor Effect of Hyperoside Loaded in Charge Reversed and Mitochondria-Targeted Liposomes. International journal of nanomedicine. 2021; 16(?):3073-3089. doi: 10.2147/ijn.s297716. [PMID: 33953556]
  • Jialing Liu, Yanmei Zhang, Hongqin Sheng, Chunling Liang, Huazhen Liu, Jose Alberto Moran Guerrero, Zhaoyu Lu, Wei Mao, Zhenhua Dai, Xusheng Liu, Lei Zhang. Hyperoside Suppresses Renal Inflammation by Regulating Macrophage Polarization in Mice With Type 2 Diabetes Mellitus. Frontiers in immunology. 2021; 12(?):733808. doi: 10.3389/fimmu.2021.733808. [PMID: 34925317]
  • Jingbo Zhou, Shu Zhang, Xinyi Sun, Yan Lou, Jiangyi Yu. Hyperoside Protects HK-2 Cells Against High Glucose-Induced Apoptosis and Inflammation via the miR-499a-5p/NRIP1 Pathway. Pathology oncology research : POR. 2021; 27(?):629829. doi: 10.3389/pore.2021.629829. [PMID: 34257594]
  • Songul Karakaya, Ipek Süntar, Omer Faruk Yakinci, Oksana Sytar, Songul Ceribasi, Benan Dursunoglu, Hilal Ozbek, Zuhal Guvenalp. In vivo bioactivity assessment on Epilobium species: A particular focus on Epilobium angustifolium and its components on enzymes connected with the healing process. Journal of ethnopharmacology. 2020 Nov; 262(?):113207. doi: 10.1016/j.jep.2020.113207. [PMID: 32730870]
  • Tao Xu, Xiao Wu, Zhou Zhou, Yu Ye, Chaoting Yan, Nanshan Zhuge, Jinhua Yu. Hyperoside ameliorates periodontitis in rats by promoting osteogenic differentiation of BMSCs via activation of the NF-κB pathway. FEBS open bio. 2020 09; 10(9):1843-1855. doi: 10.1002/2211-5463.12937. [PMID: 32687664]
  • Aiwu Wei, Yanli Song, Tingting Ni, Huidongzi Xiao, Yanrong Wan, Xingxing Ren, Huijuan Li, Guangli Xu. Hyperoside attenuates pregnancy loss through activating autophagy and suppressing inflammation in a rat model. Life sciences. 2020 Aug; 254(?):117735. doi: 10.1016/j.lfs.2020.117735. [PMID: 32360572]
  • Jianwen Cao, Cheng Tang, Manman Gao, Yanggang Rui, Jie Zhang, Li Wang, Yang Wang, Bo Xu, Bing Chun Yan. Hyperoside alleviates epilepsy-induced neuronal damage by enhancing antioxidant levels and reducing autophagy. Journal of ethnopharmacology. 2020 Jul; 257(?):112884. doi: 10.1016/j.jep.2020.112884. [PMID: 32311482]
  • Qing Yang, Biying Dong, Litao Wang, Zhihua Song, Lili Niu, Hanghang Li, Hongyan Cao, Dong Meng, Yujie Fu. CDPK6 phosphorylates and stabilizes MYB30 to promote hyperoside biosynthesis that prolongs the duration of full-blooming in okra. Journal of experimental botany. 2020 07; 71(14):4042-4056. doi: 10.1093/jxb/eraa174. [PMID: 32249299]
  • Cezara Zagrean-Tuza, Augustin C Mot, Tomasz Chmiel, Attila Bende, Ioan Turcu. Sugar matters: sugar moieties as reactivity-tuning factors in quercetin O-glycosides. Food & function. 2020 Jun; 11(6):5293-5307. doi: 10.1039/d0fo00319k. [PMID: 32458896]
  • Jensen A Lund, Paula N Brown, Paul R Shipley. Quantification of North American and European Crataegus flavonoids by nuclear magnetic resonance spectrometry. Fitoterapia. 2020 Jun; 143(?):104537. doi: 10.1016/j.fitote.2020.104537. [PMID: 32145312]
  • Wei Zhang, Zhi-Tian Fu, Yao Xie, Zhi-Wen Duan, Yu Wang, Rong-Hua Fan. High resolution UPLC-MS/MS method for simultaneous separation and determination of six flavonoids from semen cuscutae extract in rat plasma: application to comparative pharmacokinetic studies in normal and kidney-deficient rats. Natural product research. 2020 May; 34(10):1446-1451. doi: 10.1080/14786419.2018.1511556. [PMID: 30375249]
  • Li Yu, Wenli Wu, Yiying Pan, Wei Wang, Leiwen Sun, Yi Liu, Dongmei Wang, Dengwu Li. Quality evaluation of different varieties of Zanthoxylum bungeanum Maxim. peels based on phenolic profiles, bioactivity, and HPLC fingerprint. Journal of food science. 2020 Apr; 85(4):1090-1097. doi: 10.1111/1750-3841.15095. [PMID: 32147833]
  • Khouchlaa Aya, Tijane M'hamed. Chemical compounds, antioxidant activity, and in vitro and in silico litholytic effects of Zizyphus lotus extracts. Journal of basic and clinical physiology and pharmacology. 2020 Mar; 31(3):. doi: 10.1515/jbcpp-2019-0091. [PMID: 32229663]
  • Dan Chen, Ya-Xian Wu, Yu-Bao Qiu, Bin-Bin Wan, Gang Liu, Jun-Liang Chen, Mu-Dan Lu, Qing-Feng Pang. Hyperoside suppresses hypoxia-induced A549 survival and proliferation through ferrous accumulation via AMPK/HO-1 axis. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2020 Feb; 67(?):153138. doi: 10.1016/j.phymed.2019.153138. [PMID: 31881478]
  • Huanhuan Li, Xuexiao Cao, Yanan Liu, Tingting Liu, Meng Wang, Xiaoliang Ren, Zhiying Dou. Establishment of modified biopharmaceutics classification system absorption model for oral Traditional Chinese Medicine (Sanye Tablet). Journal of ethnopharmacology. 2019 Nov; 244(?):112148. doi: 10.1016/j.jep.2019.112148. [PMID: 31400507]
  • Katarzyna Szewczyk, Serhat Sezai Cicek, Christian Zidorn, Sebastian Granica. Phenolic constituents of the aerial parts of Impatiens glandulifera Royle (Balsaminaceae) and their antioxidant activities. Natural product research. 2019 Oct; 33(19):2851-2855. doi: 10.1080/14786419.2018.1499644. [PMID: 30175924]
  • Jolanta Orzelska-Górka, Katarzyna Szewczyk, Monika Gawrońska-Grzywacz, Ewa Kędzierska, Ewelina Głowacka, Mariola Herbet, Jarosław Dudka, Grażyna Biała. Monoaminergic system is implicated in the antidepressant-like effect of hyperoside and protocatechuic acid isolated from Impatiens glandulifera Royle in mice. Neurochemistry international. 2019 09; 128(?):206-214. doi: 10.1016/j.neuint.2019.05.006. [PMID: 31077758]
  • Xiaowei Nie, Wenjie Sheng, Daorong Hou, Qiang Liu, Ronggen Wang, Yong Tan. Effect of Hyperin and Icariin on steroid hormone secretion in rat ovarian granulosa cells. Clinica chimica acta; international journal of clinical chemistry. 2019 Aug; 495(?):646-651. doi: 10.1016/j.cca.2018.05.004. [PMID: 29729232]
  • Lin Wu, Qing Li, Simeng Liu, Xiaofei An, Zhimin Huang, Bo Zhang, Yanggang Yuan, Changying Xing. Protective effect of hyperoside against renal ischemia-reperfusion injury via modulating mitochondrial fission, oxidative stress, and apoptosis. Free radical research. 2019 Jul; 53(7):727-736. doi: 10.1080/10715762.2019.1623883. [PMID: 31130024]
  • Yaoping Shi, Xiaoxia Qiu, Mengjun Dai, Xuebin Zhang, Guangxin Jin. Hyperoside Attenuates Hepatic Ischemia-Reperfusion Injury by Suppressing Oxidative Stress and Inhibiting Apoptosis in Rats. Transplantation proceedings. 2019 Jul; 51(6):2051-2059. doi: 10.1016/j.transproceed.2019.04.066. [PMID: 31399183]
  • Yumi Kitahiro, Hiroshi Ikeda, Hyoung-Tak Im, Eiichi Kodaira, Makio Shibano. Phytochemical characterization of Rosa multiflora Thunb. (Rosaceae) in Japan and South Korea, with a focus on the bioactive flavonol glycoside 'multiflorin A'. Journal of natural medicines. 2019 Jun; 73(3):555-565. doi: 10.1007/s11418-019-01302-x. [PMID: 30949951]
  • Jingxia Han, Jing Meng, Shuang Chen, Xiaorui Wang, Shan Yin, Qiang Zhang, Huijuan Liu, Rong Qin, Zhongwei Li, Weilong Zhong, Chao Zhang, Heng Zhang, Yuanhao Tang, Tingting Lin, Wanfeng Gao, Xiaoyun Zhang, Lan Yang, Yanrong Liu, Hong-Gang Zhou, Tao Sun, Cheng Yang. YY1 Complex Promotes Quaking Expression via Super-Enhancer Binding during EMT of Hepatocellular Carcinoma. Cancer research. 2019 04; 79(7):1451-1464. doi: 10.1158/0008-5472.can-18-2238. [PMID: 30760518]
  • Fang Liu, YuHua Zhao, JieMin Lu, ShuangHui Chen, XinGuang Zhang, WenWei Mao. Hyperoside inhibits proinflammatory cytokines in human lung epithelial cells infected with Mycoplasma pneumoniae. Molecular and cellular biochemistry. 2019 Mar; 453(1-2):179-186. doi: 10.1007/s11010-018-3443-4. [PMID: 30350306]
  • Buhui Liu, Yue Tu, Weiming He, Yinglu Liu, Wei Wu, Qijun Fang, Haitao Tang, Renmao Tang, Ziyue Wan, Wei Sun, Yigang Wan. Hyperoside attenuates renal aging and injury induced by D-galactose via inhibiting AMPK-ULK1 signaling-mediated autophagy. Aging. 2018 12; 10(12):4197-4212. doi: 10.18632/aging.101723. [PMID: 30585174]
  • Seon-A Jang, Dae Won Park, Eun Hwa Sohn, Sung Ryul Lee, Se Chan Kang. Hyperoside suppresses tumor necrosis factor α-mediated vascular inflammatory responses by downregulating mitogen-activated protein kinases and nuclear factor-κB signaling. Chemico-biological interactions. 2018 Oct; 294(?):48-55. doi: 10.1016/j.cbi.2018.08.013. [PMID: 30125551]
  • Lizhen Liu, Zhi Mi, Qin Hu, Caiqing Li, Xiaohua Li, Feng Feng. One-step synthesis of fluorescent carbon dots for sensitive and selective detection of hyperin. Talanta. 2018 Aug; 186(?):315-321. doi: 10.1016/j.talanta.2018.04.065. [PMID: 29784367]
  • Zhaochen Wu, Wei Wang, Fengyuan He, Dengwu Li, Dongmei Wang. Simultaneous Enrichment and Separation of Four Flavonoids from Zanthoxylum bungeanum Leaves by Ultrasound-Assisted Extraction and Macroporous Resins with Evaluation of Antioxidant Activities. Journal of food science. 2018 Aug; 83(8):2109-2118. doi: 10.1111/1750-3841.14282. [PMID: 30080245]
  • Dong Wu, Danmeng Yu, Yujia Zhang, Juane Dong, Dengwu Li, Dongmei Wang. Metabolite Profiles, Bioactivity, and HPLC Fingerprint of Different Varieties of Eucommia ulmoides Oliv.: Towards the Utilization of Medicinal and Commercial Chinese Endemic Tree. Molecules (Basel, Switzerland). 2018 Jul; 23(8):. doi: 10.3390/molecules23081898. [PMID: 30061494]
  • Yongliang Chen, Lihong Ye, Wangjian Li, Dongzhang Li, Feng Li. Hyperoside protects human kidney‑2 cells against oxidative damage induced by oxalic acid. Molecular medicine reports. 2018 Jul; 18(1):486-494. doi: 10.3892/mmr.2018.8948. [PMID: 29750296]
  • Sławomir Dresler, Jozef Kováčik, Maciej Strzemski, Ireneusz Sowa, Magdalena Wójciak-Kosior. Methodological aspects of biologically active compounds quantification in the genus Hypericum. Journal of pharmaceutical and biomedical analysis. 2018 Jun; 155(?):82-90. doi: 10.1016/j.jpba.2018.03.048. [PMID: 29621655]
  • Ze-Hua Liu, Zi-Wen Luo, Deng-Wu Li, Dong-Mei Wang, Xia Ji. Synergistic effects and related bioactive mechanisms of Potentilla fruticosa Linn. leaves combined with green tea polyphenols studied with microbial test system (MTS). Natural product research. 2018 Jun; 32(11):1287-1290. doi: 10.1080/14786419.2017.1333989. [PMID: 28602107]
  • Muzaffer Silinsin, Ercan Bursal. UHPLC-MS/MS phenolic profiling and in vitro antioxidant activities of Inula graveolens (L.) Desf. Natural product research. 2018 Jun; 32(12):1467-1471. doi: 10.1080/14786419.2017.1350673. [PMID: 28697630]
  • Yan-Qiang Zhou, Yin-Tao Zhao, Xiao-Yan Zhao, Cui Liang, Ya-Wei Xu, Ling Li, Yuan Liu, Hai-Bo Yang. Hyperoside Suppresses Lipopolysaccharide-induced Inflammation and Apoptosis in Human Umbilical Vein Endothelial Cells. Current medical science. 2018 Apr; 38(2):222-228. doi: 10.1007/s11596-018-1869-2. [PMID: 30074179]
  • Li-Min Wang, Ming-Yuan Zhang, Qiu-Shuang Zhu, Chun-Feng Lu, Xue Bai. Hyperin Enhances the Sensitivity of HCT8/VCR Colon Cancer Cell Line to Vincristine by Down-Regulating P-Glycoprotein. Clinical laboratory. 2018 Mar; 64(3):269-275. doi: 10.7754/clin.lab.2017.170923. [PMID: 29739100]
  • Yali Zhang, Mimi Wang, Huanhuan Dong, Xiaomin Yu, Jingfang Zhang. Anti-hypoglycemic and hepatocyte-protective effects of hyperoside from Zanthoxylum bungeanum leaves in mice with high-carbohydrate/high-fat diet and alloxan-induced diabetes. International journal of molecular medicine. 2018 Jan; 41(1):77-86. doi: 10.3892/ijmm.2017.3211. [PMID: 29115390]
  • Rui Xiao, An-Li Xiang, Hong-Bo Pang, Ke-Qiang Liu. Hyperoside protects against hypoxia/reoxygenation induced injury in cardiomyocytes by suppressing the Bnip3 expression. Gene. 2017 Sep; 629(?):86-91. doi: 10.1016/j.gene.2017.07.063. [PMID: 28754633]
  • Liyi Zou, Shaoru Chen, Li Li, Tie Wu. The protective effect of hyperoside on carbon tetrachloride-induced chronic liver fibrosis in mice via upregulation of Nrf2. Experimental and toxicologic pathology : official journal of the Gesellschaft fur Toxikologische Pathologie. 2017 Sep; 69(7):451-460. doi: 10.1016/j.etp.2017.04.001. [PMID: 28434817]
  • Lijun Sun, Dongjie Liu, Jiaojiao Sun, Xingbin Yang, Minghai Fu, Yurong Guo. Simultaneous separation and purification of chlorogenic acid, epicatechin, hyperoside and phlorizin from thinned young Qinguan apples by successive use of polyethylene and polyamide resins. Food chemistry. 2017 Sep; 230(?):362-371. doi: 10.1016/j.foodchem.2017.03.065. [PMID: 28407923]
  • Yali Zhang, Huanhuan Dong, Jingfang Zhang, Liyu Zhang. Inhibitory effect of hyperoside isolated from Zanthoxylum bungeanum leaves on SW620 human colorectal cancer cells via induction of the p53 signaling pathway and apoptosis. Molecular medicine reports. 2017 Aug; 16(2):1125-1132. doi: 10.3892/mmr.2017.6710. [PMID: 29067453]
  • Chengwei Niu, Man Ma, Xiao Han, Zimin Wang, Hangyan Li. Hyperin protects against cisplatin-induced liver injury in mice. Acta cirurgica brasileira. 2017 Aug; 32(8):633-640. doi: 10.1590/s0102-865020170080000005. [PMID: 28902939]
  • Yeli Gong, Youhua Yang, Xiaoqing Chen, Min Yang, Dan Huang, Rong Yang, Lianying Zhou, Changlei Li, Qiuju Xiong, Zhe Xiong. Hyperoside protects against chronic mild stress-induced learning and memory deficits. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2017 Jul; 91(?):831-840. doi: 10.1016/j.biopha.2017.05.019. [PMID: 28501772]
  • Lei Wen, Yunliang Lin, Ruimin Lv, Huijiao Yan, Jinqian Yu, Hengqiang Zhao, Xiao Wang, Daijie Wang. An Efficient Method for the Preparative Isolation and Purification of Flavonoids from Leaves of Crataegus pinnatifida by HSCCC and Pre-HPLC. Molecules (Basel, Switzerland). 2017 May; 22(5):. doi: 10.3390/molecules22050767. [PMID: 28486427]
  • Wu-Yang Huang, Lin Fu, Chun-Yang Li, Li-Ping Xu, Li-Xia Zhang, Wei-Min Zhang. Quercetin, Hyperin, and Chlorogenic Acid Improve Endothelial Function by Antioxidant, Antiinflammatory, and ACE Inhibitory Effects. Journal of food science. 2017 May; 82(5):1239-1246. doi: 10.1111/1750-3841.13706. [PMID: 28407238]
  • Liancai Zhu, Jinqiu Chen, Jun Tan, Xi Liu, Bochu Wang. Flavonoids from Agrimonia pilosa Ledeb: Free Radical Scavenging and DNA Oxidative Damage Protection Activities and Analysis of Bioactivity-Structure Relationship Based on Molecular and Electronic Structures. Molecules (Basel, Switzerland). 2017 Feb; 22(3):. doi: 10.3390/molecules22030195. [PMID: 28245624]
  • Sang-Hyun Lee, Jung-Yun Lee, Young-In Kwon, Hae-Dong Jang. Anti-Osteoclastic Activity of Artemisia capillaris Thunb. Extract Depends upon Attenuation of Osteoclast Differentiation and Bone Resorption-Associated Acidification Due to Chlorogenic Acid, Hyperoside, and Scoparone. International journal of molecular sciences. 2017 Feb; 18(2):. doi: 10.3390/ijms18020322. [PMID: 28165389]
  • Hong-die Cai, Wei-wei Tao, Shu-lan Su, Sheng Guo, Yue Zhu, Jian-ming Guo, Da-wei Qian, Xu-dong Cong, Ren-mao Tang, Jin-ao Duan. [Antidepressant activity of flavonoid ethanol extract of Abelmoschus manihot corolla with BDNF up-regulation in the hippocampus]. Yao xue xue bao = Acta pharmaceutica Sinica. 2017 Feb; 52(2):222-8. doi: . [PMID: 29979503]
  • Tingting Ma, Yi Wang, Xiaoqian Chen, Xiaoping Zhao. [LC/MS guided approach to discovering nephroprotective substances from Huangkui capsule]. Zhejiang da xue xue bao. Yi xue ban = Journal of Zhejiang University. Medical sciences. 2017 01; 46(1):66-73. doi: 10.3785/j.issn.1008-9292.2017.02.10. [PMID: 28436633]
  • Huijeong Ahn, Geun-Shik Lee. Isorhamnetin and hyperoside derived from water dropwort inhibits inflammasome activation. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2017 Jan; 24(?):77-86. doi: 10.1016/j.phymed.2016.11.019. [PMID: 28160865]
  • Peng Du, Mingdao Lei, Yu Liu, Shilin Yang. Simultaneous Determination and Pharmacokinetic Study of Six Components in Rat Plasma by HPLC-MS/MS after Oral Administration of Acanthopanax sessiliflorus Fruit Extract. International journal of molecular sciences. 2016 Dec; 18(1):. doi: 10.3390/ijms18010045. [PMID: 28036026]
  • Sanawar Mansur, Rahima Abdulla, Amatjan Ayupbec, Haji Akbar Aisa. Chemical Fingerprint Analysis and Quantitative Analysis of Rosa rugosa by UPLC-DAD. Molecules (Basel, Switzerland). 2016 Dec; 21(12):. doi: 10.3390/molecules21121754. [PMID: 28009848]
  • Gong Chunzhi, Li Zunfeng, Qin Chengwei, Bu Xiangmei, Yu Jingui. Hyperin protects against LPS-induced acute kidney injury by inhibiting TLR4 and NLRP3 signaling pathways. Oncotarget. 2016 Dec; 7(50):82602-82608. doi: 10.18632/oncotarget.13010. [PMID: 27813491]
  • Le Zhang, Siyi He, Fan Yang, Hua Yu, Wei Xie, Qian Dai, Di Zhang, Xiaoqin Liu, Shiwen Zhou, Kebin Zhang. Hyperoside ameliorates glomerulosclerosis in diabetic nephropathy by downregulating miR-21. Canadian journal of physiology and pharmacology. 2016 Dec; 94(12):1249-1256. doi: 10.1139/cjpp-2016-0066. [PMID: 27704873]
  • Elizabeth M Mudge, Ying Liu, Jensen A Lund, Paula N Brown. Single-Laboratory Validation for the Determination of Flavonoids in Hawthorn Leaves and Finished Products by LC-UV. Planta medica. 2016 Nov; 82(17):1487-1492. doi: 10.1055/s-0042-118463. [PMID: 27776376]
  • Chia-Sheng Chao, Chien-Sung Tsai, Yee-Phoung Chang, Jian-Ming Chen, Hsien-Kuo Chin, Shyh-Chyun Yang. Hyperin inhibits nuclear factor kappa B and activates nuclear factor E2-related factor-2 signaling pathways in cisplatin-induced acute kidney injury in mice. International immunopharmacology. 2016 Nov; 40(?):517-523. doi: 10.1016/j.intimp.2016.09.020. [PMID: 27764742]
  • Hang-qing Cui, Cai-ying Peng, Ying-zheng Huang, Ying Gao, Jian-qun Liu, Rui Zhang, Ji-cheng Shu. [Flavonoids from leaves of Psidum littorale]. Yao xue xue bao = Acta pharmaceutica Sinica. 2016 11; 51(11):1745-50. doi: . [PMID: 29908132]
  • Baode Shen, Na Wu, Chengying Shen, Fucheng Zhang, Yan Wu, Pinghua Xu, Lihong Zhang, Wei Wu, Yi Lu, Jin Han, Yonggang Wang, Hailong Yuan. Hyperoside nanocrystals for HBV treatment: process optimization, in vitro and in vivo evaluation. Drug development and industrial pharmacy. 2016 Nov; 42(11):1772-81. doi: 10.3109/03639045.2016.1173051. [PMID: 27032257]
  • Jisheng Zhang, Haiyan Fu, Yan Xu, Yunfei Niu, Xiaofei An. Hyperoside reduces albuminuria in diabetic nephropathy at the early stage through ameliorating renal damage and podocyte injury. Journal of natural medicines. 2016 Oct; 70(4):740-8. doi: 10.1007/s11418-016-1007-z. [PMID: 27255369]
  • Gerhardt J Boukes, Maryna van de Venter. The apoptotic and autophagic properties of two natural occurring prodrugs, hyperoside and hypoxoside, against pancreatic cancer cell lines. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2016 Oct; 83(?):617-626. doi: 10.1016/j.biopha.2016.07.029. [PMID: 27459118]