Pyruvic acid (BioDeep_00000002915)
Secondary id: BioDeep_00000406172, BioDeep_00000864603
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Chemicals and Drugs BioNovoGene_Lab2019
代谢物信息卡片
化学式: C3H4O3 (88.016)
中文名称: 丙酮酸
谱图信息:
最多检出来源 Homo sapiens(blood) 32%
Last reviewed on 2024-07-01.
Cite this Page
Pyruvic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/pyruvic_acid (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000002915). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(=O)(C(=O)O)C
InChI: InChI=1S/C3H4O3/c1-2(4)3(5)6/h1H3,(H,5,6)
描述信息
Pyruvic acid, also known as 2-oxopropanoic acid or alpha-ketopropionic acid, belongs to alpha-keto acids and derivatives class of compounds. Those are organic compounds containing an aldehyde substituted with a keto group on the adjacent carbon. Thus, pyruvic acid is considered to be a fatty acid lipid molecule. Pyruvic acid is soluble (in water) and a moderately acidic compound (based on its pKa). Pyruvic acid can be synthesized from propionic acid. Pyruvic acid is also a parent compound for other transformation products, including but not limited to, 4-hydroxy-3-iodophenylpyruvate, 3-acylpyruvic acid, and methyl pyruvate. Pyruvic acid can be found in a number of food items such as kumquat, groundcherry, coconut, and prunus (cherry, plum), which makes pyruvic acid a potential biomarker for the consumption of these food products. Pyruvic acid can be found primarily in most biofluids, including sweat, blood, urine, and feces, as well as throughout most human tissues. Pyruvic acid exists in all living species, ranging from bacteria to humans. In humans, pyruvic acid is involved in several metabolic pathways, some of which include glycogenosis, type IB, glycolysis, urea cycle, and gluconeogenesis. Pyruvic acid is also involved in several metabolic disorders, some of which include non ketotic hyperglycinemia, pyruvate dehydrogenase complex deficiency, fructose-1,6-diphosphatase deficiency, and 4-hydroxybutyric aciduria/succinic semialdehyde dehydrogenase deficiency. Moreover, pyruvic acid is found to be associated with anoxia, schizophrenia, fumarase deficiency, and meningitis. Pyruvic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Pyruvic acid is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalanc. Pyruvic acid can be made from glucose through glycolysis, converted back to carbohydrates (such as glucose) via gluconeogenesis, or to fatty acids through a reaction with acetyl-CoA. It can also be used to construct the amino acid alanine and can be converted into ethanol or lactic acid via fermentation . Those taking large doses of supplemental pyruvate—usually greater than 5 grams daily—have reported gastrointestinal symptoms, including abdominal discomfort and bloating, gas and diarrhea. One child receiving pyruvate intravenously for restrictive cardiomyopathy died (DrugBank). Pyruvate serves as a biological fuel by being converted to acetyl coenzyme A, which enters the tricarboxylic acid or Krebs cycle where it is metabolized to produce ATP aerobically. Energy can also be obtained anaerobically from pyruvate via its conversion to lactate. Pyruvate injections or perfusions increase contractile function of hearts when metabolizing glucose or fatty acids. This inotropic effect is striking in hearts stunned by ischemia/reperfusion. The inotropic effect of pyruvate requires intracoronary infusion. Among possible mechanisms for this effect are increased generation of ATP and an increase in ATP phosphorylation potential. Another is activation of pyruvate dehydrogenase, promoting its own oxidation by inhibiting pyruvate dehydrogenase kinase. Pyruvate dehydrogenase is inactivated in ischemia myocardium. Yet another is reduction of cytosolic inorganic phosphate concentration. Pyruvate, as an antioxidant, is known to scavenge such reactive oxygen species as hydrogen peroxide and lipid peroxides. Indirectly, supraphysiological levels of pyruvate may increase cellular reduced glutathione (T3DB).
Pyruvic acid or pyruvate is a simple alpha-keto acid. It is a three-carbon molecule containing a carboxylic acid group and a ketone functional group. Pyruvate is the simplest alpha-keto acid and according to official nomenclature by IUPAC, it is called alpha-keto propanoic acid. Like other keto acids, pyruvic acid can tautomerize from its ketone form to its enol form, containing a double bond and an alcohol. Pyruvate is found in all living organisms ranging from bacteria to plants to humans. It is intermediate compound in the metabolism of carbohydrates, proteins, and fats. Pyruvate is a key intermediate in several metabolic pathways throughout the cell. In particular, pyruvic acid can be made from glucose through glycolysis, converted back to carbohydrates (such as glucose) via gluconeogenesis, or to fatty acids through a reaction with acetyl-CoA. Pyruvic acid supplies energy to cells through the citric acid cycle (TCA or Krebs cycle) when oxygen is present (aerobic respiration), and alternatively ferments to produce lactate when oxygen is lacking (lactic acid). In glycolysis, phosphoenolpyruvate (PEP) is converted to pyruvate by pyruvate kinase. This reaction is strongly exergonic and irreversible. In gluconeogenesis, it takes two enzymes, pyruvate carboxylase and PEP carboxykinase, to catalyze the reverse transformation of pyruvate to PEP. Pyruvic acid is also a metabolite of Corynebacterium (PMID: 27872963).
Pyruvic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=127-17-3 (retrieved 2024-07-01) (CAS RN: 127-17-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Pyruvic acid is an intermediate metabolite in the metabolism of carbohydrates, proteins, and fats.
Pyruvic acid is an intermediate metabolite in the metabolism of carbohydrates, proteins, and fats.
同义名列表
34 个代谢物同义名
alpha-Ketopropanoic acid; alpha-Ketopropionic acid; alpha-Oxopropionsaeure; alpha-Ketopropionate; 2-Ketopropionic acid; α-Ketopropanoic acid; a-Ketopropionic acid; Α-ketopropionic acid; 2-Oxopropionic acid; 2-Oxopropanoic acid; Brenztraubensaeure; 2-Oxopropionsaeure; Α-oxopropionsaeure; a-Oxopropionsaeure; Acetylformic acid; 2-Oxopropansaeure; a-Ketopropionate; Α-ketopropionate; Pyroracemic acid; 2-Ketopropionate; Acide pyruvique; 2-Oxopropanoate; Sodium pyruvate; 2-Oxopropionate; Acid, pyruvic; Acetylformate; Pyroracemate; Pyruvic acid; CH3COCOOH; Pyruvate; BTS; Pyruvic acid; Pyruvic acid; Pyruvate
数据库引用编号
36 个数据库交叉引用编号
- ChEBI: CHEBI:32816
- KEGG: C00022
- PubChem: 1060
- HMDB: HMDB0000243
- Metlin: METLIN117
- DrugBank: DB00119
- ChEMBL: CHEMBL1162144
- Wikipedia: Pyruvic_acid
- MeSH: Pyruvic Acid
- MetaCyc: PYRUVATE
- KNApSAcK: C00001200
- foodb: FDB031141
- CAS: 127-17-3
- MoNA: KO001592
- MoNA: KO001594
- MoNA: PS098201
- MoNA: KO001590
- MoNA: KO001591
- MoNA: KO001593
- MoNA: PS098202
- MoNA: PS007801
- MoNA: PS007802
- MoNA: PS098203
- PMhub: MS000006925
- ChEBI: CHEBI:15361
- LipidMAPS: LMFA01060077
- PDB-CCD: PYR
- 3DMET: B00006
- NIKKAJI: J2.015J
- RefMet: Pyruvic acid
- medchemexpress: HY-Y0781
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-728
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-488
- PubChem: 3324
- KNApSAcK: 15361
- LOTUS: LTS0207290
分类词条
相关代谢途径
Reactome(3)
BioCyc(9)
PlantCyc(0)
代谢反应
2247 个相关的代谢反应过程信息。
Reactome(99)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
D-Fructose 1,6-bisphosphate + H2O ⟶ Fru(6)P + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + D-Fructose 1,6-bisphosphate
- The citric acid (TCA) cycle and respiratory electron transport:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
GSH + MGXL ⟶ (R)-S-LGSH
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid synthesis and interconversion (transamination):
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Serine biosynthesis:
Ser ⟶ H2O + PYR + ammonia
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
CARN + SAM ⟶ Anserine + SAH
- Phenylalanine and tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Tryptophan catabolism:
L-KYN + PYR ⟶ AP-DOBu + L-Ala
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Amino acid synthesis and interconversion (transamination):
H2O + L-Asn ⟶ L-Asp + ammonia
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Amino acid synthesis and interconversion (transamination):
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Amino acid synthesis and interconversion (transamination):
H2O + L-Asn ⟶ L-Asp + ammonia
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
D-Fructose 1,6-bisphosphate + H2O ⟶ Fru(6)P + Pi
- Glycolysis:
ATP + Fru(6)P ⟶ ADP + D-Fructose 1,6-bisphosphate
- The citric acid (TCA) cycle and respiratory electron transport:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
GSH + MGXL ⟶ (R)-S-LGSH
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid synthesis and interconversion (transamination):
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Serine biosynthesis:
Ser ⟶ H2O + PYR + ammonia
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
CARN + SAM ⟶ Anserine + SAH
- Phenylalanine and tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Tryptophan catabolism:
L-KYN + PYR ⟶ AP-DOBu + L-Ala
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Amino acid synthesis and interconversion (transamination):
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
L-Phe + PYR ⟶ 3IN-PYRA + L-Ala
- Amino acid synthesis and interconversion (transamination):
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
ATP + L-His + b-Ala ⟶ ADP + CARN + Pi
- Phenylalanine and tyrosine catabolism:
L-Phe + PYR ⟶ 3IN-PYRA + L-Ala
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Metabolism of proteins:
EIF5A2 + NAD + SPM ⟶ 1,3-diaminopropane + H+ + H0ZKZ7 + NADH
- Post-translational protein modification:
EIF5A2 + NAD + SPM ⟶ 1,3-diaminopropane + H+ + H0ZKZ7 + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
Fru(6)P + L-Gln ⟶ GlcN6P + L-Glu
- Sialic acid metabolism:
ATP + ManNAc ⟶ ADP + ManNAc-6-P
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ADP + Glc ⟶ AMP + G6P
- Glycolysis:
ADP + Glc ⟶ AMP + G6P
- The citric acid (TCA) cycle and respiratory electron transport:
CoQ + ETF:FADH2 ⟶ ETF:FAD + ubiquinol
- Pyruvate metabolism and Citric Acid (TCA) cycle:
CIT ⟶ ISCIT
- Pyruvate metabolism:
GSH + MGXL ⟶ (R)-S-LGSH
- Citric acid cycle (TCA cycle):
CIT ⟶ ISCIT
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Serine biosynthesis:
Ser ⟶ H2O + PYR + ammonia
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
BioCyc(26)
- superpathway of phenylalanine, tyrosine and tryptophan biosynthesis:
L-serine + indole ⟶ H2O + L-tryptophan
- tyrosine biosynthesis:
L-alanine + p-hydroxyphenylpyruvate ⟶ L-tyrosine + pyruvate
- phenylalanine degradation:
L-glutamate + phenylpyruvate ⟶ α-ketoglutarate + L-phenylalanine
- fermentation:
H2O + NAD+ + acetaldehyde ⟶ NADH + acetate
- superpathway of leucine, valine, and isoleucine biosynthesis:
L-threonine ⟶ 2-oxobutanoate + ammonia
- glycine biosynthesis from alanine:
L-alanine + glyoxylate ⟶ glycine + pyruvate
- tetrahydrofolate biosynthesis:
6-hydroxymethyl-dihydropterin + ATP ⟶ 2-amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine diphosphate + AMP
- cysteine degradation:
α-ketoglutarate + 3-sulfinoalanine ⟶ 3-sulfinyl-pyruvate + L-glutamate
- TCA cycle, aerobic respiration:
H2O + cis-aconitate ⟶ isocitrate
- tryptophan biosynthesis:
L-serine + indole ⟶ H2O + L-tryptophan
- alanine degradation:
α-ketoglutarate + L-alanine ⟶ L-glutamate + pyruvate
- tyrosol biosynthesis:
L-alanine + p-hydroxyphenylpyruvate ⟶ L-tyrosine + pyruvate
- gluconeogenesis:
NAD+ + malate ⟶ CO2 + NADH + pyruvate
- isoleucine biosynthesis:
L-threonine ⟶ 2-oxobutanoate + ammonia
- methylglyoxal pathway:
H2O + S-lactoyl-glutathione ⟶ D-lactate + glutathione
- ubiquinone (coenzyme Q) biosynthesis:
L-tyrosine ⟶ ammonia + p-hydroxyphenylpyruvate
- alanine biosynthesis:
α-ketoglutarate + L-alanine ⟶ L-glutamate + pyruvate
- serine degradation:
L-serine ⟶ ammonia + pyruvate
- pyruvate dehydrogenase complex:
enzyme N6-(lipoyl)lysine + pyruvate ⟶ CO2 + enzyme N6-(S-acetyldihydrolipoyl)lysine
- aspartate biosynthesis:
α-ketoglutarate + L-aspartate ⟶ L-glutamate + oxaloacetate
- valine biosynthesis:
2,3-dihydroxy-3-methylbutanoate ⟶ 2-keto-isovalerate + H2O
- tetrapyrrole biosynthesis:
H2O + porphobilinogen ⟶ ammonia + hydroxymethylbilane
- superpathway of glycine biosynthesis:
L-serine + a tetrahydrofolate ⟶ H2O + a 5,10-methylenetetrahydrofolate + glycine
- glycolysis:
3-phosphoglycerate + ATP ⟶ 1,3-diphosphateglycerate + ADP
- cysteine and homocysteine interconversion:
H2O + cystathionine ⟶ 2-oxobutanoate + L-cysteine + ammonia
- N-acetylglucosamine , N-acetylmannosamine and N-acetylneuraminic acid dissimilation:
N-acetyl-D-glucosamine 6-phosphate + H2O ⟶ D-glucosamine 6-phosphate + acetate
WikiPathways(12)
- Glycolysis and gluconeogenesis:
Aspartate ⟶ Oxaloacetate
- Fatty acid biosynthesis:
Citric acid ⟶ Acetyl-CoA
- Glycolysis and gluconeogenesis:
Phosphoenolpyruvate ⟶ Pyruvate
- Acetylcholine synthesis:
Acetate ⟶ Acetyl-CoA
- Metabolism overview:
NH3 ⟶ Glutamic acid
- Metabolic reprogramming in colon cancer:
KG ⟶ S-CoA
- Glycolysis and gluconeogenesis:
Phosphoenolpyruvate ⟶ Pyruvic acid
- Aerobic glycolysis:
PYR ⟶ LAC
- Ethylmalonic encephalopathy:
SO3 2- (sulfite) ⟶ SO4 2- (sulfate)
- Dravet syndrome: Scn1a-A1783V point mutation model:
Glutamine synthesis ⟶ L-glutamine
- Metabolic pathways of fibroblasts:
Pyruvate ⟶ Lactic acid
- Metabolic Epileptic Disorders:
P-enolpyruvate ⟶ Pyruvate
Plant Reactome(1738)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
L-Cys + a protein L-cysteine ⟶ L-Ala + a protein-S-sulfanylcysteine
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
PYR + glyceraldehyde 3-phosphate ⟶ 1-deoxy-D-xylulose 5-phosphate + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
ISCIT + NAD ⟶ 2OG + H+ + NADH + carbon dioxide
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
ISCIT + NAD ⟶ 2OG + H+ + NADH + carbon dioxide
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
ATP + L-Asp ⟶ 4-Phospho-L-aspartate + ADP
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
GA3P + PYR ⟶ 1-deoxy-D-xylulose 5-phosphate + carbon dioxide
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
H2O + L-Asn ⟶ L-Asp + ammonia
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
L-Cys + a protein L-cysteine ⟶ L-Ala + a protein-S-sulfanylcysteine
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
L-Cys + a protein L-cysteine ⟶ L-Ala + a protein-S-sulfanylcysteine
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
CIT ⟶ ISCIT
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
CIT ⟶ ISCIT
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
ATP + L-Asp ⟶ 4-Phospho-L-aspartate + ADP
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
9-mercaptodethiobiotin ⟶ Btn
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
L-Cys + a protein L-cysteine ⟶ L-Ala + a protein-S-sulfanylcysteine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
ATP + L-Asp ⟶ 4-Phospho-L-aspartate + ADP
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
2OG + L-Val ⟶ Glu + KIV
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
ATP + L-Asp ⟶ 4-Phospho-L-aspartate + ADP
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
2OBUTA + PYR ⟶ 2-aceto-2-hydroxy-butyrate + carbon dioxide
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
KIV + L-Glu ⟶ 2OG + L-Val
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
PYR + glyceraldehyde 3-phosphate ⟶ 1-deoxy-D-xylulose 5-phosphate + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
KIV + L-Glu ⟶ 2OG + L-Val
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
PYR + glyceraldehyde 3-phosphate ⟶ 1-deoxy-D-xylulose 5-phosphate + carbon dioxide
- Thiamin biosynthesis:
PYR + glyceraldehyde 3-phosphate ⟶ 1-deoxy-D-xylulose 5-phosphate + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
CIT ⟶ ISCIT
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
CIT ⟶ ISCIT
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
PYR + glyceraldehyde 3-phosphate ⟶ 1-deoxy-D-xylulose 5-phosphate + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
L-Ser + indole ⟶ H2O + L-Trp
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
H2O + L-Asn ⟶ L-Asp + ammonia
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
L-Cys + a protein L-cysteine ⟶ L-Ala + a protein-S-sulfanylcysteine
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
H2O + L-Asn ⟶ L-Asp + ammonia
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
L-Cys + a protein L-cysteine ⟶ L-Ala + a protein-S-sulfanylcysteine
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
PYR + glyceraldehyde 3-phosphate ⟶ 1-deoxy-D-xylulose 5-phosphate + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- DXP pathway:
4-CDP-2-C-methyl-D-erythritol + ATP ⟶ 4-CDP-2-C-methyl-D-erythritol 2-phosphate + ADP
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Glutamate synthase cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
ATP + L-Asp ⟶ 4-Phospho-L-aspartate + ADP
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
L-Cys + a protein L-cysteine ⟶ L-Ala + a protein-S-sulfanylcysteine
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Generation of precursor metabolites and energy:
ISCIT + NAD ⟶ 2OG + H+ + NADH + carbon dioxide
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
ISCIT + NAD ⟶ 2OG + H+ + NADH + carbon dioxide
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
L-Cys + a protein L-cysteine ⟶ L-Ala + a protein-S-sulfanylcysteine
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
PYR + glyceraldehyde 3-phosphate ⟶ 1-deoxy-D-xylulose 5-phosphate + carbon dioxide
- Thiamin biosynthesis:
PYR + glyceraldehyde 3-phosphate ⟶ 1-deoxy-D-xylulose 5-phosphate + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
ATP + L-Asp ⟶ 4-Phospho-L-aspartate + ADP
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
2OG + L-Val ⟶ Glu + KIV
- Cysteine degradation:
L-Cys + a protein L-cysteine ⟶ L-Ala + a protein-S-sulfanylcysteine
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Glutamate synthase cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
L-Ser + indole ⟶ H2O + L-Trp
- Valine biosynthesis:
KIV + L-Glu ⟶ 2OG + L-Val
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
L-Cys + a protein L-cysteine ⟶ L-Ala + a protein-S-sulfanylcysteine
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
4-CDP-2-C-methyl-D-erythritol + ATP ⟶ 4-CDP-2-C-methyl-D-erythritol 2-phosphate + ADP
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
PYR + glyceraldehyde 3-phosphate ⟶ 1-deoxy-D-xylulose 5-phosphate + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
ATP + L-Asp ⟶ ADP + L-aspartyl-4-phosphate
- Lysine biosynthesis II:
ATP + L-Asp ⟶ ADP + L-aspartyl-4-phosphate
- Lysine biosynthesis VI:
ATP + L-Asp ⟶ 4-Phospho-L-aspartate + ADP
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
CIT ⟶ ISCIT
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
CIT ⟶ ISCIT
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
2OBUTA + PYR ⟶ 2-aceto-2-hydroxy-butyrate + carbon dioxide
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
2OG + L-Val ⟶ Glu + KIV
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
2OBUTA + PYR ⟶ 2-aceto-2-hydroxy-butyrate + carbon dioxide
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
L-Ser + indole ⟶ H2O + L-Trp
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
4-Phospho-L-aspartate + H+ + TPNH ⟶ L-aspartic 4-semialdehyde + Pi + TPN
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Lysine biosynthesis I:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis II:
H+ + L-aspartyl-4-phosphate + TPNH ⟶ L-aspartate-semialdehyde + Pi + TPN
- Lysine biosynthesis VI:
ATP + L-Asp ⟶ 4-Phospho-L-aspartate + ADP
- Methionine biosynthesis II:
CYSTA + H2O ⟶ L-homocysteine + PYR + ammonia
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Valine biosynthesis:
KIV + L-Glu ⟶ 2OG + L-Val
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
INOH(18)
- Alanine,Aspartic acid and Asparagine metabolism ( Alanine,Aspartic acid and Asparagine metabolism ):
H2O + N-Acetyl-L-aspartic acid ⟶ Acetic acid + L-Aspartic acid
- ATP + Pyruvic acid + CO2 + H2O = ADP + Oxaloacetic acid + Orthophosphate ( Alanine,Aspartic acid and Asparagine metabolism ):
ATP + CO2 + H2O + Pyruvic acid ⟶ ADP + Orthophosphate + Oxaloacetic acid
- L-Alanine + 2-Oxo-glutaric acid = Pyruvic acid + L-Glutamic acid ( Glycolysis and Gluconeogenesis ):
L-Glutamic acid + Pyruvic acid ⟶ 2-Oxo-glutaric acid + L-Alanine
- L-Alanine + Glyoxylic acid = Pyruvic acid + Glycine ( Glycolysis and Gluconeogenesis ):
Glycine + Pyruvic acid ⟶ Glyoxylic acid + L-Alanine
- Citrate cycle ( Citrate cycle ):
H2O + cis-Aconitic acid ⟶ Isocitric acid
- ATP + Pyruvic acid + CO2 + H2O = ADP + Oxaloacetic acid + Orthophosphate ( Glycolysis and Gluconeogenesis ):
ADP + Orthophosphate + Oxaloacetic acid ⟶ ATP + CO2 + H2O + Pyruvic acid
- Glutamic acid and Glutamine metabolism ( Glutamic acid and Glutamine metabolism ):
ATP + L-Glutamine + tRNA(Gln) ⟶ AMP + L-Glutaminyl-tRNA(Gln) + Pyrophosphate
- Glycine and Serine metabolism ( Glycine and Serine metabolism ):
Guanidino-acetic acid + S-Adenosyl-L-methionine ⟶ Creatine + S-Adenosyl-L-homocysteine
- L-Serine + Pyruvic acid = Hydroxy-pyruvic acid + L-Alanine ( Glycine and Serine metabolism ):
L-Serine + Pyruvic acid ⟶ Hydroxy-pyruvic acid + L-Alanine
- NAD+ + (S)-Lactic acid = NADH + Pyruvic acid ( Pyruvate metabolism ):
(S)-Lactic acid + NAD+ ⟶ NADH + Pyruvic acid
- NAD+ + (S)-Malic acid = NADH + Pyruvic acid + CO2 ( Pyruvate metabolism ):
CO2 + NADH + Pyruvic acid ⟶ (S)-Malic acid + NAD+
- NAD+ + (S)-Malic acid = NADH + Pyruvic acid + CO2 ( Pyruvate metabolism ):
CO2 + NADH + Pyruvic acid ⟶ (S)-Malic acid + NAD+
- NAD+ + (R)-Lactic acid = NADH + Pyruvic acid ( Pyruvate metabolism ):
(R)-Lactic acid + NAD+ ⟶ NADH + Pyruvic acid
- Glycolysis and Gluconeogenesis ( Glycolysis and Gluconeogenesis ):
D-Glucose 6-phosphate + H2O ⟶ D-Glucose + Orthophosphate
- Methionine and Cysteine metabolism ( Methionine and Cysteine metabolism ):
H2O + L-Cystathionine ⟶ 2-Oxo-butanoic acid + L-Cysteine + NH3
- Purine nucleotides and Nucleosides metabolism ( Purine nucleotides and Nucleosides metabolism ):
H2O + XTP ⟶ Pyrophosphate + XMP
- Pyruvate metabolism ( Pyruvate metabolism ):
ATP + Acetic acid + CoA ⟶ AMP + Acetyl-CoA + Pyrophosphate
- Pyruvic acid + Enzyme N6-(lipoyl)lysine = [dihydrolipoyllysine-residue acetyltransferase] S-acetyldihydrolipoyllysine + CO2 ( Pyruvate metabolism ):
Pyruvic acid + TPP ⟶ 2-(Hydroxyethyl)-thiamine diphosphate + CO2
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(354)
- Alanine Metabolism:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Citric Acid Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Urea Cycle:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Glycolysis:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Pyruvate Metabolism:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Gluconeogenesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glucose-Alanine Cycle:
L-Glutamic acid + NAD + Water ⟶ Ammonia + NADH + Oxoglutaric acid
- Amino Sugar Metabolism:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Ammonia Recycling:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Pyruvaldehyde Degradation:
S-Lactoylglutathione + Water ⟶ D-Lactic acid + Glutathione + Hydrogen Ion
- Primary Hyperoxaluria Type I:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Pyruvate Carboxylase Deficiency:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Lactic Acidemia:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Leigh Syndrome:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency):
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Dehydrogenase Complex Deficiency:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Sialuria or French Type Sialuria:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Salla Disease/Infantile Sialic Acid Storage Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Transfer of Acetyl Groups into Mitochondria:
D-Glucose ⟶ Pyruvic acid
- Argininemia:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Argininosuccinic Aciduria:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Citrullinemia Type I:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Ornithine Transcarbamylase Deficiency (OTC Deficiency):
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Carbamoyl Phosphate Synthetase Deficiency:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD):
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Sarcosinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Glycogen Storage Disease Type 1A (GSD1A) or Von Gierke Disease:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Non-Ketotic Hyperglycinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Hyperglycinemia, Non-Ketotic:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- beta-Mercaptolactate-Cysteine Disulfiduria:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Glycogenosis, Type VII. Tarui Disease:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- G(M2)-Gangliosidosis: Variant B, Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Congenital Lactic Acidosis:
Citric acid ⟶ Water + cis-Aconitic acid
- Fumarase Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- Mitochondrial Complex II Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- 2-Ketoglutarate Dehydrogenase Complex Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- Pyruvate Dehydrogenase Deficiency (E3):
Citric acid ⟶ Water + cis-Aconitic acid
- Pyruvate Dehydrogenase Deficiency (E2):
Citric acid ⟶ Water + cis-Aconitic acid
- Primary Hyperoxaluria II, PH2:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Kinase Deficiency:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Phosphoenolpyruvate Carboxykinase Deficiency 1 (PEPCK1):
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Fructose-1,6-diphosphatase Deficiency:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Triosephosphate Isomerase Deficiency:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Fanconi-Bickel Syndrome:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Glycogenosis, Type IB:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type IC:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type IA. Von Gierke Disease:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Warburg Effect:
L-Glutamic acid + NAD + Water ⟶ Ammonia + NADH + Oxoglutaric acid
- 3-Phosphoglycerate Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Cystinosis, Ocular Nonnephropathic:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- 2,3-Dihydroxybenzoate Biosynthesis:
Water + isochorismate ⟶ (2S,3S)-2,3-dihydroxy-2,3-dihydrobenzoate + Pyruvic acid
- Biosynthesis of Siderophore Group Nonribosomal Peptides:
2,3-Dihydroxybenzoic acid + Adenosine triphosphate + L-Serine ⟶ Adenosine monophosphate + Hydrogen Ion + Pyrophosphate + enterobactin
- D-Alanine Metabolism:
L-Alanine ⟶ D-Alanine
- Lysine Biosynthesis:
Hydrogen Ion + meso-diaminopimelate ⟶ Carbon dioxide + L-Lysine
- Glycolysis and Pyruvate Dehydrogenase:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- L-Alanine Metabolism:
L-Valine + Pyruvic acid ⟶ -Ketoisovaleric acid + L-Alanine
- D-Glucarate and D-Galactarate Degradation:
Adenosine triphosphate + Pyruvic acid + Water ⟶ Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid
- Serine Biosynthesis and Metabolism:
DL-O-Phosphoserine + Water ⟶ L-Serine + Phosphate
- Valine Biosynthesis:
Isovaleric acid + L-Glutamic acid ⟶ L-Valine + Oxoglutaric acid
- Tryptophan Metabolism:
Indole + L-Serine ⟶ L-Tryptophan + Water
- Isoleucine Biosynthesis:
2-iminobutanoate + Hydrogen Ion + Water ⟶ 2-Ketobutyric acid + Ammonium
- Gluconeogenesis from L-Malic Acid:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Galactitol and Galactonate Degradation:
Galactitol + Phosphocarrier protein HPr ⟶ Galactose 1-phosphate + Phosphocarrier protein HPr
- Fucose and Rhamnose Degradation:
-L-fucopyranose ⟶ L-fuculose
- Hexuronide and Hexuronate Degradation:
Bilirubin diglucuronide + Water ⟶ Benzyl alcohol + D-glucopyranuronate
- Glycolysis:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Folate Biosynthesis:
7,8-Dihydroneopterin ⟶ 6-hydroxymethyl-7,8-dihydropterin + Glycolaldehyde
- Fructose Metabolism:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism II:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism III (sn-Glycero-3-Phosphoethanolamine):
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism IV (Glycerophosphoglycerol):
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism V (Glycerophosphoserine):
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Sulfur Metabolism:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Butanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Propanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Ethanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Isethionate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Methanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Propanoate Metabolism:
2-iminobutanoate + Hydrogen Ion + Water ⟶ 2-Ketobutyric acid + Ammonium
- Secondary Metabolites: Threonine Biosynthesis from Aspartate:
O-Phosphohomoserine + Water ⟶ L-Threonine + Phosphate
- Secondary Metabolites: Valine and L-Leucine Biosynthesis from Pyruvate:
3-Methyl-2-oxovaleric acid + Acetyl-CoA + Water ⟶ 2-Isopropylmalic acid + Coenzyme A + Hydrogen Ion
- Secondary Metabolites: Ubiquinol Biosynthesis:
2-Octaprenylphenol + Hydrogen Ion + NADPH + Oxygen ⟶ 2-Octaprenyl-6-hydroxyphenol + NADP + Water
- 2-Oxopent-4-enoate Metabolism:
Pyruvic acid ⟶ 2-Acetolactate + Carbon dioxide
- Menaquinol Biosythesis:
2-succinylbenzoate + Adenosine triphosphate + Coenzyme A ⟶ 2-Succinylbenzoyl-CoA + Adenosine monophosphate + Pyrophosphate
- Tryptophan Metabolism II:
Indole + L-Serine ⟶ L-Tryptophan + Water
- Ketogluconate Metabolism:
5-Keto-D-gluconate + Hydrogen Ion + NADPH ⟶ Gluconic acid + NADP
- N-Acetylneuraminate, N-Acetylmannosamine, and N-Acetylglucosamine Degradation:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- 2-Oxopent-4-enoate Metabolism 2:
Pyruvic acid ⟶ 2-Acetolactate + Carbon dioxide
- Secondary Metabolites: Ubiquinol Biosynthesis 2:
2-Octaprenylphenol + Hydrogen Ion + NADPH + Oxygen ⟶ 2-Octaprenyl-6-hydroxyphenol + NADP + Water
- Thiazole Biosynthesis I:
L-Tyrosine + NADPH + S-Adenosylmethionine ⟶ 4-Methylcatechol + 5'-Deoxyadenosine + Dehydroglycine + Hydrogen Ion + L-Methionine + NADP
- Enterobactin Biosynthesis:
(2,3-Dihydroxybenzoyl)adenylic acid + a holo-[EntB isochorismatase/aryl-carrier protein] ⟶ Adenosine monophosphate + Hydrogen Ion + a 2,3-dihydroxybenzoyl-[EntB isochorismatase/aryl-carrier protein]
- Hydrogen Sulfide Biosynthesis I:
L-Cysteine + Oxoglutaric acid ⟶ 3-Mercaptopyruvic acid + L-Glutamic acid
- L-Lactaldehyde Degradation (Aerobic):
(S)-lactaldehyde + NAD + Water ⟶ Hydrogen Ion + L-Lactic acid + NADH
- Methylglyoxal Degradation IV:
(S)-lactaldehyde + NAD + Water ⟶ Hydrogen Ion + L-Lactic acid + NADH
- Pyruvate Decarboxylation to Acetyl-CoA:
Hydrogen Ion + Pyruvic acid + a [pyruvate dehydrogenase E2 protein] N6-lipoyl-L-lysine ⟶ Carbon dioxide + a [pyruvate dehydrogenase E2 protein] N6-S-acetyldihydrolipoyl-L-lysine
- Methylglyoxal Degradation II:
Pyruvaldehyde + Water ⟶ D-Lactic acid + Hydrogen Ion
- Pyruvate to Cytochrome bd Terminal Oxidase Electron Transfer:
Pyruvic acid + Water ⟶ Acetic acid + Carbon dioxide + Electron + Hydrogen ion
- D-Serine Degradation:
2-iminopropanoate + Hydrogen Ion + Water ⟶ Ammonium + Pyruvic acid
- L-Cysteine Degradation:
L-Cysteine ⟶ 2-aminoprop-2-enoate + Hydrogen Ion + Hydrogen sulfide
- Methylglyoxal Degradation I:
Glutathione + Pyruvaldehyde ⟶ S-Lactoylglutathione
- The Oncogenic Action of 2-Hydroxyglutarate:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- The Oncogenic Action of Succinate:
Citric acid ⟶ Water + cis-Aconitic acid
- The Oncogenic Action of Fumarate:
Citric acid ⟶ Water + cis-Aconitic acid
- Glutaminolysis and Cancer:
L-Glutamine ⟶ Ammonia + L-Glutamic acid
- L-Alanine Metabolism:
L-Glutamic acid + Pyruvic acid ⟶ L-Alanine + Oxoglutaric acid
- TCA Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Cysteine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonium + L-Cysteine
- Glycolysis I:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Glycine Metabolism:
DL-O-Phosphoserine + Water ⟶ L-Serine + Phosphate
- Serine Metabolism:
DL-O-Phosphoserine + Water ⟶ L-Serine + Phosphate
- Tetrahydrofolate Biosynthesis:
7,8-Dihydroneopterin ⟶ 6-hydroxymethyl-7,8-dihydropterin + Glycolaldehyde
- Phenylalanine Metabolism:
2-Oxo-3-phenylpropanoic acid (Mixture oxo and keto) + L-Alanine ⟶ L-Phenylalanine + Pyruvic acid
- Tyrosine Metabolism:
4-Hydroxyphenylpyruvic acid + L-Alanine ⟶ L-Tyrosine + Pyruvic acid
- Tryptophan Metabolism:
N'-Formylkynurenine + Water ⟶ Formic acid + Hydrogen Ion + L-Kynurenine
- Pyruvate Metabolism:
2-Isopropylmalic acid + Coenzyme A ⟶ -Ketoisovaleric acid + Acetyl-CoA + Water
- Ethanol Fermentation:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- The Oncogenic Action of L-2-Hydroxyglutarate in Hydroxyglutaric aciduria:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- The Oncogenic Action of D-2-Hydroxyglutarate in Hydroxyglutaric aciduria:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Selenocompound Metabolism:
Selenomethionine + Water ⟶ 2-Ketobutyric acid + Ammonia + methylselenol
- Valine Biosynthesis:
Isovaleric acid + L-Glutamic acid ⟶ L-Valine + Oxoglutaric acid
- Isoleucine Biosynthesis:
2-iminobutanoate + Hydrogen Ion + Water ⟶ 2-Ketobutyric acid + Ammonium
- Sulfur Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonium + L-Cysteine
- Vitamin B6:
2-Oxo-3-hydroxy-4-phosphobutanoic acid + L-Glutamic acid ⟶ O-Phospho-4-hydroxy-L-threonine + Oxoglutaric acid
- Gluconeogenesis from L-Malic Acid:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- TCA Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Alanine Metabolism:
L-Tryptophan + Pyruvic acid ⟶ L-Alanine + indole-3-pyruvate
- Glutamine Metabolism:
Adenosine triphosphate + Phosphate + Pyruvic acid ⟶ Adenosine monophosphate + Hydrogen Ion + Phosphoenolpyruvic acid + Pyrophosphate
- Glutamic Acid Metabolism:
-Aminobutyric acid + Pyruvic acid ⟶ L-Alanine + Succinic acid semialdehyde
- Glycine Metabolism:
L-Serine + Tetrahydrofolic acid ⟶ 5,10-Methylene-THF + Glycine + Water
- Isoleucine Biosynthesis:
2-iminobutanoate + Hydrogen Ion + Water ⟶ 2-Ketobutyric acid + Ammonium
- Lysine Metabolism:
Hydrogen Ion + meso-diaminopimelate ⟶ Carbon dioxide + L-Lysine
- Phenylalanine Metabolism:
2-Oxo-3-phenylpropanoic acid (Mixture oxo and keto) + L-Tyrosine ⟶ 4-Hydroxyphenylpyruvic acid + L-Phenylalanine
- Serine Metabolism:
L-Serine + Tetrahydrofolic acid ⟶ 5,10-Methylene-THF + Glycine + Water
- Tryptophan Metabolism:
Phosphoadenosine phosphosulfate + indolylmethyl-desulfoglucosinolate ⟶ Adenosine 3',5'-diphosphate + Glucobrassicin + Hydrogen Ion
- Folate Biosynthesis:
Adenosine triphosphate + HMDHP ⟶ Adenosine monophosphate + HMDHP pyrophosphate + Hydrogen Ion
- C5-Branched Dibasic Acid Metabolism:
D-Erythro-3-Methylmalate + NAD ⟶ 2-Ketobutyric acid + Carbon dioxide + Hydrogen Ion + NADH
- Butanoate Metabolism:
3-Hydroxy-3-methylglutaryl-CoA ⟶ Acetoacetic acid + Acetyl-CoA
- Citric Acid Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Glycolysis:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Monobactam Biosynthesis:
Adenosine triphosphate + Sulfate ⟶ Adenosine phosphosulfate + Pyrophosphate
- Ammonia Recycling:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Amino Sugar Metabolism:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Alanine Metabolism:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Gluconeogenesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glucose-Alanine Cycle:
L-Glutamic acid + NAD + Water ⟶ Ammonia + NADH + Oxoglutaric acid
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Pyruvaldehyde Degradation:
S-Lactoylglutathione ⟶ Glutathione + Pyruvaldehyde
- Pyruvate Metabolism:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Transfer of Acetyl Groups into Mitochondria:
D-Glucose ⟶ Pyruvic acid
- Urea Cycle:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- 3-Phosphoglycerate Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Cystinosis, Ocular Nonnephropathic:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Argininemia:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Argininosuccinic Aciduria:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Carbamoyl Phosphate Synthetase Deficiency:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Citrullinemia Type I:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD):
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Glycogen Storage Disease Type 1A (GSD1A) or Von Gierke Disease:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Lactic Acidemia:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Leigh Syndrome:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Sialuria or French Type Sialuria:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Sarcosinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Salla Disease/Infantile Sialic Acid Storage Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Pyruvate Dehydrogenase Complex Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency):
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Non-Ketotic Hyperglycinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Pyruvate Carboxylase Deficiency:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Ornithine Transcarbamylase Deficiency (OTC Deficiency):
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Primary Hyperoxaluria Type I:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Hyperglycinemia, Non-Ketotic:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- beta-Mercaptolactate-Cysteine Disulfiduria:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Glycogenosis, Type VII. Tarui Disease:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- G(M2)-Gangliosidosis: Variant B, Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Congenital Lactic Acidosis:
Citric acid ⟶ Water + cis-Aconitic acid
- Fumarase Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- Mitochondrial Complex II Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- 2-Ketoglutarate Dehydrogenase Complex Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- Pyruvate Dehydrogenase Deficiency (E3):
Citric acid ⟶ Water + cis-Aconitic acid
- Pyruvate Dehydrogenase Deficiency (E2):
Citric acid ⟶ Water + cis-Aconitic acid
- Primary Hyperoxaluria II, PH2:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Kinase Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Phosphoenolpyruvate Carboxykinase Deficiency 1 (PEPCK1):
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Fructose-1,6-diphosphatase Deficiency:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Triosephosphate Isomerase Deficiency:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Fanconi-Bickel Syndrome:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Glycogenosis, Type IB:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type IC:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type IA. Von Gierke Disease:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- 3-Phosphoglycerate Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Cystinosis, Ocular Nonnephropathic:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Warburg Effect:
L-Glutamic acid + NAD + Water ⟶ Ammonia + NADH + Oxoglutaric acid
- Citric Acid Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Alanine Metabolism:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Amino Sugar Metabolism:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Ammonia Recycling:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Pyruvaldehyde Degradation:
S-Lactoylglutathione ⟶ Glutathione + Pyruvaldehyde
- Glucose-Alanine Cycle:
L-Glutamic acid + NAD + Water ⟶ Ammonia + NADH + Oxoglutaric acid
- Glycolysis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Gluconeogenesis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Urea Cycle:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Pyruvate Metabolism:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Transfer of Acetyl Groups into Mitochondria:
L-Malic acid + NAD ⟶ Hydrogen Ion + NADH + Oxalacetic acid
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Citric Acid Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Alanine Metabolism:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Amino Sugar Metabolism:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Ammonia Recycling:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Cysteine Metabolism:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Pyruvaldehyde Degradation:
S-Lactoylglutathione ⟶ Glutathione + Pyruvaldehyde
- Glucose-Alanine Cycle:
L-Glutamic acid + NAD + Water ⟶ Ammonia + NADH + Oxoglutaric acid
- Glycolysis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Gluconeogenesis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Urea Cycle:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Pyruvate Metabolism:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Transfer of Acetyl Groups into Mitochondria:
L-Malic acid + NAD ⟶ Hydrogen Ion + NADH + Oxalacetic acid
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Citric Acid Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Alanine Metabolism:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Amino Sugar Metabolism:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Ammonia Recycling:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Pyruvaldehyde Degradation:
S-Lactoylglutathione ⟶ Glutathione + Pyruvaldehyde
- Glycolysis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Pyruvate Metabolism:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Transfer of Acetyl Groups into Mitochondria:
L-Malic acid + NAD ⟶ Hydrogen Ion + NADH + Oxalacetic acid
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Citric Acid Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Alanine Metabolism:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Ammonia Recycling:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Glycolysis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Pyruvate Metabolism:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Transfer of Acetyl Groups into Mitochondria:
L-Malic acid + NAD ⟶ Hydrogen Ion + NADH + Oxalacetic acid
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- LPS and Citrate Signaling and Inflammation:
2-Oxobutanedioate + Acetyl Coenzyme A ⟶ Citrate
- The Oncogenic Action of 2-Hydroxyglutarate:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Glutaminolysis and Cancer:
L-Glutamine ⟶ Ammonia + L-Glutamic acid
- The Oncogenic Action of 2-Hydroxyglutarate:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Glutaminolysis and Cancer:
L-Glutamine ⟶ Ammonia + L-Glutamic acid
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Argininemia:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Argininosuccinic Aciduria:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Carbamoyl Phosphate Synthetase Deficiency:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Citrullinemia Type I:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD):
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Glycogen Storage Disease Type 1A (GSD1A) or Von Gierke Disease:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Lactic Acidemia:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Leigh Syndrome:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Sialuria or French Type Sialuria:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Sarcosinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Salla Disease/Infantile Sialic Acid Storage Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Pyruvate Dehydrogenase Complex Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency):
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Non-Ketotic Hyperglycinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Pyruvate Carboxylase Deficiency:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Ornithine Transcarbamylase Deficiency (OTC Deficiency):
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Primary Hyperoxaluria Type I:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Hyperglycinemia, Non-Ketotic:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- beta-Mercaptolactate-Cysteine Disulfiduria:
Adenosine triphosphate + L-Cysteine ⟶ Adenosine monophosphate + Pyrophosphate
- Glycogenosis, Type VII. Tarui Disease:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- G(M2)-Gangliosidosis: Variant B, Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Congenital Lactic Acidosis:
Citric acid ⟶ Water + cis-Aconitic acid
- Fumarase Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- Mitochondrial Complex II Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- 2-Ketoglutarate Dehydrogenase Complex Deficiency:
Citric acid ⟶ Water + cis-Aconitic acid
- Pyruvate Dehydrogenase Deficiency (E3):
Citric acid ⟶ Water + cis-Aconitic acid
- Pyruvate Dehydrogenase Deficiency (E2):
Citric acid ⟶ Water + cis-Aconitic acid
- Primary Hyperoxaluria II, PH2:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Kinase Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Phosphoenolpyruvate Carboxykinase Deficiency 1 (PEPCK1):
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Fructose-1,6-diphosphatase Deficiency:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Triosephosphate Isomerase Deficiency:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Fanconi-Bickel Syndrome:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycogenosis, Type IB:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycogenosis, Type IC:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycogenosis, Type IA. Von Gierke Disease:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- LPS and Citrate Signaling and Inflammation:
2-Oxobutanedioate + Acetyl Coenzyme A ⟶ Citrate
- LPS and Citrate Signaling and Inflammation:
2-Oxobutanedioate + Acetyl Coenzyme A ⟶ Citrate
- LPS and Citrate Signaling and Inflammation:
2-Oxobutanedioate + Acetyl Coenzyme A ⟶ Citrate
- Citrate Cycle:
Isocitric acid ⟶ Water + cis-Aconitic acid
- MEP/DOXP Pathway:
4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol + Adenosine diphosphate + Hydrogen Ion ⟶ 2-phospho-4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol + Adenosine triphosphate
- 2,3-Dihydroxybenzoate Biosynthesis:
Water + isochorismate ⟶ (2S,3S)-2,3-dihydroxy-2,3-dihydrobenzoate + Pyruvic acid
- Biosynthesis of Siderophore Group Nonribosomal Peptides:
2,3-Dihydroxybenzoic acid + Adenosine triphosphate + L-Serine ⟶ Adenosine monophosphate + Hydrogen Ion + Pyrophosphate + enterobactin
- D-Alanine Metabolism:
L-Alanine ⟶ D-Alanine
- Lysine Biosynthesis:
Hydrogen Ion + meso-diaminopimelate ⟶ Carbon dioxide + L-Lysine
- L-Alanine Metabolism:
L-Valine + Pyruvic acid ⟶ -Ketoisovaleric acid + L-Alanine
- D-Glucarate and D-Galactarate Degradation:
Adenosine triphosphate + Pyruvic acid + Water ⟶ Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid
- Valine Biosynthesis:
Isovaleric acid + L-Glutamic acid ⟶ L-Valine + Oxoglutaric acid
- Isoleucine Biosynthesis:
2-Ketobutyric acid + Hydrogen Ion + Pyruvic acid ⟶ (S)-2-Aceto-2-hydroxybutanoic acid + Carbon dioxide
- Galactitol and Galactonate Degradation:
Galactitol + Unknown ⟶ Galactose 1-phosphate + Unknown
- Folate Biosynthesis:
7,8-Dihydroneopterin ⟶ 6-hydroxymethyl-7,8-dihydropterin + Glycolaldehyde
- Fructose Metabolism:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism II:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism III (sn-Glycero-3-Phosphoethanolamine):
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism IV (Glycerophosphoglycerol):
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism V (Glycerophosphoserine):
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Sulfur Metabolism:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Butanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Propanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Ethanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Isethionate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Methanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Propanoate Metabolism:
2-Ketobutyric acid + Coenzyme A ⟶ Formic acid + Propionyl-CoA
- Secondary Metabolites: Threonine Biosynthesis from Aspartate:
O-Phosphohomoserine + Water ⟶ L-Threonine + Phosphate
- Secondary Metabolites: Valine and L-Leucine Biosynthesis from Pyruvate:
3-Methyl-2-oxovaleric acid + Acetyl-CoA + Water ⟶ 2-Isopropylmalic acid + Coenzyme A + Hydrogen Ion
- Secondary Metabolites: Ubiquinol Biosynthesis:
Chorismate ⟶ 4-Hydroxybenzoic acid + Pyruvic acid
- 2-Oxopent-4-enoate Metabolism:
4-hydroxy-2-oxopentanoate ⟶ Acetaldehyde + Pyruvic acid
- Ketogluconate Metabolism:
2-Keto-L-gluconate + Hydrogen Ion + NADPH ⟶ Gluconic acid + NADP
- 2-Oxopent-4-enoate Metabolism 2:
4-hydroxy-2-oxopentanoate ⟶ Acetaldehyde + Pyruvic acid
- Secondary Metabolites: Ubiquinol Biosynthesis 2:
Chorismate ⟶ 4-Hydroxybenzoic acid + Pyruvic acid
- Enterobactin Biosynthesis:
(2,3-Dihydroxybenzoyl)adenylic acid + a holo-[EntB isochorismatase/aryl-carrier protein] ⟶ Adenosine monophosphate + Hydrogen Ion + a 2,3-dihydroxybenzoyl-[EntB isochorismatase/aryl-carrier protein]
- Hydrogen Sulfide Biosynthesis I:
Adenosine triphosphate + L-Cysteine + Water ⟶ Adenosine diphosphate + Hydrogen Ion + L-Cysteine + Phosphate
- L-Lactaldehyde Degradation (Aerobic):
(S)-lactaldehyde + NAD + Water ⟶ Hydrogen Ion + L-Lactic acid + NADH
- Methylglyoxal Degradation IV:
(S)-lactaldehyde + NAD + Water ⟶ Hydrogen Ion + L-Lactic acid + NADH
- Pyruvate Decarboxylation to Acetyl-CoA:
Hydrogen Ion + Pyruvic acid + a [pyruvate dehydrogenase E2 protein] N6-lipoyl-L-lysine ⟶ Carbon dioxide + a [pyruvate dehydrogenase E2 protein] N6-S-acetyldihydrolipoyl-L-lysine
- Methylglyoxal Degradation II:
Pyruvaldehyde + Water ⟶ D-Lactic acid + Hydrogen Ion
- Pyruvate to Cytochrome bd Terminal Oxidase Electron Transfer:
Pyruvic acid + Water ⟶ Acetic acid + Carbon dioxide + Electron + Hydrogen ion
- D-Serine Degradation:
2-iminopropanoate + Hydrogen Ion + Water ⟶ Ammonium + Pyruvic acid
- Methylglyoxal Degradation I:
Glutathione + Pyruvaldehyde ⟶ S-Lactoylglutathione
PharmGKB(0)
94 个相关的物种来源信息
- 4678 - Allium: LTS0207290
- 4679 - Allium cepa: 10.1038/157512A0
- 4679 - Allium cepa: LTS0207290
- 4668 - Amaryllidaceae: LTS0207290
- 8296 - Ambystoma mexicanum: 10.3389/FCELL.2020.562940
- 3701 - Arabidopsis: LTS0207290
- 3702 - Arabidopsis thaliana:
- 3702 - Arabidopsis thaliana: 10.1111/J.1742-4658.2005.04567.X
- 3702 - Arabidopsis thaliana: LTS0207290
- 3817 - Arachis: LTS0207290
- 3818 - Arachis hypogaea: 10.1042/BJ0590228
- 3818 - Arachis hypogaea: LTS0207290
- 4050 - Araliaceae: LTS0207290
- 2 - Bacteria: LTS0207290
- 3805 - Bauhinia: LTS0207290
- 3806 - Bauhinia purpurea: 10.1007/BF02002793
- 3806 - Bauhinia purpurea: LTS0207290
- 3700 - Brassicaceae: LTS0207290
- 7711 - Chordata: LTS0207290
- 72432 - Delonix: LTS0207290
- 72433 - Delonix regia: 10.1016/0031-9422(75)83096-2
- 72433 - Delonix regia: LTS0207290
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 543 - Enterobacteriaceae: LTS0207290
- 561 - Escherichia: LTS0207290
- 562 - Escherichia coli: LTS0207290
- 33682 - Euglenozoa: LTS0207290
- 2759 - Eukaryota: LTS0207290
- 3803 - Fabaceae: LTS0207290
- 4751 - Fungi: LTS0207290
- 1236 - Gammaproteobacteria: LTS0207290
- 58228 - Garcinia mangostana: 10.1007/S11306-019-1526-1
- 9604 - Hominidae: LTS0207290
- 9605 - Homo: LTS0207290
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-012-0464-Y
- 9606 - Homo sapiens: LTS0207290
- 5653 - Kinetoplastea: LTS0207290
- 4447 - Liliopsida: LTS0207290
- 159736 - Macrobrachium nipponense: 10.3389/FPHYS.2018.00076
- 3398 - Magnoliopsida: LTS0207290
- 40674 - Mammalia: LTS0207290
- 50362 - Melanthiaceae: LTS0207290
- 33208 - Metazoa: LTS0207290
- 2212703 - Mucoromycetes: LTS0207290
- 1913637 - Mucoromycota: LTS0207290
- 4053 - Panax: LTS0207290
- 4054 - Panax ginseng: 10.3389/FPLS.2016.00994
- 4054 - Panax ginseng: LTS0207290
- 4054 - Panax ginseng C. A. Mey.: -
- 1822464 - Paraburkholderia: 10.1128/AEM.01851-20
- 49669 - Paris: LTS0207290
- 83858 - Paris fargesii: 10.1016/J.JPROT.2019.02.003
- 83858 - Paris fargesii: LTS0207290
- 49666 - Paris polyphylla: 10.1016/J.JPROT.2019.02.003
- 49666 - Paris polyphylla: LTS0207290
- 4836 - Phycomyces: LTS0207290
- 4837 - Phycomyces blakesleeanus: 10.1016/0031-9422(96)00146-X
- 4837 - Phycomyces blakesleeanus: LTS0207290
- 1344966 - Phycomycetaceae: LTS0207290
- 3689 - Populus: LTS0207290
- 113636 - Populus tremula: 10.1111/NPH.16799
- 113636 - Populus tremula: LTS0207290
- 135621 - Pseudomonadaceae: LTS0207290
- 286 - Pseudomonas: LTS0207290
- 303 - Pseudomonas putida: 10.1073/PNAS.2016380117
- 303 - Pseudomonas putida: LTS0207290
- 278655 - Pycnandra: LTS0207290
- 280718 - Pycnandra acuminata: 10.1016/J.PHYTOCHEM.2007.07.001
- 280718 - Pycnandra acuminata: LTS0207290
- 3688 - Salicaceae: LTS0207290
- 590 - Salmonella: LTS0207290
- 28901 - Salmonella enterica:
- 28901 - Salmonella enterica: 10.1021/ACS.JPROTEOME.0C00281
- 28901 - Salmonella enterica: 10.1039/C3MB25598K
- 28901 - Salmonella enterica: LTS0207290
- 3737 - Sapotaceae: LTS0207290
- 4070 - Solanaceae: LTS0207290
- 4107 - Solanum: LTS0207290
- 4081 - Solanum lycopersicum: 10.1038/SDATA.2014.29
- 4081 - Solanum lycopersicum: LTS0207290
- 1912 - Streptomyces hygroscopicus: 10.1002/JOBM.3630150802
- 54571 - Streptomyces venezuelae: 10.1139/M84-158
- 35493 - Streptophyta: LTS0207290
- 58023 - Tracheophyta: LTS0207290
- 5690 - Trypanosoma: LTS0207290
- 5691 - Trypanosoma brucei:
- 5691 - Trypanosoma brucei: 10.1128/AAC.00044-13
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 5691 - Trypanosoma brucei: LTS0207290
- 5654 - Trypanosomatidae: LTS0207290
- 33090 - Viridiplantae: LTS0207290
- 29760 - Vitis vinifera: 10.1016/J.DIB.2020.106469
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Alexander S Shashkov, Natalia V Potekhina, Elena M Tul'skaya, Andrey S Dmitrenok, Sof'ya N Senchenkova, Vladimir I Torgov, Lubov V Dorofeeva, Lyudmila I Evtushenko. New lactate- and pyruvate-containing polysaccharide and rhamnomannan with xylose residues from the cell wall of Rathayibacter oskolensis VKM Ac-2121T.
Carbohydrate research.
2024 Jun; 540(?):109145. doi:
10.1016/j.carres.2024.109145
. [PMID: 38759341] - Anne Jahn, Maike Petersen. Hydroxy(phenyl)pyruvic acid reductase in Actaea racemosa L.: a putative enzyme in cimicifugic and fukinolic acid biosynthesis.
Planta.
2024 Mar; 259(5):102. doi:
10.1007/s00425-024-04382-6
. [PMID: 38549005] - Linshuang Wang, Fengxue Qu, Xueyun Yu, Sixia Yang, Binbin Zhao, Yaojing Chen, Pengbo Li, Zhanjun Zhang, Junying Zhang, Xuejie Han, Dongfeng Wei. Cortical lipid metabolic pathway alteration of early Alzheimer's disease and candidate drugs screen.
European journal of medical research.
2024 Mar; 29(1):199. doi:
10.1186/s40001-024-01730-w
. [PMID: 38528586] - Elton T Montrazi, Keren Sasson, Lilach Agemy, Avigdor Scherz, Lucio Frydman. Molecular imaging of tumor metabolism: Insight from pyruvate- and glucose-based deuterium MRI studies.
Science advances.
2024 Mar; 10(11):eadm8600. doi:
10.1126/sciadv.adm8600
. [PMID: 38478615] - Sonia E Evans, Anya E Franks, Matthew E Bergman, Nasha S Sethna, Mark A Currie, Michael A Phillips. Plastid ancestors lacked a complete Entner-Doudoroff pathway, limiting plants to glycolysis and the pentose phosphate pathway.
Nature communications.
2024 Feb; 15(1):1102. doi:
10.1038/s41467-024-45384-y
. [PMID: 38321044] - Shuying Gu, Taju Wu, Junqi Zhao, Tao Sun, Zhen Zhao, Lu Zhang, Jingen Li, Chaoguang Tian. Rewiring metabolic flux to simultaneously improve malate production and eliminate by-product succinate accumulation by Myceliophthora thermophila.
Microbial biotechnology.
2024 Jan; ?(?):e14410. doi:
10.1111/1751-7915.14410
. [PMID: 38298109] - María-Graciela Delgado, Ricardo Delgado. Transient Synaptic Enhancement Triggered by Exogenously Supplied Monocarboxylate in Drosophila Motoneuron Synapse.
Neuroscience.
2024 Jan; 539(?):66-75. doi:
10.1016/j.neuroscience.2024.01.003
. [PMID: 38220128] - Josepheena Joseph, Sanjib Bal Samant, Kapuganti Jagadis Gupta. Mitochondrial alternative oxidase pathway helps in nitrooxidative stress tolerance in germinating chickpea.
Journal of biosciences.
2024; 49(?):. doi:
"
. [PMID: 38726824] - João Vitor Alcantara da Silva, Jessica Ispada, Ricardo Perecin Nociti, Aldcejam Martins da Fonseca Junior, Camila Bruna De Lima, Erika Cristina Dos Santos, Marcos Roberto Chiaratti, Marcella Pecora Milazzotto. The central role of pyruvate metabolism on the epigenetic maturation and transcriptional profile of bovine oocytes.
Reproduction (Cambridge, England).
2024 Jan; ?(?):. doi:
10.1530/rep-23-0181
. [PMID: 38271822] - Elton T Montrazi, Keren Sasson, Lilach Agemy, Dana C Peters, Ori Brenner, Avigdor Scherz, Lucio Frydman. High-sensitivity deuterium metabolic MRI differentiates acute pancreatitis from pancreatic cancers in murine models.
Scientific reports.
2023 11; 13(1):19998. doi:
10.1038/s41598-023-47301-7
. [PMID: 37968574] - Toshiharu Onodera, May-Yun Wang, Joseph M Rutkowski, Stanislaw Deja, Shiuhwei Chen, Michael S Balzer, Dae-Seok Kim, Xuenan Sun, Yu A An, Bianca C Field, Charlotte Lee, Ei-Ichi Matsuo, Monika Mizerska, Ina Sanjana, Naoto Fujiwara, Christine M Kusminski, Ruth Gordillo, Laurent Gautron, Denise K Marciano, Ming Chang Hu, Shawn C Burgess, Katalin Susztak, Orson W Moe, Philipp E Scherer. Endogenous renal adiponectin drives gluconeogenesis through enhancing pyruvate and fatty acid utilization.
Nature communications.
2023 10; 14(1):6531. doi:
10.1038/s41467-023-42188-4
. [PMID: 37848446] - Jiang Wenjing, Jiang Huaying, Yuan Lihua, S A Yuanhong, Xiao Jimei, Sun Hongqi, Song Jingyan, Sun Zhengao. Xiaoyi Yusi decoction improves fertilization and embryo transfer outcomes in patients with endometriosis.
Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan.
2023 10; 43(5):1026-1033. doi:
10.19852/j.cnki.jtcm.2023.05.006
. [PMID: 37679991] - Amal S Othman, Nashwa A Ahmed, Mona S Elneklawi, Mansour M Hassan, Mahmoud Abd El-Mongy. Generation of green electricity from sludge using photo-stimulated bacterial consortium as a sustainable technology.
Microbial cell factories.
2023 Sep; 22(1):183. doi:
10.1186/s12934-023-02187-y
. [PMID: 37715250] - Lili Ren, Hongxia Zhang, Jiao Zhou, Yajing Wu, Bo Liu, Shuping Wang, Xin Liu, Xin Hao, Lilin Zhao. Unique and generic crossed metabolism in response to four sub-lethal environmental stresses in the oriental fruit fly, Bactrocera dorsalis Hendel.
Ecotoxicology and environmental safety.
2023 Sep; 264(?):115434. doi:
10.1016/j.ecoenv.2023.115434
. [PMID: 37690174] - Hira Shakoor, Jaleel Kizhakkayil, Mariyam Khalid, Amar Mahgoub, Carine Platat. Effect of Moderate-Intense Training and Detraining on Glucose Metabolism, Lipid Profile, and Liver Enzymes in Male Wistar Rats: A Preclinical Randomized Study.
Nutrients.
2023 Aug; 15(17):. doi:
10.3390/nu15173820
. [PMID: 37686852] - An-Hui Jin, Yi-Fan Qian, Jiong Ren, Jin-Gang Wang, Fang Qiao, Mei-Ling Zhang, Zhen-Yu Du, Yuan Luo. PDK inhibition promotes glucose utilization, reduces hepatic lipid deposition, and improves oxidative stress in largemouth bass (Micropterus salmoides) by increasing pyruvate oxidative phosphorylation.
Fish & shellfish immunology.
2023 Jul; 140(?):108969. doi:
10.1016/j.fsi.2023.108969
. [PMID: 37488039] - Yanping Zhao, Xu Geng, Xiaoling Zhou, Li Xu, Shuai Li, Zhengqiang Li, Yi Guo, Chen Li. A novel high-stability bioelectrochemical sensor based on sol-gel immobilization of lactate dehydrogenase and AuNPs-rGO signal enhancement for serum pyruvate detection.
Analytica chimica acta.
2023 Jul; 1265(?):341335. doi:
10.1016/j.aca.2023.341335
. [PMID: 37230575] - Ju-Yi Hsieh, Kun-Chi Chen, Chun-Hsiung Wang, Guang-Yaw Liu, Jie-An Ye, Yu-Tung Chou, Yi-Chun Lin, Cheng-Jhe Lyu, Rui-Ying Chang, Yi-Liang Liu, Yen-Hsien Li, Mau-Rong Lee, Meng-Chiao Ho, Hui-Chih Hung. Suppression of the human malic enzyme 2 modifies energy metabolism and inhibits cellular respiration.
Communications biology.
2023 May; 6(1):548. doi:
10.1038/s42003-023-04930-y
. [PMID: 37217557] - Ning Zhang, Sisheng Wang, Simin Zhao, Daiying Chen, Hongyan Tian, Jia Li, Lingran Zhang, Songgang Li, Lu Liu, Chaonan Shi, Xiaodong Yu, Yan Ren, Feng Chen. Global crotonylatome and GWAS revealed a TaSRT1-TaPGK model regulating wheat cold tolerance through mediating pyruvate.
Science advances.
2023 05; 9(19):eadg1012. doi:
10.1126/sciadv.adg1012
. [PMID: 37163591] - Timothy R Koves, Guo-Fang Zhang, Michael T Davidson, Alec B Chaves, Scott B Crown, Jordan M Johnson, Dorothy H Slentz, Paul A Grimsrud, Deborah M Muoio. Pyruvate-supported flux through medium-chain ketothiolase promotes mitochondrial lipid tolerance in cardiac and skeletal muscles.
Cell metabolism.
2023 Apr; ?(?):. doi:
10.1016/j.cmet.2023.03.016
. [PMID: 37060901] - Tobias Schwanemann, Maike Otto, Benedikt Wynands, Jan Marienhagen, Nick Wierckx. A Pseudomonas taiwanensis malonyl-CoA platform strain for polyketide synthesis.
Metabolic engineering.
2023 Apr; 77(?):219-230. doi:
10.1016/j.ymben.2023.04.001
. [PMID: 37031949] - Sang R Lee, Moeka Mukae, Kang Joo Jeong, Se Hee Park, Hi Jo Shin, Sang Woon Kim, Young Suk Won, Hyo-Jung Kwun, In-Jeoung Baek, Eui-Ju Hong. PGRMC1 Ablation Protects from Energy-Starved Heart Failure by Promoting Fatty Acid/Pyruvate Oxidation.
Cells.
2023 02; 12(5):. doi:
10.3390/cells12050752
. [PMID: 36899888] - Qian Luo, Nana Ding, Yunfeng Liu, Hailing Zhang, Yu Fang, Lianghong Yin. Metabolic Engineering of Microorganisms to Produce Pyruvate and Derived Compounds.
Molecules (Basel, Switzerland).
2023 Feb; 28(3):. doi:
10.3390/molecules28031418
. [PMID: 36771084] - R Mohammad, M Al Kattan. SMOKING JEOPARDIZED MITOCHONDRIAL FUNCTION VITIATING LIPID PROFILE.
Georgian medical news.
2023 Jan; ?(334):49-51. doi:
"
. [PMID: 36864792] - Saad Alrashdi, Federica Casolari, Aziz Alabed, Kwaku Kyeremeh, Hai Deng. Chemoenzymatic Synthesis of Indole-Containing Acyloin Derivatives.
Molecules (Basel, Switzerland).
2023 Jan; 28(1):. doi:
10.3390/molecules28010354
. [PMID: 36615552] - Jingyu Ni, Hao Zhang, Xiaodan Wang, Zhihao Liu, Tong Nie, Lan Li, Jing Su, Yan Zhu, Chuanrui Ma, Yuting Huang, Jingyuan Mao, Xiumei Gao, Guanwei Fan. Rg3 regulates myocardial pyruvate metabolism via P300-mediated dihydrolipoamide dehydrogenase 2-hydroxyisobutyrylation in TAC-induced cardiac hypertrophy.
Cell death & disease.
2022 12; 13(12):1073. doi:
10.1038/s41419-022-05516-y
. [PMID: 36572672] - Shan Tang, Ning Guo, Qingqing Tang, Fei Peng, Yunhao Liu, Hui Xia, Shaoping Lu, Liang Guo. Pyruvate transporter BnaBASS2 impacts seed oil accumulation in Brassica napus.
Plant biotechnology journal.
2022 12; 20(12):2406-2417. doi:
10.1111/pbi.13922
. [PMID: 36056567] - Kuenzang Om, Nico N Arias, Chaney C Jambor, Alexandra MacGregor, Ashley N Rezachek, Carlan Haugrud, Hans-Henning Kunz, Zhonghui Wang, Pu Huang, Quan Zhang, Josh Rosnow, Thomas P Brutnell, Asaph B Cousins, Chris J Chastain. Pyruvate, phosphate dikinase regulatory protein impacts light response of C4 photosynthesis in Setaria viridis.
Plant physiology.
2022 09; 190(2):1117-1133. doi:
10.1093/plphys/kiac333
. [PMID: 35876823] - Faizan Abul Qais, Suliman Yousef Alomar, Mohammad Azhar Imran, Md Amiruddin Hashmi. In-Silico Analysis of Phytocompounds of Olea europaea as Potential Anti-Cancer Agents to Target PKM2 Protein.
Molecules (Basel, Switzerland).
2022 Sep; 27(18):. doi:
10.3390/molecules27185793
. [PMID: 36144527] - Evelyn Silva Moreira, Ana Paula Ames-Sibin, Carla Indianara Bonetti, Luana Eloísa Leal, Rosane Marina Peralta, Anacharis Babeto de Sá-Nakanishi, Jurandir Fernando Comar, Adelar Bracht, Lívia Bracht. The short-term effects of berberine in the liver: Narrow margins between benefits and toxicity.
Toxicology letters.
2022 Sep; 368(?):56-65. doi:
10.1016/j.toxlet.2022.08.005
. [PMID: 35963428] - Michael L Bender, Xin-Guang Zhu, Paul Falkowski, Fangfang Ma, Kevin Griffin. On the rate of phytoplankton respiration in the light.
Plant physiology.
2022 08; 190(1):267-279. doi:
10.1093/plphys/kiac254
. [PMID: 35652738] - Wei Gao, Yue Zhang, Lai Chen, Xiaoyu Liu, Kun Li, Lijun Han, Zhenwu Yu, Jinzhou Ren, Liangfu Tang, Zhijin Fan. Novel [1,2,4]-Triazolo[3,4-b]-[1,3,4]thiadizoles as Potent Pyruvate Kinase Inhibitors for Fungal Control.
Journal of agricultural and food chemistry.
2022 Aug; 70(33):10170-10181. doi:
10.1021/acs.jafc.2c03758
. [PMID: 35960265] - Jiaxin Cui, Georg Hölzl, Tobias Karmainski, Till Tiso, Sonja Kubicki, Stephan Thies, Lars M Blank, Karl-Erich Jaeger, Peter Dörmann. The Glycine-Glucolipid of Alcanivorax borkumensis Is Resident to the Bacterial Cell Wall.
Applied and environmental microbiology.
2022 08; 88(16):e0112622. doi:
10.1128/aem.01126-22
. [PMID: 35938787] - Kiran Kumar Adepu, Dipendra Bhandari, Andriy Anishkin, Sean H Adams, Sree V Chintapalli. Myoglobin-Pyruvate Interactions: Binding Thermodynamics, Structure-Function Relationships, and Impact on Oxygen Release Kinetics.
International journal of molecular sciences.
2022 Aug; 23(15):. doi:
10.3390/ijms23158766
. [PMID: 35955898] - Dorota Lechniak, Ewa Sell-Kubiak, Ewelina Warzych. The metabolic profile of bovine blastocysts is affected by in vitro culture system and the pattern of first zygotic cleavage.
Theriogenology.
2022 Aug; 188(?):43-51. doi:
10.1016/j.theriogenology.2022.05.021
. [PMID: 35661988] - Nadia Turton, Neve Cufflin, Mollie Dewsbury, Olivia Fitzpatrick, Rahida Islam, Lowidka Linares Watler, Cara McPartland, Sophie Whitelaw, Caitlin Connor, Charlotte Morris, Jason Fang, Ollie Gartland, Liv Holt, Iain P Hargreaves. The Biochemical Assessment of Mitochondrial Respiratory Chain Disorders.
International journal of molecular sciences.
2022 Jul; 23(13):. doi:
10.3390/ijms23137487
. [PMID: 35806492] - Rodney C Daniels, Mohamad H Tiba, Brandon C Cummings, Yan Rou Yap, Sardar Ansari, Brendan M McCracken, Yihan Sun, Theodore S Jennaro, Kevin R Ward, Kathleen A Stringer. Redox Potential Correlates with Changes in Metabolite Concentrations Attributable to Pathways Active in Oxidative Stress Response in Swine Traumatic Shock.
Shock (Augusta, Ga.).
2022 06; 57(6):282-290. doi:
10.1097/shk.0000000000001944
. [PMID: 35670453] - Yiru Shao, Zhiyong Xie, Shusheng Liang, Cuiying Chen, Douglas R Tocher, Li Lin, Yanhua Huang, Yuanyou Li, Dizhi Xie, Yucong Hong, Shuqi Wang, Cuihong You. Dietary calcium pyruvate could improve growth performance and reduce excessive lipid deposition in juvenile golden pompano (Trachinotus ovatus) fed a high fat diet.
Fish physiology and biochemistry.
2022 Jun; 48(3):555-570. doi:
10.1007/s10695-022-01077-1
. [PMID: 35461391] - Xuyen H Le, Chun Pong Lee, Dario Monachello, A Harvey Millar. Metabolic evidence for distinct pyruvate pools inside plant mitochondria.
Nature plants.
2022 06; 8(6):694-705. doi:
10.1038/s41477-022-01165-3
. [PMID: 35681019] - Yan-Yan Zhao, Li-Jun Zhang, Xiang-Yan Liang, Xiao-Chun Zhang, Jin-Rui Chang, Man Shi, Huan Liu, Ying Zhou, Zhuo Sun, Yu-Feng Zhao. Pyruvate Upregulates Hepatic FGF21 Expression by Activating PDE and Inhibiting cAMP-Epac-CREB Signaling Pathway.
International journal of molecular sciences.
2022 May; 23(10):. doi:
10.3390/ijms23105490
. [PMID: 35628302] - Elie R Chalhoub, Joanne M Belovich. Quantitative analysis of the interaction of ethanol metabolism with gluconeogenesis and fatty acid oxidation in the perfused liver of fasted rats.
Archives of biochemistry and biophysics.
2022 03; 718(?):109148. doi:
10.1016/j.abb.2022.109148
. [PMID: 35143783] - William K Chu, Charles K Rono, Banothile C E Makhubela. New Triazolyl N^N Bidentate Rh(III), Ir(III), Ru(II) and Os(II) Complexes: Synthesis and Characterization, Probing Possible Relations between Cytotoxicity with Transfer Hydrogenation Efficacy and Interaction with Model Biomolecules.
Molecules (Basel, Switzerland).
2022 Mar; 27(7):. doi:
10.3390/molecules27072058
. [PMID: 35408457] - Fernando Guzman-Chavez, Anibal Arce, Abhinav Adhikari, Sandra Vadhin, Jose Antonio Pedroza-Garcia, Chiara Gandini, Jim W Ajioka, Jenny Molloy, Sobeida Sanchez-Nieto, Jeffrey D Varner, Fernan Federici, Jim Haseloff. Constructing Cell-Free Expression Systems for Low-Cost Access.
ACS synthetic biology.
2022 03; 11(3):1114-1128. doi:
10.1021/acssynbio.1c00342
. [PMID: 35259873] - Jun-Sheng Tian, Wen-Ze Wu, Shao-Bo Liu, Ting Ling-Hu, Yun-Hao Zhao, Yao Gao, Xue-Mei Qin. Stable Isotope-Resolved Metabolomics Studies on Corticosteroid-Induced PC12 Cells: A Strategy for Evaluating Glucose Catabolism in an in Vitro Model of Depression.
Journal of proteome research.
2022 03; 21(3):788-797. doi:
10.1021/acs.jproteome.1c00516
. [PMID: 34699232] - Ling Wang, Meng Li, Bingting Yu, Shaojun Shi, Jiaye Liu, Ruyi Zhang, Ibrahim Ayada, Monique M A Verstegen, Luc J W van der Laan, Maikel P Peppelenbosch, Wanlu Cao, Qiuwei Pan. Recapitulating lipid accumulation and related metabolic dysregulation in human liver-derived organoids.
Journal of molecular medicine (Berlin, Germany).
2022 03; 100(3):471-484. doi:
10.1007/s00109-021-02176-x
. [PMID: 35059746] - Giulia Cisbani, Alex Koppel, Adam H Metherel, Mackenzie E Smith, Kankana N Aji, Ana C Andreazza, Romina Mizrahi, Richard P Bazinet. Serum lipid analysis and isotopic enrichment is suggestive of greater lipogenesis in young long-term cannabis users: A secondary analysis of a case-control study.
Lipids.
2022 03; 57(2):125-140. doi:
10.1002/lipd.12336
. [PMID: 35075659] - Henning Kirst, Bryan H Ferlez, Steffen N Lindner, Charles A R Cotton, Arren Bar-Even, Cheryl A Kerfeld. Toward a glycyl radical enzyme containing synthetic bacterial microcompartment to produce pyruvate from formate and acetate.
Proceedings of the National Academy of Sciences of the United States of America.
2022 02; 119(8):. doi:
10.1073/pnas.2116871119
. [PMID: 35193962] - Sabrina Kahina Bech, Haiyun Qi, Christian Østergaard Mariager, Esben Søvsø Szocska Hansen, Efe Ilicak, Frank G Zöllner, Christoffer Laustsen. The number of glomeruli and pyruvate metabolism is not strongly coupled in the healthy rat kidney.
Magnetic resonance in medicine.
2022 02; 87(2):896-903. doi:
10.1002/mrm.29025
. [PMID: 34554602] - Kang Mao, Guwei Lu, Yanjiao Li, Yitian Zang, Xianghui Zhao, Qinghua Qiu, Mingren Qu, Kehui Ouyang. Effects of rumen-protected creatine pyruvate on blood biochemical parameters and rumen fluid characteristics in transported beef cattle.
BMC veterinary research.
2022 Jan; 18(1):35. doi:
10.1186/s12917-021-03134-y
. [PMID: 35033088] - Emine Can, Jessica A M Bastiaansen, Dominique-Laurent Couturier, Rolf Gruetter, Hikari A I Yoshihara, Arnaud Comment. [13C]bicarbonate labelled from hyperpolarized [1-13C]pyruvate is an in vivo marker of hepatic gluconeogenesis in fasted state.
Communications biology.
2022 01; 5(1):10. doi:
10.1038/s42003-021-02978-2
. [PMID: 35013537] - W W Zhang, R Xue, T Y Mi, X M Shen, J C Li, S Li, Y Zhang, Y Li, L X Wang, X L Yin, H L Wang, Y Z Zhang. Propofol ameliorates acute postoperative fatigue and promotes glucagon-regulated hepatic gluconeogenesis by activating CREB/PGC-1α and accelerating fatty acids beta-oxidation.
Biochemical and biophysical research communications.
2022 01; 586(?):121-128. doi:
10.1016/j.bbrc.2021.11.073
. [PMID: 34839190] - Ningwei Xu, Zhenxing Wu, Xiangling Li, Min Yang, Jinling Han, Bin Lu, Bingshe Lu, Jian Wang. Effects of nicosulfuron on plant growth and sugar metabolism in sweet maize (Zea mays L.).
PloS one.
2022; 17(10):e0276606. doi:
10.1371/journal.pone.0276606
. [PMID: 36269745] - Xuyen Le, A Harvey Millar, Chun Pong Lee. Assessing the Kinetics of Metabolite Uptake and Utilization by Isolated Mitochondria Using Selective Reaction Monitoring Mass Spectrometry (SRM-MS).
Methods in molecular biology (Clifton, N.J.).
2022; 2363(?):85-100. doi:
10.1007/978-1-0716-1653-6_8
. [PMID: 34545488] - G Godoy, P B Travassos, M M Antunes, C C Iwanaga, A B Sá-Nakanishi, R Curi, J F Comar, R B Bazotte. Strenuous swimming raises blood non-enzymatic antioxidant capacity in rats.
Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.
2022; 55(?):e11891. doi:
10.1590/1414-431x2022e11891
. [PMID: 35239782] - Jingjing Jia, Yang Luo, Xue Zhong, Ling He. Methicillin-Resistant Staphylococcus Aureus (MRSA) Pyruvate Kinase (PK) Inhibitors and their Antimicrobial Activities.
Current medicinal chemistry.
2022; 29(5):908-923. doi:
10.2174/0929867328666210322103340
. [PMID: 33749550] - Najma Tabussam, Rashid Mehmood Rana, Muhammad Kausar Nawaz Shah, Muhammad Sheeraz Ahmad, Muhammad Sajjad, Yongqiang Lu. Nutraceutical profiling of elite onion germplasm and breeding hybrids with improved nutraceutical quality.
PloS one.
2022; 17(1):e0262705. doi:
10.1371/journal.pone.0262705
. [PMID: 35045129] - Eleanor H Oates, Maciek R Antoniewicz. Coordinated reprogramming of metabolism and cell function in adipocytes from proliferation to differentiation.
Metabolic engineering.
2022 01; 69(?):221-230. doi:
10.1016/j.ymben.2021.12.005
. [PMID: 34929419] - Ya Zhang, Ke Gao, Chong Wang, Shuangqing Liu. A Novel Antibacterial Component and the Mechanisms of an Amaranthus tricolor Leaf Ethyl Acetate Extract against Acidovorax avenae subsp. citrulli.
International journal of molecular sciences.
2021 Dec; 23(1):. doi:
10.3390/ijms23010312
. [PMID: 35008738] - Brendan M O'Leary. Swapping acids: the ins and outs of plant mitochondrial metabolism.
The Plant cell.
2021 12; 33(12):3608-3609. doi:
10.1093/plcell/koab238
. [PMID: 35231126] - Alexander S Shashkov, Nataliya V Potekhina, Deborah Kim, Andrey S Dmitrenok, Sof'ya N Senchenkova, Lubov V Dorofeeva, Lyudmila I Evtushenko, Elena M Tul'skaya. Cell wall galactofuranan and pyruvate-containing galactomannan in the cell walls of Clavibacter strains.
Carbohydrate research.
2021 Dec; 510(?):108435. doi:
10.1016/j.carres.2021.108435
. [PMID: 34597981] - Shamil N Galimov, Julia Y Gromenko, Kirill V Bulygin, Kamil Sh Galimov, Elmira F Galimova, Mikhail Y Sinelnikov. The level of secondary messengers and the redox state of NAD+/NADH are associated with sperm quality in infertility.
Journal of reproductive immunology.
2021 11; 148(?):103383. doi:
10.1016/j.jri.2021.103383
. [PMID: 34534880] - Lauren M Smith, Conrad B Pitts, Lanette J Friesen-Waldner, Neetin H Prabhu, Katherine E Mathers, Kevin J Sinclair, Trevor P Wade, Timothy R H Regnault, Charles A McKenzie. In Vivo Magnetic Resonance Spectroscopy of Hyperpolarized [1-13 C]Pyruvate and Proton Density Fat Fraction in a Guinea Pig Model of Non-Alcoholic Fatty Liver Disease Development After Life-Long Western Diet Consumption.
Journal of magnetic resonance imaging : JMRI.
2021 11; 54(5):1404-1414. doi:
10.1002/jmri.27677
. [PMID: 33970520] - Lotte Bonde Bertelsen, Esben Søvsø Szocska Hansen, Thorsten Sadowski, Sven Ruf, Christoffer Laustsen. Hyperpolarized pyruvate to measure the influence of PKM2 activation on glucose metabolism in the healthy kidney.
NMR in biomedicine.
2021 11; 34(11):e4583. doi:
10.1002/nbm.4583
. [PMID: 34240478] - Jae Mo Park, Sonal Josan, Ralph E Hurd, James Graham, Peter J Havel, David Bendahan, Dirk Mayer, Youngran Chung, Daniel M Spielman, Thomas Jue. Hyperpolarized NMR study of the impact of pyruvate dehydrogenase kinase inhibition on the pyruvate dehydrogenase and TCA flux in type 2 diabetic rat muscle.
Pflugers Archiv : European journal of physiology.
2021 11; 473(11):1761-1773. doi:
10.1007/s00424-021-02613-3
. [PMID: 34415396] - Anna F Bekebrede, Thirza van Deuren, Walter J J Gerrits, Jaap Keijer, Vincent C J de Boer. Butyrate Alters Pyruvate Flux and Induces Lipid Accumulation in Cultured Colonocytes.
International journal of molecular sciences.
2021 Oct; 22(20):. doi:
10.3390/ijms222010937
. [PMID: 34681598] - Yuika Osada, Shunsaku Nakagawa, Kanako Ishibe, Shota Takao, Aimi Shimazaki, Kotaro Itohara, Satoshi Imai, Atsushi Yonezawa, Takayuki Nakagawa, Kazuo Matsubara. Antibiotic-induced microbiome depletion alters renal glucose metabolism and exacerbates renal injury after ischemia-reperfusion injury in mice.
American journal of physiology. Renal physiology.
2021 10; 321(4):F455-F465. doi:
10.1152/ajprenal.00111.2021
. [PMID: 34423680] - Madhu Manti Patra, Poulami Ghosh, Shreya Sengupta, Sujoy K Das Gupta. DNA binding and gene regulatory functions of MSMEG_2295, a repressor encoded by the dinB2 operon of Mycobacterium smegmatis.
Microbiology (Reading, England).
2021 10; 167(10):. doi:
10.1099/mic.0.001097
. [PMID: 34665112] - Hiromasa Tanaka, Yugo Hosoi, Kenji Ishikawa, Jun Yoshitake, Takahiro Shibata, Koji Uchida, Hiroshi Hashizume, Masaaki Mizuno, Yasumasa Okazaki, Shinya Toyokuni, Kae Nakamura, Hiroaki Kajiyama, Fumitaka Kikkawa, Masaru Hori. Low temperature plasma irradiation products of sodium lactate solution that induce cell death on U251SP glioblastoma cells were identified.
Scientific reports.
2021 09; 11(1):18488. doi:
10.1038/s41598-021-98020-w
. [PMID: 34531507] - Min Yang, Jiang Li, Xiao-Meng Lv, Li-Rong Dai, Ke-Jia Wu, Bo Tu, Paul A Lawson, Yue-Qin Tang, Lei Cheng. Thermosynergistes pyruvativorans gen. nov., sp. nov., an anaerobic, pyruvate-degrading bacterium from Shengli oilfield, and proposal of Thermosynergistaceae fam. nov. in the phylum Synergistetes.
International journal of systematic and evolutionary microbiology.
2021 Sep; 71(9):. doi:
10.1099/ijsem.0.005031
. [PMID: 34582328] - Brendan M O'Leary. Playing with Pyr: alternate sources of mitochondrial pyruvate fuel plant respiration.
The Plant cell.
2021 08; 33(8):2519-2520. doi:
10.1093/plcell/koab147
. [PMID: 35233626] - Xuyen H Le, Chun-Pong Lee, A Harvey Millar. The mitochondrial pyruvate carrier (MPC) complex mediates one of three pyruvate-supplying pathways that sustain Arabidopsis respiratory metabolism.
The Plant cell.
2021 08; 33(8):2776-2793. doi:
10.1093/plcell/koab148
. [PMID: 34137858] - O S Vlasova, F A Bichkaeva. Age-related changes in the parameters of carbohydrate metabolism and supply of vitamins B1, B2 in residents of two northern regions.
Klinicheskaia laboratornaia diagnostika.
2021 Aug; 66(8):465-471. doi:
10.51620/0869-2084-2021-66-8-465-471
. [PMID: 34388316] - Bohdan O Manko, Olha O Bilonoha, Dariia M Voloshyn, Anastasiia M Zub, Iryna I Ivasechko, Volodymyr V Manko. Pyruvate and Glutamine Define the Effects of Cholecystokinin and Ethanol on Mitochondrial Oxidation, Necrosis, and Morphology of Rat Pancreatic Acini.
Pancreas.
2021 08; 50(7):972-981. doi:
10.1097/mpa.0000000000001864
. [PMID: 34629447] - Young-Suk Choi, Joonsung Lee, Han-Sol Lee, Jae Eun Song, Dong-Hyun Kim, Ho-Taek Song. Offset of apparent hyperpolarized 13 C lactate flux by the use of adjuvant metformin in ionizing radiation therapy in vivo.
NMR in biomedicine.
2021 08; 34(8):e4561. doi:
10.1002/nbm.4561
. [PMID: 34080736] - Shuyu Tang, Maxwell V Meng, James B Slater, Jeremy W Gordon, Daniel B Vigneron, Bradley A Stohr, Peder E Z Larson, Zhen Jane Wang. Metabolic imaging with hyperpolarized 13 C pyruvate magnetic resonance imaging in patients with renal tumors-Initial experience.
Cancer.
2021 08; 127(15):2693-2704. doi:
10.1002/cncr.33554
. [PMID: 33844280] - Yi Rao, Seth T Gammon, Margie N Sutton, Niki M Zacharias, Pratip Bhattacharya, David Piwnica-Worms. Excess exogenous pyruvate inhibits lactate dehydrogenase activity in live cells in an MCT1-dependent manner.
The Journal of biological chemistry.
2021 07; 297(1):100775. doi:
10.1016/j.jbc.2021.100775
. [PMID: 34022218] - Sagar S Manoli, Kyle Kisor, Bradley A Webb, Diane L Barber. Ethyl isopropyl amiloride decreases oxidative phosphorylation and increases mitochondrial fusion in clonal untransformed and cancer cells.
American journal of physiology. Cell physiology.
2021 07; 321(1):C147-C157. doi:
10.1152/ajpcell.00001.2021
. [PMID: 34038242] - Gabriel Martiñón-Gutiérrez, María Luna-Castro, Rolando Hernández-Muñoz. Role of insulin/glucagon ratio and cell redox state in the hyperglycaemia induced by exposure to a 60-Hz magnetic field in rats.
Scientific reports.
2021 06; 11(1):11666. doi:
10.1038/s41598-021-91228-w
. [PMID: 34083675] - Nicholas R Perkons, Omar Johnson, Gabrielle Pilla, Terence P F Gade. Pharmacodynamics and pharmacokinetics of hyperpolarized [1-13 C]-pyruvate in a translational oncologic model.
NMR in biomedicine.
2021 06; 34(6):e4502. doi:
10.1002/nbm.4502
. [PMID: 33772910] - Wei Ye, Yan Lin, Tedros Bezabeh, Changchun Ma, Jiahao Liang, Jiayun Zhao, Ting Ouyang, Wan Tang, Renhua Wu. 1 H NMR-based metabolomics of paired esophageal tumor tissues and serum samples identifies specific serum biomarkers for esophageal cancer.
NMR in biomedicine.
2021 06; 34(6):e4505. doi:
10.1002/nbm.4505
. [PMID: 33783927] - Peter B Soeters, Alan Shenkin, Lubos Sobotka, Maarten R Soeters, Peter W de Leeuw, Robert R Wolfe. The anabolic role of the Warburg, Cori-cycle and Crabtree effects in health and disease.
Clinical nutrition (Edinburgh, Scotland).
2021 05; 40(5):2988-2998. doi:
10.1016/j.clnu.2021.02.012
. [PMID: 33674148] - Ana-Marija Vučković, Rina Venerando, Elena Tibaldi, Valentina Bosello Travain, Antonella Roveri, Luciana Bordin, Giovanni Miotto, Giorgio Cozza, Stefano Toppo, Matilde Maiorino, Fulvio Ursini. Aerobic pyruvate metabolism sensitizes cells to ferroptosis primed by GSH depletion.
Free radical biology & medicine.
2021 05; 167(?):45-53. doi:
10.1016/j.freeradbiomed.2021.02.045
. [PMID: 33711415] - Alexander S Shashkov, Elena M Tul'skaya, Natalia V Potekhina, Andrey S Dmitrenok, Sofia N Senchenkova, Vlad A Zaychikov, Lubov V Dorofeeva, Lyudmila I Evtushenko. D-Rhamnan and Pyruvate-Containing Teichuronic Acid from the Cell Wall of Rathayibacter sp. VKM Ac-2759.
Biochemistry. Biokhimiia.
2021 Apr; 86(4):506-516. doi:
10.1134/s0006297921040118
. [PMID: 33941071] - Keith A Michel, Mukundan Ragavan, Christopher M Walker, Matthew E Merritt, Stephen Y Lai, James A Bankson. Comparison of selective excitation and multi-echo chemical shift encoding for imaging of hyperpolarized [1-13C]pyruvate.
Journal of magnetic resonance (San Diego, Calif. : 1997).
2021 04; 325(?):106927. doi:
10.1016/j.jmr.2021.106927
. [PMID: 33607386] - Lei Chen, Haley J Abel, Indraniel Das, David E Larson, Liron Ganel, Krishna L Kanchi, Allison A Regier, Erica P Young, Chul Joo Kang, Alexandra J Scott, Colby Chiang, Xinxin Wang, Shuangjia Lu, Ryan Christ, Susan K Service, Charleston W K Chiang, Aki S Havulinna, Johanna Kuusisto, Michael Boehnke, Markku Laakso, Aarno Palotie, Samuli Ripatti, Nelson B Freimer, Adam E Locke, Nathan O Stitziel, Ira M Hall. Association of structural variation with cardiometabolic traits in Finns.
American journal of human genetics.
2021 04; 108(4):583-596. doi:
10.1016/j.ajhg.2021.03.008
. [PMID: 33798444] - Adam J Bittel, Daniel C Bittel, Bettina Mittendorfer, Bruce W Patterson, Adewole L Okunade, Nada A Abumrad, Dominic N Reeds, William Todd Cade. A Single Bout of Premeal Resistance Exercise Improves Postprandial Glucose Metabolism in Obese Men with Prediabetes.
Medicine and science in sports and exercise.
2021 04; 53(4):694-703. doi:
10.1249/mss.0000000000002538
. [PMID: 33044441] - Edward V Prochownik, Huabo Wang. The Metabolic Fates of Pyruvate in Normal and Neoplastic Cells.
Cells.
2021 03; 10(4):. doi:
10.3390/cells10040762
. [PMID: 33808495] - Louise Crovesy, Tatiana El-Bacha, Eliane Lopes Rosado. Modulation of the gut microbiota by probiotics and symbiotics is associated with changes in serum metabolite profile related to a decrease in inflammation and overall benefits to metabolic health: a double-blind randomized controlled clinical trial in women with obesity.
Food & function.
2021 Mar; 12(5):2161-2170. doi:
10.1039/d0fo02748k
. [PMID: 33565558] - Fayyaz Ahamed, Mark Van Criekinge, Zhen J Wang, John Kurhanewicz, Peder Larson, Renuka Sriram. Modeling hyperpolarized lactate signal dynamics in cells, patient-derived tissue slice cultures and murine models.
NMR in biomedicine.
2021 03; 34(3):e4467. doi:
10.1002/nbm.4467
. [PMID: 33415771] - Jeremy W Gordon, Hsin-Yu Chen, Nicholas Dwork, Shuyu Tang, Peder E Z Larson. Fast Imaging for Hyperpolarized MR Metabolic Imaging.
Journal of magnetic resonance imaging : JMRI.
2021 03; 53(3):686-702. doi:
10.1002/jmri.27070
. [PMID: 32039520] - Xinxin Song, Jiao Liu, Feimei Kuang, Xin Chen, Herbert J Zeh, Rui Kang, Guido Kroemer, Yangchun Xie, Daolin Tang. PDK4 dictates metabolic resistance to ferroptosis by suppressing pyruvate oxidation and fatty acid synthesis.
Cell reports.
2021 02; 34(8):108767. doi:
10.1016/j.celrep.2021.108767
. [PMID: 33626342] - Thomas Olsen, Bente Øvrebø, Cheryl Turner, Nasser E Bastani, Helga Refsum, Kathrine J Vinknes. Effects of short-term methionine and cysteine restriction and enrichment with polyunsaturated fatty acids on oral glucose tolerance, plasma amino acids, fatty acids, lactate and pyruvate: results from a pilot study.
BMC research notes.
2021 Feb; 14(1):43. doi:
10.1186/s13104-021-05463-5
. [PMID: 33531059] - Camilo Hernández-Avilés, Luisa Ramírez-Agámez, Charles C Love, Macy Friedrich, Mariah Pearson, Dale E Kelley, Anne M N Beckham, Sheila R Teague, Katrina A LaCaze, Steven P Brinsko, Dickson D Varner. The effects of metabolic substrates glucose, pyruvate, and lactate added to a skim milk-based semen extender for cooled storage of stallion sperm.
Theriogenology.
2021 Feb; 161(?):83-97. doi:
10.1016/j.theriogenology.2020.11.017
. [PMID: 33302166] - Eva M Marwali, Putri Caesa, Muhammad Rayhan, Poppy S Roebiono, Dicky Fakhri, Nikolaus A Haas, Masaki Kajimoto, Michael A Portman. The effect of oral triiodothyronine supplementation on lactate and pyruvate after paediatric cardiac surgery.
Cardiology in the young.
2021 Feb; 31(2):205-211. doi:
10.1017/s1047951120003698
. [PMID: 33168128] - Gisle Kjøsen, Kristina Rydenfelt, Rune Horneland, Einar Martin Aandahl, Pål-Dag Line, Eric Dorenberg, Audun Elnæs Berstad, Knut Brabrand, Gaute Hagen, Sören Erik Pischke, Gisli Björn Bergmann, Espen Nordheim, Trond Geir Jenssen, Tor Inge Tønnessen, Håkon Haugaa. Early detection of complications in pancreas transplants by microdialysis catheters, an observational feasibility study.
PloS one.
2021; 16(3):e0247615. doi:
10.1371/journal.pone.0247615
. [PMID: 33705460] - Beibei Zheng, Li Zhao, Xiaohan Jiang, Sylvia Cherono, JingJing Liu, Collins Ogutu, Charmaine Ntini, Xiujun Zhang, Yuepeng Han. Assessment of organic acid accumulation and its related genes in peach.
Food chemistry.
2021 Jan; 334(?):127567. doi:
10.1016/j.foodchem.2020.127567
. [PMID: 32707362] - Babar Usman, Gul Nawaz, Neng Zhao, Shanyue Liao, Baoxiang Qin, Fang Liu, Yaoguang Liu, Rongbai Li. Programmed Editing of Rice (Oryza sativa L.) OsSPL16 Gene Using CRISPR/Cas9 Improves Grain Yield by Modulating the Expression of Pyruvate Enzymes and Cell Cycle Proteins.
International journal of molecular sciences.
2020 Dec; 22(1):. doi:
10.3390/ijms22010249
. [PMID: 33383688] - Matheus Pinto De Oliveira, Marc Liesa. The Role of Mitochondrial Fat Oxidation in Cancer Cell Proliferation and Survival.
Cells.
2020 12; 9(12):. doi:
10.3390/cells9122600
. [PMID: 33291682] - Michaela Veliova, Caroline M Ferreira, Ilan Y Benador, Anthony E Jones, Kiana Mahdaviani, Alexandra J Brownstein, Brandon R Desousa, Rebeca Acín-Pérez, Anton Petcherski, Essam A Assali, Linsey Stiles, Ajit S Divakaruni, Marc Prentki, Barbara E Corkey, Marc Liesa, Marcus F Oliveira, Orian S Shirihai. Blocking mitochondrial pyruvate import in brown adipocytes induces energy wasting via lipid cycling.
EMBO reports.
2020 12; 21(12):e49634. doi:
10.15252/embr.201949634
. [PMID: 33275313]