Classification Term: 169317

Short-chain acids (ontology term: a89fac3712fb8f11f48a68bc13384160)

found 17 associated metabolites at sub_class metabolite taxonomy ontology rank level.

Ancestor: Short-chain acids

Child Taxonomies: There is no child term of current ontology term.

2,3-Diphosphoglyceric acid

2,3-DIPHOSPHO-D-GLYCERIC ACID PENTASODIUM SALT

C3H8O10P2 (265.9593)


2,3-Bisphosphoglycerate (2,3-BPG, also known as 2,3-diphosphoglycerate or 2,3-DPG) is a three carbon isomer of the glycolytic intermediate 1,3-bisphosphoglycerate and is present at high levels in the human red blood cell (RBC; erythrocyte)--at the same molar concentration as hemoglobin. It is notable because it binds to deoxygenated hemoglobin in RBCs. In doing so, it allosterically upregulates the ability of RBCs to release oxygen near tissues that need it most. Its function was discovered in 1967 by Reinhold Benesch and Ruth Benesch. [HMDB] 2,3-Bisphosphoglycerate (CAS: 138-81-8), also known as 2,3-BPG or 2,3-diphosphoglycerate, is a three-carbon isomer of the glycolytic intermediate 1,3-bisphosphoglycerate and is present at high levels in the human red blood cell (RBC; erythrocyte) at the same molar concentration as hemoglobin. It is notable because it binds to deoxygenated hemoglobin in RBCs. In doing so, it allosterically upregulates the ability of RBCs to release oxygen near tissues that need it most. Its function was discovered in 1967 by Reinhold Benesch and Ruth Benesch. KEIO_ID D017

   

Phosphoenolpyruvic acid

Phosphoenolpyruvic Acid Trisodium Salt monohydrate

C3H5O6P (167.9824)


Phosphoenolpyruvate, also known as pep or 2-(phosphonooxy)-2-propenoic acid, is a member of the class of compounds known as phosphate esters. Phosphate esters are organic compounds containing phosphoric acid ester functional group, with the general structure R1P(=O)(R2)OR3. R1,R2 = O,N, or halogen atom; R3 = organyl group. Phosphoenolpyruvate is soluble (in water) and an extremely strong acidic compound (based on its pKa). Phosphoenolpyruvate can be found in a number of food items such as okra, endive, chestnut, and dandelion, which makes phosphoenolpyruvate a potential biomarker for the consumption of these food products. Phosphoenolpyruvate can be found primarily in blood, cellular cytoplasm, and saliva, as well as in human prostate tissue. Phosphoenolpyruvate exists in all living species, ranging from bacteria to humans. In humans, phosphoenolpyruvate is involved in several metabolic pathways, some of which include glycolysis, amino sugar metabolism, gluconeogenesis, and glycogenosis, type IC. Phosphoenolpyruvate is also involved in several metabolic disorders, some of which include glycogen storage disease type 1A (GSD1A) or von gierke disease, salla disease/infantile sialic acid storage disease, phosphoenolpyruvate carboxykinase deficiency 1 (PEPCK1), and pyruvate dehydrogenase complex deficiency. Phosphoenolpyruvate (2-phosphoenolpyruvate, PEP) as the ester derived from the enol of pyruvate and phosphate. It exists as an anion; the parent acid, which is only of theoretical interest, is phosphoenolpyruvic acid. PEP is an important intermediate in biochemistry. It has the highest-energy phosphate bond found (−61.9 kJ/mol) in living organisms, and is involved in glycolysis and gluconeogenesis. In plants, it is also involved in the biosynthesis of various aromatic compounds, and in carbon fixation; in bacteria, it is also used as the source of energy for the phosphotransferase system . Phosphoenolpyruvate (PEP) is an important chemical compound in biochemistry. It has a high energy phosphate bond, and is involved in glycolysis and gluconeogenesis. In glycolysis, PEP is formed by the action of the enzyme enolase on 2-phosphoglycerate. Metabolism of PEP to pyruvate by pyruvate kinase (PK) generates 1 molecule of adenosine triphosphate (ATP) via substrate-level phosphorylation. ATP is one of the major currencies of chemical energy within cells. In gluconeogenesis, PEP is formed from the decarboxylation of oxaloacetate and hydrolysis of 1 guanosine triphosphate molecule. This reaction is catalyzed by the enzyme phosphoenolpyruvate carboxykinase (PEPCK). This reaction is a rate-limiting step in gluconeogenesis. (wikipedia). [Spectral] Phosphoenolpyruvate (exact mass = 167.98237) and 6-Phospho-D-gluconate (exact mass = 276.02463) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID P007

   

Pyruvate

alpha-Ketopropanoic acid

C3H4O3 (88.016)


Pyruvic acid, also known as 2-oxopropanoic acid or alpha-ketopropionic acid, belongs to alpha-keto acids and derivatives class of compounds. Those are organic compounds containing an aldehyde substituted with a keto group on the adjacent carbon. Thus, pyruvic acid is considered to be a fatty acid lipid molecule. Pyruvic acid is soluble (in water) and a moderately acidic compound (based on its pKa). Pyruvic acid can be synthesized from propionic acid. Pyruvic acid is also a parent compound for other transformation products, including but not limited to, 4-hydroxy-3-iodophenylpyruvate, 3-acylpyruvic acid, and methyl pyruvate. Pyruvic acid can be found in a number of food items such as kumquat, groundcherry, coconut, and prunus (cherry, plum), which makes pyruvic acid a potential biomarker for the consumption of these food products. Pyruvic acid can be found primarily in most biofluids, including sweat, blood, urine, and feces, as well as throughout most human tissues. Pyruvic acid exists in all living species, ranging from bacteria to humans. In humans, pyruvic acid is involved in several metabolic pathways, some of which include glycogenosis, type IB, glycolysis, urea cycle, and gluconeogenesis. Pyruvic acid is also involved in several metabolic disorders, some of which include non ketotic hyperglycinemia, pyruvate dehydrogenase complex deficiency, fructose-1,6-diphosphatase deficiency, and 4-hydroxybutyric aciduria/succinic semialdehyde dehydrogenase deficiency. Moreover, pyruvic acid is found to be associated with anoxia, schizophrenia, fumarase deficiency, and meningitis. Pyruvic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Pyruvic acid is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalanc. Pyruvic acid can be made from glucose through glycolysis, converted back to carbohydrates (such as glucose) via gluconeogenesis, or to fatty acids through a reaction with acetyl-CoA. It can also be used to construct the amino acid alanine and can be converted into ethanol or lactic acid via fermentation . Those taking large doses of supplemental pyruvate—usually greater than 5 grams daily—have reported gastrointestinal symptoms, including abdominal discomfort and bloating, gas and diarrhea. One child receiving pyruvate intravenously for restrictive cardiomyopathy died (DrugBank). Pyruvate serves as a biological fuel by being converted to acetyl coenzyme A, which enters the tricarboxylic acid or Krebs cycle where it is metabolized to produce ATP aerobically. Energy can also be obtained anaerobically from pyruvate via its conversion to lactate. Pyruvate injections or perfusions increase contractile function of hearts when metabolizing glucose or fatty acids. This inotropic effect is striking in hearts stunned by ischemia/reperfusion. The inotropic effect of pyruvate requires intracoronary infusion. Among possible mechanisms for this effect are increased generation of ATP and an increase in ATP phosphorylation potential. Another is activation of pyruvate dehydrogenase, promoting its own oxidation by inhibiting pyruvate dehydrogenase kinase. Pyruvate dehydrogenase is inactivated in ischemia myocardium. Yet another is reduction of cytosolic inorganic phosphate concentration. Pyruvate, as an antioxidant, is known to scavenge such reactive oxygen species as hydrogen peroxide and lipid peroxides. Indirectly, supraphysiological levels of pyruvate may increase cellular reduced glutathione (T3DB). Pyruvic acid or pyruvate is a simple alpha-keto acid. It is a three-carbon molecule containing a carboxylic acid group and a ketone functional group. Pyruvate is the simplest alpha-keto acid and according to official nomenclature by IUPAC, it is called alpha-keto propanoic acid. Like other keto acids, pyruvic acid can tautomerize from its ketone form to its enol form, containing a double bond and an alcohol. Pyruvate is found in all living organisms ranging from bacteria to plants to humans. It is intermediate compound in the metabolism of carbohydrates, proteins, and fats. Pyruvate is a key intermediate in several metabolic pathways throughout the cell. In particular, pyruvic acid can be made from glucose through glycolysis, converted back to carbohydrates (such as glucose) via gluconeogenesis, or to fatty acids through a reaction with acetyl-CoA. Pyruvic acid supplies energy to cells through the citric acid cycle (TCA or Krebs cycle) when oxygen is present (aerobic respiration), and alternatively ferments to produce lactate when oxygen is lacking (lactic acid). In glycolysis, phosphoenolpyruvate (PEP) is converted to pyruvate by pyruvate kinase. This reaction is strongly exergonic and irreversible. In gluconeogenesis, it takes two enzymes, pyruvate carboxylase and PEP carboxykinase, to catalyze the reverse transformation of pyruvate to PEP. Pyruvic acid is also a metabolite of Corynebacterium (PMID: 27872963). Pyruvic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=127-17-3 (retrieved 2024-07-01) (CAS RN: 127-17-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Pyruvic acid is an intermediate metabolite in the metabolism of carbohydrates, proteins, and fats. Pyruvic acid is an intermediate metabolite in the metabolism of carbohydrates, proteins, and fats.

   

Dihydroxyacetone phosphate

1,3-Dihydroxy-2-propanone monodihydrogen phosphoric acid

C3H7O6P (169.998)


An important intermediate in lipid biosynthesis and in glycolysis.; Dihydroxyacetone phosphate (DHAP) is a biochemical compound involved in many reactions, from the Calvin cycle in plants to the ether-lipid biosynthesis process in Leishmania mexicana. Its major biochemical role is in the glycolysis metabolic pathway. DHAP may be referred to as glycerone phosphate in older texts.; Dihydroxyacetone phosphate lies in the glycolysis metabolic pathway, and is one of the two products of breakdown of fructose 1,6-phosphate, along with glyceraldehyde 3-phosphate. It is rapidly and reversibly isomerised to glyceraldehyde 3-phosphate.; In the Calvin cycle, DHAP is one of the products of the sixfold reduction of 1,3-bisphosphoglycerate by NADPH. It is also used in the synthesis of sedoheptulose 1,7-bisphosphate and fructose 1,6-bisphosphate which are both used to reform ribulose 5-phosphate, the key carbohydrate of the Calvin cycle. Dihydroxyacetone phosphate is found in many foods, some of which are sesame, mexican groundcherry, parsley, and common wheat. [Spectral] Glycerone phosphate (exact mass = 169.99802) and beta-D-Fructose 1,6-bisphosphate (exact mass = 339.99605) and NADP+ (exact mass = 743.07545) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Dihydroxyacetone phosphate is an important intermediate in lipid biosynthesis and in glycolysis. Dihydroxyacetone phosphate is found to be associated with transaldolase deficiency, which is an inborn error of metabolism. Dihydroxyacetone phosphate has been identified in the human placenta (PMID: 32033212). KEIO_ID D014

   

Glyceraldehyde 3-phosphate

[(2R)-2-hydroxy-3-oxopropoxy]phosphonic acid

C3H7O6P (169.998)


Glyceraldehyde 3-phosphate (G3P) (CAS: 591-59-3), also known as triose phosphate, belongs to the class of organic compounds known as glyceraldehyde-3-phosphates. Glyceraldehyde-3-phosphates are compounds containing a glyceraldehyde substituted at position O3 by a phosphate group. Glyceraldehyde 3-phosphate is an extremely weak basic (essentially neutral) compound (based on its pKa). Glyceraldehyde 3-phosphate has been detected, but not quantified in, several different foods, such as sea-buckthorn berries, lingonberries, prunus (cherry, plum), quinoa, and sparkleberries. This could make glyceraldehyde 3-phosphate a potential biomarker for the consumption of these foods. Glyceraldehyde 3-phosphate is an aldotriose, an important metabolic intermediate in both glycolysis and gluconeogenesis, and in tryptophan biosynthesis. G3P is formed from fructose 1,6-bisphosphate, dihydroxyacetone phosphate (DHAP), and 1,3-bisphosphoglycerate (1,3BPG). This is the process by which glycerol (as DHAP) enters the glycolytic and gluconeogenesis pathways. Glyceraldehyde 3-phosphate (G3P) or triose phosphate is an aldotriose, an important metabolic intermediate in both glycolysis and gluconeogenesis, and in tryptophan biosynthesis. G3P is formed from Fructose-1,6-bisphosphate, Dihydroxyacetone phosphate (DHAP),and 1,3-bisphosphoglycerate, (1,3BPG), and this is how glycerol (as DHAP) enters the glycolytic and gluconeogenesis pathways. D-Glyceraldehyde 3-phosphate is found in many foods, some of which are quince, chinese cabbage, carob, and peach. Acquisition and generation of the data is financially supported in part by CREST/JST.

   

3-phosphoglycerate

3-(Dihydrogen phosphoric acid)glyceric acid

C3H7O7P (185.9929)


3-Phosphoglyceric acid, also known as 3PG, belongs to the class of organic compounds known as sugar acids and derivatives. Sugar acids and derivatives are compounds containing a saccharide unit which bears a carboxylic acid group. 3PG is the conjugate acid of glycerate 3-phosphate (GP or G3P). It is a solid that is soluble in water. 3-Phosphoglyceric acid exists in all living species, ranging from bacteria to humans. The glycerate is a biochemically significant metabolic intermediate in both glycolysis and the Calvin cycle. This is the first compound formed during the C3 or Calvin cycle. Glycerate 3-phosphate is also a precursor for serine, which, in turn, can create cysteine and glycine through the homocysteine cycle. Within humans, 3-phosphoglyceric acid participates in a number of enzymatic reactions. In particular, 3-phosphoglyceric acid can be biosynthesized from glyceric acid 1,3-biphosphate, which is mediated by the enzyme phosphoglycerate kinase 1. In addition, 3PG can be converted into 2-phospho-D-glyceric acid, which is catalyzed by the enzyme phosphoglycerate mutase 2. 3-phosphoglyceric acid is involved in the Warburg effect (aerobic glycolysis), a metabolic shift that is a hallmark of cancer (PMID: 29362480). 3-phosphoglyceric acid (3PG) is a 3-carbon molecule that is a metabolic intermediate in both glycolysis and the Calvin cycle. This chemical is often termed PGA when referring to the Calvin cycle. In the Calvin cycle, two glycerate 3-phosphate molecules are reduced to form two molecules of glyceraldehyde 3-phosphate (GALP). (wikipedia) [HMDB] KEIO_ID P028

   

2,3-Diphosphoglyceric acid

2,3-diphosphonooxypropanoic acid

C3H8O10P2 (265.9593)


   

2-Phosphoglyceric acid

3-Hydroxy-2-(phosphonooxy)propanoic acid

C3H7O7P (185.9929)


2-Phosphoglyceric acid (2PGA) is a glyceric acid which serves as the substrate in the ninth step of glycolysis. It is catalyzed by enolase into phosphoenolpyruvate (PEP), the penultimate step in the conversion of glucose to pyruvate. Enolase catalyzes the beta-elimination reaction in a stepwise manner wherein OH- is eliminated from C3 of a discrete carbanion (enolate) intermediate. This intermediate is created by removal of the proton from C2 of 2PGA by a base in the active site. (PMID: 8994873, Wikipedia) [HMDB] 2-Phosphoglyceric acid (2PGA) is a glyceric acid which serves as the substrate in the ninth step of glycolysis. It is catalyzed by enolase into phosphoenolpyruvate (PEP), the penultimate step in the conversion of glucose to pyruvate. Enolase catalyzes the beta-elimination reaction in a stepwise manner wherein OH- is eliminated from C3 of a discrete carbanion (enolate) intermediate. This intermediate is created by removal of the proton from C2 of 2PGA by a base in the active site (PMID: 8994873, Wikipedia). 2-Phosphoglyceric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2553-59-5 (retrieved 2024-11-04) (CAS RN: 2553-59-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

D-(-)-Lactic acid

D-(−)-Lactic acid

C3H6O3 (90.0317)


Lactic acid, also known as lactate, plays several important biological roles in living organisms. Here are some of its key functions: Energy Production: Lactic acid is a crucial intermediate in the process of anaerobic glycolysis, which occurs in cells when oxygen is limited. During intense exercise, for example, muscle cells produce lactic acid as a byproduct of breaking down glucose for energy without using oxygen. This process helps sustain muscle activity when oxygen supply is insufficient. pH Regulation: Lactic acid serves as a pH buffer in the blood and other bodily fluids. It helps maintain the acid-base balance by accepting or donating hydrogen ions (H+), thereby preventing large fluctuations in pH that could be harmful to cellular processes. Hemoglobin Oxygen Release: Lactic acid can also influence the affinity of hemoglobin for oxygen. In tissues with high lactic acid concentrations (like exercising muscles), lactic acid binds to hemoglobin, causing a conformational change that promotes the release of oxygen. This is known as the Bohr effect. Cell Signaling: Lactate can act as a signaling molecule in various physiological processes. It has been shown to play a role in cell proliferation, inflammation, and immune response. Lactate can modulate the activity of immune cells and may contribute to the regulation of inflammation. Metabolic Regulation: Lactic acid is an important component in the metabolic network. It can be converted back into glucose in the liver through a process called gluconeogenesis, providing a source of energy for other tissues, including the brain, when carbohydrates are scarce. Antioxidant Properties: Lactic acid can function as an antioxidant, helping to protect cells from oxidative stress and damage caused by reactive oxygen species (ROS). Preservation of Foods: In food industry, lactic acid is used as a preservative due to its antimicrobial properties. It can inhibit the growth of bacteria and extend the shelf life of various food products.

   

lactic acid

DL-Lactic Acid

C3H6O3 (90.0317)


G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AD - Organic acids 2-hydroxypropanoic acid, also known as lactic acid or lactate, belongs to alpha hydroxy acids and derivatives class of compounds. Those are organic compounds containing a carboxylic acid substituted with a hydroxyl group on the adjacent carbon. 2-hydroxypropanoic acid is soluble (in water) and a weakly acidic compound (based on its pKa). 2-hydroxypropanoic acid can be synthesized from propionic acid. 2-hydroxypropanoic acid is also a parent compound for other transformation products, including but not limited to, ethyl 2-hydroxypropanoate, 3-(imidazol-5-yl)lactic acid, and lactate ester. 2-hydroxypropanoic acid is an odorless tasting compound and can be found in a number of food items such as sunflower, potato, apple, and ginkgo nuts, which makes 2-hydroxypropanoic acid a potential biomarker for the consumption of these food products. 2-hydroxypropanoic acid is a drug which is used for use as an alkalinizing agent. In animals, L-lactate is constantly produced from pyruvate via the enzyme lactate dehydrogenase (LDH) in a process of fermentation during normal metabolism and exercise. It does not increase in concentration until the rate of lactate production exceeds the rate of lactate removal, which is governed by a number of factors, including monocarboxylate transporters, concentration and isoform of LDH, and oxidative capacity of tissues. The concentration of blood lactate is usually 1–2 mmol/L at rest, but can rise to over 20 mmol/L during intense exertion and as high as 25 mmol/L afterward . Lactate (Lactate acid) is the product of glycolysis. Lactate is produced by oxygen lack in contracting skeletal muscle in vivo, and can be removed under fully aerobic conditions. Lactate can be as a hemodynamic marker in the critically ill[1][2]. Lactate (Lactate acid) is the product of glycolysis. Lactate is produced by oxygen lack in contracting skeletal muscle in vivo, and can be removed under fully aerobic conditions. Lactate can be as a hemodynamic marker in the critically ill[1][2].

   

Phosphoenolpyruvic acid

2-dihydroxyphosphinoyloxyacrylic acid

C3H5O6P (167.9824)


A monocarboxylic acid that is acrylic acid substituted by a phosphonooxy group at position 2. It is a metabolic intermediate in pathways like glycolysis and gluconeogenesis.

   

3-Phosphoglyceric acid

3-Phospho-D-glyceric acid

C3H7O7P (185.9929)


The D-enantiomer of 3-phosphoglyceric acid

   

DIHYDROXYACETONE PHOSPHATE

(3-hydroxy-2-oxopropyl) dihydrogen phosphate

C3H7O6P (169.998)


A member of the class of glycerone phosphates that consists of glycerone bearing a single phospho substituent.

   

Pyruvic acid

alpha-keto propionic acid

C3H4O3 (88.016)


A 2-oxo monocarboxylic acid that is the 2-keto derivative of propionic acid. It is a metabolite obtained during glycolysis. Pyruvic acid is an intermediate compound in the metabolism of carbohydrates, proteins, and fats. In thiamine deficiency, its oxidation is retarded and it accumulates in the tissues, especially in nervous structures (From Stedman, 26th ed.). Biological Source: Intermediate in primary metabolism including fermentation processes. Present in muscle in redox equilibrium with Lactic acid. A common constituent, as a chiral cyclic acetal linked to saccharide residues, of bacterial polysaccharides. Isolated from cane sugar fermentation broth and peppermint. Constituent of Bauhinia purpurea, Cicer arietinum (chickpea), Delonix regia, Pisum sativum (pea) and Trigonella caerulea (sweet trefoil) Use/Importance: Reagent for regeneration of carbonyl compdounds from semicarbazones, phenylhydrazones and oximes. Flavoring ingredient (Dictionary of Organic Compounds); Pyruvate is a key intersection in the network of metabolic pathways. Pyruvate can be converted into carbohydrates via gluconeogenesis, to fatty acids or energy through acetyl-CoA, to the amino acid alanine and to ethanol. Therefore it unites several key metabolic processes.; Pyruvate is an important chemical compound in biochemistry. It is the output of the anaerobic metabolism of glucose known as glycolysis. One molecule of glucose breaks down into two molecules of pyruvate, which are then used to provide further energy, in one of two ways. Pyruvate is converted into acetyl-coenzyme A, which is the main input for a series of reactions known as the Krebs cycle. Pyruvate is also converted to oxaloacetate by an anaplerotic reaction which replenishes Krebs cycle intermediates; alternatively, the oxaloacetate is used for gluconeogenesis. These reactions are named after Hans Adolf Krebs, the biochemist awarded the 1953 Nobel Prize for physiology, jointly with Fritz Lipmann, for research into metabolic processes. The cycle is also called the citric acid cycle, because citric acid is one of the intermediate compounds formed during the reactions.; Pyruvic acid (CH3COCOOH) is an organic acid. It is also a ketone, as well as being the simplest alpha-keto acid. The carboxylate (COOH) ion (anion) of pyruvic acid, CH3COCOO-, is known as pyruvate, and is a key intersection in several metabolic pathways. It can be made from glucose through glycolysis, supplies energy to living cells in the citric acid cycle, and can also be converted to carbohydrates via gluconeogenesis, to fatty acids or energy through acetyl-CoA, to the amino acid alanine and to ethanol.; Pyruvic acid is a colorless liquid with a smell similar to that of acetic acid. It is miscible with water, and soluble in ethanol and diethyl ether. In the laboratory, pyruvic acid may be prepared by heating a mixture of tartaric acid and potassium hydrogen sulfate, by the oxidation of propylene glycol by a strong oxidizer (eg. potassium permanganate or bleach), or by the hydrolysis of acetyl cyanide, formed by reaction of acetyl chloride with potassium cyanide:; Pyruvic acid or pyruvate is a key intermediate in the glycolytic and pyruvate dehydrogenase pathways, which are involved in biological energy production. Pyruvate is widely found in living organisms. It is not an essential nutrient since it can be synthesized in the cells of the body. Certain fruits and vegetables are rich in pyruvate. For example, an average-size red apple contains approximately 450 milligrams. Dark beer and red wine are also rich sources of pyruvate. Recent research suggests that pyruvate in high concentrations may have a role in cardiovascular therapy, as an inotropic agent. Supplements of this dietary substance may also have bariatric and ergogenic applications. Pyruvic acid is isolated from cane sugar fermentation broth, Cicer arietinum (chickpea), Pisum sativum (pea), Trigonella cerulea (sweet trefoil) and peppermint. It can be used as a flavouring ingredient. Pyruvic acid is an intermediate metabolite in the metabolism of carbohydrates, proteins, and fats. Pyruvic acid is an intermediate metabolite in the metabolism of carbohydrates, proteins, and fats.

   

2-Phosphoglyceric acid

3-hydroxy-2-phosphonooxypropanoic acid

C3H7O7P (185.9929)


A monophosphoglyceric acid having the phospho group at the 2-position. 2-phosphoglyceric acid is a monophosphoglyceric acid having the phospho group at the 2-position. It is a monophosphoglyceric acid and a tetronic acid derivative. It is functionally related to a glyceric acid. It is a conjugate acid of a 2-phosphoglycerate(3-).

   

Glyceraldehyde 3-phosphate

Glyceraldehyde 3-phosphate

C3H7O6P (169.998)


An aldotriose phosphate that is the 3-phospho derivative of glyceraldehyde. It is an important metabolic intermediate in several central metabolic pathways in all organisms.

   

Phosphoglyceric acid

Phosphoglyceric acid

C3H7O7P (185.9929)